WO2002090621A1 - Generateur de gaz hydrogene-oxygene et procede de generation de gaz hydrogene-oxygene utilisant ce generateur - Google Patents

Generateur de gaz hydrogene-oxygene et procede de generation de gaz hydrogene-oxygene utilisant ce generateur Download PDF

Info

Publication number
WO2002090621A1
WO2002090621A1 PCT/JP2002/004400 JP0204400W WO02090621A1 WO 2002090621 A1 WO2002090621 A1 WO 2002090621A1 JP 0204400 W JP0204400 W JP 0204400W WO 02090621 A1 WO02090621 A1 WO 02090621A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
oxygen gas
vibrating
vibration
electrolytic cell
Prior art date
Application number
PCT/JP2002/004400
Other languages
English (en)
French (fr)
Inventor
Ryushin Omasa
Original Assignee
Japan Techno Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Techno Co., Ltd. filed Critical Japan Techno Co., Ltd.
Priority to EP02724683A priority Critical patent/EP1398395A4/en
Priority to CA2445717A priority patent/CA2445717C/en
Priority to AU2002255298A priority patent/AU2002255298B2/en
Priority to JP2002587673A priority patent/JP3975467B2/ja
Priority to US10/476,195 priority patent/US7459071B2/en
Priority to KR1020037014254A priority patent/KR100897203B1/ko
Priority to TW91117549A priority patent/TW573066B/zh
Publication of WO2002090621A1 publication Critical patent/WO2002090621A1/ja
Priority to US12/256,903 priority patent/US20090045049A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an apparatus and a method for generating hydrogen-oxygen gas by electrolysis, and in particular, to a hydrogen-oxygen gas generator and a hydrogen-oxygen gas generator intended to generate hydrogen-oxygen gas with high efficiency. It is about the method. Background art
  • bolt holes are formed on all sides, and the gas flow slots and the electrolyte flow slots are perpendicular to each other above and below the center.
  • a plurality of formed electrode plates and a plurality of spacers formed between the electrode plates and formed with bolt housing holes protruding outward are alternately connected to each other, and the inner peripheral surface of the spacer is formed.
  • an electrolytic cell finishing plate having a current connection bolt, a gas connection two nipples and an electrolyte connection two nipples on both sides of the electrode plate
  • the nut is fastened to a stilt sandwiched between the bolt hole of the electrode plate, the bolt housing hole of the spacer, and the bolt hole of the electrolytic cell finishing plate, and the electrode plate, the spacer, and the electrolytic cell are fastened. Structured by interconnecting finish plates did Things.
  • an interval of at least 5 Om m must be provided between adjacent ones of the electrode plates provided in such an electrolytic cell as a distance that does not cause a short circuit. Shorter distances will result in an overcurrent, which tends to cause accidents. For this reason, in the conventional apparatus and method, there is a limit in generating the hydrogen-oxygen gas with high efficiency by increasing the current density, and sufficient efficiency has not been obtained.
  • the amount of hydrogen and oxygen gas produced by one hydrogen and oxygen gas generator also has an upper limit.
  • the present invention improves the efficiency of hydrogen-oxygen gas generation by improving the electrolysis conditions, thereby increasing the amount of hydrogen-oxygen gas generated per unit area of the electrode per unit time, thereby reducing the size of the device. In addition, it is possible to increase the amount of hydrogen-oxygen gas generated per apparatus. Disclosure of the invention
  • An electrolytic cell an electrode group consisting of a first electrode and a second electrode alternately arranged in the electrolytic cell, and a power supply for applying a voltage between the first electrode and the second electrode
  • a hydrogen-oxygen gas generator comprising: a gas collecting means for collecting hydrogen-oxygen gas generated by electrolysis of an electrolytic solution contained in the electrolytic cell.
  • a vibrating stirrer for vibrating and stirring the electrolytic solution contained in the electrolytic cell, and a distance between the first electrode and the second electrode adjacent to each other in the electrode group is 1 hydrogen-oxygen gas generator, characterized in that it is set in the range of
  • the gas collecting means includes: a lid member attached to the electrolytic cell; and a hydrogen-oxygen gas collection pipe connected to a hydrogen-oxygen gas outlet provided on the lid member.
  • the vibration stirrer is non-rotatably and at least one-stage mounted on a vibration generating means including a vibration motor, and a vibrating rod vibrating in the electrolytic cell in cooperation with the vibration generating means.
  • the vibration motor vibrates at a frequency of 10 Hz to 200 Hz.
  • the vibration generating means is attached to an upper part of the electrolytic cell via a vibration absorbing member.
  • the vibration generating means is supported by a support stand different from the electrolytic cell.
  • the gas collecting means includes: a lid member attached to the electrolytic cell; and a hydrogen-oxygen gas collection pipe connected to a hydrogen-oxygen gas outlet provided in the lid member.
  • the vibrating rod extends through the lid member, and between the lid member and the vibrating rod, allows vibration of the vibrating rod and allows passage of the hydrogen-oxygen gas. Sealing means for blocking is interposed.
  • at least one of the first electrode and the second electrode is porous.
  • the power supply is a DC pulse power supply.
  • a hydrogen-oxygen gas generator as described above is used to achieve the above object, and the electrolyte contains 5% to 10% by weight of an electrolyte and has a liquid temperature of 2%. Electrolysis of the electrolytic solution at a temperature of 0 ° C. to 7 CTC and a pH of 7 to 10 so that the current density becomes 5 A_dm 2 to 20 AZ dm 2. An oxygen gas generation method is provided.
  • the electrolysis is performed in a closed state in which a lid member is attached to the electrolytic cell.
  • the electrolyte is a water-soluble alkaline metal hydroxide or an alkaline earth metal hydroxide.
  • a DC pulse power supply is used as the power supply.
  • the electrolyte is sufficiently uniform with the electrode. And with a sufficient supply. For this reason, even if the distance between the anode and the cathode is significantly smaller than before, it is possible to supply enough ions required for electrolysis between them, and the electrolytic heat generated at the electrodes can be rapidly reduced. The heat can be dissipated. Therefore, electrolysis can be performed at a high current density, and hydrogen-oxygen gas can be recovered with high efficiency.
  • the effective surface area of the electrodes arranged per unit volume can be sufficiently increased.
  • FIG. 1 is a cross-sectional view showing a configuration of a hydrogen-oxygen gas generator according to the present invention.
  • FIG. 2 is a plan view of the hydrogen-oxygen gas generator of FIG.
  • FIG. 3 is a side view of the apparatus of FIG.
  • FIG. 4 is a partially enlarged sectional view of the apparatus of FIG.
  • FIG. 5A is a perspective view showing the configuration of the electrode group.
  • FIG. 5B is a front view showing the configuration of the electrode group.
  • FIG. 6A is a front view showing an insulator frame constituting the electrode group.
  • FIG. 6B is a front view showing the electrodes constituting the electrode group.
  • FIG. 7 is an enlarged sectional view of a portion where the vibrating rod is attached to the vibrating member of the apparatus shown in FIG.
  • FIG. 8 is an enlarged cross-sectional view showing a modified example of a portion where the vibrating rod is attached to the vibrating member. ⁇
  • Fig. 9 is an enlarged sectional view of the part where the vibrating blade is attached to the vibrating rod of the device in Fig. 1. is there.
  • FIG. 10 is a plan view showing a modified example of the vibrating blade and the fixing member.
  • FIG. 11 is a plan view showing a modified example of the vibrating blade and the fixing member.
  • FIG. 12 is a plan view showing a modified example of the vibrating blade and the fixing member.
  • FIG. 13 is a plan view showing a modified example of the vibrating blade and the fixing member.
  • FIG. 14 is a graph showing the relationship between the length of the vibrating blade and the degree of bending.
  • FIG. 15 is a cross-sectional view showing a modified example of the vibration stirring means.
  • FIG. 16 is a sectional view showing a modified example of the vibration stirring means.
  • FIG. 17 is a cross-sectional view showing a modification of the vibration stirring means.
  • FIG. 18 is a sectional view showing a modification of the vibration stirring means.
  • FIG. 19 is a sectional view showing a modified example of the vibration stirring means.
  • FIG. 20 is a cross-sectional view showing a mode of attachment of the vibrating stirrer constituting the hydrogen-oxygen gas generator according to the present invention to the electrolytic cell.
  • FIG. 21 is a cross-sectional view of the device shown in FIG.
  • FIG. 22 is a plan view of the device shown in FIG.
  • FIGS. 23A to 23C are plan views of the laminate.
  • FIGS. 24A and 24B are cross-sectional views showing a state where the electrolytic cell is closed by the laminate.
  • FIGS. 25A to 25E are cross-sectional views of the laminate.
  • FIG. 26 is a diagram showing a part of the gas collecting means of the hydrogen-oxygen gas generator according to the present invention.
  • FIG. 27 is a schematic diagram showing an example of a gas combustion device using hydrogen-oxygen gas collected by a hydrogen-oxygen gas generator.
  • FIG. 28 is a cross-sectional view showing a modification of the vibration stirring means.
  • FIG. 29 is a perspective view showing a modification of the lid member.
  • FIGS. 1 to 3 are diagrams showing the configuration of an embodiment of a hydrogen-oxygen gas generator in which the hydrogen-oxygen gas generation method according to the present invention is performed.
  • FIG. 1 is a sectional view
  • FIG. 2 is a plan view
  • FIG. 3 is a side view.
  • 1OA is an electrolytic cell, and an electrolytic solution 14 is contained in the electrolytic cell.
  • 16 is a vibration stirring means.
  • the vibrating stirrer 16 has a base 16 a attached via a vibration isolating rubber to a support 100 arranged separately from the electrolytic cell 1 OA, and a lower end is fixed to the base.
  • a coil spring 16b as a vibration absorbing member, a vibration member 16c fixed to an upper end of the coil panel, a vibration motor 16d attached to the vibration member, and an upper end attached to the vibration member 16c.
  • the vibrating rod (vibration transmitting rod) 16e has a vibrating blade 16 1 which is non-rotatably mounted in a plurality of stages at a position where it is immersed in the electrolytic solution 14 in the lower half of the vibrating rod.
  • Vibration generating means is configured to include the vibration motor 16d and the vibration member 16c, and the vibration generating means is linked to the vibration rod 16e.
  • a rod-shaped guide member can be arranged in the coil spring 16b, as shown in FIG.
  • the vibration motor 16d vibrates at 10 to 200 Hz, preferably 20 to 60 Hz, for example, by control using a member.
  • the vibration generated by the vibration motor 16d is transmitted to the vibration blade 16f via the vibration member 16c and the vibration rod 16e.
  • the leading edge of the vibrating blade 16 ⁇ vibrates at a required frequency in the electrolyte 14. This vibration is generated such that the vibrating blade 16 f “bends” from the portion attached to the vibrating rod 16 e to the tip edge.
  • the amplitude and frequency of this vibration are different from those of the vibration motor 16d, but are determined according to the mechanical characteristics of the vibration transmission path and the characteristics of the interaction with the electrolytic solution 14, etc. 0.1 to: It is preferable to set the frequency to 200 to 100 times at L5.0 mm.
  • FIG. 7 is an enlarged cross-sectional view of the mounting portion 111 of the vibration bar 16e to the vibration member 16c.
  • Nuts 16 i 1, 16 i 2 are attached to the male thread formed at the upper end of the vibrating rod 16 e from the upper side of the vibrating member 16 c via the vibration stress dispersing member 16 g 1 and the washer 16 h.
  • the nuts 16i3 and 16i4 are adapted from the lower side of the vibration member 16c via the vibration stress distribution member 16g2.
  • the vibration stress dispersing members 16 g 1 and 16 g 2 are used as vibration stress dispersing means and are made of, for example, rubber.
  • the vibration stress dispersing member 16 g 1, 16 g 2 is a hard elastic material having a Shore A hardness of 80 to 120, preferably 90 to 100, for example, hard natural rubber, hard synthetic rubber, synthetic resin, or the like. It can be composed of the body. In particular, a hard urethane rubber having a Shore A hardness of 90 to 100 is preferable in terms of durability and chemical resistance.
  • the vibration stress dispersing means it is possible to prevent the vibration stress from being concentrated near the joint between the vibration member 16c and the vibration bar 16e, and the vibration bar 16e is less likely to break. In particular, when the vibration frequency of the vibration motor 16d is increased to 100 Hz or more, the effect of preventing the bending of the vibration rod 16e is remarkable.
  • FIG. 8 is an enlarged cross-sectional view showing a modification of the mounting portion 111 of the vibration bar 16e to the vibration member 16c.
  • This modified example is different from the mounting part in FIG. 7 in that the vibration stress dispersing member 16 g 1 is not disposed above the vibration member 16 c, and the vibration member 16 c and the vibration stress dispersing member 16 g 2 The only difference is that a spherical spacer 16 X is interposed between the two, and the other is the same.
  • FIG. 9 is an enlarged cross-sectional view of a mounting portion of the vibrating blade 16: f to the vibrating rod 16e.
  • vibrating blade fixing members 16j are arranged on the upper and lower sides of each of the vibrating blades 16f.
  • a spacer 16k for setting the interval between the vibrating blades 16f is disposed between the adjacent vibrating blades 16f via a fixing member 16j.
  • the upper side of the uppermost vibrating blade 16f and the lower side of the lowermost vibrating blade 16f can be connected with or without a spacer ring 16k.
  • a nut 16 m that is compatible with the female thread formed on the vibrating rod 16 e is arranged. As shown in FIG.
  • an elastic member sheet 16p as a vibration stress dispersing means made of a fluororesin or a fluororubber is provided between each vibrating blade 16f and the fixing member 16j.
  • the elastic member sheet 16p is preferably arranged so as to slightly protrude from the fixing member 16j in order to further enhance the effect of preventing the vibration blade 16f from being damaged.
  • the lower surface (pressing surface) of the upper fixing member 16 j is a convex surface
  • the upper surface (pressing surface) of the lower fixing member 16 j is a corresponding concave surface. ing.
  • the portion of the vibrating blade 16 ⁇ pressed from above and below by the fixing member 16 j is curved, and the tip of the vibrating blade 16 f forms an angle ⁇ with the horizontal plane.
  • the angle ⁇ can be, for example, ⁇ 30 ° or more and 30 ° or less, preferably ⁇ 20 ° or more and 20 ° or less.
  • the angle ⁇ is preferably ⁇ 30 ° or more—5 ° or less, or 5 ° or more and 30 ° or less, preferably —20 ° or more—10 ° or less, or 10 ° or more and 20 ° or less.
  • the pressing surface of the fixing member 16j is a flat surface, the angle ⁇ is 0 °.
  • the angle ⁇ does not need to be the same for all the vibrating blades 16 f.
  • a value of — ie, downward: the direction shown in FIG. 9
  • the value of + that is, upward: the direction opposite to that shown in FIG. 9 can be taken.
  • FIGS. 10 to 13 are plan views showing modified examples of the vibrating blade 16 f and the fixing member 16 j.
  • the vibrating blade 16 f may be a strip-shaped one in which two pieces are overlapped so as to be orthogonal to each other, or a cross as shown in the figure from a single plate. It may be cut into a shape.
  • the vibrating blade 16 f an elastic metal plate, a synthetic resin plate, a rubber plate, or the like can be used.
  • the preferable range of the thickness of the vibrating blade 16 f varies depending on the vibration conditions, the viscosity of the electrolyte 14, and the like.
  • the tip of the vibrating blade 16f is set to exhibit a "flutter phenomenon" (a wavy state).
  • the vibrating blade 16 mm is made of a metal plate such as a stainless steel plate, its thickness can be 0.2 to 2 mm.
  • the vibrating blade 16f is made of a synthetic resin plate or a rubber plate, its thickness can be set to 0.5 to 1 Omm.
  • a vibrating blade 16 f and a fixed member 16 j may be integrally formed. In this case, it is possible to avoid such a problem that the electrolyte solution 14 infiltrates into the joint between the vibrating blade 16f and the fixing member 16j, solids are fixed, and cleaning is troublesome.
  • Examples of the material of the metallic vibrating blade 16f include magnetic metals such as titanium, aluminum, copper, iron and steel, stainless steel, and magnetic steel, and alloys thereof.
  • the material of the synthetic resin vibrating blade 16 f is polycarbonate, salt Butyl resin, polypropylene and the like.
  • Vibration blade 16 in electrolyte solution 14 The degree of the "flutter phenomenon" of the vibration blade generated with the vibration of e depends on the vibration frequency of the vibration mode 16 d, the vibration frequency of the vibration blade 16 f It varies depending on the length (the dimension from the leading edge of the fixing member 16J to the leading edge of the vibrating blade 16f) and thickness, and the viscosity and specific gravity of the electrolyte solution 14. For a given frequency, you can select the length and thickness of the best “flexible" vibrating blade 16 f. When the vibration frequency of the vibration motor 16 d and the thickness of the vibration blade 16 f are kept constant and the length of the vibration blade 16 mm is changed, the degree of bending of the vibration blade is as shown in Fig.
  • the length of the vibrating blade is preferably either a length of a first round of the peak, it is preferable to select the length L 2 of a second round of the peak. Or L 2 can be appropriately selected depending on whether the system vibration or flow is strengthened. If you choose the length L 3 of a third round of peak amplitude tends to decrease.
  • vibration stirring means 16 examples include the following documents (these are related to the patent application according to the present inventors' invention) and Japanese Patent Application No. 2000-1-1 which is a patent application by the present applicant. It is possible to use a vibrating stirrer (vibrating stirrer) as described in 3 5 5 2 8, Japanese Patent Application No. 2000-1—3 3 8 4 2 2:
  • JP-A-3-2751530 Patent No. 194,498), JP-A-6-224,977 (Patent No. 270,530), Japanese Unexamined Patent Publication No. Hei 6-3121224 (Patent No. 2762388), Japanese Unexamined Patent Publication No. Hei 8-282172 (Patent No. 276771), Japanese Unexamined Patent Application Publication No. Hei 8-1773875 (Patent No. 2852288) Japanese Unexamined Patent Publication No. Hei 7-128689 (Japanese Patent No. 2911350) Japanese Unexamined Patent Publication No. 9-4040482 (Patent No. 2911 1393) JP-A-11-189880 (Patent No.
  • JP-A-7-54192 Patent No. 2989440
  • JP-A-6-33035 Patent No. 2992177
  • JP-A-6-287799 Patent No. 3035114
  • JP-A-6-280035 Patent No. 3244334
  • JP-A-6-304461 Patent No. 3142417
  • JP-A-10-43569
  • the vibration stirring means 16 may be arranged at both ends of the electrolytic cell as shown in FIG. 1, or may be arranged only at one end. If a vibrating blade that extends symmetrically on both sides is used, it is also possible to arrange the vibrating stirring means 16 in the center of the electrolytic cell, and to arrange electrode groups as described later on both sides. It is.
  • the space for disposing the electrode group in the electrolytic cell is reduced by using a vibrating stirrer of a type in which a vibrating blade is provided at the bottom of the electrolytic cell as described in JP-A-6-304461.
  • the advantage is that the size of the electrode can be increased and the amount of gas generated per volume of the electrolytic cell can be increased, and when electrodes are arranged vertically, it is not necessary to use a porous electrode as described later. There is.
  • the above-described vibration stirring means 16 are arranged at both ends of the electrolytic cell 1OA.
  • the electrolyzer 1 OA two similar electrode groups 2 x and 2 y are arranged.
  • the electrode groups 2 X and 2 y have a configuration as shown in FIGS. 5A and 5B. That is, the anodes 71a as the first electrodes and the cathodes 71b as the second electrodes are alternately arranged via the insulator frame 70.
  • FIG. 5A and 5B That is, the anodes 71a as the first electrodes and the cathodes 71b as the second electrodes are alternately arranged via the insulator frame 70.
  • FIG. 6A is a diagram showing the insulator frame 70
  • FIG. 6B is a diagram showing the anode 71a.
  • the material of the electrode use the one used for normal water electrolysis be able to.
  • lead dioxide as the anode 7 1 a
  • Magunetai DOO full light
  • graphite platinum
  • p t - I r alloys titanium alloys
  • noble metal-coated titanium emissions for example, platinum-coated titanium
  • Rojiu as the cathode 7 lb beam
  • nickel, nickel alloys Ni- Mo 2, N i- Co, N i - F e, N i -Mo-C d, N i - Sx, Raney nickel, etc.
  • noble metal such as titanium alloy it can.
  • the insulator frame 70 As a material of the insulator frame 70, natural rubber, synthetic rubber, synthetic resin, or the like can be used.
  • the distance between the anode 71 a and the cathode 71 b is set by the thickness of the insulator frame 70, and the thickness of the insulator frame 70 is 1 mm to 20 mm, preferably 1 mm to 20 mm, more preferably It is in the range of l mm to 5 mm.
  • the vibrating blades 16: f are blocked so as to block the flow of the electrolyte 14 generated by the vibrating stirring by the vibrating blades 16 f of the vibrating stirring means 16. If it is installed at a right angle to the facing direction, use a porous material with many small holes 74 in the electrodes (anode 71a and cathode 71b) as shown in Figure 5B and Figure 6B. It is necessary to As a result, the electrolyte solution 14 can flow smoothly through the boiler 74.
  • the shape of the hole may be circular or polygonal, and is not particularly limited.
  • the size and number of the small holes 74 are preferably set appropriately in consideration of a balance between the original purpose of the electrode and the purpose of making the electrode porous.
  • the area ratio of the small holes 74 in the electrode is preferably an effective area (that is, an area in contact with the electrolyte 14), and the electrode area is preferably 50% or more.
  • the porous electrode may be reticulated.
  • the electrodes are provided substantially parallel to the direction of flow of the electrolyte 14, the electrodes need not be made porous, but in such a case, the insulator frame 70 is not a ring-shaped one. What is necessary is to disperse and arrange them at appropriate several places around the electrodes, and to divide them at the upper and lower ends of the electrodes.
  • the anode 71a and the cathode 71b are connected to the anode main bus bar 71a * and the cathode main bus bar 71b 'shown in Fig. 2, respectively.
  • the anode main bus bar 71a' and the cathode main bus bar are connected to each other.
  • One 71b * is connected to the power supply 34 shown in FIG.
  • the power supply 34 only needs to generate a direct current, and can be a normal smooth direct current. Good, but various other waveforms of current can be used.
  • the waveform of such an electrolytic current is described in, for example, “Electrochemistry”, Vol. 24, pp. 398-403, 449-456, “Plating Technology Guide” issued by the Federation of Plating Materials Associations on April 15, 1996. 385 pages, June 15, 1983 Published by Hiroshinsha Co., Ltd. “Surface Technology Overview” 301-302, 51-527, 1105-1053, July 1970 It is described in the “Metsuki Technical Handbook” published by Nikkan Kogyo Shimbun on the 25th, pages 365 to 369, pp. 618 to 622, and the like.
  • Such a power supply can generate a rectangular waveform voltage from an AC voltage.
  • a power supply has, for example, a rectifier circuit using a transistor, and is known as a pulse power supply device. Have been.
  • Examples of such power supply devices or rectifiers include transistor-regulated power supplies, drove-type power supplies, switching power supplies, silicon rectifiers, SCR rectifiers, high-frequency rectifiers, and inverter digital control rectifiers (for example, Power Master from Chuo Seisakusho, KTS series from Sansha Electric Co., Ltd., RCV power supply from Shikoku Electric Co., Ltd., switching regulator type power supply and transistor switch.
  • the voltage applied to each electrode be as uniform as possible. Therefore, it is desirable to arrange a capacitor between each electrode.
  • the voltage applied between the anode 71a and the cathode 71b is the same as in ordinary water electrolysis.
  • the electrolyte 14 is water containing an electrolyte.
  • the electrolyte may be a water-soluble alkali metal hydroxide (KOH, NaOH, etc.) or an alkaline earth metal hydroxide.
  • Product e.g., B a (OH) 2, Mg (OH) 2, C a (OH) 2 , etc.
  • quaternary alkyl ammonium Niu beam a conventionally known can that you use. Of these, KOH is preferred.
  • the content of the electrolyte in the electrolyte is preferably 5 to 10%.
  • the pH of the electrolytic solution is preferably from 7 to 10.
  • a lid member 10B is attached to the upper part of the electrolytic cell 1OA.
  • the lid member is provided with a hydrogen-oxygen gas outlet 10B 'for recovering hydrogen-oxygen gas generated by electrolysis.
  • a hydrogen-oxygen gas sampling pipe 10 B is connected to the extraction ⁇ 10 B '.
  • These lid members 10 B and a hydrogen-oxygen gas sampling pipe 1 OB" are connected to the hydrogen-oxygen gas sampling pipe.
  • a collecting means is configured.
  • Examples of the material of the electrolytic cell 10OA and the lid member 10B include stainless steel, copper, other metals, and synthetic resins such as polycarbonate.
  • the vibrating rod 16e of the vibrating stirrer 16 extends vertically through the cover member 10B. As shown in FIG. 4, this penetration is caused by the fixed member attached to the inner edge of the opening provided in the lid member 10B and the fixed member attached to the outer surface of the vibrating rod 16e.
  • the space can be airtightly sealed by a flexible member 10C such as a rubber plate.
  • the means for hermetic sealing is to attach the inner ring of the support bearing to the vibrating rod 16e, attach the outer ring of the support bearing to the inner edge of the opening of the lid member 1OB, and move the inner ring up and down with respect to the outer ring. It may be one that can be moved over an appropriate stroke.
  • Examples of such a stroke unit include NS-A type (trade name) and NS type (trade name) manufactured by THK.
  • an air-tight sealing means such as a rubber plate or a laminate thereof, which opens only a portion through which the vibrating rod 16e passes, may be attached to the opening provided in the lid member 10B.
  • this sealing means for example, rubber, particularly soft rubber having good deformability can be used.
  • the amplitude of the vertical vibration of the vibrating rod is usually 20 mm or less, preferably 10 mm or less, particularly preferably 5 mm or less, and the lower limit is, for example, 0.1 mm or more, preferably 0.5 mm or more. From rubber By using such a device, it is possible to follow the vehicle and a good airtight state is realized with less generation of frictional heat.
  • the electrolysis is preferably performed at a liquid temperature of 20 to 70 ° C. and a current density of 5 to 20 AZ dm 2 .
  • the hydrogen-oxygen gas generated by the electrolysis is taken out through a seal pot 10 B ′′ ′ connected to a gas sampling pipe 10 B ′′, as shown in FIG.
  • the seal pot 10B also constitutes the gas collecting means.
  • Fig. 27 is a diagram showing an example of a gas combustion device using the hydrogen-oxygen gas recovered by the gas generator.
  • Hydrogen-oxygen gas Is supplied to the combustion nozzle through a gas reservoir, dehumidifier and flame stop of the required capacity.
  • This combustion device is a power unit for airplanes, automobiles, ships, etc., a power generator, a gas cutter, a boiler, Other applications are possible.
  • the hydrogen-oxygen gas generated according to the present invention is known as a so-called brown gas, does not require air for its combustion, and therefore can generate environmental pollutants such as nitrogen oxides by its combustion. Absent.
  • FIG. 15 is a sectional view showing a modification of the vibration stirring means.
  • the base 16a is fixed on a mounting base 40 mounted on the upper part of the electrolytic cell 1OA via a vibration absorbing member 41.
  • a rod-shaped guide member 43 extending vertically upward is fixed to the mounting table 40, and the guide member 43 is located in the coil panel 16b.
  • a transistor for controlling the vibration frequency of the vibration motor 16d and an inverter 35 are interposed between the vibration motor 16d and a power supply 1336 for driving the same. I have.
  • the power supply 136 is, for example, 200 V.
  • Such a driving means of the vibration motor 16d can be used in the above-described other embodiments of the present invention.
  • FIG. 16 is a sectional view showing a modification of the vibration stirring means.
  • a rod-shaped upper guide member 144 extending vertically downward is fixed to the vibration member 16c, and a rod-like lower guide extending vertically upward to the mounting table 40 is fixed.
  • a guide member 144 is fixed, and these guide members 144 and 145 are located in the coil panel 16b. Between the lower end of the upper guide member 144 and the upper end of the lower guide member 144, allow vibration of the vibrating member 16c. Such an appropriate gap is formed.
  • FIG. 17 is a sectional view showing a modification of the vibration stirring means.
  • the vibration mode 16 d is attached to the lower side of the additional vibration member 16 c ′ attached to the upper side of the vibration member 16.
  • the vibrating rod 16 e is branched into two parts 13 4 in the electrolytic cell 1 OA, and the vibrating blade 16 ⁇ ⁇ is stretched between these two rod parts 13 4.
  • FIG. 18 and FIG. 19 are sectional views showing a modification of the vibration stirring means. In this example, the lowest vibrating blade 16 f is inclined downward, and the other vibrating blades 16 f are inclined upward.
  • the vibrating agitation of the electrolytic solution 14 in the portion close to the bottom of the electrolytic cell 10A can be sufficiently performed, and it is possible to prevent the accumulation at the bottom of the electrolytic cell.
  • the entire vibrating blade 16 mm can be inclined downward.
  • FIGS. 20 and 21 are cross-sectional views showing another embodiment of the attachment of the vibration stirring means constituting the apparatus of the present invention to the electrolytic cell, and FIG. 22 is a plan view thereof.
  • FIGS. 20 and 21 correspond to the XX ′ cross section and the YY ′ cross section of FIG. 22, respectively.
  • a laminate 3 of a rubber plate 2 and metal plates 1, 1 ' is used as a vibration absorbing member instead of the coil spring 16b. That is, the laminate 3 is obtained by fixing a metal plate attached to the attachment member 118 fixed to the upper end edge of the electrolytic cell 1 OA via the vibration-isolating rubber 112 by bolts 131, and It is formed by disposing a rubber plate 2 on a plate 1 ′, disposing a metal plate 1 on the rubber plate 2, and integrating them with bolts 116 and nuts 117.
  • the vibration motor 16 d is fixed to the metal plate 1 by bolts 13 2 via support members 115.
  • the upper end of the vibrating rod 16 e is attached to the laminate 3, particularly the metal plate 1 and the rubber plate 2, via the rubber ring 119. That is, the upper metal plate 1 also exerts the function of the vibrating member 16c of the embodiment shown in FIG. 1 and others, and the lower metal plate 1 ′ is the embodiment shown in FIG. 1 and others. It also exhibits the function of the base 16a.
  • a laminate 3 (mainly a rubber plate 2) including these metal plates 1 is shown in FIG. Exhibits the same vibration absorption function as the coil panel 16b on which it is mounted.
  • FIG. 23A to 23C show plan views of the laminate 3.
  • a through-hole 5 for passing the vibrating rod 16 e is formed in the laminate 3.
  • the laminated body 3 is composed of two parts 3 a and 3 b divided into two parts by a dividing line passing through the through-hole 5. 6 e can easily pass through.
  • the laminate 3 has a ring shape corresponding to the upper edge of the electrolytic cell 1OA, and an opening 6 is formed at the center.
  • the upper part of the electrolytic cell 10A is closed by the laminate 3, whereby the same function as the above-described lid member 10B is exhibited.
  • FIGS. 24A and 24B are cross-sectional views showing a state in which the electrolytic cell is closed (sealed) by such a laminate 3.
  • the rubber plate 2 is brought into contact with the vibrating rod 16 e in the through-hole 5 to perform sealing.
  • a flexible seal member 1336 is provided at the opening 6 of the laminate 3 and attached to the laminate 3 and the vibrating rod 16e to close the gap therebetween. Have been.
  • the laminate 3 includes a metal plate 1 and a rubber plate 2.
  • the laminate 3 includes an upper metal plate 1, an upper rubber plate 2, a lower metal plate 1 ', and a lower rubber plate 2'.
  • the laminate 3 includes the upper metal plate 1, the upper rubber plate 2, the intermediate metal plate 1 ", the lower rubber plate 2 ', and the lower metal plate.
  • the number of metal plates and rubber plates can be, for example, 1 to 5.
  • the vibration absorbing member can be composed of only the rubber plates.
  • the material of the metal plates 1, 1 ', and 1 " stainless steel, iron, copper, aluminum-nickel, and other appropriate alloys can be used.
  • the thickness of the metal plate is, for example, 10 to 4 O.
  • a metal plate that is not directly fixed to members other than the laminate (for example, the above-mentioned intermediate metal plate 1 ′′) can be made as thin as 0.3 to 10 mm.
  • a material for the rubber plates 2 and 2 ' a vulcanized product of a synthetic rubber or a natural rubber can be used, and an anti-vibration rubber specified by JI SK6386 is preferable, and a static shear modulus of 4 to 22 is particularly preferable.
  • Synthetic rubbers include chloroprene rubber, nitrile rubber, nitrile-chloroprene rubber, styrene-chloroprene rubber, acrylonitrile-butadiene rubber, isoprene rubber, ethylene-propylene-gen copolymer rubber, epichlorohydrin rubber, and alkylene.
  • Oxide-based rubber, fluorine-based rubber, silicone-based rubber, urethane-based rubber, polysulfide rubber, and phosphabine rubber can be exemplified.
  • the thickness of the rubber plate is, for example, 5 to 6 Omm.
  • the laminate 3 is composed of an upper metal plate 1, a rubber plate 2, and a lower metal plate 1 '
  • the rubber plate 2 is composed of an upper solid rubber layer 2a, a sponge rubber layer 2b, and The side solid rubber layer 2c.
  • One of the lower solid rubber layers 2a and 2'c may be removed, or a plurality of solid rubber layers and a plurality of sponge rubber layers may be laminated.
  • FIG. 28 is a view showing a modified example of the vibration stirring means 16.
  • the vibration module 16 d is located on the side of the electrolytic cell 10 A, and the vibration member 16 c extends horizontally above the electrolytic cell 1 OA.
  • a vibrating rod 16c is attached to the vibrating member 16c.
  • the lid member 10B can be easily attached to and detached from the electrolytic cell 1OA.
  • FIG. 29 shows a modification of the lid member 10B.
  • the lid member 10B is attached to the electrolytic cell 1OA only at a portion above the electrode groups 2X and 2y shown in FIG.
  • Enclosure members 63 extending downward are attached to both ends of the lid member 10B.
  • An opening '65 is formed in the surrounding member 63 at a lower portion of the surrounding member 63 which is immersed in the electrolytic solution so as to allow the electrolytic solution to flow therethrough.
  • a shielding plate 64 for shielding a part of the upper region of the opening 65 can be attached to the surrounding member 63 so that the vertical position can be adjusted.
  • a vertically long hole 66 is formed in the shielding plate 64, and a bolt 67 is fitted to a screw hole 68 formed in the surrounding member 63 through the long hole. Can be. Adjusting the vertical position of the shield 64 Thus, the liquid level in the upper part of the electrode groups 2 x and 2 y can be adjusted, and thus the gas pressure is adjusted.
  • the vibrating rod 16e of the vibrating stirrer does not penetrate the lid member, but the hermetically sealed structure as described above can improve the hydrogen-oxygen gas recovery efficiency and the electrolyte. It is preferable from the viewpoint of prevention of scattering of water.
  • the present invention is also applicable to a gas generator by electrolysis in which a diaphragm for separating hydrogen and oxygen is disposed between an anode and a cathode to separate and recover hydrogen and oxygen.
  • a gas generator by electrolysis in which a diaphragm for separating hydrogen and oxygen is disposed between an anode and a cathode to separate and recover hydrogen and oxygen.
  • Such separation and recovery type gas generators are described, for example, in M. Yamaguchi et al., Developermen tof 2500 cm 2 Solid Pollmer ElectrolyteWater E lec7 rolyzerin WE—NET and There is a description in the title.
  • Hydrogen-oxygen gas was generated and recovered under the following conditions using the apparatus described with reference to FIGS. 1 to 3 except that the cover member 10B described with reference to FIG. 29 was used.
  • Electrolytic tank and lid member are Electrolytic tank and lid member
  • Vibration generating means
  • Vibration motor Murakami Seiki Seisakusho's glass vibrator
  • Vibrating blade Stainless steel (SUS 304), 6 pieces Vibrating bar: Chiyu, 12 mm in diameter
  • Vibrating blade fixing member 12 pieces
  • Packing for vibrating blade 12 pieces made of Teflon (registered trademark) Anode: Made of titanium alloy with platinum plating that can be used for a long time without forming an oxide film, 50 sheets
  • Cathode made of titanium alloy, 50 sheets
  • Insulator frame Synthetic rubber, thickness 5 mm
  • Electrolyte solution Distilled water with 8% by weight of KOH added as an electrolyte.
  • the amount of hydrogen-oxygen gas recovered was 1200 liters at the same time.
  • the recovery of hydrogen-oxygen gas was 800 liters / hour.
  • Example 4 which was carried out in the same manner as in Example 1, the amount of hydrogen-oxygen gas recovered was 2000 liters / hour, and in Example 5, which was carried out in the same manner as in Example 2, the amount of hydrogen-oxygen gas recovered Is 2500 liters / hour, all of which are significantly improved.
  • Example 6 the amount of hydrogen-oxygen gas recovered was 2000 liters / hour, and in Example 5, which was carried out in the same manner as in Example 2, the amount of hydrogen-oxygen gas recovered Is 2500 liters / hour, all of which are significantly improved.
  • the applied voltage between the anode and the cathode can be obtained from a pulse power source with 30 simple 6-phase half-wave rectifiers as described in “Plating Technology Handbook” published by Nikkan Kogyo Shimbun on July 25, 1971, pages 367-368. The procedure was performed in the same manner as in Example 1 except that the above-mentioned product was used.
  • Example 2 Despite lower energy consumption than in Example 1, the recovered amount of hydrogen-oxygen gas was 2200 liter // hour.
  • the recovered amount of hydrogen and oxygen gas was 3000 liters / hour, which was significantly improved as compared with the first embodiment.
  • Example 7 Using a multi-function rectifier PowerMaster PND-1 type of Invar overnight digital control system manufactured by Chuo Seisakusho as a power supply 34, pulse current of rectangular waveform (energized for 0.08 seconds, cut off for 0.02 seconds) Example 7 was carried out in the same manner as in Example 7, except that was used.
  • the electrolysis can be performed well even if the distance between the electrodes is 20 mm or less, and as a result, the hydrogen-oxygen gas generation efficiency can be greatly improved. it can.
  • the device of the present invention uses hydrogen-oxygen gas at low power Making and storing this makes it possible to flexibly respond to large demands. If a DC pulse waveform power supply is used as the power source for electrolysis, power can be further saved.
  • the device of the present invention can be used as a safe and danger-free fuel supply source for the cassette inlet.
  • a gas with good uniformity can be generated without any special means such as propeller agitation of the gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

明 細 書 水素一酸素ガス発生装置及びそれを用いた水素一酸素ガス発生方法 技術分野
本発明は、 電気分解により水素一酸素ガスを発生させるための装置及び 方法に関し、 特に、 高い効率で水素—酸素ガスを発生させることを企図し た水素 -酸素ガス発生装置及び水素 -酸素ガス発生方法に関するものであ る。 背景技術
ファラデーによつて電気分解技術が開発され、 これにより水の電気分解 生成物として、 2 : 1の比率の水素及び酸素からなる水素—酸素ガスが得 られることが知られている。 これまでに、 水素—酸素ガスの研究はそれな りに続けられてきたが、 実用性のある技術は、 オーストラリアのブラウン エネルギー システム テクノロジ一 ピー ティ一 ワイ社 (B r o w n Ene r S s em T e c hno l o gy PTY. L TD. ) のュル .ブラウン博士 (D r. Y u 1 1 B r own) の開発 に係るガス発生機であり、 これに関連する特許文献としては、 曰本国登録 実用新案第 3037633号公報がある。
この技術は、 水素—酸素ガスを発生させる電解槽の構造において、 四方 にボルト孔が形成され、 中心の上側及び下側にガス流通長孔と電解液流通 長孔とが互いに垂直になるように形成された多数個の電極板と、 前記電極 板の間に設置され外側に突出されたボルトハウジング孔が形成された多数 個のスぺーサを相互交番的に結合させ、 スぺ一ザの内周縁面にはォ一リン グでシーリングして電解液充填質を形成するとともに、 前記の電極板の両 側には電流連結ボルトとガス連結二ップル及び電解液連結二ップルとを持 つ電解槽仕上板を装着して、 前記電極板のボルト孔、 スぺ一ザのボルトハ ゥジング孔及び電解槽仕上板のボルト孔に挟まれたスティボル卜にナツ ト を締結して電極板、 スぺーサ及び電解槽仕上板を相互結合させて構成した ものである。
しかしながら、 従来方法では、 このような電解槽内に設けられた電極板 の隣接するものどうしの間には、 ショートしないだけの距離として最も短 くとも 5 O m mの間隔をとらねばならない。 それより短い距離に接近させ ると、 過電流となり、 事故が発生しやすくなる傾向にある。 このため、 従 来の装置及び方法では、 電流密度を高めて水素-酸素ガスを高い効率で発 生させることには限界があり、 十分な効率が得られていなかった。
一方、 電解槽の大きさには自ずと上限があるため、 一台の水素一酸素ガ ス発生装置によって生産される水素一酸素ガスの量にも上限がある。 しか るに、 実用的見地からは、 出来るだけ小さな装置によって単位時間当たり 出来るだけ多くの量の水素—酸素ガスを生産することが望ましい。 この点 においても、 従来の装置では、 装置の小型化と水素-酸素ガスの発生量の 向上との双方を満足させることは困難であつた。
そこで、 本発明は、 電解条件を改善して水素一酸素ガス発生の効率を高 め、 これにより単位時間当たり電極単位面積当たりに発生する水素 -酸素 ガスの量を増大させ、 もって装置の小型化及び装置あたりの水素-酸素ガ ス発生量の向上を可能となすことにある。 発明の開示
本発明によれば、 以上の如き目的を達成するものとして、
電解槽と、 該電解槽内にて交互に配置された第 1の電極及び第 2の電極 からなる電極群と、 前記第 1の電極と前記第 2の電極との間に電圧を印加 する電源と、 前記電解槽内に収容される電解液の電気分解により発生する 水素—酸素ガスを捕集するためのガス捕集手段とを有する水素—酸素ガス 発生装置であって、
前記電解槽内に収容される電解液を振動撹拌するための振動撹拌手段を 備えており、 且つ、 前記電極群において隣接する前記第 1の電極と前記第 2の電極との間の距離が 1 m m〜2 0 m mの範囲内に設定されていること を特徴とする水素-酸素ガス発生装置、
が提供される。 本発明の一態様においては、 前記ガス捕集手段は、 前記電解槽に付設さ れた蓋部材と、 該蓋部材に設けられた水素一酸素ガス取出口に接続された 水素 -酸素ガス採取管とを含んでなる。
本発明の一態様においては、 前記振動撹拌手段は、 振動モータを含む振 動発生手段と、 該振動発生手段に連係して前記電解槽内で振動する振動棒 に回転不能に且つ少なくとも一段に取り付けられた振動羽根とを含んでな り、 前記振動モータは 1 0 H z〜2 0 0 H zの振動数で振動する。 本発明 の一態様においては、 前記振動発生手段は、 前記電解槽の上部に振動吸収 部材を介して取り付けられている。 本発明の一態様においては、 前記振動 発生手段は、 前記電解槽とは別の支持台により支持されている。 本発明の 一態様においては、 前記ガス捕集手段は、 前記電解槽に付設された蓋部材 と、 該蓋部材に設けられた水素-酸素ガス取出口に接続された水素一酸素 ガス採取管とを含んでなり、 前記振動棒は前記蓋部材を貫通して延びてお り、 該蓋部材と前記振動棒との間には前記振動棒の振動を許容し且つ前記 水素 -酸素ガスの通過を阻止するためのシール手段が介在している。 本発明の一態様においては、 前記第 1の電極及び前記第 2の電極の少な くとも一方は多孔性のものである。 本発明の一態様においては、 前記電源 は直流パルス電源である。
また、 本発明によれば、 以上の如き目的を達成するものとして、 上記の様な水素-酸素ガス発生装置を用い、 前記電解液として 5重量% 〜1 0重量%の電解質を含み液温 2 0 °C〜7 CTCで p H 7〜1 0のものを 用いて、 電流密度 5 A_ d m 2 〜2 0 AZ d m 2 となるように前記電解液 の電気分解を行なうことを特徴とする水素—酸素ガス発生方法、 が提供される。
本発明の一態様においては、 前記電気分解は、 前記電解槽に蓋部材を付 設した密閉下でなされる。 本発明の一態様においては、 前記電解質が水溶 性のアル力リ金属水酸化物またはアル力リ土類金属水酸化物である。 本発 明の一態様においては、 前記電源として直流パルス電源を用いる。
以上の様な本発明においては、 振動撹拌手段の振動羽根により電解液中 強力な振動流動が生ぜしめられるので、 電解液は電極と十分良好な均一性 をもって且つ十分な供給量をもって接触せしめられる。 このため、 陽極と 陰極との間の距離を従来より著しく小さくしても、 それらの間に電気分解 に必要なイオンを十分に供給することが可能になり、 また電極に発生する 電解熱を迅速に放熱することができる。 従って、 高い電流密度で電気分解 を行なって、 高い効率で水素—酸素ガスを回収することができる。 また、 以上の様に陽極と陰極との間の距離を小さくすることで、 単位容積あたり に配置される電極の有効表面積を十分に高めることができるので、 電解槽 を小型化しても十分な量の水素-酸素ガスを発生させることができる。 特に、 以上の様な振動撹拌手段による電解液の振動撹拌を併用して電気 分解を行なう場合には、 電極近傍にて発生する水素や酸素が気泡を形成す る前に電解液面へと運ばれて気相へと移行するので、 電解液中にて生成せ しめられた水素や酸素が電極表面に気泡として付着し電気抵抗を増加させ るようなことがない。 このため、 上記の様に容易に高い電流密度での電気 分解の実現が可能になるのである。 図面の簡単な説明
図 1は、 本発明による水素一酸素ガス発生装置の構成を示す断面図であ る。
図 2は、 図 1の水素 -酸素ガス発生装置の平面図である。
図 3は、 図 1の装置の側面図である。
図 4は、 図 1の装置の部分拡大断面図である。
図 5 Aは、 電極群の構成を示す斜視図である。
図 5 Bは、 電極群の構成を示す正面図である。
図 6 Aは、 電極群を構成する絶縁体枠を示す正面図である。
図 6 Bは、 電極群を構成する電極を示す正面図である。
図 7は、 図 1の装置の振動部材への振動棒の取り付け部の拡大断面図で ある。
図 8は、 振動部材への振動棒の取り付け部の変形例を示す拡大断面図で ある。 ·
図 9は、 図 1の装置の振動棒への振動羽根の取り付け部の拡大断面図で ある。
図 1 0は、 振動羽根及び固定部材の変形例を示す平面図である。
図 1 1は、 振動羽根及び固定部材の変形例を示す平面図である。
図 1 2は、 振動羽根及び固定部材の変形例を示す平面図である。
図 1 3は、 振動羽根及び固定部材の変形例を示す平面図である。
図 1 4は、 振動羽根の長さとしなりの程度との関係を示すグラフであ る。
図 1 5は、 振動撹拌手段の変形例を示す断面図である。
図 1 6は、 振動撹拌手段の変形例を示す断面図である。
図 1 7は、 振動撹拌手段の変形例を示す断面図である。
図 1 8は、 振動撹拌手段の変形例を示す断面図である。
図 1 9は、 振動撹拌手段の変形例を示す断面図である。
図 2 0は、 本発明による水素-酸素ガス発生装置を構成する振動撹拌手 段の電解槽への取り付けの形態を示す断面図である。
図 2 1は、 図 2 0に示される装置の断面図である。
図 2 2は、 図 2 0に示される装置の平面図である。
図 2 3 A〜2 3 Cは、 積層体の平面図である。
図 2 4 A , 2 4 Bは、 積層体による電解槽の閉塞の様子を示す断面図で ある。
図 2 5 A〜2 5 Eは、 積層体の断面図である。
図 2 6は、 本発明による水素-酸素ガス発生装置のガス捕集手段の一部 を示す図である。
図 2 7は、 水素 -酸素ガス発生装置により回収された水素 -酸素ガスを 利用するガス燃焼装置の一例を示す模式図である。
図 2 8は、 振動撹拌手段の変形例を示す断面図である。
図 2 9は、 蓋部材の変形例を示す斜視図である。 発明を実施するための最良の形態
以下、 図面を参照しながら本発明の具体的な実施の形態を説明する。 尚、 図面において、 同様な機能を有する部材又は部分には同一の符号が付 されている。
図 1〜図 3は本発明による水素 -酸素ガス発生方法の実施される水素 - 酸素ガス発生装置の一実施形態の構成を示す図である。 ここで、 図 1は断 面図であり、 図 2は平面図であり、 図 3は側面図である。
これらの図において、 1 O Aは電解槽であり、 該電解槽には電解液 1 4 が収容されている。 1 6は振動撹拌手段である。 該振動撹拌手段 1 6は、 電解槽 1 O Aとは別に配置された支持台 1 0 0に防振ゴムを介して取り付 けられた基台 1 6 a、 該基台に下端を固定された振動吸収部材としてのコ ィルバネ 1 6 b、 該コイルパネの上端に固定された振動部材 1 6 c、 該振 動部材に取り付けられた振動モータ 1 6 d、 振動部材 1 6 cに上端を取り 付けられた振動棒 (振動伝達ロッド) 1 6 e、 該振動棒の下半部において 電解液 1 4に浸漬する位置に回転不能に複数段に取り付けられた振動羽根 1 6 ΐを有する。 振動モータ 1 6 d及び振動部材 1 6 cを含んで振動発生 手段が構成され、 該振動発生手段が振動棒 1 6 eと連係している。 コイル バネ 1 6 b内には、 後述の図 1 6その他に示されているように、 棒状のガ ィ ド部材を配置することができる。
振動モータ 1 6 dは例えばィンバー夕を用いた制御により 1 0〜2 0 0 H z、 好ましくは 2 0 ~ 6 0 H zで振動する。 振動モータ 1 6 dで発生し た振動は、 振動部材 1 6 c及び振動棒 1 6 eを介して振動羽根 1 6 f に伝 達される。 振動羽根 1 6 ΐは、 電解液 1 4中で所要の振動数で先端縁が振 動する。 この振動は、 振動羽根 1 6 fが振動棒 1 6 eへの取り付け部分か ら先端縁へと 「しなる」 ように発生する。 この振動の振幅及び振動数は、 振動モータ 1 6 dのものとは異なるが、 振動伝達経路の力学的特性及び電 解液 1 4との相互作用の特性などに応じて決まり、 本発明では振幅 0 . 1 〜: L 5 . O m mで振動数 2 0 0〜 1 0 0 0回ノ分とするのが好ましい。 図 7は振動部材 1 6 cへの振動棒 1 6 eの取り付け部 1 1 1の拡大断面 図である。 振動棒 1 6 eの上端に形成されたォネジ部に、 振動部材 1 6 c の上側から振動応力分散部材 1 6 g 1及びヮッシャ 1 6 hを介してナツ ト 1 6 i 1 , 1 6 i 2を適合させており、 振動部材 1 6 cの下側から振動応 力分散部材 1 6 g 2を介してナッ ト 1 6 i 3, 1 6 i 4を適合させてい る。 振動応力分散部材 1 6 g 1 , 1 6 g 2は、 振動応力分散手段として用 いられており、 例えばゴムからなる。 振動応力分散部材 1 6 g 1 , 1 6 g 2は、 例えば硬い天然ゴム、 硬い合成ゴム、 合成樹脂等のショァ一 A硬度 8 0〜 1 2 0、 好ましくは 9 0〜 1 0 0の硬質弾性体により構成すること ができる。 とくに、 ショァ一 A硬度 9 0〜 1 0 0の硬質ウレタンゴムが耐 久性、 耐薬品性の点で好ましい。 振動応力分散手段を使用することによ り、 振動部材 1 6 cと振動棒 1 6 eとの接合部分の近辺への振動応力の集 中が防止され、 振動棒 1 6 eが折れにくくなる。 とくに、 振動モータ 1 6 dの振動周波数を 1 0 0 H z以上に高くした場合の振動棒 1 6 eの折れ発 生防止の効果は顕著である。
図 8は振動部材 1 6 cへの振動棒 1 6 eの取り付け部 1 1 1の変形例を 示す拡大断面図である。 この変形例は、 図 7の取り付け部とは、 振動部材 1 6 cの上側に振動応力分散部材 1 6 g 1を配置しないこと、 及び振動部 材 1 6 cと振動応力分散部材 1 6 g 2との間に球面スぺーサ 1 6 Xを介在 させたことが異なるのみであり、 他は同様である。
図 9は振動棒 1 6 eへの振動羽根 1 6: fの取り付け部の拡大断面図であ る。 振動羽根 1 6 fの各々の上下両側には、 振動羽根固定部材 1 6 jが配 置されている。 隣接する振動羽根 1 6 f どうしの間には固定部材 1 6 jを 介して振動羽根 1 6 fの間隔設定のためのスぺ一サリング 1 6 kが配置さ れている。 尚、 最上部の振動羽根 1 6 fの上側及び最下部の振動羽根 1 6 fの下側には、 図 1に示されているように、 スぺーサリング 1 6 kを介し て又は介することなく、 振動棒 1 6 eに形成されたォネジに適合するナツ ト 1 6 mが配置されている。 図 9に示されているように、 各振動羽根 1 6 f と固定部材 1 6 j との間にフッ素系樹脂やフッ素系ゴムなどからなる振 動応力分散手段としての弾性部材シート 1 6 pを介在させることで、 振動 羽根 1 6 fの破損を防止することができる。 弾性部材シート 1 6 pは、 振 動羽根 1 6 fの破損防止効果を一層高めるために、 固定部材 1 6 jから若 干はみ出すように配置するのが好ましい。 図示されているように、 上側の 固定部材 1 6 jの下面 (押圧面) は凸状面とされており、 下側の固定部材 1 6 jの上面 (押圧面) は対応する凹状面とされている。 これにより、 固 定部材 1 6 jにより上下方向から押圧される振動羽根 1 6 ΐの部分は湾曲 せしめられ、 振動羽根 1 6 fの先端部は水平面に対して角度 αをなしてい る。 この角度 αは、 例えば— 30° 以上 30° 以下好ましくは— 20° 以 上 20° 以下とすることができる。 特に、 角度 αは、 — 30° 以上— 5° 以下または 5° 以上 30° 以下、 好ましくは— 20° 以上— 1 0° 以下ま、 たは 1 0° 以上 20° 以下とするのが好ましい。 固定部材 16 jの押圧面 を平面とした場合には、 角度 αは 0° である。 角度 αは、 全ての振動羽根 1 6 f について同一である必要はなく、 例えば、 下方の 1〜2枚の振動羽 根 1 6 f については—の値 (即ち下向き :図 9に示される向き) とし、 そ れ以外の振動羽根 1 6 ΐについては +の値 (即ち上向き :図 9に示される ものと逆の向き) とすることができる。
図 1 0〜図 1 3は、 振動羽根 1 6 f及び固定部材 1 6 jの変形例を示す 平面図である。 図 1 0及び図 1 1の変形例では、 振動羽根 1 6 f は短冊状 のもの 2枚を互いに直交するように重畳させたものでもよいし、 1枚の板 から図示されているような十字形状に切り出したものでもよい。
振動羽根 1 6 f としては、 弾力性のある金属板、 合成樹脂板またはゴム 板などを用いることができる。 振動羽根 1 6 fの厚みは、 振動条件や電解 液 1 4の粘度などにより好ましい範囲は異なるが、 振動撹拌手段 1 6の作 動時に、 振動羽根が折れることなく、 振動撹拌の効率を高めるように振動 羽根 1 6 f の先端部分が "フラッター現象" (波打つような状態) を呈す るように設定される。 振動羽根 1 6 ΐがステンレス鋼板などの金属板から なる場合には、 その厚みは 0. 2〜2mmとすることができる。 また、 振 動羽根 1 6 fが合成樹脂板やゴム板からなる場合には、 その厚みは 0. 5 〜1 Ommとすることができる。 振動羽根 1 6 f と固定部材 1 6 j とを一 体成形したものを使用することもできる。 この場合は、 振動羽根 1 6 f と 固定部材 1 6 j との接合部に電解液 14が浸入し固形分が固着して洗浄に 手間がかかるというような問題を回避することができる。
金属製の振動羽根 1 6 fの材質としては、 チタン、 アルミニウム、 銅、 鉄鋼、 ステンレス鋼、 磁性鋼などの磁性金属、 これらの合金が挙げられ る。 合成樹脂製の振動羽根 1 6 fの材質としては、 ポリカーボネート、 塩 化ビュル系樹脂、 ポリプロピレンなどが挙げられる。
電解液 1 4内での振動羽根 1 6: eの振動に伴って発生する振動羽根の "フラッター現象" の程度は、 振動モ一夕 1 6 dの振動の周波数、 振動羽 根 1 6 f の長さ (固定部材 1 6 Jの先端縁から振動羽根 1 6 fの先端縁ま での寸法) と厚み、 及び電解液 1 4の粘度や比重などによって変化する。 与えられた周波数においてもっともよく "しなる" 振動羽根 1 6 fの長さ と厚みとを選択することができる。 振動モータ 1 6 dの振動の周波数と振 動羽根 1 6 fの厚みとを一定にして、 振動羽根 1 6 ΐの長さを変化させて ゆくと、 振動羽根のしなりの程度は図 1 4に示すようになる。 即ち、 長さ mが大きくなるに従って、 ある段階までは大きくなるが、 それをすぎると しなりの程度 Fは小さくなり、 ある長さのときには殆どしなりがなくな り、 さらに振動羽根を長くするとまたしなりが大きくなるという関係をく りかえすことが判った。
振動羽根の長さは、 好ましくは、 第 1回目のピークを示す長さ か、 第 2回目のピークを示す長さ L 2 を選択することが好ましい。 にする か L 2 にするかは、 系の振動を強くするか流動を強くするかに応じて適宜 選択できる。 第 3回目のピークを示す長さ L 3 を選択した場合は、 振幅が 小さくなる傾向にある。
以上のような振動攪拌手段 1 6としては、 以下の文献 (これらは本発明 者の発明に係る特許出願に関するものである) 及び本出願人による特許出 願である特願 2 0 0 1— 1 3 5 5 2 8、 特願 2 0 0 1— 3 3 8 4 2 2に記 載されているような振動撹拌機 (振動撹拌装置) を使用することが可能で ある :
特開平 3 - 2 7 5 1 3 0号公報 (特許第 1 9 4 1 4 9 8号) , 特開平 6— 2 2 0 6 9 7号公報 (特許第 2 7 0 7 5 3 0号) , 特開平 6 - 3 1 2 1 2 4号公報 (特許第 2 7 6 2 3 8 8号) , 特開平 8 - 2 8 1 2 7 2号公報 (特許第 2 7 6 7 7 7 1号) , 特開平 8 - 1 7 3 7 8 5号公報 (特許第 2 8 5 2 8 7 8号) 特開平 7— 1 2 6 8 9 6号公報 (特許第 2 9 1 1 3 5 0号) , 特開平 9— 4 0 4 8 2号公報 (特許第 2 9 1 1 3 9 3号) , 特開平 1 1— 189880号公報 (特許第 2988624号) , 特開平 7 - 54192号公報 (特許第 2989440号) , 特開平 6— 33035号公報 (特許第 2992177号) , 特開平 6 - 287799号公報 (特許第 30351 14号) , 特開平 6 - 280035号公報 (特許第 3244334号) , 特開平 6— 304461号公報 (特許第 3142417号) , 特開平 10 - 43569号公報,
特開平 10 - 369453号公報,
特開平 1 1— 253782号公報。
- 本発明において、 振動撹拌手段 16は、 図 1に示されている様に、 電解 槽の両端部に配置しても良いが、 一方の端部のみに配置しても良い。 ま た、 振動羽根として両側に対称的に延びているものを使用すれば、 振動撹 拌手段 1 6を電解槽の中央に配置し、 その両側に後述の様な電極群を配置 することも可能である。
なお、 本発明において、 特開平 6— 304461号公報に記載されてい る様な振動羽根が電解槽の底部に存在するタイプの振動撹拌手段を用いる ことにより、 電解槽内の電極群の配置スペースが広くなり、 電解槽の容積 あたりのガス発生量を高めることができるとともに、 上下方向に沿って電 極を配置する場合には電極として後述の多孔性のものを使用する必要がな くなるという利点がある。
再び図 1及び図 2を参照する。 本実施形態では、 電解槽 1 OAの両端部 - にそれぞれ上記の様な振動撹拌手段 16が配置されている。 電解槽 1 OA 内には、 2つの同様な電極群 2 x, 2 yが配置されている。 電極群 2 X, 2 yは、 図 5 A及び図 5 Bに示す様な構成を有する。 即ち、 第 1の電極と しての陽極 71 aと第 2の電極としての陰極 71 bとを、 絶縁体枠 70を 介して交互に配置する。 図 5 Aでは、 陽極 71 a及び陰極 71 bが 1つづ つ示されているが、 実際には陽極 71 a及び陰極 71 bは所要数 (例えば 25〜50個) 使用される。 図 6 Aは絶縁体枠 70を示す図であり、 図 6 Bは陽極 71 aを示す図である。
電極の材料としては、 通常の水の電気分解に使用されるものを使用する ことができる。 たとえば、 陽極 7 1 aとして二酸化鉛、 マグネタイ ト、 フ ライト、 黒鉛、 白金、 p t— I r合金、 チタン合金、 貴金属被覆チタ ン (例えば白金被覆チタン) などが例示でき、 陰極 7 l bとしてロジゥ ム、 二ッケル、 ニッケル合金 (N i— Mo2 , N i— Co, N i - F e , N i -Mo-C d, N i - Sx , ラネーニッケル等) 、 チタン合金等の貴 金属が例示できる。 絶縁体枠 70の材料としては、 天然ゴム、 合成ゴム、 合成樹脂などを使用することができる。 絶縁体枠 70の厚さにより陽極 7 1 aと陰極 71 bとの間の距離が設定され、 この絶縁体枠 70の厚さは 1 mm〜20mm、 好ましくは 1 mm〜 20 mm、 更に好ましくは l mm〜 5mmの範囲内である。
電極は板状体であるから、 図 1に示すように、 振動撹拌手段 1 6の振動 羽根 1 6 f による振動撹拌で発生せしめられる電解液 14の流動を遮るよ うに振動羽根 1 6: f を向いた方向に対してほぼ直角に設けられる場合に は、 図 5 B及び図 6 Bに示す様に電極 (陽極 71 a及び陰極 71 b) に多 数の小孔 74を開けた多孔性のものとする必要がある。 これにより、 小子し 74を通って電解液 14がスムースに流動することができる。 孔の形状は 円形状でも多角形状でもよく、 特に制限はない。 また、 小孔 74の大きさ や数は電極本来の目的と多孔性にする目的との双方のバランスを考えて、 適宜設定するのが好ましい。 電極における小孔 74の面積割合は、 有効面 積 (即ち電解液 14と接触する面積) で、 電極面積が 50%以上となる様 にするのが好ましい。 多孔性電極は網状であっても良い。
一方、 電極が電解液 14の流動の向きに対してほぼ平行に設けられる場 合には、 電極を多孔性にする必要はないが、 その場合には、 絶縁体枠 70 を環状のものではなく、 電極周囲の適宜の数箇所に分散配置したものゃ電 極の上下端部に分割して配置したものとすればよい。
陽極 71 a及び陰極 71 bは、 それぞれ図 2に示されている陽極主ブス バ一 7 1 a* 及び陰極主ブスバー 71 b' に接続されており、 これら陽極 主ブスバー 71 a' 及び陰極主ブスバ一 71 b* は図 1に示されている 電源 34に接続されている。
電源 34は、 直流を発生するものであればよく、 通常の平滑な直流でも よいが、 その他の種々の波形の電流を使用することができる。 この様な電 解電流の波形は、 例えば、 「電気化学」 第 24巻 398〜403頁、 同 449〜456頁、 1996年 4月 1 5日全国鍍金材料組合連合会発行 「めっき技術ガイド」 378〜385頁、 昭和 58年 6月 1 5日 (株) 広 信社発行 「表面技術総覧」 30 1〜 302頁、 同 5 1 7〜 527頁、 同 1 050〜1053頁、 昭和 46年 7月 25日日刊工業新聞社発行 「めつ き技術便覧」 365〜 369頁、 同 6 1 8~622頁等に記載されてい る。
本発明では、 とりわけ、 エネルギー効率の向上の観点から、 パルス波形 のうちの矩形波パルス波形をのものを使用することが好ましい。 この様な 電源 (電源装置) は、 交流電圧から矩形波状電圧を作成することができる ものであり、 このような電源は例えばトランジスタを用いた整流回路を有 するものであり、 パルス電源装置として知られている。 このような電源装 置または整流器としては、 トランジスタ調整式電源、 ドロツバ一方式の電 源、 スイッチング電源、 シリコン整流器、 S CR型整流器、 高周波型整流 器、 インバータデジタル制御方式の整流器 (例えば (株) 中央製作所製の P owe r Ma s t e r) , (株) 三社電機製作所製の K T Sシリー ズ、 四国電機株式会社製の RCV電源、 スイッチングレギユレータ式電源 とトランジスタスィヅチとからなり トランジスタスィツチが ON— 0 F F することで矩形波状のパルス電流を供給するもの、 高周波スイッチング電 源 (交流をダイォ一ドにて直流に変換した後にパワー卜ランドス夕で 20 〜 30 K H zの高周波をトランスに加えて再度整流、 平滑化し出力を取り 出す) 、 P R式整流器、 高周波制御方式の高速パルス P R電源 (例えば H i P Rシリーズ ( (株) 千代田) などが利用可能である。
各電極にかかる電圧はできる限り均等であることが好ましく、 そのた め、 各電極間にコンデンサを配置することが望ましい。 陽極 71 aと陰極 7 1 bとの間に印加する電圧は、 通常の水の電気分解の場合と同様であ る。
電解液 14は、 電解質を含む水である。 電解質としては、 水溶性のアル カリ金属水酸化物 (KOH、 N aOHなど) またはアルカリ土類金属水酸 化物 (例えば B a (OH) 2 、 Mg (OH) 2 、 C a (OH) 2 など) 、 あるいは第 4級アルキルアンモニゥムなど、 従来公知のものを使用するこ とができる。 これらの中でも KOHが好ましい。 電解液中の電解質の含有 量は、 5〜1 0%が好ましい。 また、 電解液の pHは、 7〜1 0であるの が好ましい。
図 1〜図 2に示されている様に、 電解槽 1 OAの上部には蓋部材 10 B が付設されている。 該蓋部材には、 電解により発生する水素一酸素ガスを 回収するための水素—酸素ガス取出口 10 B' が設けられている。 該取出 □ 10 B' には、 水素—酸素ガス採取管 10 B" が接続されている。 これ らの蓋部材 10 B及び水素-酸素ガス採取管 1 O B" を含んで、 水素-酸 素ガス捕集手段が構成される。
電解槽 1 O A及び蓋部材 1 0 Bの材質としては、 例えばステンレスス チール、 銅、 その他の金属あるいはポリカーボネート等の合成樹脂が例示 される。
振動撹拌手段 1 6の振動棒 1 6 eは、 蓋部材 10 Bを上下方向に貫通し て延びている。 この貫通は、 図 4に示されている様に、 蓋部材 10 Bに設 けられた開口の内端縁に付された固定部材と振動棒 1 6 eの外面に付され た固定部材との間をゴム板等のフレキシブル部材 10 Cにより気密にシ一 ルしたものとすることができる。 あるいは、 気密シールのための手段は、 振動棒 1 6 eにサポートベアリングの内輪を取り付け、 該サポートベアリ ングの外輪を蓋部材 1 OBの開口の内端縁に取り付け、 外輪に対して内輪 を上下に適宜のストロークにわたって移動可能にしたものであっても良 い。 この様なス卜ロークユニッ トとしては、 T H K (株) 製 N S— A型 (商品名) 、 NS型 (商品名) が例示される。 あるいは、 蓋部材 1 0 Bに 設けられた開口に、 振動棒 16 eが通過する部分のみ開口せるゴム板また はその積層体等の気密シール手段を取り付けてもよい。 このシール手段と しては例えば、 ゴム、 特に変形性良好な軟らかいゴムが使用できる。 振動 棒の上下振動の振幅は、 通常 20mm以下、 好ましくは 10mm以下、 特 に好ましくは 5 mm以下であり、 その下限は例えば 0. 1 mm以上、 好ま しくは 0. 5 mm以上といった程度であるから、 シール部材としてゴムな どを使用することで、 追従が可能となり摩擦熱の発生も少なく良好な気密 状態が実現される。
電解は、 液温 2 0〜7 0 °Cで、 電流密度 5〜2 0 AZ d m 2 で行なうの が好ましい。 電解により発生する水素—酸素ガスは、 図 2 6に示されて铸 る様に、 ガス採取管 1 0 B " に接続されたシールポット 1 0 B " ' を経て 取り出される。 シールポッ ト 1 0 B " ' もガス捕集手段を構成する。 図 2 7は、 ガス発生装置により回収された水素—酸素ガスを利用するガス燃焼 装置の一例を示す図である。 水素-酸素ガスは、 所要の容量のガス溜め、 除湿器及び炎止めを経て燃焼ノズルへと供給される。 この燃焼装置は、 航 空機、 自動車、 船舶等の動力装置、 発電装置、 ガス切断機、 ボイラー、 そ の他への適用が可能である。
本発明により発生せしめられる水素一酸素ガスは、 所謂ブラウンガスと して知られており、 その燃焼に際して空気を必要とせず、 従って、 燃焼に より窒素酸化物等の環境汚染物質を生成することがない。
図 1 5は振動撹拌手段の一変形例を示す断面図である。 この例では、 基 台 1 6 aは、 振動吸収部材 4 1を介して電解槽 1 O Aの上部に取り付けら れた取り付け台 4 0上に固定されている。 また、 取り付け台 4 0には、 垂 直方向に上方へと延びた棒状のガイド部材 4 3が固定されており、 該ガイ ド部材 4 3はコイルパネ 1 6 b内に位置している。 振動モ一タ 1 6 dとそ れを駆動するための電源 1 3 6との間には、 振動モータ 1 6 dの振動周波 数を制御するためのトランジスタ,インバ一夕 3 5が介在している。 電源 1 3 6は、 例えば 2 0 0 Vである。 このような振動モータ 1 6 dの駆動 手段は、 上記その他の本発明の実施形態においても使用することができ る。
図 1 6は振動撹拌手段の一変形例を示す断面図である。 この例では、 振 動部材 1 6 cに垂直方向に下方へと延びた棒状の上側ガイド部材 1 4 4が 固定されており、 取り付け台 4 0に垂直方向に上方へと延びた棒状の下側 ガイ ド部材 1 4 5が固定されており、 これらガイド部材 1 4 4, 1 4 5は コイルパネ 1 6 b内に位置している。 上側ガイド部材 1 4 4の下端と下側 ガイ ド部材 1 4 5の上端との間には、 振動部材 1 6 cの振動を許容するよ うな適度の間隙が形成されている。
図 1 7は振動撹拌手段の一変形例を示す断面図である。 この例では、 振 動モー夕 1 6 dは、 振動部材 1 6の上側に付設された付加的振動部材 1 6 c ' の下側に取り付けられている。 また、 振動棒 1 6 eは、 電解槽 1 O A 内において分岐して 2つの部分 1 3 4とされており、 これら 2つのロッド 部分 1 3 4の間に振動羽根 1 6 ΐが掛け渡されて取り付けられている。 図 1 8及び図 1 9は振動撹拌手段の一変形例を示す断面図である。 この 例では、 最も下側の振動羽根 1 6 fが下向きに傾斜しており、 その他の振 動羽根 1 6 fが上向きに傾斜している。 このようにすると、 電解槽 1 0 A の底部に近い部分の電解液 1 4の振動撹拌を充分に行うことができ、 電解 槽底部に溜りが発生するのを防止することができる。 また、 振動羽根 1 6 ΐの全部を下向きに傾斜させることができる。
図 2 0及び図 2 1は本発明装置を構成する振動撹拌手段の電解槽への取 り付けの他の形態を示す断面図であり、 図 2 2はその平面図である。 図 2 0及び図 2 1はそれぞれ図 2 2の X— X ' 断面及び Y— Y ' 断面に相当す る。
この形態では、 振動吸収部材として上記コイルバネ 1 6 bに代えてゴム 板 2と金属板 1 , 1 ' との積層体 3が用いられている。 即ち、 積層体 3 は、 電解槽 1 O Aの上端縁部に固定された取り付け部材 1 1 8に防振ゴム 1 1 2を介して取り付けられた金属板 をボルト 1 3 1により固定し、 該金属板 1 ' 上にゴム板 2を配置し、 該ゴム板 2上に金属板 1を配置し、 これらをボルト 1 1 6及びナツト 1 1 7により一体化することで形成され ている。
振動モータ 1 6 dは支持部材 1 1 5を介してボルト 1 3 2により金属板 1に固定されている。 また、 振動棒 1 6 eの上端部はゴムリング 1 1 9を 介して積層体 3特に金属板 1とゴム板 2とに取り付けられている。 即ち、 上側金属板 1は図 1その他に記載されている実施形態の振動部材 1 6 cの 機能をも発揮するものであり、 下側金属板 1 ' は図 1その他に記載されて いる実施形態の基台 1 6 aの機能をも発揮するものである。 そして、 これ ら金属板 1, を含む積層体 3 (主としてゴム板 2 ) が図 1その他に記 載されているコイルパネ 1 6 bと同様な振動吸収機能を発揮する。
図 2 3 A〜2 3 Cは積層体 3の平面図を示す。 図 2 0〜2 2の形態に対 -応する図 2 3 Aの例では、 積層体 3には振動棒 1 6 eを通すための貫通孔 5が形成されている。 また、 図 2 3 Bの例では、 積層体 3は貫通孔 5を通 る分割線により 2分割された 2つの部分 3 a , 3 bからなり、 これによれ ば装置組立の際に振動棒 1 6 eを容易に通すことができる。 また、 図 2 3 Cの例では、 積層体 3は、 電解槽 1 O Aの上端縁部に対応する環形状をな しており、 中央部に開口 6が形成されている。
図 2 3 A , 2 3 Bの例では、 電解槽 1 0 Aの上部が積層体 3により塞が れ、 これにより上記の蓋部材 1 0 Bと同等の機能が発揮される。
図 2 4 A , 2 4 Bは、 このような積層体 3による電解槽の閉塞 (シ一 ル) の様子を示す断面図である。 図 2 4 Aの形態では、 ゴム板 2が貫通孔 5において振動棒 1 6 eに当接してシールがなされる。 また、 図 2 4 Bの 形態では、 積層体 3の開口部 6において該積層体 3と振動棒 1 6 eとに取 · り付けられこれらの間の空隙を塞ぐフレキシブルシール部材 1 3 6が設け られている。
図 2 5 A〜2 5 Eに振動吸収部材としての積層体 3の例を示す。 図 2 5 Bの例は上記図 2 0〜2 2の実施形態のものである。 図 2 5 Aの例では、 積層体 3は金属板 1とゴム板 2とからなる。 図 2 5 Cの例では、 積層体 3 は上側金属板 1と上側ゴム板 2と下側金属板 1 ' と下側ゴム板 2 ' とから なる。 図 2 5 Dの例では、 積層体 3は上側金属板 1と上側ゴム板 2と中間 金属板 1 " と下側ゴム板 2 ' と下側金属板 とからなる。 積曆体 3にお ける金属板やゴム板の数は、 例えば 1〜5とすることができる。 尚、 本発 明においては、 ゴム板のみから振動吸収部材を構成することも可能であ る。
金属板 1, 1 ' , 1 " の材質としては、 ステンレス鋼、 鉄、 銅、 アルミ -ニゥム、 その他適宜の合金を使用することができる。 金属板の厚さは、 例 えば 1 0〜4 O m mである。 但し、 積層体以外の部材に対して直接固定さ れない金属板 (例えば上記中間金属板 1 " ) は 0 . 3〜1 0 m mと薄くす ることができる。 ゴム板 2, 2' の材質としては、 合成ゴム又は天然ゴムの加硫物を使用 することができ、 J I SK6386で規定される防振ゴムが好ましく、 更 に特に静的剪断弾性率 4~22 k g f /cm2 好ましくは 5〜 1 0 k g f /cm2 、 伸び 250%以上のものが好ましい。 合成ゴムとしては、 クロ 口プレンゴム、 二トリルゴム、 二トリル—クロロプレンゴム、 スチレン一 クロロプレンゴム、 アクリロニトリル一ブタジエンゴム、 イソプレンゴ ム、 エチレン—プロピレン—ジェン共重合体ゴム、 ェピクロルヒドリン系 ゴム、 アルキレンォキシド系ゴム、 フッ素系ゴム、 シリコーン系ゴム、 ゥ レタン系ゴム、 多硫化ゴム、 フォスファビンゴムを例示することができ る。 ゴム板の厚さは、 例えば 5〜6 Ommである。
図 2 5 Eの例では、 積層体 3は上側金属板 1とゴム板 2と下側金属板 1 ' ととからなり、 ゴム板 2が上側ソリッドゴム層 2 aとスポンジゴム層 2 bと下側ソリッドゴム層 2 cとからなる。 下側ソリ ドゴム層 2 a, 2 ' cのうちの一方を除去してもよいし、 更に複数のソリッドゴム層と複数の スポンジゴム層とを積層したものであってもよい。
図 28は、 振動撹拌手段 16の変形例を示す図である。 この例では、 振 動モ一夕 1 6 dが電解槽 10 Aの側方に位置しており、 振動部材 1 6 cが 電解槽 1 OAの上方へと水平に延びている。 そして、 該振動部材 1 6 cに 振動棒 1 6 cが取り付けられている。 この構成によれば、 電解槽 1 OAに 対する上記蓋部材 10 Bの着脱が容易になる。
図 29に、 蓋部材 1 0 Bの変形例を示す。 この例では、 蓋部材 1 0 B は、 図 1に示されている電極群 2 X, 2 yの上方の部分のみにおいて、 電 解槽 1 OAに付設される。 そして、 該蓋部材 10 Bの両端部には、 下方へ と延びた囲み部材 63が付設されている。 この囲み部材 63には、 その下 部の電解液中に浸漬される部分に該電解液の流通を可能となすための開口 ' 65が形成されている。 囲み部材 63には、 該開口 65の上部領域の一部 を遮蔽する遮蔽板 64を上下位置調節可能に取り付けることができる。 こ の上下位置調節のために、 遮蔽板 64に上下方向の長孔 66を形成し、 該 長孔を介して、 囲み部材 63に形成されたネジ穴 68にボルト 67を適合 させるようにすることができる。 遮蔽板 64の上下位置を調節すること で、 電極群 2 x, 2 yの上方の部分の液位を調節することができ、 ひいて はガス圧が調節される。
この蓋部材を使用する場合には、 振動撹拌手段の振動棒 16 eは蓋部材 を貫通しないが、 上記の様な密閉シール構造とすることが、 水素一酸素ガ スの回収効率向上や電解液の飛散防止等の観点から、 好ましい。
また、 本発明は、 陽極と陰極との間に水素と酸素とを分離する隔膜を配 置して、 水素と酸素とを分離して回収する方式の電解によるガス発生装置 'にも適用することができる。 この様な分離回収方式のガス発生装置につい ては、 例えば、 M. Yama g uc h iらの De ve l opmen t o f 2500 cm2 S o l i d P o l me r E l e c t r o l y t e Wat e r E l e c七 r o l y z e r i n WE— NET と題する報文に記載がある。
以下、 実施例を挙げて本発明を説明するが、 本発明は、 これにより何ら 限定されるものではない。
[実施例 1 ] .
図 1〜3に関し説明した装置を用い、 但し、 蓋部材 10Bとして図 29 に関し説明したものを使用して、 以下の条件で水素一酸素ガスを発生さ せ、 回収した。
電解槽及び蓋部材:
ステンレススチール製
270mmX 1660mmX 390mm (H)
振動発生手段:
振動モータ : (株) 村上精機製作所製ュ一ラスバイブレータ
(商品名) 、 250WX 3相 X 200 V、 2軸タイプ
振動羽根:ステンレススチール (SUS 304) 製、 6枚 振動棒:チ夕ン製、 直径 1 2 mm
スぺーサ: チタン製、 1 2個
振動羽根用固定部材: 12個
振動羽根用パッキング: テフロン (登録商標) 製、 12枚 陽極:酸化皮膜ができず長期使用可能な白金めつきチタン合金製、 50枚
陰極:チタン合金製、 50枚
絶縁体枠:合成ゴム製、 厚さ 5 mm
電解液:蒸留水中に電解質として KOHを 8重量%添加したもの、 温度 55で、 p H 10
陽極一陰極間の印加電圧: 2. OV (直流)
電流密度: 5 A/dm2
- 水素—酸素ガスの回収量は、 1000リットル/時であった。
[実施例 2]
陽極—陰極間の印加電圧として、 「電気化学」 第 24巻 398〜403 頁、 同 449〜456頁に記載のような交流重畳電流を用いること以外は 実施例 1と同様に実施した。
水素—酸素ガスの回収量は、 1200リツトル同時であった。
1か月間にわたって継続運転したところ、 実施例 1よりも低消費電力で 安定して水素一酸素ガスの回収ができた。
[実施例 3]
電解槽として 27 OmmX 85 OmmX 34 Omm (H) のものを使用 し、 振動モータとして (株) 村上精機製作所製ハイフレュ一ラス KHE— 2— 2 T [ 100〜120Hz] (商品名) を 1台のみ用いたこと以外は
-実施例 1と同様に実施した。
水素—酸素ガスの回収量は、 800リツトル/時であった。
[実施例 4及び実施例 5]
蓋部材 1 ◦ Βの付されていない振動撹拌手段の位置において、 図 20〜 図 24 Βに関し説明した密閉シールを施したこと以外は実施例 1及び実施 例 2と同様に実施した。
実施例 1と同様に実施した実施例 4では、 水素一酸素ガスの回収量は、 2000リツ トル/時であり、 実施例 2と同様に実施した実施例 5では、 水素—酸素ガスの回収量は、 2500リツトル/時であり、 いずれも大幅 に向上した。 - [実施例 6 ]
陽極—陰極間の印加電圧として、 昭和 46年 7月 25日日刊工業新聞社 発行 「めっき技術便覧」 367〜368頁に記載のょぅな30只形6相半 波整流のパルス電源から得られるものを用いたこと以外は実施例 1と同様 に実施した。
実施例 1よりもエネルギー消費量が少ないにもかかわらず、 水素一酸素 ガスの回収量は、 2200リツトル//時であった。
[実施例 7]
蓋部材 10 Bとして図 1〜図 3に関し説明したものを使用したこと以外 は実施例 1と同様に実施した。
水素一酸素ガスの回収量は、 3000リツトル/時であり、 実施例 1に 比べて大幅に向上した。
- [実施例 8]
電源 34として (株) 中央製作所製のインバ一夕デジタル制御方式の多 機能型整流器パワーマスター PND— 1型を使用し、 矩形波形のパルス電 流 (0. 08秒通電、 0. 02秒遮断) を用いたこと以外は実施例 7と同 様に実施した。
エネルギー消費量が少ないにもかかわらず、 水素-酸素ガスの回収量 は、 3500リヅトルノ時であった。 産業上の利用可能性
( 1 ) 驚くべきことに、 振動撹拌手段を併用すると、 電極間の間隔を 2 0 mm以下にしても電解が良好に行なわれ、 結果として水素 -酸素ガスの 発生効率を大幅に向上させることができる。
· (2) 電極間の間隔を低減することが可能になったことに伴い、 1つの ガス発生装置あたりの水素-酸素ガスの発生量を大幅に向上させることが できる。
(3) 振動撹拌手段の使用により、 電解液中で発生する水素一酸素ガス の泡立ちが大きくならず、 電気抵抗が大きくなることはない。
(4) 本発明の装置は、 深夜の安い電力を利用して、 水素一酸素ガスを 作り、 これを貯蔵することにより、 大需要に対する弾力的対応が可能であ る。 電解の電源として直流パルス波形のものを用いれば、 一層電力の節約 になる。
(5) 本発明の装置は、 安全で危険のないカセットコン口の燃料供給源 とすることができる。
(6) 本発明の装置により得られたガスを使用して、 従来の蓄熱冷暖房 よりも優れた冷暖房装置を提供することができる。
(7) 本発明の装置により発生するガスを用いて'、 小型、 中型、 大型の 都市ゴミゃ産業廃棄物の焼却炉の燃焼を行なうことができ、 これによれば 無公害焼却が可能であるとともに経済性が高い。
(8) 本発明の装置によれば、 ボイラ一やガスタービン等への燃料供給 が可能である。
( 9 ) 都市部における安全で無公害のクリーンなガス発生装置として有 用である。
( 10) 船舶の燃料製造装置としても有用である。
( 1 1 ) ガスのプロペラ撹拌等の特別の手段を施さなくとも、 均一性の "良好なガスを発生させることができる。

Claims

請 求 の 範 囲
1 . 電解槽と、 該電解槽内にて交互に配置された第 1の電極及び第 2の電極からなる電極群と、 前記第 1の電極と前記第 2の電極との間に電 圧を印加する電源と、 前記電解槽内に収容される電解液の電気分解により 発生する水素—酸素ガスを捕集するためのガス捕集手段とを有する水素一 酸素ガス発生装置であって、
前記電解槽内に収容される電解液を振動撹拌するための振動撹拌手段を 備えており、 且つ、 前記電極群において隣接する前記第 1の電極と前記第 2の電極との間の距離が 1 m m〜2 0 m mの範囲内に設定されていること を特徴とする水素 -酸素ガス発生装置。
2 . 前記ガス捕集手段は、 前記電解槽に付設された蓋部材と、 該蓋 部材に設けられた水素-酸素ガス取出口に接続された水素 -酸素ガス採取 管とを含んでなることを特徴とする、 請求項 1に記載の水素 -酸素ガス発
3 . 前記振動撹拌手段は、 振動モータを含む振動発生手段と、 該振 動発生手段に連係して前記電解槽内で振動する振動棒に回転不能に且つ少 なくとも一段に取り付けられた振動羽根とを含んでなり、 前記振動モータ は 1 0 H z〜2 0 0 H zの振動数で振動することを特徴とする、 請求項 1 に記載の水素 -酸素ガス発生装置。
4 . 前記振動発生手段は、 前記電解槽の上部に振動吸収部材を介し て取り付けられていることを特徴とする、 請求項 3に記載の水素—酸素ガ ス発生装置。
5 . 前記振動発生手段は、 前記電解槽とは別の支持台により支持 されていることを特徴とする、 請求項 3に記載の水素一酸素ガス発生装
6 . 前記ガス捕集手段は、 前記電解槽に付設された蓋部材と、 該蓋 部材に設けられた水素 -酸素ガス取出口に接続された水素 -酸素ガス採取 管とを含んでなり、 前記振動棒は前記蓋部材を貫通して延びており、 該蓋 部材と前記振動棒との間には前記振動棒の振動を許容し且つ前記水素一酸 素ガスの通過を阻止するためのシール手段が介在していることを特徴とす る、 請求項 3に記載の水素-酸素ガス発生装置。
7. 前記第 1の電極及び前記第 2の電極の少なくとも一方は多孔性 のものであることを特徴とする、 請求項 1に記載の水素一酸素ガス発生装
8. 前記電源は直流パルス電源であることを特徴とする、 請求項 1 に記載の水素 -酸素ガス発生装置。
9. 請求項 1に記載の水素-酸素ガス発生装置を用い、 前記電解液 として 5重量%〜10重量%の電解質を含み液温 20°C〜70°Cで p H 7 〜10のものを用いて、 電流密度 5AZdm2 〜20 A/dm2 となるよ うに前記電解液の電気分解を行なうことを特徴とする水素-酸素ガス発生 -方法。
1 0. 前記電気分解は、 前記電解槽に蓋部材を付設した密閉下でな されることを特徴とする、 請求項 9に記載の水素一酸素ガス発生方法。
1 1. 前記電解質が水溶性のアルカリ金属水酸化物またはアルカリ 土類金属水酸化物であることを特徴とする、 請求項 9に記載の水素一酸素 ガス発生方法。
1 2. 前記電源として直流パルス電源を用いることを特徴とする、 請求項 9に記載の水素-酸素ガス発生方法。
PCT/JP2002/004400 2001-05-02 2002-05-02 Generateur de gaz hydrogene-oxygene et procede de generation de gaz hydrogene-oxygene utilisant ce generateur WO2002090621A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP02724683A EP1398395A4 (en) 2001-05-02 2002-05-02 HYDROGEN-OXYGEN GAS GENERATOR AND METHOD FOR PRODUCING HYDROGEN-OXYGEN GAS WITH THE GENERATOR
CA2445717A CA2445717C (en) 2001-05-02 2002-05-02 Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method thereof
AU2002255298A AU2002255298B2 (en) 2001-05-02 2002-05-02 Hydrogen-oxygen gas generator and method of generating hydrogen-oxygen gas using the generator
JP2002587673A JP3975467B2 (ja) 2001-05-02 2002-05-02 水素−酸素ガス発生装置及びそれを用いた水素−酸素ガス発生方法
US10/476,195 US7459071B2 (en) 2001-05-02 2002-05-02 Hydrogen-oxygen gas generator and method of generating hydrogen-oxygen gas using the generator
KR1020037014254A KR100897203B1 (ko) 2001-05-02 2002-05-02 수소-산소 가스발생장치 및 그것을 이용한 수소-산소가스발생방법
TW91117549A TW573066B (en) 2001-05-02 2002-08-05 Hydrogen-oxygen gas generation device and method for generating hydroden-oxygen gas using such device
US12/256,903 US20090045049A1 (en) 2001-05-02 2008-10-23 Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-135627 2001-05-02
JP2001135627 2001-05-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/256,903 Division US20090045049A1 (en) 2001-05-02 2008-10-23 Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method thereof

Publications (1)

Publication Number Publication Date
WO2002090621A1 true WO2002090621A1 (fr) 2002-11-14

Family

ID=18983056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004400 WO2002090621A1 (fr) 2001-05-02 2002-05-02 Generateur de gaz hydrogene-oxygene et procede de generation de gaz hydrogene-oxygene utilisant ce generateur

Country Status (9)

Country Link
US (2) US7459071B2 (ja)
EP (1) EP1398395A4 (ja)
JP (1) JP3975467B2 (ja)
KR (1) KR100897203B1 (ja)
CN (1) CN1237208C (ja)
AU (1) AU2002255298B2 (ja)
CA (1) CA2445717C (ja)
TW (1) TW573066B (ja)
WO (1) WO2002090621A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092059A1 (ja) * 2003-04-18 2004-10-28 Japan Techno Co., Ltd. 燃料電池用燃料、燃料電池およびそれを用いた発電方法
JP2006170567A (ja) * 2004-12-17 2006-06-29 Jipangu Energy:Kk クリーン蒸気生成方法及び生成システム
CN100364880C (zh) * 2003-04-18 2008-01-30 日本科技股份有限公司 燃料电池用燃料、燃料电池及利用燃料电池的发电方法
WO2010023997A1 (ja) 2008-09-01 2010-03-04 日本テクノ株式会社 水素と酸素からなる液状物、これから得られる水素と酸素からなる再気化ガス、これらの製造方法及び装置、並びにこれら液状物及び再気化ガスからなる炭酸ガスを発生しない燃料
JP2013531134A (ja) * 2010-07-09 2013-08-01 ハイドロクス ホールディングス リミテッド ガスを生成するための方法および装置
JP2015004112A (ja) * 2013-06-21 2015-01-08 昭和シェル石油株式会社 電解合成装置
JPWO2013054433A1 (ja) * 2011-10-14 2015-03-30 好正 高部 水素−酸素ガス発生装置
KR20230033169A (ko) 2021-08-30 2023-03-08 (주)썬에코 수전해 장치

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000395A1 (fr) * 2001-06-25 2003-01-03 Japan Techno Co., Ltd. Appareil de melange par vibrations, dispositif et procede de traitement faisant appel a cet appareil
US7318885B2 (en) 2001-12-03 2008-01-15 Japan Techno Co. Ltd. Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method using the generator
KR200394845Y1 (ko) * 2005-06-15 2005-09-07 주식회사 에너지마스타 산소/수소 혼합가스 발생장치의 전극판 진동구조
US8366311B2 (en) * 2006-04-21 2013-02-05 Atmi Bvba Systems and devices for mixing substances and methods of making same
KR100761686B1 (ko) * 2006-08-23 2007-10-04 주식회사 에너지마스타 산소/수소 혼합가스 발생장치의 전극판 진동구조
US7909968B2 (en) * 2006-11-13 2011-03-22 Advanced R F Design, L.L.C. Apparatus and method for the electrolysis of water
WO2008118088A1 (en) * 2007-03-26 2008-10-02 Lq Holding Ab A gas reactor system
KR100867142B1 (ko) * 2007-05-16 2008-11-06 주식회사 에너지마스타 산소/수소 혼합가스 발생 증대장치
KR100822693B1 (ko) * 2007-05-16 2008-04-17 주식회사 에너지마스타 산소/수소 혼합가스 발생 비율조절장치
US20090148734A1 (en) * 2007-12-11 2009-06-11 Ruey-Li Wang Power system using water as fuel
US20090188809A1 (en) * 2008-01-30 2009-07-30 Noel Terry L Hydroxyl Gas Generation System for Enhancing the Performance of a Combustion Engine
WO2010002308A1 (en) * 2008-06-23 2010-01-07 Cardilogus International Ltd A thermo electric gas reactor system and gas reactor
US8168047B1 (en) * 2008-10-29 2012-05-01 Jerry Smith HHO electrolysis cell for increased vehicle fuel mileage
BE1018392A5 (nl) * 2009-01-20 2010-10-05 Palmir Nv Elektrolysesysteem.
US8444847B1 (en) * 2009-02-26 2013-05-21 Craig Evans Low voltage electrolysis of water
US20100252421A1 (en) * 2009-04-01 2010-10-07 Jimmy Yang Hho generating system
US8163142B1 (en) 2009-04-07 2012-04-24 Giulio Stama Hydrogen system for internal combustion engine
CN102086520B (zh) * 2009-12-08 2012-10-10 本田技研工业株式会社 水电解装置
WO2011125976A1 (ja) 2010-04-02 2011-10-13 株式会社マサインタナショナル 熱機関および該熱機関を用いた発電システム
US8464667B1 (en) 2010-04-22 2013-06-18 Giulio Stama Hydrogen system for internal combustion engine
CN102312248A (zh) * 2010-07-08 2012-01-11 秦宏实业有限公司 具有复合结构电极板的氢氧电解装置
US8901757B2 (en) 2010-08-27 2014-12-02 George Samuel Kouns System and method for converting a gas product derived from electrolysis to electricity
JP5178803B2 (ja) * 2010-10-26 2013-04-10 森永乳業株式会社 納品プラン提示システム、納品プラン提示装置、制御方法、及びプログラム
GB201119283D0 (en) * 2011-11-08 2011-12-21 Univ Glasgow Apparatus and methods for the electrochemical generation of oxygen and/or hydrogen
CN104246018B (zh) * 2012-02-10 2018-01-09 海德罗克斯控股有限公司 用于生产气体的方法和设备
US9487872B2 (en) 2012-06-29 2016-11-08 GM Global Technology Operations LLC Electrolytic cell, method for enhancing electrolytic cell performance, and hydrogen fueling system
US9815714B2 (en) * 2012-12-11 2017-11-14 Slate Group, Llc Process for generating oxygenated water
JP2015004013A (ja) * 2013-06-21 2015-01-08 日本テクノ株式会社 二酸化炭素と酸水素ガスからの可燃性ガス体の製造方法
CN104372368A (zh) * 2013-08-14 2015-02-25 赵广庆 氧气/氢气混合气体发生器的电极板振动装置
FR3029213B1 (fr) * 2014-12-01 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrolyseur de vapeur d'eau a haute temperature
JP6651097B2 (ja) * 2015-10-30 2020-02-19 北川工業株式会社 発核装置、蓄熱装置および蓄熱材の発核方法
CN107419290B (zh) * 2017-07-03 2019-03-08 中国矿业大学 一种电解盐水制备纯氢气、氧气的系统及方法
CN107473336A (zh) * 2017-09-20 2017-12-15 合肥齐兴电器有限责任公司 一种便携式电解水器
GB201801170D0 (en) 2018-01-24 2018-03-07 Univ Court Univ Of Glasgow Use of polyoxometalate mediators
CA2992694C (en) * 2018-02-09 2018-07-24 Kevin Joel Apparatus for hydrogen production by electrolytic-decomposition with gas-operated oscillation system
CN114920330A (zh) * 2021-07-09 2022-08-19 上海衡仕科技有限公司 一种低表面张力的电位水的制备方法和应用
CN115216793B (zh) * 2022-08-13 2024-05-07 电子科技大学中山学院 一种间接电解水制氢的装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941676A (en) * 1974-12-27 1976-03-02 Olin Corporation Adjustable electrode
JP2000104192A (ja) * 1998-09-28 2000-04-11 Nkk Corp 電極板の不要付着物の除去方法
JP2000129480A (ja) * 1998-10-23 2000-05-09 Sonan Kin 横列式電解槽を含むブラウンガス大量発生装置
JP2001295087A (ja) * 2000-04-14 2001-10-26 Atlas:Kk 電解方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2744860A (en) * 1951-11-13 1956-05-08 Robert H Rines Electroplating method
US4042481A (en) * 1974-12-24 1977-08-16 Kelly Donald A Pressure-electrolysis cell-unit
US4470894A (en) * 1983-08-01 1984-09-11 At&T Bell Laboratories Nickel electrodes for water electrolyzers
JPH079220Y2 (ja) 1989-08-18 1995-03-06 三洋電機株式会社 スリップトルク発生装置
JPH0671544B2 (ja) 1990-03-26 1994-09-14 日本テクノ株式会社 液槽における液体の攪拌方法および装置
US5176809A (en) * 1990-03-30 1993-01-05 Leonid Simuni Device for producing and recycling hydrogen
US5105773A (en) * 1991-10-21 1992-04-21 Alternate Fuels, Inc. Method and apparatus for enhancing combustion in an internal combustion engine through electrolysis
US5227052A (en) * 1991-11-29 1993-07-13 Ilves Juhani E Water conditioning apparatus having reaction plates coupled to an astable oscillator
JP2762388B2 (ja) 1992-09-14 1998-06-04 日本テクノ株式会社 流体の混合分散機
US5244558A (en) * 1992-09-24 1993-09-14 Chiang Huang C Apparatus for generating a mixture of hydrogen and oxygen for producing a hot flame
JP2707530B2 (ja) 1992-12-28 1998-01-28 日本テクノ株式会社 めっき方法
JP3244334B2 (ja) 1993-03-26 2002-01-07 日本テクノ株式会社 化学めっき装置
JP3035114B2 (ja) 1993-04-01 2000-04-17 日本テクノ株式会社 電着装置
JP3142417B2 (ja) 1993-04-20 2001-03-07 日本テクノ株式会社 撹拌装置
JP2992177B2 (ja) 1993-05-17 1999-12-20 日本テクノ株式会社 クロムのバレルめっき装置
JP2989440B2 (ja) 1993-08-06 1999-12-13 日本テクノ株式会社 クロムめっき法
JP2911350B2 (ja) 1993-11-02 1999-06-23 日本テクノ株式会社 表面処理方法およびそれに使用する表面処理装置
JP2852878B2 (ja) 1994-12-26 1999-02-03 日本テクノ株式会社 撹拌装置
JP2767771B2 (ja) 1995-04-13 1998-06-18 日本テクノ株式会社 電解酸化による廃水処理装置
JP2911393B2 (ja) 1995-07-25 1999-06-23 日本テクノ株式会社 無電解ニッケルめっき廃液から肥料水溶液を製造する方法と装置
JP3320984B2 (ja) 1996-08-02 2002-09-03 日本テクノ株式会社 高粘度流体用撹拌装置
JP2988624B2 (ja) 1997-10-21 1999-12-13 日本テクノ株式会社 めっき方法
US6261435B1 (en) * 1997-10-21 2001-07-17 Nihon Techno Kabushiki Kaisha Plating method
JP3196890B2 (ja) 1998-03-10 2001-08-06 日本テクノ株式会社 多軸型振動撹拌装置
US6126794A (en) * 1998-06-26 2000-10-03 Xogen Power Inc. Apparatus for producing orthohydrogen and/or parahydrogen
JP3676694B2 (ja) 2000-05-02 2005-07-27 日本テクノ株式会社 滅菌用振動撹拌装置、それを含む滅菌装置および滅菌方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941676A (en) * 1974-12-27 1976-03-02 Olin Corporation Adjustable electrode
JP2000104192A (ja) * 1998-09-28 2000-04-11 Nkk Corp 電極板の不要付着物の除去方法
JP2000129480A (ja) * 1998-10-23 2000-05-09 Sonan Kin 横列式電解槽を含むブラウンガス大量発生装置
JP2001295087A (ja) * 2000-04-14 2001-10-26 Atlas:Kk 電解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1398395A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092059A1 (ja) * 2003-04-18 2004-10-28 Japan Techno Co., Ltd. 燃料電池用燃料、燃料電池およびそれを用いた発電方法
JPWO2004092059A1 (ja) * 2003-04-18 2006-07-06 日本テクノ株式会社 燃料電池用燃料、燃料電池およびそれを用いた発電方法
CN100364880C (zh) * 2003-04-18 2008-01-30 日本科技股份有限公司 燃料电池用燃料、燃料电池及利用燃料电池的发电方法
JP2006170567A (ja) * 2004-12-17 2006-06-29 Jipangu Energy:Kk クリーン蒸気生成方法及び生成システム
WO2010023997A1 (ja) 2008-09-01 2010-03-04 日本テクノ株式会社 水素と酸素からなる液状物、これから得られる水素と酸素からなる再気化ガス、これらの製造方法及び装置、並びにこれら液状物及び再気化ガスからなる炭酸ガスを発生しない燃料
JP2013531134A (ja) * 2010-07-09 2013-08-01 ハイドロクス ホールディングス リミテッド ガスを生成するための方法および装置
JPWO2013054433A1 (ja) * 2011-10-14 2015-03-30 好正 高部 水素−酸素ガス発生装置
JP2015004112A (ja) * 2013-06-21 2015-01-08 昭和シェル石油株式会社 電解合成装置
KR20230033169A (ko) 2021-08-30 2023-03-08 (주)썬에코 수전해 장치

Also Published As

Publication number Publication date
CA2445717C (en) 2010-07-13
KR100897203B1 (ko) 2009-05-14
EP1398395A4 (en) 2004-10-13
CA2445717A1 (en) 2002-11-14
KR20040002934A (ko) 2004-01-07
US20090045049A1 (en) 2009-02-19
JP3975467B2 (ja) 2007-09-12
AU2002255298B2 (en) 2006-12-14
US7459071B2 (en) 2008-12-02
EP1398395A1 (en) 2004-03-17
JPWO2002090621A1 (ja) 2004-08-26
US20040094408A1 (en) 2004-05-20
CN1237208C (zh) 2006-01-18
CN1505698A (zh) 2004-06-16
TW573066B (en) 2004-01-21

Similar Documents

Publication Publication Date Title
WO2002090621A1 (fr) Generateur de gaz hydrogene-oxygene et procede de generation de gaz hydrogene-oxygene utilisant ce generateur
JP4076953B2 (ja) 水素−酸素ガス発生装置
JP4599387B2 (ja) 水素−酸素ガス発生装置及びそれを用いた水素−酸素ガス発生方法
US20070131543A1 (en) Electro plate vibration structure of oxygen/hydrogen mixture gas generator
KR101749664B1 (ko) 안전하고 안정된 수소 저장부를 갖는 에너지 유닛
AU2004230802B2 (en) Fuel for fuel battery, fuel battery, and power generating method using same
WO1995006144A1 (fr) Procede et dispositif d'electrolyse de l'eau
CN101956211A (zh) 超声除气泡电解槽
US20030226767A1 (en) Method and device for continuous electrolytic disposal of waste water
JPWO2004031450A1 (ja) 水素活性化装置
JP7398109B2 (ja) 水分解ガス発生装置の電極ユニット
JP2005232512A (ja) 水素−酸素混合ガスを容器に密封充填する方法及びその装置
JP3570429B1 (ja) 酸素、水素ガス発生装置及びその組立方法
JP4660853B2 (ja) 水素ガス生成装置及び水素ガスの生成方法
CN209468156U (zh) 一种自动控制脉冲电解反应器
JP2003313693A (ja) 電気分解装置及び電気分解方法
JP2004239562A (ja) 廃棄物焼却装置およびそれらを用いた廃棄物を焼却する方法
CN215163210U (zh) 一种电解高效的电极组及电解装置
JPS5684490A (en) Novel diaphragm electrolytic tank
Baginsky et al. Asymmetrical current generator for electrochemical technology
JPS5684489A (en) Novel electrolytic tank

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2445717

Country of ref document: CA

Ref document number: 10476195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002587673

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028092600

Country of ref document: CN

Ref document number: 1020037014254

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002255298

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002724683

Country of ref document: EP

Ref document number: 1893/CHENP/2003

Country of ref document: IN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002724683

Country of ref document: EP