WO2002083286A1 - Recipient a vide en alliage au titane et element a vide - Google Patents

Recipient a vide en alliage au titane et element a vide Download PDF

Info

Publication number
WO2002083286A1
WO2002083286A1 PCT/JP2002/002566 JP0202566W WO02083286A1 WO 2002083286 A1 WO2002083286 A1 WO 2002083286A1 JP 0202566 W JP0202566 W JP 0202566W WO 02083286 A1 WO02083286 A1 WO 02083286A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
titanium alloy
titanium
surface roughness
ultra
Prior art date
Application number
PCT/JP2002/002566
Other languages
English (en)
French (fr)
Inventor
Hiroki Kurisu
Mitsuru Matsuura
Setsuo Yamamoto
Masaki Hesaka
Atsushi Takemura
Original Assignee
Hiroki Kurisu
Mitsuru Matsuura
Setsuo Yamamoto
Masaki Hesaka
Atsushi Takemura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroki Kurisu, Mitsuru Matsuura, Setsuo Yamamoto, Masaki Hesaka, Atsushi Takemura filed Critical Hiroki Kurisu
Priority to EP02761963A priority Critical patent/EP1374984B1/en
Priority to DE60209130T priority patent/DE60209130T2/de
Priority to US10/312,701 priority patent/US6841265B2/en
Publication of WO2002083286A1 publication Critical patent/WO2002083286A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a titanium alloy vacuum container and a vacuum component capable of easily achieving an ultra-high vacuum in a short time after evacuation.
  • vacuum equipment is widely used in all industries, including equipment for manufacturing various electronic devices in the semiconductor industry, and is also used in advanced science and technology fields such as high energy physics and solid surface science. It is indispensable.
  • semiconductor electronic vacuum device for parts and LSI manufacture already 10-5 ultrahigh vacuum of 10 one 7 Pa from Pa, but also high-quality semiconductor thin and ultra high for Seisuru create the superstructure film in vacuum deposition apparatus, Ru required der the following ultimate pressure 10- 8 Pa.
  • it is necessary to control the stacking on the order of one atomic layer under extremely clean ultra-high vacuum.
  • it is absolutely necessary to develop a vacuum equipment that can easily reach 10 to 18 Pa or less.
  • ultra-high vacuum containers and ultra-high vacuum parts are made of stearyl emissions less steel or Aluminum Niumu alloy
  • a general vacuum apparatus reaches the following ultra-high vacuum region 10_ 5 Pa
  • vacuum baking vacuum baking
  • 10 to 8 Pa or less In equipment that requires ultra-high vacuum, such as vacuum deposition equipment in which semiconductors with a thickness of several nanometers are stacked in multiple layers, such as sputtering pumps and titanium pumps, etc. It is necessary to combine multiple ultra-high vacuum pumps, and furthermore, it is necessary to provide a shroud (refrigerant pool) cooled with liquid nitrogen in the equipment.
  • titanium or a titanium alloy is more expensive than stainless steel or the like, it has a high specific strength, is lightweight, has excellent corrosion resistance, and is manufactured in a high vacuum. Extremely small amount of gas mixed into metal structure It is a material that can be suitably used for ultra-high vacuum containers and the like. For example, it has been studied by the inventors (T. Chi jiraatsu, et. Al, J. Vac. Soc. Jpn. Vol 42,
  • a vacuum device in which the surface roughness is reduced to 100 nm or less by puff polishing or electrolytic polishing of a metal (preferably titanium) that has been subjected to high vacuum refining is used. No. 3030458).
  • titanium has the disadvantage that surface smoothing is difficult. That is, according to the study of the present inventors shown in the above-mentioned literature, the surface roughness of titanium subjected to general puff polishing and electrolytic polishing is about the same as that of stainless steel subjected to the same polishing treatment.
  • the vacuum material surface is a mirror surface required to provide an ultra-high vacuum vessel with a small amount of gas emission that can achieve ultra-high vacuum of 10 to 8 Pa or less in a short period of time, about 15 nm, which is four times as large. There is a problem that it is difficult to perform such a smoothing process.
  • the metal gasket flange for vacuum sealing made of titanium can be used approximately 10 times when a metal gasket made of oxygen-free copper, which is commonly used, is used. And there is a problem that a vacuum leak occurs.
  • titanium alloys general industrial titanium alloys have high strength and are difficult to machine or have surface treatment properties required for materials for vacuum equipment. Materials are being developed. For example, an ultra-high vacuum titanium alloy (JP-A-06-065661) that emits a small amount of gas containing platinum-based metal, transition metal, rare earth element, etc. A high vacuum container (Japanese Patent Application Laid-Open No. 06-064600) is disclosed, and it is shown that the amount of outgassing is 1 Z10 or less as compared with stainless steel.
  • Japanese Patent Application Laid-Open No. 06-064600 Japanese Patent Application Laid-Open No. 06-064600
  • the ultra-high vacuum that can achieve ultra-high vacuum in a short time, which is the goal of the present invention,
  • the surface treatment properties of the materials required to provide the containers have not been clarified. Further, in the disclosed technology, since a relatively expensive alloy element is used, there is a problem that the apparatus becomes expensive.
  • titanium alloys have been developed in a wide variety of materials in addition to those for vacuum equipment.For example, they are excellent in decorativeness, robustness, workability, biocompatibility, and cost.
  • a technology using iron and oxygen as alloy elements Japanese Patent Laid-Open No. 10-017962
  • a technology using iron, oxygen and silicon as alloy elements Japanese Patent Application Laid-Open No. Hei 10-017961 discloses that application to a wide range of products such as sports applications is expected in addition to accessories.
  • this disclosed technology does not clarify the suitability of a material for a vacuum device, such as gas release characteristics and surface treatment characteristics.
  • An object of the present invention is to provide a titanium alloy vacuum container and a vacuum component that can easily achieve an ultra-high vacuum in a short time after evacuation in view of the situation related to such a vacuum device. I do. Disclosure of the invention
  • a titanium alloy vacuum container and a vacuum part are a vacuum container and a vacuum part whose main parts are made of a titanium alloy. It is a titanium alloy vacuum vessel and a vacuum component which are finely divided into fine particles of not more than m and have a surface roughness of at least 50 nm or less which can be exposed to vacuum at least.
  • the surface roughness means the center line average roughness (Ra) measured in the range of 10 ⁇ 10 / m by an atomic force microscope.
  • the surface roughness is the surface roughness of the titanium alloy.
  • These are titanium alloy vacuum vessels and vacuum components with a thickness of 10 nm or less.
  • the titanium alloy is preferably a titanium alloy having a Vickers hardness of 230 Hv or more and a hardness of 310 Hv or less.
  • the above titanium alloy can be a titanium alloy having a passivation film formed by a thin titanium oxide layer or a nitride layer on a surface exposed to at least a vacuum. It is desirable to have a film thickness of 10 nm or less.
  • the titanium alloy used for the titanium alloy vacuum vessel and the vacuum component of the present invention includes iron (F e) 0.3 w to 0.5 wt%, and oxygen (0) 0.3 wt% to 0.5 wt%. %, And the balance is preferably a titanium alloy composed of titanium (Ti) and unavoidable impurities.
  • FIG. 1 is a diagram showing an example of the relationship between the surface roughness and the gas release rate of a titanium alloy desired as a material for a titanium alloy vacuum vessel and a vacuum component of the present invention.
  • FIG. 2 is an external view of a vacuum container prototyped as an embodiment of the titanium alloy vacuum container of the present invention, in which (a) is a top view, and (b) is a top view of the vacuum container.
  • FIG. 3 is a diagram showing the evacuation characteristics of the prototype vacuum vessel of FIG. 2, and is a pressure evacuation curve showing an example of evacuation after vacuum evacuation.
  • FIG. 4 is a graph showing the evacuation characteristics of the prototype vacuum vessel of FIG. 2, and is a pressure evacuation curve showing an example without vacuum vacuuming.
  • the vacuum vessel according to the present invention is not limited to a so-called vessel-shaped vessel, but is a means for surrounding a space evacuated to a vacuum state, including a pipe-shaped or duct-shaped vessel. It is a thing.
  • the evacuation process of a vacuum vessel exposed to the atmosphere is (1) a process in which the pressure decreases exponentially depending on the volume, and (2) a gas species adsorbed on the inner surface of the vessel is desorbed and the pressure is determined. It is said that there are four processes: (3) the process in which the gas diffused from inside the container material and released into the vacuum determines the pressure, and (4) the process in which the gas permeating from the atmosphere finally determines the pressure.
  • Quantity of gas released from the vacuum material is typically represent a gas release rate (Pa m / sec), in order to obtain the ultra-high vacuum of about 1 xlO- 8 Pa is, 10_ 9 ⁇ 10- 1 D Pa outgassing rate of m / sec is will require an, 1 xlO- 9 Pa to obtain the following extremely high vacuum is required 10_ 1 Q Pa m / sec table below outgassing rate.
  • the present inventor studied the factors of gas release of the vacuum material from various angles and selected a material in order to reduce the amount of gas released from the vacuum vessel and the vacuum components. That is, (1) a material that is dense and has appropriate hardness so that a mirror-like surface that reduces the amount of adsorbed gas can be obtained relatively easily; ) In order to reduce the diffusion and emission of gas from the inside of the material, it is necessary to judge that the material is a dense material that contains a small amount of gas and prevents the diffusion of gas. As a vacuum material that is likely to satisfy the conditions, the gas is contained in the material because it has a fine-grained structure, is dense, has appropriate hardness, is easy to be mirror-finished, and is manufactured with high vacuum precision. A titanium alloy with the characteristic of a small amount was selected as the vacuum material.
  • the next step is to consider the development of a new titanium alloy when examining which titanium alloy is most suitable for ultra-high vacuum materials.
  • the present inventors have already developed a wide variety of titanium alloys in addition to the titanium alloys developed as vacuum materials, and among them, If a titanium alloy suitable as a material for vacuum could be found, it would be extremely advantageous in terms of cost, and it was decided that ultra-high vacuum materials would be used for titanium alloys already developed.
  • the present invention has been completed by conducting a study on the suitability of all of them.
  • the first condition is that the fineness should be reduced to approximately l0 ⁇ m or less for the denseness, and that the surface smoothing treatment should be 1 X set the surface roughness outgassing rate 10- 1 m / sec stand Ru can handle sufficiently to extremely high vacuum device following 10- 9 Pa is obtained as the second condition, further, a predetermined surface roughness
  • the desired condition is that the surface smoothing treatment to obtain the desired degree of hardness can be performed relatively easily, and the material hardness that has suitable workability and durability is also a desirable condition. This is the result of extensive research on titanium alloys that meet these conditions, targeting already developed titanium alloys.
  • the crystal grain size is finer and denser is one of the factors that enable the mirror-finish treatment, and at the same time, reduces the diffusion and release of gas from the inside of the material. As shown in 10-017962, it is also a factor that improves flaw resistance, and is suitable as a material for ultra-high vacuum equipment that extremely dislikes leakage from the atmosphere.
  • the conditions to be set are conditions that can be supplied industrially easily and inexpensively, and the present invention has characteristics as an extremely suitable material for vacuum, which will be described in detail later. It is set to about 10 mm or less, assuming that titanium alloy can be almost achieved.
  • the surface roughness that achieves a gas release rate of 10—HPa m / sec is described in detail in the examples below, but as a result of measuring and examining the relationship between the surface roughness and the gas release rate, it was found to be 50 nm or less. It is set.
  • the titanium alloy vacuum container and the vacuum component of the present invention are a vacuum container and a vacuum component whose main part is made of a titanium alloy. m or less, and the surface roughness of the surface exposed to vacuum is at least 50 nm or less, whereby the amount of desorbed gas from the inner surface of the container, and Since the amount of gas diffused and released from the inside of the container material can be greatly reduced, it is possible to easily achieve an extremely high vacuum in a short time after evacuation.
  • the amount of desorbed gas from the material surface can be reduced to near the limit, that is, the amount of diffusion gas from inside the material or the amount of permeated gas from the atmosphere.
  • the amount can be reduced to a level that does not cause a problem in comparison, and the present invention can be carried out more preferably.
  • the titanium alloy described below can achieve a surface roughness of about 5 nm even by a relatively simple polishing method, and can suitably carry out the present invention.
  • the vacuum flange of an ultra-high vacuum device is provided with a knife edge and a metal gasket is used to seal the vacuum.
  • a material which is hard to cause cracks and has a suitable hardness which does not cause a problem in workability As described above, a titanium alloy with a hardness of 110 to 160 Hv generates a vacuum leak after opening and closing about ten times, while a titanium alloy (Ti-6A1-4V) with a hardness of 350 Hv is difficult to machine. It costs money.
  • the hardness of the titanium alloy is important not only in the vacuum flange portion, but for example, the present inventors have made a prototype of a vacuum container using Ti-6A 4V, There were problems such as rapid wear of the tool and the problem of vacuum leakage from the weld site due to the difficulty of welding due to the inclusion of a large amount of alloying elements. Another problem is that titanium alloys with a large amount of added alloy are expensive.
  • the titanium alloy described below is used. As a result of examining the performance of using the vacuum sealing part many times, it was confirmed that vacuum leakage did not occur even when opening and closing more than 30 times, and the suitable titanium alloy hardness was 230 Hv or more. And set to 310Hv or less.
  • a uniform thin passivation film such as a thin oxide film or a nitrided film is formed on the surface by thermal oxidation treatment or nitridation treatment, thereby preventing gas diffusion and transmission inside the material. It is known that this can be achieved (for example, Ito and Minato: Vacuum, 40 (1997) ⁇ 248-250).
  • a titanium layer having a thin titanium oxide layer or nitride layer formed on its surface is also provided. It can be an alloy.
  • the thickness of the passivation film is preferably 1 Onm or less in order to avoid an increase in the gas adsorption surface and effectively cope with an extremely high vacuum.
  • a desirable titanium alloy for the above-described vacuum vessel and vacuum parts is the titanium alloy KS100 disclosed in the above-mentioned Japanese Patent Application Laid-Open No. H10-017962. Further, the suitability for use in a vacuum device is examined in detail. As a result, it contains 0.3 w-0.5 wt% of iron and 0.3 wt% -0.5 wt% of oxygen, disclosed as a preferred embodiment in JP-A-10-017962, with the balance being Ti and inevitable. It is a titanium alloy composed of impurities.
  • a detailed embodiment including the method for producing a titanium alloy is disclosed in Japanese Patent Application Laid-Open No. 10-017962, but the reason for limiting the range of the chemical component composition of the titanium alloy in the present invention is as follows. If the oxygen content is less than 0.3 wt%, the hardness is insufficient, and if the oxygen content exceeds 0.5 wt%, the workability (formability) deteriorates, and if the iron content is less than 0.3 wt%, the surface roughness deteriorates, When the content exceeds 0.5wt%, processability
  • the sample used was the above-mentioned titanium alloy KS100 (a titanium alloy containing 0.35 wt% of oxygen and 0.35 wt% of iron, with the balance being Ti and unavoidable impurities).
  • Samples TP1 to TP3 that had been subjected to polishing and a stainless steel sample SP that had been polished were prepared for comparison, and the gas release rate was examined using the orifice method. 180 samples of 20 mm x 20 mm x 1 mm t were used for each sample. The measurement of the gas release rate by the orifice method was performed using a prototype titanium alloy vacuum vessel described later as the second embodiment.
  • the pretreatment of the sample was only to perform a heat treatment at 90 ° C for 24 hours in air after alcohol washing.
  • the measurement conditions were as follows: as an initial condition, after 30 minutes of opening the device to the atmosphere, the exhaust system was started up and evacuated for 3 hours, and then the chamber was vacuum-baked at 180 ° C and the sample section at 220 ° C. Was performed for 48 hours, and the gas release rate was determined from the ultimate pressure after cooling for 48 hours.
  • the heating temperature is set to a relatively low temperature in consideration of the use of a real vacuum device.
  • the surface roughness is a center line average roughness (Ra) measured in a range of 10 ⁇ 10 // m using an atomic force microscope (AFM).
  • Example Comparative Example polished titanium emissions alloy TN was polished stearate Despite being roughly 50 times coarser than the gas SP, its outgassing rate is 1.8xlO- 1 D Pam / sec, which is about the same. This is because the titanium alloy has undergone a vacuum melting process in the manufacturing process, and the crystal grains of the titanium alloy have become finer and denser.
  • the surface roughness should be 50 nm or less.
  • the reason why the gas release rate decreases linearly with the surface roughness in the range of surface roughness 10 to 100 nm is that the gas released from the surface is the dominant gas release amount.
  • the fact that the surface roughness shows a saturation tendency at a surface roughness of 10 nm or less means that the amount of gas released from other factors, such as diffusion and emission from the inside of the material, has become dominant.
  • the gas emission characteristics indicate such a tendency, and the surface roughness is preferably set to a point indicating a saturation tendency.
  • the surface roughness showing a saturation tendency can be smaller than about 10nm.
  • the surface roughness of 10 nm which can achieve less than about one-tenth of the gas release rate ( 1 ⁇ 10-1 Q Pani / sec) required for ultra-high vacuum, is usually These are sufficient setting conditions.
  • the experiment was performed by measuring the temperature dependence of the gas release rate using the titanium alloy sample TP1 with a roughness of 7 lnm after the measurement of the gas release rate performed in the first embodiment.
  • Table 2 shows the results.
  • the activation energy for outgassing was calculated to be approximately 20 kJ / mo1, which is the value of hydrogen diffusion in stainless steel. The value is much smaller than that of activated energy 45 kJ / mo1.
  • the present titanium alloy has a very low gas release rate UxlO-H Pam / sec in the chamber as shown in the first embodiment, and has a small gas release activation energy according to the present embodiment. This confirms that the amount of gas released by diffusion is smaller than that of existing stainless steel.
  • FIG. 2 is an external view of a vacuum vessel prototyped as an embodiment of the titanium alloy vacuum vessel of the present invention, in which (a) is a top view, and (b) is a top view.
  • Titanium emissions alloy used was Ri Oh with KS100 was subjected to surface polishing of the surface roughness 3.8 nm, the vacuum vessel, the volume 6.7x10- 3 m 3, an inner surface area 375 xlO- 3 m 2, an intermediate diameter 5.4 is separated by an orifice with a small It is divided into Check (volume 4.2x10- 3 m 3, the inner surface area 210x10- 3 m 2) and the upstream vacuum chamber (volume 2.5x10- 3 m 3, the inner surface area 165xl0_ 3 m 2).
  • the main exhaust pump 55 ( ⁇ 10-3 111 3/36 (; to connect the 150x10- 3 m 3 / sec turbomolecular pump (TMP) in series, the crude Technology of and evacuation device is connected to the downstream vacuum chamber using a 150x10 one 3 m 3 / min of oil rotary pump (RP) to the pump, j over de type downstream vacuum chamber and the upstream vacuum chamber ionization A vacuum gauge (EG) is installed.
  • the heating temperature for vacuum baking of a vacuum vessel is often set to 200 ° C or higher, but here, a relatively low temperature of 160 ° C is used for 48 hours. Vacuum baking was performed, and then the pressure of the vacuum vessel was measured for 48 hours.
  • Figure 3 shows the pressure evacuation curves of the upstream vacuum chamber (shown by the solid line) and the downstream vacuum chamber (shown by the dashed line) with the end time of the vacuum base being set to 0. despite the vacuum base one King at low temperatures, in 2 hours and very short evacuation time that would have, upstream vacuum chamber 8.0xl0- 8 Pa, to reach the ultra high vacuum region of the downstream vacuum chamber 1.4x10 one 8 Pa, after 48 hours, the upstream vacuum chamber 1.6x10- 8 Pa, the downstream vacuum chamber reached extremely high vacuum region called 6.5x10 one 9 Pa.
  • the pressure in the upstream vacuum chamber is higher Ri by the pressure in the downstream vacuum chamber, Ri by the O Li off office provided in the middle of the vacuum vessel, evacuation speed of the upstream vacuum chamber (2.6x10- 3 m 3 / sec) is about two orders of magnitude lower than the evacuation speed of the downstream vacuum chamber.
  • Figure 4 shows the results, and is a pressure evacuation curve without vacuum baking based on the start time of the main exhaust pump TMP.
  • the pressure of the downstream vacuum chamber (indicated by the dashed line), which has the form of a normal vacuum apparatus (a form in which a vacuum is evacuated directly without using an orifice, etc.) after 3 hours 6.2x10- 7 Pa, 30 hours after 5.7xlO_ 8 Pa, after between 48 o'clock reached 3.9xlO_ 8 Pa. That is, titanium emission alloy vacuum container of the present invention, the also rather subjected to vacuum base one King, 10_ 7 Pa stand ultra-high vacuum can be obtained in a short time of evacuation, also easily 10 one 8 This indicates that a pressure on the order of Pa can be obtained.
  • the upstream vacuum chamber (indicated by the solid line) is a 3 hours after 7. OxlO_ 6 Pa, 30 hours after 6. 3x10- 7 Pa, 48 hours after 4.6x10- 7 Pa, approximately an order of magnitude even Ri by the downstream vacuum chamber
  • the value is high because, as described above, the evacuation speed of the upstream vacuum chamber is significantly reduced due to the resistance of the orifice.
  • the structure of the titanium alloy KS100 is finely divided into approximately 10 ⁇ m or less and contains a dense titanium alloy KS100 (containing 0.35w of oxygen and 0.35wt% of iron, and the rest is Ti and inevitable It has been demonstrated that the use of a titanium alloy consisting of impurities) can reduce the gas emission rate by reducing the surface roughness, and the gas emission rate required for ultra-high vacuum. (1x10-11 Q Pam / sec or less) was demonstrated to achieve a surface roughness of 50 nm or less, and it is more preferable that the surface roughness be 10 nm or less. I showed you something. We have also demonstrated that the amount of outgassing due to diffusion from inside the material is smaller than that of existing stainless steel.
  • a titanium vacuum container using such a titanium alloy KS100 was prototyped, and the evacuation experiments showed that even a relatively simple evacuation device could be used to achieve a short evacuation. be reached by Ri ultra-high vacuum, and further, was the real testimony that you ultra-high vacuum of this and Do rather than 10- 8 Pa subjected to base one King Ru can be easily realized.
  • the sample is a vacuum flange made of the above-mentioned titanium alloy KS100 (hardness 280 HV).
  • Two kinds of pure titanium (JIS-2 type: hardness 145Hv) flanges were prepared in the same manner.
  • an oxygen-free copper gasket which is a general ultra-high vacuum seal, is sandwiched between two sample flanges, and the vacuum leak at the vacuum-sealed part is checked using a vacuum leak tester Technician).
  • the number of tests was 30.
  • Table 3 shows the test results. Here, the presence or absence of vacuum leakage was judged to be 1 ⁇ 10-10 Pa m 3 / sec or more as a result of vacuum leakage. , was visually determined.
  • a thin titanium oxide layer was formed on the surface of the titanium alloy. An example in which is formed will be described.
  • the sample is the above titanium alloy KS100 set to a surface roughness of 0.7 nm.
  • the reason why the surface roughness was set to 0.7 nm was that it was thought that separation or cracking of microstructure due to oxidation could be observed with an atomic force microscope. This delamination or cracking of the structure is a factor that increases the outgassing rate, and the passivation film that reduces the outgassing rate has a uniform structure with less separation and cracking of the tissue in a micro area. It must be a film.
  • the oxidation of the titanium alloy was performed by thermal oxidation. That is, the titanium alloy was placed in a vacuum chamber, the pressure was evacuated to 4 xl O- 4 Pa, and then the sample was heated at a temperature 20 ° C higher than the oxidation treatment temperature for 2 hours. After performing the king, the sample temperature was set to the oxidation treatment temperature, oxygen (purity 99.7%) was introduced at 1 atm, and the oxidation treatment was performed for 2 hours. There are four oxidation treatment temperatures: 150, 200, 300 and 400 ° C.
  • the thickness of the titanium alloy oxide film was obtained by physically etching a part of the oxide film by an ion beam sputter method and measuring by a stylus type surface roughness meter. Table 4 shows the results of the peeling test and the results of surface roughness and film thickness.
  • the surface of the untreated sample, 200 ° C treated sample and 30 (each surface of the TC treated sample was observed with an atomic force microscope in the area of 10 ⁇ 10 m. As in the case of the surface, there was no micro-separation roughness, and as shown in Table 4, the surface roughness of the sample treated at 200 ° C was almost the same as that of the untreated sample. That is, the oxidation treatment at 200 ° C. is a preferable condition for forming an extremely uniform oxide film.
  • the thickness of the titanium oxide layer of the sample treated at 200 ° C. is about 8 nra. .
  • the surface of the sample treated at 300 ° C was observed to have a separation roughness of about 1 xlm, reflecting this, and the surface roughness (1.9 nm) was roughly three times that of the untreated sample. ing.
  • the oxide film thickness of this sample is about 1 Onm. That is, in the oxidation treatment at 300 ° C, the oxidation does not proceed in the depth direction of the titanium alloy and the oxidation of the surface layer progresses as compared with the oxidation treatment at 200 ° C, resulting in a rough surface. It turned out that it only formed a surface.
  • the surface oxidation treatment conditions of the titanium alloy used in the present example are preferably set to an oxidation treatment temperature of 200 ° C. and an oxidation treatment time of about 2 hours. Reflecting the fact that the degree is as small as 0.7 nm, it was clarified that an extremely uniform thin oxide layer of about 8 nm can be formed.
  • this titanium oxide film is a passivation film for reducing the gas release rate, and is one of the important elemental technologies for making an ultra-high vacuum device effective. .
  • the surface roughness was set to 0.7 nm, observation by an atomic force microscope was possible, and the surface state of the oxide film was evaluated microscopically. One of the characteristics is that the optimum oxide film formation conditions are determined.
  • the passivation film of the titanium nitride film can be similarly formed by the surface nitriding treatment of the titanium alloy. And can be.
  • a titanium alloy plate (2 mm t) having the composition shown in Table 5 was manufactured, its surface was polished, and its surface roughness and hardness were measured.
  • the plates of each composition were cold-formed into a bend and joined by TIG welding to form a welded tube with a diameter of 100 mm and a length of 300 mm, and compared the workability.
  • Table 5 shows the results of each evaluation.
  • No. 1 is a comparative example with too low oxygen content and lacks hardness
  • No. 2 is a comparative example with too much iron content and a minute crack was generated at the welded part
  • No. 3 was a comparative example in which the iron content was too low, and a surface roughness of 1 Onm or less could not be achieved by polishing
  • No. 4 was a comparative example in which the oxygen content was too high. Interforming was difficult.
  • No. 5 to No. 9 are examples satisfying the composition specified as a desirable component composition of the titanium alloy in the present invention, and the surface roughness and the hardness are within appropriate ranges. There was no problem with workability.
  • the titanium alloy of the sixth embodiment has desirable characteristics as a material of a titanium alloy vacuum container and a vacuum component, which is the aim of the present invention, and is disclosed in -As shown in JP-A No. 0-962, it is excellent in robustness, biocompatibility, or cost, and is suitable as a material for the titanium alloy vacuum container and vacuum components of the present invention.
  • a method of forming a thin titanium oxide layer on the surface of a titanium alloy was described in detail.However, a passivation film that reduces the gas release rate by using titanium oxide was described. Any method can be used as long as it can be formed, and there is no particular limitation on the present invention, such as the oxidation treatment temperature, the oxidation treatment time, or the thickness of the titanium oxide film to be formed.
  • Industrial applicability The vacuum vessel and the vacuum part made of a titanium alloy of the present invention are a vacuum vessel and a vacuum part in which desorption gas from the inner surface and diffusion / release gas from the inside of the material are greatly reduced. This has the effect that an ultra-high vacuum can be easily achieved in a short time.
  • the evacuation speed of the evacuation pump is small, or a plurality of evacuation pumps are not required in an ultra-high vacuum, and thus there is an effect that an energy-saving vacuum apparatus can be realized.
  • the titanium alloy vacuum vessel and vacuum component of the present invention having such an effect require a vacuum apparatus for producing semiconductor thin films and electronic components that require high throughput, and the need to achieve an ultra-high vacuum. It can be implemented more effectively as a surface analysis device and an atomic operation device to be used, or as a vacuum container and a vacuum component of a high energy accelerator facility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Thermally Insulated Containers For Foods (AREA)
  • Packages (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

チタ ン合金製真空容器及び真空部 DP 技術分野
本発明は、 真空排気から短時間で超高真空を容易に達成する こ と ので き るチタ ン合金製真空容器及び真空部品に関する。
書 技術背景
現在、 真空装置は、 半導体産業の種々の電子素子を製造する装置を始 めと して、 あ らゆる産業に広く 普及し、 また、 高エネルギー物理や固体 表面科学などの先端科学技術分野においても必要不可欠となっている。 例えば、 半導体電子部品や LSI製造のための真空装置では、 既に 10— 5Pa から 10一7 Paの超高真空が、 また高品質の半導体薄膜やその超構造膜を作 製するための超高真空成膜装置では、 10— 8 Pa以下の到達圧力が必要であ る。 更に、 次世代の高度情報通信社会においては、 情報通信機器の高速 化、 大量情報記録が可能となる単電子デバイ スや新しい電子 · 光デバイ スの開発が重要であ り、 これら新デバイ スを創製するためには、 極めて 清浄な超〜極高真空下において 1 原子層オーダ—の積層制御が求め られ る。 即ち、 これら新規デバイ スを製造する装置においては、 容易に 10一8 Pa以下に到達する真空装置の開発が是非と も必要である。
従来、 一般的に、 超高真空容器や超高真空部品はステ ン レス鋼やアル ミ ニゥム合金で製作されており、 かかる一般的な真空装置では、 10_5Pa 以下の超高真空領域に到達させるために、 真空排気装置の起動後 5 ~ 8 時間の初期真空排気を行い、 その後、 5 〜数十時間程度の真空べ一キン グ (真空焼き出 し) という行程を経る必要がある。 また、 10一8 Pa以下の 超〜極高真空を必要とする装置、 例えば数ナノ メ ータ ー膜厚の半導体を 多層に積層させる真空成膜装置では、 スパ ッ タイオ ンポンプやチタ ンサ プリ メ 一 シ ョ ンポ ンプなどの複数の超高真空ポ ンプを組み合わせる必要 があ り、 更には、 装置内に液体窒素で冷却したシュラ ウ ド (冷媒溜ま り ) を設ける必要がある。
また、 一般的なステン レス鋼やアル ミ ニゥム合金はガス放出量が多い ため、 真空排気処理のみで 1 0ー8 P a以下の圧力を得る こ と は困難であ り、 鋼中の不純物を低減させた特殊清浄鋼を用い、 更には、 その表面を研磨 によ り鏡面仕上げするなどによ り、 やっ と 1 0一8 P a以下の超〜極高真空を 実現しているのが現状である。
上記のよ う に、 従来の一般的な超高真空装置は、 複数の超高真空ボ ン プを組み合わせた真空排気装置を必要と し、 超高真空容器や超高真空部 品は、 不純物を低減させた特殊鋼を用い、 更には、 その表面を研磨によ り鏡面仕上げするなどが必要であり、 装置が高価になる という 問題があ る。 また、 超高真空を維持するために真空装置を常時連続運転しなけれ ばな らず、 運転費用が大きいと いう 問題がある。 さ らに又、 所定の超高 真空に到達するまでに長時間を要するため、 超高真空装置の稼働率が悪 く なる と いう 問題がある。
かかる真空装置に係わる状況によ り、 従来、 ステ ン レス鋼などと比較 して高価なために真空装置に用い られる こ とが少なかったチタ ン或いは チタ ン合金を、 10 _ 8 P a以下の超〜極高真空を容易に実現する こ とを目的 と して、 本格的に真空装置に適用 しょ う とする研究 · 開発が活発に行わ れる よ う にな った。
即ち、 チタ ン或いはチタ ン合金は、 ステ ン レス鋼などと比較して高価 ではあるが、 比強度が高く 、 軽量、 且つ耐食性に優れ、 また、 高真空精 鍊で製造するため、 精鍊過程における金属組織へのガスの混入量が極め て少な く 、 超高真空容器などに好適に使用 し う る材料であり、 例えば、 発明者らの研究 (T. Chi jiraatsu, et. Al, J. Vac. Soc. Jpn. Vol 42,
No.3, pp200-203 ( 1999) ) によれば、 チタ ンは、 ステ ン レス鋼と比 較し、 ガス放出量が 1/ 10程度と極めて少ないこ とが明らかになつてい る。
チタ ンを真空装置に用いた技術と しては、 例えば、 高真空精鍊された 金属 (好ま し く はチタ ン) をパフ研磨、 電解研磨などにより表面粗度を lOOnm以下に した真空装置 (特許第 3030458号) が開示されている。
然しながら、 チタ ンは、 表面平滑化処理が困難と い う欠点を有する。 即ち、 上記の文献に示した本発明者らの研究によれば、 一般的なパフ研 磨と電解研磨を施したチタ ンの表面粗度は、 同じ研磨処理を施したステ ン レス鋼の約 4 倍の 15nm程度であ り、 短時間で 10_8 Pa以下の超〜極高真 空を達成でき るガス放出量の少ない超高真空容器を提供するために必要 な、 真空材料表面が鏡面となるよ う な表面平滑化処理が困難である と い う 問題がある。
ま た、 チタ ンで作製した真空封止のための金属ガスケ ッ ト用 フ ラ ン ジ は、 通常多用 されている無酸素銅製の金属ガスケ ッ トを使用 した場合、 10回程度の使用によ り、 真空漏れが発生して しま う 問題がある。
チタ ン合金に関 しては、 一般の工業用チタ ン合金は強度が高 く 、 真空 装置用材料に必要な機械加工性、 或いは表面処理性に難点があるため、 真空装置用を目的に した材料開発が行われており、 例えば、 白金系金属 、 遷移金属、 希土類元素などを含むガス放出量の少ない超高真空チタ ン 合金 (特開平 06- 065661号) 、 そのチタ ン合金を用いた超高真空容器 ( 特開平 06-064600) が開示され、 ガス放出量がステ ン レス鋼と比較し 1 Z 10以下にな る こ とが示されている。 然しながら、 こ の開示技術では、 本発明が目指すと こ ろの、 短時間で超〜極高真空を達成でき る超高真空 容器を提供するために必要な、 材料の表面処理性等については何ら明ら かにされていない。 また、 この開示技術では、 比較的高価な合金元素を 使用 しているため、 装置が高価になる と いう 問題がある。
一方、 チタ ン合金は、 真空装置用以外にも、 多種多様な材料開発が行 われており、 例えば、 装飾性 · 堅牢性 · 加工性 · 生体適合性 · コス ト面 に優れ、 特に装身具の素材と して有用な高強度チタ ン合金の提供を目的 に、 鉄及び酸素を合金元素と した技術 (特開平 10-017962号) 、 鉄、 酸 素及びシ リ コ ンを合金元素と した技術 (特開平 10-017961号) が開示さ れ、 装身具に限らずスポーツ用途等の幅広い製品への適用が期待される こ とが示されている。 然しなから、 こ の開示技術では、 ガス放出特性、 表面処理特性など、 真空装置用の材料と しての適合性については明らか にされていない。
本発明は、 かかる真空装置に係わる状況に鑑み、 真空排気から短時間 で超高真空を容易に達成する こ とのでき るチタ ン合金製真空容器及び真 空部品を提供する こ とを目的とする。 発明の開示
上記目的を達成するために、 本発明のチタ ン合金製真空容器及び真空 部品は、 主要部をチタ ン合金で作製された真空容器及び真空部品であつ て、 チタ ン合金は、 組織が概ね 10 m以下に微粒化し緻密であ り、 且つ 、 少な く ても真空に曝せれる表面の表面粗度を 50nm以下と したチタ ン合 金製真空容器及び真空部品である。 なお、 表面粗度は、 原子間力顕微鏡 によ り 10x10/ mの範囲で測定した、 中心線平均粗さ (Ra) を意味する また、 好ま し く は、 上記チタ ン合金の表面粗度を 10nm以下と したチタ ン合金製真空容器及び真空部品である。 上記チタ ン合金は、 ビッ カーズ硬さ力 230Hv以上、 且つ 31 0Hv 以下の 硬度を有するチタ ン合金とするのが好ま しい。
また、 上記チタ ン合金は、 少な く ても真空に曝せれる表面に薄いチタ ンの酸化層或いは窒化層などによる不動態皮膜を形成したチタ ン合金と する こ とができ、 かかる不動態皮膜は、 10 nm以下の膜厚とするのが望ま しい
本発明のチタ ン合金製真空容器及び真空部品に使用するチタ ン合金は 、 鉄 (F e ) 0. 3w 〜0. 5w t %、 及び酸素 (0 ) 0. 3w t %〜 0. 5w t %を含有し、 残部がチタ ン ( T i ) 及び不可避不純物からなるチタ ン合金とするのが望 ま しい。 図面の簡単な説明
図 1 は、 本発明のチタ ン合金製真空容器及び真空部品の材料と して望 ま しいチタ ン合金の、 表面粗度とガス放出速度の関係の一例を示 した図 である。
図 2 は、 本発明のチタ ン合金製真空容器の実施例と して試作した真空 容器の外観図であり、 (a ) 表面図、 (b ) 上面図の' 2 面図である。
図 3 は、 図 2 の試作真空容器の真空排気特性を示す図であ り、 真空べ —キ ング後に真空排気した場合の一例を示す圧力排気曲線である。
図 4 は、 図 2 の試作真空容器の真空排気特性を示す図であ り、 真空べ 一キング無しの場合の一例を示す圧力排気曲線である。 発明を実施するための最良の形態
本発明でい う真空容器は、 所謂、 容器状のものに限定される ものでは な く 、 真空伏態に排気された空間を囲む手段であ って、 配管状、 或いは ダク ト状などを含むものである。 一般に、 大気に曝した真空容器の排気過程は、 ( 1 ) 容積に依存して 指数関数的に圧力が減少する過程、 ( 2 ) 容器内表面に吸着したガス種 が脱離し圧力が決定される過程、 ( 3 ) 容器の材料内部から拡散し真空 中に放出されるガスが圧力を決定する過程、 ( 4 ) 最後に大気から透過 するガスが圧力を決定する過程の 4過程を経る と言われているが、 こ の 排気過程において、 短時間で超高真空を容易に達成するためには、 ( 2 ) と ( 3 ) の過程を短縮する こ とが特に重要である。 即ち、 表面に吸着 するガス量を減少させ、 また、 これを早く 脱離させ、 且つ、 拡散によ り 材料内部から放出されるガス量を減らす必要がある。
真空材料からの放出ガス量は、 一般的に、 ガス放出速度 (Pa m/sec) で表すが、 1 xlO— 8Pa程度の超高真空に得るためには、 10_9〜10— 1 DPa m/secのガス放出速度が必要であ り、 1 xlO— 9Pa以下の極高真空を得る ためには 10_1 Q Pa m/sec台以下のガス放出速度が必要である。
本発明者は、 真空容器及び真空部品のガス放出量を低減するため、 真 空材料のガス放出の要因について様々 な角度から検討して、 材料の選定 を行った。 即ち、 ( 1 ) 吸着ガス量を少な く する鏡面となるよ う な表面 が比較的容易に得られるよ う にするため、 緻密で且つ適度な硬度を有す る材料である こ と、 ( 2 ) 材料内部からのガスの拡散放出を少な く する ために、 材料内部に含有するガス量が少な く ガスの拡散を防げるよ う な 緻密な材料である こ と、 を必要条件と判断し、 かかる条件を満たす可能 性が高い真空材料と して、 組織が微粒化し緻密であ り且つ適度な硬度を 有し鏡面化処理が容易であ り、 高真空精鍊で製造するため材料内部に含 有するガス量が少ないとい う特徴を持つチタ ン合金を真空材料に選定し た。
次のステッ プと して、 如何なるチタ ン合金が、 超〜極高真空用材料と して最も好適か検討するに際し、 新たなチタ ン合金を開発する こ と も考 え られたが、 本発明者は、 上記の如 く 、 真空用材料と して開発されたチ タ ン合金以外に、 多種多様なチタ ン合金が既に開発されており、 これら のなかに超高真空用材料と して好適なチタ ン合金が見出せれば、 コ ス ト 的にも極めて有利になる と判断し、 既に開発されているチタ ン合金を対 象に、 超高真空用材料と しての適合性の研究を行って本発明を完成させ たものである。
即ち、 上記のよ う なチタ ン合金の有する特徵と共に、 緻密性に関して は、 概ね lO^ m以下に微粒化し緻密である こ とを第一の条件と し、 表面 平滑化処理に関しては、 1 X 10— 9 Pa以下の極高真空装置にも充分に対応 でき るガス放出速度 10—1 m/sec台が得られる表面粗度を第二の条件 と して設定し、 更に、 所定の表面粗度を得るための表面平滑化処理が比 較的容易に行える こ とを望ま しい条件と して設定し、 さ らに又、 好適な 加工性 · 耐久性が有られる材料硬度を望ま しい条件と して設定し、 既に 開発されているチタ ン合金を対象に して、 かかる条件に適合するチタ ン 合金を鋭意研究した ものである。
結晶粒径が微粒化し緻密である と い う こ と は、 鏡面化処理を可能とす る一つの要因である と共に、 材料内部からのガスの拡散放出を少な く し 、 また、 上記の特開平 10- 017962号にも示されている如 く 、 耐疵性を向 上させる要因でもあって、 大気からの リ ークを極度に嫌う超〜極高真空 装置用の材料と して好適な ものであるが、 一方、 設定する条件は、 工業 的に容易且つ安価に供給でき る条件が望ま し く 、 本発明は、 詳細は後述 するが、 極めて好適な真空用材料と しての特性を有するチタ ン合金が概 ね達成でき る ものと して、 概ね 10〃 m以下と設定した ものである。
ガス放出速度 10— HPa m/sec台を達成する表面粗度は、 詳細は後述の 実施例で説明するが、 表面粗度とガス放出速度との関係を測定 · 検討し た結果、 50nm以下と設定したものである。 以上のよ う に して、 本発明のチタ ン合金製真空容器及び真空部品は、 主要部をチタ ン合金で作製された真空容器及び真空部品であって、 チタ ン合金は、 組織が概ね 10 m以下に微粒化し緻密であり、 且つ、 少な く ても真空に曝せれる表面の表面粗度を 50nm以下と した ものであ り、 これ によ り、 容器内表面からの脱離ガス量、 及び容器材料内部からの拡散 · 放出ガス量を大幅に減少させる こ とができ るため、 真空排気から短時間 で極高真空を容易に達成する こ とができ る。
また、 チタ ン合金の表面粗度を 10nm以下とする こ と により、 材料表面 からの脱離ガス量を極限に近く まで、 即ち、 材料内部からの拡散ガス量 、 或いは大気からの透過ガス量と比較して問題にな らない量まで減少さ せる こ とができ、 更に好適に本発明を実施でき る。 なお、 後述のチタ ン 合金は、 比較的単純な研磨方法でも、 表面粗度 5 nm程度が得られる もの であ り、 本発明を好適に実施でき る ものである。
超高真空装置の真空フラ ンジ部は、 一般的に、 ナイ フエッ ジを持たせ 、 金属ガスケ ッ ト を挟むこ と で真空封止を行うが、 多数回のフラ ンジ開 閉でも真空リ ークが発生し難く 、 且つ、 加工性に問題がない適度な硬度 の材料が必要である。 硬度 110~ 160Hvのチタ ンは、 前記のよ う に、 十 回程度の開閉で真空リ ークが発生し、 一方、 硬度 350Hvのチタ ン合金 ( Ti-6A1-4V) は、 加工が困難でコ ス ト もかかる。
また、 チタ ン合金の硬度は、 真空フ ラ ンジ部に限らず重要であり、 例 えば、 本発明者らは、 Ti- 6A卜 4Vを用いて真空容器を試作してみたが、 切削加工の工具が早く 消耗してしま う 問題や、 多量の合金元素を含有す る こ と による溶接の困難さ によ り、 溶接部位から真空漏れが発生してし ま う問題などがあった。 また合金添加量の多いチタ ン合金は、 高価であ る と い う 問題もある。
本発明では、 上述のよ う な研究成果を踏まえ、 後述のチタ ン合金に関 し、 真空封止部位の多数回使用性能を検討した結果、 30回以上の開閉に 対しても真空 リ ークが発生しないこ とを確認して、 好適なチタ ン合金硬 度を 230Hv以上、 且つ 310Hv 以下と設定した ものであ る。
また、 熱酸化処理ゃ窒化処理などによ り表面に均一な薄い酸化膜ゃ窒 化膜などの不動態皮膜を形成し、 これによ り材料内部のガスの拡散 · 透 過を防ぐこ とができ る こ とが知られており (例えば、 伊藤、 湊 : 真空 · 40 ( 1997) ρρ 248- 250) 、 本発明においても、 表面に薄いチタ ンの酸化 層或いは窒化層などを形成したチタ ン合金とする こ とができ る。 こ の際 において、 不動態皮膜の膜厚は、 ガス吸着表面の増大を避け極高真空に 効果的に対応するため、 1 Onm以下とする こ とが好ま しい。 なお、 詳細は 実施例で説明するが、 後述のチタ ン合金で、 不動態皮膜となる均一な薄 い酸化膜や窒化膜を容易に形成でき る こ とを確認した。
上記の真空容器及び真空部品に望ま しいチタ ン合金は、 前記の特開平 10- 017962号に開示されたチタ ン合金 KS100であって、 更に、 真空装置 用と しての適合性を詳細に検討した結果、 特開平 10-017962号で望ま し い実施の形態と して開示されている、 鉄 0.3w 〜0.5wt%、 及び酸素 0.3w t%〜0.5wt%を含有し、 残部が Ti及び不可避不純物からなるチタ ン合金で あ る。
このチタ ン合金の製造方法を含む詳細な実施の形態は、 特開平 10- 017 962号に示されているが、 本発明における、 チタ ン合金の化学成分組成 の範囲限定理由を説明する と、 酸素含有量 0.3wt%未満では硬さが不足し 、 酸素含有量が 0.5wt%を超える と加工性 (成形性) が劣化し、 鉄含有量 0.3wt%未満では表面粗さが劣化し、 鉄含有量が 0.5wt%を超える と加工性
(溶接性) が劣化する。
「実施例」
以下、 本発明の実施例を詳細に説明する。 最初に、 第一の実施例と して、 表面粗度とガス放出速度との関係につ いて実験的検討を した結果について説明する。
用いた試料は、 上記のチタ ン合金 KS100 (酸素 0.35wt%、 鉄 0.35wt% を含有し、 残部が Ti及び不可避不純物からなるチタ ン合金) であり、 研 磨を施さない試料 TN、 研磨を施した試料 TP1〜TP3、 更に、 比較用と し て、 研磨を施したステ ン レス試料 SPを準備し、 オ リ フ ィ ス法を用いてガ ス放出速度を調べた。 なお、 各試料は、 20mmx20mmx 1 mm t の もの 180枚 を用いた。 また、 このオ リ フ ィ ス法によるガス放出速度の測定は、 第二 の実施例と して後述する、 試作したチタ ン合金製真空容器を用いて行つ たものである。
試料の前処理は、 アルコール洗浄後、 大気中で 90°C X 24hの加熱処理 を施すだけと した。 測定条件は、 初期条件と して装置を大気開放 30分後 、 排気系を立ち上げて 3 時間排気を行い、 その後、 チャ ンバ一を 180 °C 、 試料部を 220 °Cで真空べ一キングを 48時間施し、 48時間冷却後の到達 圧力からガス放出速度を求めた。 なお、 こ のべ一キング温度は、 現実の 真空装置の使用を想定して、 比較的低温に設定した ものである。
その結果を、 表面粗度とガス放出速度の関係と して表 1 、 及び図 1 に 示した。
表面粗度は、 原子間力顕微鏡(AFM)を用いて、 10x10// mの範囲で測 定した中心線平均粗さ ( Ra) である。 なお、 試料 TP 1~ TP3の測定結果 と して示した、 ガス放出速度値 1.3x10
Figure imgf000012_0001
は、 本測定装置 · 測 定条件下での測定分解能にほぼ等しい値である。
【表 1 】 T N T P 1 T P 2 T Ρ 3 S P 表面粗度 Ra(nm) 95.1 7.1 3.8 0.7 2.4 ガス放出速度 1.8 1.3 1.3 1.3 1.4
(Pam/s e c) xlO— 10 xlO- 1 1 xlO-1 1 xlO -1 1 xlO- 1 0 備 考 本発明例 比較例 研磨を施さないチタ ン合金 TNの表面粗度は、 研磨を施したステ ン レス SPと比較して 50倍程度粗いにも拘わ らず、 そのガス放出速度は同程度の 1.8xlO-1 DPam/secである。 これは、 チタ ン合金がその製造過程におい て真空溶解行程を経ている こ と と、 チタ ン合金の結晶粒が微粒化し緻密 とな っているためである。
図 1 によれば、 極高真空に必要と されるガス放出速度 ( 1x10一 1 DPam/ sec以下) を達成するためには、 表面粗度 50nm以下にすれば良いこ とが 分かる。
なお、 表面粗度 10〜100nmの範囲で、 ガス放出速度が表面粗度と共に 直線的に減少しているのは、 表面からの離脱ガスが支配的なガス放出量 とな っている こ とを意味し、 表面粗度 10nm以下で飽和傾向を示している のは、 材料内部からの拡散 · 放出ガスなど、 他の要因によるガスが支配 的なガス放出量となったこ とを意味する。 一般的に、 ガス放出特性は、 かかる傾向を示すものであ り、 表面粗度は、 飽和傾向を示す点に設定す るのが好ま しい。
本実験では、 上記のよ う に、 表面粗度が 7. lnm以下である TP1〜TP3 の測定値が測定分解能にほぼ等しいため、 飽和傾向を示す表面粗度は、 約 10nmよ り更に小さい可能性もあるが、 その場合でも、 極高真空に必要 と されるガス放出速度 ( 1x10一 1 QPani/sec) の約十分の一以下を達成で き る表面粗度 10nmは、 通常の場合、 充分な設定条件である。
次に、 第二の実施例と して、 極高真空領域で問題となる、 材料内部か らのガス拡散 · 放出特性について実験した結果を説明する。
実験は、 上記第一の実施例で行ったガス放出速度測定の終了後、 粗度 7. lnmのチタ ン合金試料 TP1を用いて、 ガス放出速度の温度依存性を測 定する こ とで行っ たものであ り、 結果を表 2 に示す。
【表 2 】
Figure imgf000014_0001
表 2 の結果を、 ァ レニウ ス ' プロ ッ ト を行い、 ガス放出の活性化エネ ルギーを求める と、 約 20k J/mo 1となり、 こ の値は、 ステ ン レス鋼におけ る水素拡散の活性化ェネルギ一 45k J/mo 1と比較 し、 大幅に小さ い値であ る。 即ち、 本チタ ン合金は、 第一の実施例で示した、 室溘での非常に小 さいガス放出速度 UxlO—H Pam/secと共に、 本実施例により ガス放出 の活性化ェネルギ一が小さ いこ とが確認されたこ と よ り、 拡散放出によ るガス放出量が既存のステン レス鋼よ り も小さいこ とを実証したもので ある。
なお、 本実験は、 48時間真空べ一キングを施し、 その後、 48時間自然 冷却してから測定を開始したものであ り、 求められたガス放出の活性化 エネルギーはガスの拡散による活性化エネルギーと考えて良い。
次に、 第三の実施例と して、 試作したチタ ン合金製真空容器について 説明する。
図 2 は、 本発明のチタ ン合金製真空容器の実施例と して試作した真空 容器の外観図であ り、 (a) 表面図、 (b) 上面図の 2面図である。
使用 したチタ ン合金は、 表面粗度 3.8nmの表面研磨を施した KS100で あ り、 真空容器は、 容積 6.7x10— 3m3、 内表面積 375 xlO— 3m2であり 、 中間を直径 5.4mmの小さな穴を開けたオ リ フ ィ スで仕切られ、 下流真 空室 (容積 4.2x10— 3m3、 内表面積 210x10— 3m2) と上流真空室 (容積 2.5x10— 3m3、 内表面積 165xl0_3m2) に分かれている。 なお、 図示を 省略しているが、 主排気ポ ンプに 55(^10ー31113/36(;と 150x10— 3 m3 /sec のターボ分子ポ ンプ (TMP) を直列に連結し、 粗引 き ポ ンプに 150x10一3 m3/minの油回転ポ ンプ (RP) を用いた真空排気装置が下流真空室に 接続されており、 下流真空室及び上流真空室にはヌ ー ド型電離真空計 ( EG) が取り付け られている。
本チタ ン合金製真空容器の真空排気実験について説明する。
通常、 真空容器の真空べ一キ ン グのための加熱温度は 200°C以上と設 定する こ とが多いが、 こ こでは比較的低い温度である 160°Cと して 48時 間の真空べ一キングを行い、 その後、 48時間にわた り真空容器の圧力を 測定する こ と で行った。
図 3 は、 真空べ一キ ングの終了時刻を 0 と した、 上流真空室 (実線表 示) 及び下流真空室 (一点差線表示) の圧力排気曲線であり、 本排気実 験では、 比較的低い温度での真空べ一キングにも拘わらず、 2 時間と い う極めて短い排気時間で、 上流真空室 8.0xl0— 8Pa、 下流真空室 1.4x10一8 Paの超高真空領域に到達し、 48時間後、 上流真空室は 1.6x10— 8Pa、 下流 真空室は 6.5x10一9 Paと いう極高真空領域に達した。 なお、 上流真空室の 圧力が下流真空室の圧力よ り も高いのは、 真空容器の途中に設けたオ リ フ ィ ス によ り、 上流真空室の真空排気速度 (2.6x10— 3 m3 /sec) が、 下 流真空室の真空排気速度よ り 2桁程度小さ く なっているからである。 次に、 本発明によるチタ ン合金製真空容器の真空性能の良好さを更に 実証するために行った、 真空べ一キングを行わない場合の真空排気実験 の結果を説明する。
図 4 は、 その結果であって、 主排気ポ ンプである TMPのスタ ー ト時刻 を基準と した、 真空べ一キング無し時の圧力排気曲線である。 図 4 に示すよ う に、 通常の真空装置の形態 (オ リ フ ィ スなどを介さず 、 直接、 真空排気装置で排気する形態) を有する下流真空室 (一点差線 表示) の圧力は、 3 時間後 6.2x10— 7Pa 、 30時間後 5.7xlO_8Pa 、 48時 間後は 3.9xlO_8Pa に達した。 即ち、 本発明のチタ ン合金製真空容器は 、 真空べ一キングを施さな く と も、 短時間の真空排気で 10_7Pa台の超高 真空領域が得られ、 また、 容易に 10一8 Pa台の圧力が得られる こ とを示し ている。
一方、 上流真空室 (実線表示) は、 3 時間後 7. OxlO_6Pa、 30時間後 6. 3x10— 7 Pa, 48時間後 4.6x10— 7 Paであり、 下流真空室よ り もほぼ 1 桁高い 値とな っているが、 これは、 上記のよ う に、 オ リ フ ィ スの抵抗によ り、 上流真空室の真空排気速度が大幅に小さ く なっているからである。
以上、 第一の実施例及び第二の実施例では、 組織が概ね 10 ^ m以下に 微粒化し緻密なチタ ン合金 KS100 (酸素 0.35w 、 鉄 0.35wt%を含有し 、 残部が T i及び不可避不純物からなるチタ ン合金) を用い、 表面粗度を 小さ く する こ とで、 そのガス放出速度を小さ く でき る こ とを実証し、 ま た、 極高真空に必要と されるガス放出速度 ( 1x10一 1 QPam/sec以下) を 達成するためには、 表面粗度 50nm以下にすれば良いこ とを実証し、 さ ら に又、 表面粗度を 10nm以下とするのが更に好ま しいこ とを示した。 さ ら に又、 材料内部からの拡散放出によるガス放出量が既存のステ ン レス鋼 よ り も小さいこ とを実証した。
第三の実施例では、 かかるチタ ン合金 KS100を用いたチタ ン製真空容 器を試作し、 その真空排気実験によ り、 比較的単純な真空排気装置を用 いただけでも、 短時間の真空排気によ り超高真空に到達でき、 更に、 ベ 一キングを施すこ とな く 10— 8Paの超高真空が容易に実現でき る こ とを実 証した。
次に、 第四の実 ffi例と して、 ナイ フエッ ジ構造を有するチタ ン合金製 真空フ ラ ン ジの耐久試験結果について説明する。
試料は、 上記のチタ ン合金 KS100 (硬度 280HV) 製真空フ ラ ン ジであ り 、 ø 69.3mm(ICF70)、 113.5mm ( I CF114)の 2 種類を作製 し、 比較フ ラ ンジと して、 純チタ ン ( JIS- 2種 : 硬度 145Hv) 製フラ ンジを同様に 2 種類準備した。
試験は、 一般の超高真空用シールである無酸素銅ガスケ ッ ト を、 試料 フ ラ ンジ 2 枚で挟み、 真空封止部位の真空漏れを真空リ ーク試験機 (へ リ ウム リ ー クディ テク ター) によ り調べこ と によ り行った。 試験回数は 30回と した。
表 3 は、 その試験結果であ り、 こ こで、 真空漏れの有無は、 1x10— 1 0 Pa m3/sec以上を真空漏れ有り と判断したものであ り、 ナイ フエ ッ ジの 消耗は、 目視によ り判断したものである。
【表 3 】
Figure imgf000017_0001
純チタ ンは、 前記のよ う に、 繰返し使用によ り真空漏れが発生する こ とが知 られているが、 本試験でも、 ICF114では 21回目で真空漏れが発生 し、 漏れが発生しなかった I CF70では、 無酸素銅ガスケ ッ ト との接触面 である フ ラ ンジナイ フエッ ジ部の消耗が認められた。 一方、 本発明例の チタ ン合金製フ ラ ンジは、 真空漏れが発生せず、 また、 フ ラ ンジナイ フ エツ ジ部の消耗も認められなかった。
次に、 第五の実施例と して、 チタ ン合金の表面に薄いチタ ンの酸化層 を形成した例について説明する。
試料は、 表面粗度 0. 7nmに設定した上記チタ ン合金 KS 100である。 表 面粗度を 0. 7 nmに設定した理由は、 酸化による ミ ク ロな組織の剝離或い は割れなどが原子間力顕微鏡によ り観察でき る と考えたからである。 こ の組織の剥離や割れは、 ガス放出速度を増大させる要因となる ものであ り、 ガス放出速度を低減させる不動態皮膜は、 ミ ク ロな領域において組 織の剝離や割れの少ない均一な皮膜とする必要がある。
チタ ン合金の酸化は、 熱酸化によ って行った。 即ち、 チタ ン合金を真 空チ ャ ンバ一中に置き、 圧力を 4 x l O— 4 Paまで真空引き し、 その後、 試 料を酸化処理温度よ り も 20°C高い温度で 2 時間べ一キングを行った後、 試料温度を酸化処理温度に設定し、 酸素 (純度 99. 7%) を 1 気圧導入し 、 2 時間酸化処理を行った。 酸化処理温度は、 150、 200、 300、 400 °Cの 4 種類である。
目視観察の結果、 処理温度 150 °Cのチタ ン合金では殆ど変色は見られ なかったが、 処理温度の上昇と共に、 200 °C試料では薄い金色、 300 °C 試料では金色、 400 °C試料では青紫色に変色した。 これは、 200 °C以上 の処理温度で、 酸化チタ ンが形成されたこ とを意味する。
次に、 200 °C以上の酸化処理を行った試料について、 テープ剝離試験 と原子間力顕微鏡による表面観察を行った。 なお、 チタ ン合金酸化膜の 膜厚は、 イオ ン ビームスパッ タ法によ り酸化膜の一部を物理エ ッチ ング し、 触針式表面粗さ計によ り測定したものである。 剥離試験の結果と表 面粗度及び膜厚の結果を表 4 に示す。
【表 4 】 未処理試料 2 0 0 ΐϋ理試料 3 0 試料 \ 0 理試料 テ一プ剥離試験 刹離無 剝離無 剝離有
表面粗度 R a (nm) 0. 72 0. 76 1. 9
膜厚 (nm) 8 nra Ι Οηπι
テープ剥離試験の結果から、 酸化処理温度 400°Cは、 テープ剝離が生 じており、 不動態皮膜の形成には不適である と言える。
原子間力顕微鏡によ り 10 x 10 mの範囲における、 未処理試料、 200 °C処理試料、 30 (TC処理試料の各表面を観察した結果、 200 °C処理試料 の表面は未処理試料の表面と 同様に、 ミ ク ロな剝離荒れが無かった。 ま た、 表 4 に示すよ う に、 200 °C処理試料の表面粗度は未処理試料と殆ど 変わらない値が得られている。 即ち、 200 °Cでの酸化処理は、 極めて均 一な酸化膜を形成する好ま しい条件である。 なお、 こ の 200 °C処理試料 の酸化チタ ン層の膜厚は、 約 8 nraである。
一方、 300 °C処理試料の表面は、 1 x l m程度の大き さの剝離ゃ荒れ が観察され、 これを反映し、 表面粗度 (1. 9 nm) は、 未処理試料の 3 倍 程度に荒れている。 また、 こ の試料の酸化膜厚は約 1 Onmである。 即ち、 300 °Cの酸化処理では、 200 °C酸化処理と比べて、 酸化がチタ ン合金の 深さ方向には進行せず、 表面層の酸化が進行し、 結果と して、 荒れた表 面を形成しているに過ぎないこ とが分かった。
以上の結果、 本実施例で使用 したチタ ン合金の表面酸化処理条件は、 酸化処理温度 200 °C、 酸化処理時間 2 時間程度が好適であ り、 こ の酸化 処理によ り、 元々の粗度が 0. 7nm程度と小さいこ と も反映して、 極めて 均一な 8 nm程度の薄い酸化層を形成し得る こ とを明らかに した ものであ る。 こ の酸化チタ ン膜は、 公知の如 く 、 ガス放出速度低減のための不動 態皮膜となる ものであり、 極高真空装置を有効な ものとする上で重要な 要素技術の一つである。 なお、 金属材料の粗い表面 (例えば、 膜厚 20~ 50nm) に酸化膜を形成 した場合、 ガス放出速度を増大させる要因と な る ミ ク 口な組織の剝離或 い は割れな どの評価が困難であ るのに対 し、 本実施例では、 表面粗度 0. 7nmに設定 し、 原子間力顕微鏡によ る観察を可能と し、 酸化膜の表面状 態を ミ ク ロ に評価する こ と で、 最適な酸化膜形成条件を決定 してい るの がーつの特徴であ る。
以上、 チ タ ン合金の好適な酸化処理について説明 したが、 チ タ ン合金 の表面窒化処理によ っ て も、 同様に して、 窒化チタ ン膜によ る不動態皮 膜を形成する こ と ができ る。
次に、 第六の実施例 と して、 本発明に用いる チタ ン合金と して望ま し い、 チタ ン合金 KS 100の加工性等を評価 した結果について説明する。 評価は、 表 5 に示す成分組成のチタ ン合金の板 ( 2 mm t ) を製作 し、 これに表面研磨を施 し、 その表面粗さ及び硬さ を測定 した。 次に、 各組 成の板を用いて冷間で曲げ成形 し、 更に T I G溶接によ り接合 して径 100 m m X長さ 300 m mの溶接管を作成 し加工性を比較 した。 各評価の結果 を表 5 に併せて示す。
【表 5 】 成分組成 材 質
(質量
No. H ffiさ 硬さ 加ェ性 備 考
〇 F e Ra≤ 310≥ Hv≥ 230 冷間成形、溶接性
l Onm
1 0. 20 0. 35 〇 190 〇
2 0. 35 0. 65 〇 240 X (溶接不良) 比較例 3 0. 45 0. 20 X 280 〇
4 0. 60 0. 35 〇 330 X (冷間成形不可)
5 0. 30 0. 30 〇 230 〇
6 0. 35 0. 35 〇 260 〇
7 0. 40 0. 40 〇 280 〇 本発明例
8 0. 45 0. 45 〇 300 〇
9 0. 50 0. 50 〇 310 〇 No.1は、 酸素の含有量が少な過ぎる比較例であ り硬さが不足し、 No.2 は鉄の含有量が多過ぎる比較例であ り溶接部に微小なク ラ ッ クが発生し 、 No.3は鉄の含有量が少な過ぎる比較例であ り研磨によ り表面粗さ 1 Onm 以下を達成できず、 No.4は酸素の含有量が多過ぎる比較例であ り冷間成 形が困難であ った。
これらに対し、 No.5~ No.9は、 本発明でチタ ン合金の望ま しい成分組 成と して規定する組成を満足する実施例であ り、 表面粗さ、 硬さ は適正 範囲にあ り、 更に加工性にも問題は認め られなかった。
以上のよ う に、 第六の実施例のチタ ン合金は、 本発明が目指すと ころ の、 チタ ン合金製真空容器及び真空部品の材料と して望ま しい特性を有 する と共に、 特開平 10- 0Π962号に示されている如 く 、 堅牢性、 生体適 合性、 或いはコス ト面に も優れ、 本発明のチタ ン合金製真空容器及び真 空部品の材料と して好適である。
以上、 本発明の実施例を説明 したが、 請求の範囲で規定された本発明 の精神と範囲から逸脱する こ と な く 、 その形態や細部に種々の変更がな されても良い こ と は明らかである。
例えば、 第三の実施例と して、 試作したチタ ン合金製真空容器を説明 したが、 当然に して、 その形状、 或いは構成など何ら本発明を限定する ものではない。
また、 第五の実施例と して、 チタ ン合金の表面に薄いチタ ンの酸化層 を形成する方法を詳細に説明 したが、 酸化チタ ンによ り ガス放出速度を 低減させる不動態皮膜を形成できる方法であれば良く 、 酸化処理温度、 酸化処理時間、 或いは形成する酸化チタ ン膜厚など、 特に本発明を限定 する ものではない。 産業上の利用の可能性 本発明のチタ ン合金製真空容器及び真空部品は、 内表面からの脱離ガ ス及び材料内部からの拡散 · 放出ガスを大幅に低減した真空容器及び真 空部品であって、 真空排気から短時間で超高真空を容易に達成する こ と ができ る効果がある。 また、 真空排気ポ ンプの排気速度を小さ く 、 或い は超〜極高真空では真空排気ポ ンプが複数必要でないなどの利点があ り 、 省エネルギー型の真空装置を実現でき る効果がある。 かかる効果を有 する本発明のチタ ン合金製真空容器及び真空部品は、 高スループッ トが 必要と される半導体薄膜 · 電子部品作製のための真空装置や、 超〜極高 真空の達成が必要と される表面分析装置及び原子操作装置、 或いは高工 ネルギー加速器施設などの真空容器 · 真空部品と してよ り効果的に実施 でき る。

Claims

請 求 の 範 囲
1 . 主要部をチタ ン合金で作製された真空容器及び真空部品であって、 該チタ ン合金は、 組織が概ね 10 m以下に微粒化し緻密であ り、 且つ、 少な く ても真空に曝せれる表面の表面粗度が 50nm以下である こ とを特徴 とするチタ ン合金製真空容器及び真空部品。
2 . 前記チタ ン合金の表面粗度が 10nm以下である請求項 1 記載のチタ ン 合金製真空容器及び真空部品。
3 . 前記チタ ン合金の硬度が 230Hv以上、 310Hv以下である こ とを特徴 とする請求項 1 又は請求項 2記載のチタ ン合金製真空容器及び真空部品
4 . 前記チタ ン合金の少な く ても真空に曝せれる表面に薄いチタ ンの酸 化層或いは窒化層などによる不動態皮膜が形成されている こ とを特徴と する請求項 1 乃至請求項 3 のいずれかに記載のチタ ン合金製真空容器及 び真空部品。
5 . 前記チタ ン合金の表面に形成された不動態皮膜は、 10nm以下の膜厚 である請求項 4 記載のチタ ン合金製真空容器及び真空部品。
6 . 前記チタ ン合金は、 鉄 (Fe) 0.3wt%〜0.5wt%、 及び酸素 (0) 0.3w 〜 0.5wt%を含有し、 残部がチタ ン (Ti) 及び不可避不純物からなるチ タ ン合金である請求項 1 乃至請求項 5 のいずれかに記載のチタ ン合金製 真空容器及び真空部品。
PCT/JP2002/002566 2001-03-26 2002-03-18 Recipient a vide en alliage au titane et element a vide WO2002083286A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02761963A EP1374984B1 (en) 2001-03-26 2002-03-18 Titanium alloy vacuum container and vacuum part
DE60209130T DE60209130T2 (de) 2001-03-26 2002-03-18 Vakuumbehälter und vakuumteil aus titanlegierung
US10/312,701 US6841265B2 (en) 2001-03-26 2002-03-18 Titanium alloy vacuum and vacuum part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001088100A JP3694465B2 (ja) 2001-03-26 2001-03-26 チタン合金製真空容器及び真空部品
JP2001-88100 2001-03-26

Publications (1)

Publication Number Publication Date
WO2002083286A1 true WO2002083286A1 (fr) 2002-10-24

Family

ID=18943241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002566 WO2002083286A1 (fr) 2001-03-26 2002-03-18 Recipient a vide en alliage au titane et element a vide

Country Status (6)

Country Link
US (1) US6841265B2 (ja)
EP (1) EP1374984B1 (ja)
JP (1) JP3694465B2 (ja)
AT (1) ATE317293T1 (ja)
DE (1) DE60209130T2 (ja)
WO (1) WO2002083286A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930420B2 (ja) * 2002-11-20 2007-06-13 愛三工業株式会社 チタン部材の表面処理方法
DE102004045883A1 (de) * 2004-09-22 2006-04-06 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zur Herstellung eines Spiegels aus einem Werkstoff auf Titanbasis, sowie Spiegel aus einem solchem Werkstoff
JP6266727B1 (ja) * 2016-10-24 2018-01-24 トクセン工業株式会社 医療機器用金属線
JP6729628B2 (ja) * 2018-04-25 2020-07-22 東横化学株式会社 貯蔵容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249674A (ja) * 1990-12-28 1992-09-04 Kurein:Kk 真空容器
JPH0953163A (ja) * 1995-08-11 1997-02-25 Mitsubishi Heavy Ind Ltd チタン製真空容器の熱処理方法
JPH10265935A (ja) * 1997-03-27 1998-10-06 Vacuum Metallurgical Co Ltd 超高真空容器及び超高真空部品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188608A (ja) * 1984-03-07 1985-09-26 株式会社東芝 ネジ部材
JPH065661A (ja) 1992-06-17 1994-01-14 Shindo Denshi Kogyo Kk Tab用フィルムキャリア
JPH064600A (ja) 1992-06-24 1994-01-14 Matsushita Electric Ind Co Ltd イメージ検索方法およびイメージ検索装置
JPH0634775A (ja) * 1992-07-14 1994-02-10 Mitsubishi Atom Power Ind Inc 核融合装置の真空容器
JP2943520B2 (ja) * 1992-08-24 1999-08-30 日産自動車株式会社 超高真空容器
US5478524A (en) * 1992-08-24 1995-12-26 Nissan Motor Co., Ltd. Super high vacuum vessel
JP3376240B2 (ja) 1996-03-29 2003-02-10 株式会社神戸製鋼所 高強度チタン合金およびその製品並びに該製品の製造方法
JPH1017962A (ja) 1996-03-29 1998-01-20 Kobe Steel Ltd 高強度チタン合金およびその製品並びに該製品の製造方法
JPH11164784A (ja) * 1997-12-03 1999-06-22 Nippon Sanso Kk 金属製真空二重容器
JPH11221667A (ja) * 1997-12-03 1999-08-17 Nippon Sanso Kk 金属製真空二重容器の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249674A (ja) * 1990-12-28 1992-09-04 Kurein:Kk 真空容器
JPH0953163A (ja) * 1995-08-11 1997-02-25 Mitsubishi Heavy Ind Ltd チタン製真空容器の熱処理方法
JPH10265935A (ja) * 1997-03-27 1998-10-06 Vacuum Metallurgical Co Ltd 超高真空容器及び超高真空部品

Also Published As

Publication number Publication date
EP1374984A4 (en) 2004-10-27
ATE317293T1 (de) 2006-02-15
US6841265B2 (en) 2005-01-11
DE60209130T2 (de) 2006-08-03
EP1374984B1 (en) 2006-02-08
JP3694465B2 (ja) 2005-09-14
DE60209130D1 (de) 2006-04-20
EP1374984A1 (en) 2004-01-02
JP2002282673A (ja) 2002-10-02
US20030162042A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
US6107199A (en) Method for improving the morphology of refractory metal thin films
JP5210498B2 (ja) 接合型スパッタリングターゲット及びその作製方法
Sun et al. Low temperature plasma nitriding characteristics of precipitation hardening stainless steel
JP2009542918A (ja) コーティング装置および方法
JP2010132974A (ja) Ni−Mo系合金スパッタリングターゲット板
JP6847356B2 (ja) 水素分離膜の製造方法及び水素分離膜
EP3827922B1 (en) Method of diffusion bonding a nickel-based superalloy.
Kao et al. Structure, mechanical properties and thermal stability of nitrogen-doped TaNbSiZrCr high entropy alloy coatings and their application to glass moulding and micro-drills
CN113235051B (zh) 一种纳米双相高熵合金薄膜及其制备方法
WO2002083286A1 (fr) Recipient a vide en alliage au titane et element a vide
US20080017278A1 (en) High Melting Point Metal Based Alloy Material Lexhibiting High Strength and High Recrystallization Temperature and Method for Production Thereof
WO2016111288A1 (ja) ダイヤモンドライクカーボン層積層体およびその製造方法
CN107614719B (zh) 硬质合金和被覆硬质合金
Latushkina et al. Formation of wear-resistant nanostructured TiN/Cu coatings
JP2014214336A (ja) クロム含有金属材料及びクロム含有金属材料の製造方法
Chu et al. Ion nitriding of titanium aluminides with 25–53 at.% Al I: nitriding parameters and microstructure characterization
JP3281173B2 (ja) 高硬度薄膜及びその製造方法
JP6934691B2 (ja) 水素分離膜の製造方法及び水素分離膜
Spitz et al. Phase formation and microstructure evolution of reactively rf magnetron sputtered Cr–Zr oxynitride thin films
JP2011012336A (ja) 多層皮膜被覆部材およびその製造方法
KIM et al. Isothermal age-hardening behaviour in a Au-1.6 wt% Ti alloy
Zou et al. Hard and tough nitrogen doped tungsten coatings deposited by HIPAC: Microstructure and mechanical properties
Wu et al. Transforming microstructures and mechanical properties of (CoCrNi) 93-xAl7Ndx medium entropy alloy films by annealing
Makishi et al. Feature of M Phase Formed by Plasma Nitriding of Ni-base Alloys–Surface Engineering of Ni-base Alloys by Means of Plasma Nitriding
JPH05339702A (ja) 傾斜機能薄膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE GB KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT CN, DE, GB, KR, EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE,TR))

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10312701

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002761963

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002761963

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002761963

Country of ref document: EP