WO2002078815A1 - Systeme d'epuration de type presse a filtre, procede d'epuration, clapet de non-retour, et vanne d'ouverture/de fermeture - Google Patents

Systeme d'epuration de type presse a filtre, procede d'epuration, clapet de non-retour, et vanne d'ouverture/de fermeture Download PDF

Info

Publication number
WO2002078815A1
WO2002078815A1 PCT/JP2002/003206 JP0203206W WO02078815A1 WO 2002078815 A1 WO2002078815 A1 WO 2002078815A1 JP 0203206 W JP0203206 W JP 0203206W WO 02078815 A1 WO02078815 A1 WO 02078815A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
filter press
slurry
valve
opening
Prior art date
Application number
PCT/JP2002/003206
Other languages
English (en)
French (fr)
Inventor
Seiji Uchiyama
Original Assignee
Temjin Eco System Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001100735A external-priority patent/JP2002292206A/ja
Priority claimed from JP2001100736A external-priority patent/JP2002295699A/ja
Priority claimed from JP2001100734A external-priority patent/JP2002292210A/ja
Priority claimed from JP2002075819A external-priority patent/JP2003275792A/ja
Application filed by Temjin Eco System Co., Ltd. filed Critical Temjin Eco System Co., Ltd.
Priority to US10/473,393 priority Critical patent/US20040149649A1/en
Publication of WO2002078815A1 publication Critical patent/WO2002078815A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a spring
    • F16K15/026Check valves with guided rigid valve members the valve being loaded by a spring the valve member being a movable body around which the medium flows when the valve is open
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/003Filters formed by clamping together several filtering elements or parts of such elements integrally combined with devices for controlling the filtration
    • B01D25/005Filters formed by clamping together several filtering elements or parts of such elements integrally combined with devices for controlling the filtration by flow measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/003Filters formed by clamping together several filtering elements or parts of such elements integrally combined with devices for controlling the filtration
    • B01D25/007Filters formed by clamping together several filtering elements or parts of such elements integrally combined with devices for controlling the filtration by pressure measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • B01D25/164Chamber-plate presses, i.e. the sides of the filtering elements being clamped between two successive filtering plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/32Removal of the filter cakes
    • B01D25/38Removal of the filter cakes by moving parts, e.g. scrapers, contacting stationary filter elements sprayers
    • B01D25/386Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/12Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with streamlined valve member around which the fluid flows when the valve is opened
    • F16K1/126Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with streamlined valve member around which the fluid flows when the valve is opened actuated by fluid

Definitions

  • the present invention relates to an improvement of a filter press type dewatering system. Background technology
  • FIG. 18 shows an example of the configuration of a general filter-press type dewatering system 10.
  • a hydraulic drive source comprising a piston-type pressure pump 12, a filter-press machine 14, a motor and a hydraulic pump. 15, an electromagnetically controlled first on-off valve 16 and a second on-off valve 18, an air compressor 20, a slurry supply source 22, and a water storage tank 24.
  • the slurry supply source 22 includes, for example, a fluidizing tank provided with a garbage cutter and a suction pump.
  • the fluidization tank is filled with water, and the raw garbage is crushed to an appropriate particle size by a cutter, kneaded with water, and slurried.
  • Sent to The slurry that has reached the cylinder 28 of the pressure pump 12 via the mud pipe 26 and the first on-off valve 16 is compressed by the pressurizing operation of the piston 30 and passes through the second on-off valve 18. Then, it is driven into the filter press 14 with a predetermined pressure.
  • a number of filter plates 32 are arranged side by side in the filter press 14 so that they can be opened and closed in the horizontal direction. Then, a filter chamber 36 is formed between the filter plates 32, 32.
  • each filter plate 32 At the center of each filter plate 32, a slurry introduction hole 38 is provided. Drainage grooves 40 are formed on both left and right sides of the filter plate, and the surface is covered with filter cloth 42.
  • the slurry 44 driven by the pressure pump 12 travels through the slurry introducer L 38 in the filter press 14 and diffuses into the filter chamber 36 formed between the filter plates 32. Then, when the slurry is pressed against the surface of the filter cloth 42, moisture is filtered and solid components are separated.
  • the water that has passed through the filter cloth 42 is guided to a drain port 46 provided below the filter plate 32 along the drainage groove 40, and is discharged outside through a water collecting pipe 48.
  • the drainage reaches the water storage tank 24 via the drain pipe 50, a part of which is returned to the fluidization tank by the pump 52, and the rest is drained.
  • the second on-off valve 18 is closed and the biston 30 is lowered, and at the same time, the first on-off valve 16 is opened, and the new slurry 44 is filled in the cylinder 28. Is filled.
  • each filter chamber 36 of the filter press 14 is filled with the dewatered cake 54 solidified due to the removal of moisture.
  • the solenoid on-off valve 25 is opened, and high-pressure air is supplied from the air conditioner 20 to the slurry inlet 38 of the filter plate 32 from the opposite direction, and the slurry clogged in the inlet 38 is reached. Is returned to the slurry supply source 22 via the return path 27, and then the filter plate 32 is opened to the left and right. As a result, the dehydrated cake 54 accumulated between the filter plates 32, 32 peels off and falls by its own weight, and is discharged from the discharge hopper. It is led onto a belt conveyor 58 via 56.
  • a dewatered cake 54 with a water content of 50% or less can be obtained, which is expected to greatly contribute to volume reduction of waste.
  • the conventional filter press type dewatering system 10 has a problem that it takes a relatively long time to achieve a sufficient dewatering effect.
  • Fig. 20 is a graph showing the relationship between the dewatering pressure in the filter press 14 and the amount of drainage. As shown in the figure, the amount of drainage rises rapidly at the same time as the driving into the filter press 14 and starts, The peak reached in about 10 minutes, and after that, the amount of drainage decreased despite the rise in pressure, and after all, a long compression treatment was necessary to obtain the required amount of drainage.
  • One way to solve this problem is to set the distance between the filter plates 32 during dehydration. Setting the separation to be narrow may be mentioned. In this case, the thickness of the cake in each of the filtration chambers 36 is reduced, and the resistance can be reduced accordingly. However, in this case, it is necessary to increase the number of the filter plates 32 in order to obtain the required processing capacity, which directly leads to an increase in the size and cost of the filter press 14. From the viewpoint of miniaturization and cost reduction of equipment, it is necessary to set the distance between the filter plates 32 and 32 to a certain extent to suppress the number of filter plates 32 to some extent.
  • Another measure is to add a dehydration aid to the slurry 44 and form a water channel in the cake layer 54.
  • a dehydration aid to the slurry 44 and form a water channel in the cake layer 54.
  • water can easily reach the filter cloth 42 through the above-mentioned water channel, so that the distance between the filter plates 32, 32 can be set relatively wide.
  • a first object of the present invention is to provide a technique that can shorten the dewatering time by increasing the dewatering efficiency while setting the thickness of the dewatered cake formed between the filter plates to be relatively thick. Is to do.
  • the second object of the present invention is to provide a slurry for organic sludge. It is an object of the present invention to provide a technology that enables a high-efficiency dewatering treatment using a filter press even when a large amount of terrier is contained.
  • a third object of the present invention is to provide a technique capable of effectively removing air in a slurry at the time of pressurization in a pressure pump.
  • the first on-off valve 16 interposed in front of the pressure pump 12 opens when the piston 30 retreats to fill the slurry into the cylinder 28, and when the piston 30 advances, Closed to prevent slurry from flowing back.
  • the second on-off valve 18 interposed at the subsequent stage of the pressure feed pump 12 closes when the piston 30 moves backward to prevent the slurry from flowing backward, and opens when the piston 30 moves forward. Slurry The function of sending one to the filter press machine 14 side.
  • a pole check valve 61 shown in FIG. 23 is generally used.
  • a ball 63 which is biased by the spring 65, usually has an inlet. 66 is closed.
  • the rear surface 64a of the pedestal portion 64 is disposed at a position facing the discharge port 68, and has a structure in which pressure from the OUT side is applied.
  • the slurry When returning the slurry in the filter press 14 to the supply source 22, the slurry can be supplied via the pressure pump 12 by opening both solenoid on-off valves simultaneously. It has the advantage that it can be returned to the supply source 22 and, in some cases, the return path 27 and the solenoid on-off valve 25 can be omitted.
  • a fourth object of the present invention is to provide a check valve and an on-off valve which do not cause malfunction due to adhesion of slurry. Disclosure of the invention
  • a first filter press type dewatering system includes a filter press machine and a hydraulic drive for compressing slurry guided from a slurry supply source and driving the slurry into the filter press machine.
  • Pressure pump a pressure control valve that adjusts the flow rate of hydraulic pressure supplied to the pressure pump, a flow sensor that detects the flow rate of filtered water discharged from the filter press, and a dehydration pressure in the filter press described above.
  • a control means for outputting a control signal to the pressure control valve in accordance with input signals from the flow sensor and the pressure sensor.
  • control method of the filter-press type dewatering system is characterized in that when the flow rate of filtered water per unit time detected by the flow rate sensor is larger than a preset flow rate, If the flow rate of pressurized oil supplied to the pump is reduced to reduce the dewatering pressure in the filter press, and the flow rate of filtered water per unit time detected by the flow rate sensor is smaller than the preset flow rate, Increases the flow rate of pressure oil supplied to the pressure pump Thus, the dehydration pressure in the filter press is raised to thereby adjust the degree of dehydration in the filter press.
  • the pressure is adjusted by increasing or decreasing the flow rate of the pressure oil supplied to the pressure pump.
  • the dehydration pressure in the filter press can be adjusted, and the degree of dehydration can be controlled.
  • a second filter press type dewatering system comprises: a filter press machine; a pressure pump for compressing slurry and driving the slurry into the filter press machine;
  • a filter press type dewatering system comprising: a pretreatment device disposed at a preceding stage of the filter press, wherein the pretreatment device includes: a mud feed passage for transferring slurry from a slurry supply source side to the pressure feed pump side; It is characterized by having a microwave oscillator for irradiating microwaves to sludge on the mud feed passage.
  • the characteristics of microwave heating generally include the following.
  • the cell membrane and lyophilic colloid in the slurry are heated and destroyed in advance by irradiation with the microphone mouth wave.
  • an effective dehydration treatment can be performed by the filter press machine.
  • microwave irradiation The purpose of microwave irradiation is to destroy cell membranes and hydrophilic colloids by swelling of the contained water, and it is not intended to dry the entire slurry, so the rise in running costs is also minimized. be able to.
  • this pre-processing device for example, a cylinder made of a microphone mouth wave transmitting material, a screw feeder disposed in the cylinder, a motor for rotating the screw feeder, and an outer periphery of the cylinder Provided with an outer shell made of a microwave-reflective material that hermetically covers the antenna, and a microphone mouth-wave oscillator arranged in the outer shell.
  • the cylindrical body and screw feeder correspond to the “mud path”.
  • the microwave output from the microwave oscillator is reflected on the inner surface of the outer shell, and irradiates the slurry while moving in the cylinder.
  • the method for dewatering a slurry according to the present invention includes the steps of: irradiating the slurry transferred from the slurry supply source with microwaves to heat cell membranes and lyophilic colloids contained therein; And a step of compressing the powder into a filter press, and performing a solid-liquid separation of the slurry by a filter cloth in the filter press.
  • a deaerator according to the present invention is a deaerator interposed between a pump and a filter press, wherein the slurry supplied from the pump is provided.
  • An inlet for taking in air a diameter expansion section whose diameter increases from the pumping pump side to the filter press side, an air discharge section with an exhaust guide pipe, and a filter from the pumping pump side to the filter-press side. It is provided with an orifice contraction part where the diameter is reduced, and a discharge port for sending out the slurry toward the filter press machine.
  • a vent was formed on the surface of the device, and the air flowing into the vent was discharged to the outside via the exhaust pipe.
  • the introduction port, the diameter expansion part, the air discharge part, the one diameter contraction part, and the discharge port are in communication with each other.
  • the flow rate of the slurry supplied from the pressure pump to the above-mentioned inlet is reduced at the diameter expanding portion where the diameter (cross-sectional area) of the flow channel rapidly increases.
  • the internal pressure of the slurry decreases, and the contained air expands and separates from the slurry.
  • the air is again pushed out rearward in the diameter-reduced portion where the flow path narrows, so that the air is discharged to the outside through the exhaust pipe through the exhaust port of the exhaust guide pipe.
  • the air discharge unit is detachably interposed between the diameter expansion part and the diameter contraction part.
  • the air discharge unit a unit having a first discharge unit and a second discharge unit each having an exhaust guide pipe is adopted, and a slide unit is provided between the diameter expansion unit and the diameter contraction unit.
  • a porous ceramic filter or a hollow fiber filter may be mounted in the exhaust guide pipe of the air discharge section.
  • the exhaust guide pipe of the air discharge section is formed, for example, so as to have a substantially wedge-shaped cross section, and is positioned and arranged so that the pointed end faces the pump for pumping and the plane section faces the filter press machine side.
  • the vent is formed in the flat part.
  • the exhaust pipe is provided with an on-off valve, a pressure sensor for detecting the pressure on the filter press is provided, and a control means for closing the on-off valve when the pressure on the filter press exceeds a set value is provided. It is desirable to provide.
  • the flow rate of the slurry supplied from the pump decreases, and the above-mentioned expansion of the air disappears.
  • the slurry is directed toward the vent of the exhaust guide pipe. It is effective to provide a mechanism that automatically closes the on-off valve because a backflow may occur.
  • the check valve according to the present invention has an inlet and an inlet.
  • a case having a first opening facing the inflow port and a second opening facing the discharge port; and a valve storage section disposed in the case and facing the inflow port.
  • a cap-shaped pressure-receiving member that is freely stored, a connecting portion that connects the valve body and the pressure-receiving member, a spring that is disposed in the valve body storage portion, and that urges the valve body in a closing direction;
  • a first seal member interposed between the outer surface of the body and the inner surface of the first opening to prevent liquid from flowing into the valve body housing; and an outer surface of the pressure receiving member and a second seal member.
  • the spring that urges the valve body in the closing direction is disposed in the valve body housing that is liquid-tightly sealed via the valve body, the pressure receiving member, and the seal member, and directly contacts the slurry. There is no danger of malfunction.
  • an on-off valve includes: a case having an inlet and an outlet; a first opening recessed in the case, facing the inlet, and a second opening facing the outlet.
  • a cap-shaped valve body slidably housed in the opening recess to open and close the inlet; a cap-shaped pressure receiving member slidably housed in the second opening recess; With the slidably inserted state, the front end is connected to the valve body, and the rear end is connected to the pressure receiving member, thereby connecting the valve body and the pressure receiving member.
  • a spring disposed in the first opening concave portion to bias the valve body in a closing direction.
  • a first seal member interposed between an outer surface of the valve body and an inner surface of the first opening recess to seal the inside of the first opening recess in a liquid-tight manner; and an outer surface of the pressure receiving member and a second seal member.
  • a second seal member that is interposed between the inner surface of the connecting member and the inner surface of the through-hole;
  • a third seal member for preventing liquid from flowing between the first opening recess and the second opening recess, a first hydraulic port communicating with the first opening recess, And a second hydraulic port communicating with the opening concave portion.
  • this on-off valve has the same basic configuration as the above-mentioned check valve, it can exert the same function as a check valve in normal times.
  • the spring is housed in the first opening concave portion which is sealed in a liquid-tight manner, there is no possibility of malfunction due to adhesion of the slurry.
  • FIG. 1 is a conceptual diagram showing the overall configuration of a first filter press type dewatering system according to the present invention.
  • FIG. 2 is a graph showing the relationship between the amount of drainage and the dehydration pressure in the dehydration system.
  • FIG. 3 is a graph showing a control pattern of a dehydration pressure in the dehydration system.
  • FIG. 4 is a graph showing a control pattern of a dehydration pressure in the dehydration system.
  • FIG. 5 is a graph showing a dehydration pressure control pattern in the dehydration system.
  • FIG. 6 is a conceptual diagram showing the overall configuration of a second filter press type dewatering system according to the present invention.
  • FIG. 7 is a schematic diagram showing a structure of a pretreatment device in the dehydration system.
  • FIG. 8 is a conceptual diagram showing the entire configuration of a third filter press type dehydrating system incorporating the deaerator according to the present invention.
  • FIG. 9 is a longitudinal sectional view showing the internal structure of the deaerator.
  • FIG. 10 is a cross-sectional view showing the internal structure of the deaerator.
  • FIG. 11 is a cross-sectional view showing another configuration example of the deaerator.
  • FIG. 12 is a sectional view taken along line AA of FIG.
  • FIG. 13 is a cross-sectional view showing the structure (when closed) of the check valve according to the present invention.
  • FIG. 14 is a cross-sectional view showing the structure (when opened) of the check valve.
  • FIG. 15 is a sectional view taken along the line BB of FIG.
  • FIG. 16 is a cross-sectional view showing the structure (when closed) of the on-off valve according to the present invention.
  • FIG. 17 is a sectional view showing the structure of the on-off valve (when opened).
  • FIG. 18 is a conceptual diagram showing the overall configuration of a general filter press type dewatering system.
  • FIG. 19 is a schematic diagram showing a dehydration mechanism in a filter-press machine.
  • FIG. 20 is a graph showing a relationship between a drainage amount and a dehydration pressure in a conventional dehydration system.
  • FIG. 21 shows the mechanism of dewatered cake formation in a filter press.
  • FIG. 22 is a partial cross-sectional view showing a relationship between a slurry and an air reservoir in a conventional dehydration system.
  • FIG. 23 is a sectional view showing the structure of a ball check valve. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a conceptual diagram showing the overall configuration of a first filter press type dewatering system 100 according to the present invention.
  • a filter press 14 As in the conventional dehydration system shown in FIG. A filter press 14, a first on-off valve 16 and a second on-off valve 18, and an air compressor 20.
  • a slurry supply source 22 similar to the above is connected to the first solenoid valve 18 via a mud pipe 26, and a drain pipe 50 is connected to a water tank 24 similar to the above. It is connected.
  • a flow sensor 170 provided in the middle of the drain pipe 50, a second on-off valve 18, and a middle part of a mud pipe 26 which communicates with the filter press 14.
  • the control unit 176 includes a CPU such as a programmable controller or a personal computer, and storage means for storing a control program.
  • the control unit 176 includes a signal amplifying unit 178 and the flow rate sensor 170, the pressure sensor 172, and the pressure control valve 174. It is electrically connected.
  • the pressure control valve 174 is capable of continuously adjusting the flow rate of the pressure oil supplied from the hydraulic drive source 15 to the pressure pump 12 in response to a control signal from the control unit 176. It consists of an electromagnetic proportional control valve.
  • the slurry sent out from the slurry supply source reaches the first on-off valve 16 via the mud pipe 26, passes through the cylinder 28 and the second on-off valve 18 of the pressure pump 12, and passes through the filter press. Filled into machine 14.
  • the first on-off valve 16 is closed, the hydraulic oil is supplied from the hydraulic drive source 15, and the piston 30 of the pressure pump 12 is compressed. Then, the slurry in the cylinder 28 is driven into the filter press 14 side.
  • the piston 30 returns as soon as the second on-off valve 18 is closed, and the slurry is filled into the cylinder 28 by opening the first on-off valve 16.
  • the slurry is fed to the filter press 14 by pressure.
  • the filtered water flows out from the water collecting pipe 48 of the filter press 14 toward the drain pipe 50.
  • the flow rate of the filtered water passing through the drain pipe 50 is detected by the flow rate sensor 170 and input to the control unit 176.
  • the control unit 176 (here, performs an arithmetic process on an input signal from each sensor in accordance with a predetermined program, and outputs a control signal to the pressure control valve 174 to increase or decrease the pressure applied by the pressure pump 12.
  • the pressure control valve 174 adjusts the flow rate of the pressure oil supplied from the hydraulic drive source 15 to the pressure pump 12 to control the pressure of the pressure pump 12.
  • the dehydration efficiency of the filter press machine 14 is optimized by increasing and decreasing the pressure by the pressure pump 12 according to the flow rate of the drain water discharged from the filter press machine 14 and the dewatering pressure in the filter press machine 14. Can be changed.
  • the pressure of the pressure feed pump 12 is not particularly controlled, and the dewatering pressure is naturally determined according to the resistance in the filter press machine 14.
  • the cake layer 54 instead of rapidly increasing the dewatering pressure in the initial stage of dehydration and obtaining a large amount of drainage, the cake layer 54 immediately tightens tightly and blocks water flow, and the amount of drainage decreases at once Will be done.
  • the rise of the dewatering pressure is adjusted to draw a relatively gentle curve, so that the solidification of the cake layer 54 is achieved.
  • the condition it is possible to suppress a rapid decrease in wastewater volume.
  • control unit 176 when the amount of drainage per unit time is larger than the programmed set value, the control unit 176 outputs a control signal to the pressure control valve 174 to supply the pressure oil supplied to the pressure pump 12. The required amount is reduced. At the same time, the control unit 176 monitors the output from the pressure sensor 172, and the dewatering pressure in the filter press 14 has decreased as intended; And confirm.
  • control unit 176 Conversely, if the amount of drainage per unit time is less than the programmed set value, the control unit 176 outputs a control signal to the pressure control valve 174 to control the amount of hydraulic oil supplied to the pump 12. Increase the required amount. At the same time, the controller 176 monitors the output from the pressure sensor 172 and confirms that the dehydration pressure in the filter press 14 has risen as intended.
  • the drainage peak can be maintained for a relatively long time as shown in FIG. 2, and the same drainage as in the conventional case can be obtained in a shorter time.
  • the rising pattern of the dehydration pressure is not fixed, but naturally varies depending on the characteristics of the slurry to be dehydrated.
  • the composition of the sludge greatly varies the difficulty of dewatering and the progress of cake formation.In order to achieve the ideal change in the amount of wastewater shown in Fig. 2, the dewatering pressure must be adjusted for each treatment target. Fine control is required.
  • the pressure is gradually increased until the first half of the dehydration process, and is maintained when the pressure nears the peak, or as shown in Fig. 4, the pressure rises and falls.
  • Fig. 5 shows an eclectic type of both patterns, in which the pressure is repeatedly increased and decreased until the first half of the dehydration process, then smoothly increased to the peak pressure, and pumped to maintain this pressure for a while. This is a case where the pressurization control of the pump 12 is performed.
  • FIG. 6 is a conceptual diagram showing the overall configuration of a second filter press type dewatering system 200 according to the present invention.
  • a filter / press machine 14 As in the conventional dewatering system 10 shown in FIG. 12, a filter / press machine 14, a hydraulic drive source 15 composed of a motor and a hydraulic pump, a first on-off valve 16 and a second on-off valve 18, and an air compressor 20.
  • a slurry input hopper 270 and a pretreatment device 272 are arranged in front of the first on-off valve 16.
  • the pretreatment device 272 includes a cylindrical body 276, a screw feeder 278 disposed in the cylindrical body 276, and a deceleration for rotationally driving the screw feeder 278.
  • a motor 280 an outer shell 282 that hermetically covers the outer periphery of the cylindrical body 276, a pair of microphone mouthpiece oscillators 284 arranged inside the outer shell 282, and ONZOFF of each microphone mouthpiece oscillator 284, And a control device 286 for controlling the output.
  • the cylindrical body 276 is made of a resin material having excellent transmission characteristics of microphone mouth waves. At least the inner surface of the outer shell portion 282 is made of a metal material having excellent microwave reflection characteristics.
  • the pitch of the fins of the screw feeder 278 is set to 12.2 cm or more in consideration of the wavelength of the micro wave (12.2 cm).
  • the tip small diameter portion 287 of the cylindrical body 276 is connected to the first on-off valve 16 in communication.
  • a branch pipe 288 is provided at the rear end of the cylindrical body 276, and is connected to the opening 290 of the input hopper 270 via the branch pipe 288.
  • the slurry dewatering process by the dewatering system 200 will be described.
  • the sludge is transported in the tip direction by the rotation of the screw feeder 278. Then, when the slurry reaches the inside of the outer shell portion 282, the slurry is heated by receiving the microwave output from the microwave oscillator 284.
  • the slurry subjected to the heat treatment by the microwave is supplied into the pressure pump 12 via the first on-off valve 16.
  • the slurry passes through the cylinder 28 of the pressure pump 12 and the second on-off valve 18 and the slurry is charged into the filter press 14.
  • the first on-off valve 16 is closed, the supply of pressurized oil from the hydraulic drive source 15 is performed, and the piston of the pressure feed pump 12 is received. 30 moves in the compression direction and the cylinder 28 The slurry inside is driven into the filter press 14 side.
  • the piston 30 returns as soon as the second on-off valve 18 is closed, and the slurry is filled into the cylinder 28 by opening the first on-off valve 16.
  • the first on-off valve 16 is closed and the second on-off valve 18 is opened at the same time as the piston 30 is driven, whereby the slurry is pressure-fed to the filter press 14.
  • the cell membrane and hydrophilic colloid contained in the slurry are heated in the pretreatment device 272. ⁇ Since the sludge contains a large amount of bacteria in the sludge, the filter press In the machine 14, extremely effective dehydration processing becomes possible.
  • FIG. 8 is a conceptual diagram showing the overall configuration of a third filter press type dewatering system 300 according to the present invention.
  • a filter press 14 As in the conventional dewatering system 10 shown in FIG. 12, a filter press 14, a hydraulic drive source 15, a first on-off valve 16 and a second on-off valve 18, an air conditioner 20, a slurry supply source 22, and a water tank 24. It has.
  • a deaerator 362 interposed between the second on-off valve 18 and the filter press 14 and a midway of the mud pipe 26b are further interposed.
  • the control unit 365 includes a CPU such as a programmable controller or a personal computer, and storage means for storing a control program.
  • the deaerator 362 is shown in the longitudinal sectional view of FIG. 9 and the transverse sectional view of FIG. As described above, a substantially rectangular parallelepiped casing 366, a slurry inlet 367, a diameter expansion section 368 housed in the casing 366, an air discharge section 369, a diameter contraction section 370, and a slurry discharge port 371.
  • the introduction port 367 is connected in communication with a mud pipe 26a on the side of the pressure pump 12 and has a diameter substantially equal to that of the mud pipe 26a.
  • discharge port 371 is connected in communication with a mud pipe 26b on the filter press 14 side, and has a diameter substantially equal to that of the mud pipe 26b.
  • the diameter expanding section 368 is formed integrally with the inlet 367 and has a funnel shape whose diameter increases from the pressure pump 12 toward the filter press 14.
  • the diameter contracting portion 370 is formed integrally with the discharge port 371 and has a funnel shape whose diameter decreases from the pressure pump 12 toward the filter press 14.
  • the air discharge part 369 is interposed between the diameter expansion part 368 and the diameter contraction part 370, and has a substantially rectangular frame member 372, and a plurality of air tubes erected on the bottom surface 373 of the frame member 372.
  • the exhaust guide pipe 374 is provided.
  • the frame member 372 includes a first opening 375 communicating with the opening of the diameter expanding section 368 and a second opening 376 communicating with the opening of the diameter reducing section 370. Are arranged at a predetermined interval between the first opening 375 and the second opening 376.
  • each exhaust guide pipe 374 has a substantially wedge-shaped cross section, and its tip 374a faces the pressure pump 12 side, and the flat part 374b has a filter press machine 14b. It is positioned to face the side.
  • vents 377 are drilled at predetermined intervals from top to bottom in this flat part 374b, and each vent 377 is a hollow part 374 penetrating through the center of the exhaust guide pipe 374. Communicated with c.
  • An upper end opening 374d of each exhaust guide pipe 374 is connected to a common collection box 378, and an exhaust pipe 379 is connected to the collection box 378.
  • the frame member 372 is slidably mounted along a guide portion 380 in a housing 366, and can be easily replaced with another air discharge portion 369.
  • seal members 381 are interposed between the surface of the frame member 72 and the end surfaces of the diameter expansion portion 368 and the diameter contraction portion 370, respectively, to ensure airtightness.
  • the slurry sent out from the slurry supply source 22 reaches the first opening / closing valve 16 via the mud pipe 26 and passes through the cylinder 28 of the pressure pump 12, the second opening / closing valve 18, and the deaerator 362. After passing through, it is filled into the filter press machine 14.
  • the slurry including the air reservoir is sent to the inlet 367 of the deaerator 362 at a flow rate of a certain level or more.
  • the flow rate of the slurry supplied to the diameter expansion section 368 decreases, and the air reservoir expands.
  • the possibility of the slurry flowing back into the ventilation port 377 increases, so the electromagnetic on-off valve 364 is closed to stop the deaeration process.
  • a control signal is output from the control unit 365 to the solenoid on-off valve 364, and the exhaust pipe 379 is automatically closed.
  • the air discharge section 369 may be extracted from the housing 366 and cleaned or replaced with a new one.
  • washing water may be supplied from the exhaust pipe 379 to backwash the inside of the exhaust guide pipe 374, and the solid matter may be discharged from the vent 377.
  • the clogging can be effectively prevented, and at the same time, the air discharged to the outside can be prevented. Purification can be performed.
  • FIGS. 11 and 12 show another configuration example of the deaerator 362, which is characterized in that two sets of exhaust units are provided in the frame member 372 of the air discharge part 369. are doing.
  • a first exhaust unit 382 provided with four exhaust guide pipes 374 and a second exhaust unit 383 also provided with four exhaust guide pipes 374 are arranged in the frame member 372.
  • the exhaust guide pipes 374 of each unit are connected to different collection boxes 378, respectively.
  • connecting pieces 384 a and 384 b are connected to both side surfaces of the frame member 372.
  • a hydraulically driven cylinder 385 is mounted on the lower surface of the housing 366, and a pair of drive shafts 385a and 385b of the cylinder 385 are connected to the connecting pieces 384a and 384b, respectively.
  • the air discharge section 369 slides along the guide section 380 of the housing 366, and moves inside the housing 366. It is possible to switch the exhaust unit that is set in the system.
  • the air discharge unit 369 two sets of exhaust units are provided in the air discharge unit 369, and the units set in the housing 366 can be changed by driving the cylinder.
  • the operation efficiency and the operating efficiency of the deaerator 362 are improved.
  • Maintenance performance can be improved. In other words, when degassing was performed using one unit and clogging occurred and the degassing effect was reduced, the frame member 372 was immediately slid and the other unit was degassed. By replacing it with a gas, the degassing effect can be maintained.
  • the surface of the exhaust guide pipe 374 is cleaned by the shower 386 as shown in FIG. 11 or the exhaust pipe 379 as shown in FIG.
  • the water can be guided and the inside of the exhaust pipe 374 can be backwashed.
  • the exhaust pipe 379 is provided with four solenoid on-off valves, and when the first exhaust unit 382 is used for degassing and the second exhaust unit 383 is backwashed, The first on-off valve 364a and the second on-off valve 364b are opened, and the third on-off valve 364c and the fourth on-off valve 364d are closed.
  • the third on-off valve 364c and the fourth on-off valve 364d are opened.
  • the first on-off valve 364a and the second on-off valve 364b may be closed.
  • the check valve 470 includes the first opening / closing valve 16 and the second opening / closing valve 18 interposed before and after the pressure pump 12 in the filter press type dewatering system 10 shown in FIG.
  • a cylindrical valve case 473 provided with a slurry inlet 471 and a slurry outlet 472, and a cylindrical valve body. It includes a storage portion 474, a cap-shaped (cone-shaped) valve body 475 having a sharp tip, a cap-shaped pressure receiving member 476, a connecting rod 477, and a coil spring 478.
  • the valve body storage portion 474 is supported near the center of the case 473 by three support members 479 erected on the inner surface of the case 473, and the first opening concave portion facing the inflow port 471. 480 and a second opening recess opposite the outlet 472 481, and a partition 482 for partitioning between the opening concave portions. Further, a through hole 483 penetrating between the first opening recess 480 and the second opening recess 481 is formed at the center of the partition 482.
  • a slurry passage 484 is formed between the outer peripheral surface of the valve element housing portion 474 and the inner peripheral surface of the valve case.
  • the valve element 475 is slidably housed in the first opening recess 480.
  • the pressure receiving member 476 is slidably housed in the second opening recess 481.
  • the spring 478 is inserted into the valve body 475 and is housed together with the valve body 475 in the first opening recess 480. As a result, one end of the spring 478 contacts the inner surface of the valve body 475, and the other end contacts the partition 482.
  • a connecting rod 477 is passed through the through hole 483 of the partition 482, and the distal end thereof is screwed to the inner surface of the valve body 475 after passing through the spring 478. Further, the rear end of the connecting rod 477 passes through the flat portion 476 a of the pressure receiving member 476 and is screwed with a nut 485 on the outside.
  • valve element 475 and the pressure receiving member 476 are integrated via the connecting rod 477.
  • the other slides in the same direction.
  • An O-ring 486 as a seal member is interposed between the inner peripheral surface of the first opening concave portion 480 and the outer peripheral surface of the valve body 475, and the inner peripheral surface of the second opening concave portion 481 is provided.
  • An O-ring 486 is also interposed between the surface and the outer peripheral surface of the pressure receiving member 476.
  • the first opening concave portion 480 is liquid-tightly sealed by the valve body 475 and the O-ring 486, and the second opening concave portion 481 is also liquid-tightly sealed by the pressure receiving member 476 and the ⁇ ring 486. Will be done.
  • the valve element 475 is normally urged by the spring 478 in a direction to close the inflow port 471.
  • the pressure from the discharge port 472 is applied to the flat portion 476 a of the pressure receiving member 476.
  • the slurry sent from the slurry supply source 22 reaches the first check valve 470a via the mud feed pipe 26, and presses the valve body 475.
  • the inlet 471 opens and the slurry flows into the inside, and is sent out from the outlet 472 into the cylinder 28 of the pressure pump 12 via the flow path 484.
  • the slurry presses the valve element 475 of the second check valve 470 b to open the inlet 471, and is sent out from the outlet 472 to the filter press 14.
  • the biston 30 when the biston 30 is driven again, the first check valve 470a is closed and the second check valve 470b is opened at the same time as above, and the slurry is pumped to the filter press machine 14 side. .
  • the filtered water flows out from the collecting pipe 48 of the filter press 14 toward the drain pipe 50.
  • the electromagnetic on-off valve 25 is opened as described above, and high-pressure air is supplied from the air compressor 20 into the filter-press machine 14, and into the slurry introduction hole 38 of the filter plate 32.
  • the clogged slurry is returned to the slurry supply source 22 via the return route 27.
  • the spring 478 is housed in the first opening recess 480 and does not come into contact with the slurry, so that there is no danger of malfunction due to adhesion of the slurry.
  • FIG. 16 and FIG. 17 show an on-off valve 488 according to the present invention. As shown in FIG. By using the reference numerals, duplicate explanations are avoided, and differences are mainly described below.
  • an O-ring 486 is fitted between the inner peripheral surface of the through-hole 483 provided in the partition wall portion 482 of the valve element housing portion 474 and the outer peripheral surface of the connecting rod 477. As a result, the liquid flows between the first open recess 480 and the second open recess 48 1. Denseness is ensured.
  • the case 473 is provided with a first hydraulic port 489 and a second hydraulic port 490, and the first hydraulic port 489 is connected to the first opening recess 480 through the first oil passage 491. And the second hydraulic port 490 is in communication with the second opening recess 481 via a second oil passage 492.
  • An electromagnetic switching valve 493 is connected to the first hydraulic port 489 and the second hydraulic port 490.
  • the electromagnetic switching valve 493 by outputting a control signal to the electromagnetic switching valve 493 to switch the direction of the hydraulic pressure, it is possible to forcibly open and close regardless of the magnitude of the pressure applied to the valve body 475 and the pressure receiving member 476.
  • the first opening recess 480 is filled with hydraulic oil and the valve body 475 is Even if the opening pressure is applied from the inlet 471 side, the inlet 471 will not be opened.
  • the second opening recess 48 1 is filled with the hydraulic oil, and the pressure receiving member 476 is provided. Since the pressure is applied from the inside, the inlet 471 is forcibly opened even if pressure is applied from the outlet 472 side.
  • this on-off valve 488 is used as the first on-off valve and the second on-off valve in the filter press dewatering system 10 in FIG. 18, when no hydraulic oil is supplied to any of the hydraulic ports, The operation is exactly the same as the above-described check valve 470 (hereinafter, the first on-off valve 16 and the second on-off valve 18 in FIG. 18 are replaced with the first on-off valve 488 a and the second on-off valve 488. b)
  • the first on-off valve 488a is opened and the second on-off valve 488b is closed, the slurry is filled in the cylinder 28, and the piston 30 moves forward.
  • the first on-off valve 488a is closed and the second on-off valve 488b is opened, and the slurry is filtered. To the machine 14 side.
  • the opening / closing operation of the valve body 475 is automatically determined by the pressure applied to the valve body 475 and the pressure receiving member 476, so that the opening / closing timing is erroneously set like a conventional solenoid on-off valve. There is no danger of slurry backflow from the side.
  • the control signal is output to the electromagnetic switching valve 493 to supply the hydraulic oil to the second hydraulic port 490, and the first hydraulic port 489 is connected to the tank. Therefore, the first on-off valve 488a and the second on-off valve 488b may be forcibly opened, and it is not necessary to prepare the electromagnetic opening valve 25 and the return path 27 for detour.
  • the dehydration pressure in one filter press can be adjusted in accordance with the flow rate of the filtrate discharged from the filter press, and The progress can be controlled.
  • the cell membrane in a slurry and a hydrophilic colloid can be heated and destroyed beforehand by irradiation of a microphone mouth wave.
  • an effective dewatering process can be performed by the subsequent filter-press machine.
  • a pressure pump and a filter press Since the air contained in the slurry can be effectively removed between the step and the step, the pressurizing operation of the pump is steadily transmitted to the slurry, and the filter can be driven into the filter press at the desired pressure.
  • the spring for urging the valve body in the closing direction is provided in the valve body storage portion which is liquid-tightly sealed via the valve body, the pressure receiving member, and the seal member. Since there is no direct contact with the slurry, there is no danger of malfunction.
  • the same operation and effect as the above-described check valve are normally exhibited, and at the same time, the hydraulic oil is guided to the second hydraulic port using an electromagnetic switching valve or the like, and at the same time, the first By connecting the hydraulic port to the tank, it can be forcibly opened regardless of the pressure applied to the valve element and pressure receiving member.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

明 細 書 フィルタープレス式脱水システム、 脱水方法、 脱気装置、 逆止弁及び開 閉弁 技 術 分 野
この発明は、 フィルタープレス式の脱水システムの改良に関する。 背 景 技 術
現在、 建設廃土等の無機系汚泥や、 生ゴミゃ下水汚泥といった有機系汚 泥の減容化を図るため、 これらスラリー状の汚泥を圧送ポンプを用いてフ ィルタープレス機内に高圧で打ち込み、 スラリーの固液分離を行うフィル タープレス式脱水システムが用いられている。
第 1 8図は、 一般的なフィルタ一プレス式脱水システム 10 の構成例を 示すものであり、 ピス トン式の圧送ポンプ 12 と、 フィルタ一プレス機 14 と、 モータ及び油圧ポンプからなる油圧駆動源 15 と、 電磁制御式の第 1 の開閉弁 16及び第 2の開閉弁 18 と、 エアコンプレッサ 20 と、 スラリー 供給源 22 と、 貯水槽 24 とを備えている。
上記スラリー供給源 22 は、 例えば生ゴミカッター及び吸引ポンプを備 えた流動化槽よりなる。 この流動化槽内には水が充填されており、 投入さ れた生ゴミはカッターによつて適当な粒径に破砕されつつ水分と混練され てスラリー化され、 吸引ポンプによって送泥パイプ 26内に送られる。 この送泥パイプ 26及び第 1 の開閉弁 16 を経由して圧送ポンプ 12 のシ リンダ 28 内に到達したスラリーは、 ピス トン 30 の加圧動作によって圧 縮され、 第 2の開閉弁 18 を経由してフィルタプレス機 14 内に所定の圧 力で打ち込まれる。 フィルタ一プレス機 14内には、 第 1 9図に示すように、 多数の濾板 32 が横方向に開閉自在に並列配置されており、 脱水時には各濾板 32 がプレ ス機 34によって閉方向に加圧固定され、 濾板 32, 32間に濾室 36が形成 される。
各濾板 32の中央部には、 スラリー導入孔 38が貫設されている。 また、 濾板の左右両面には濾水溝 40 が刻設されており、 その表面は濾布 42 に よつて被われている。
上記圧送ポンプ 12 によって打ち込まれたスラリー 44 は、 上記スラリ 一導入子 L 38 を伝ってフィルタ一プレス機 14内を進行し、 各濾板 32 間に 形成された濾室 36 内に拡散する。 そして、 スラリーが濾布 42 の表面に 押圧されることによって水分が濾過され、 固体成分が分離される。
濾布 42 を透過した水分は、 濾水溝 40 を伝って濾板 32 の下方に設けら れた排水口 46に導かれ、 集水管 48 を介して外部に排出される。
この濾水は、 排水管 50 を経由して貯水槽 24 に到達し、 その一部はポ ンプ 52 によって流動化槽に戻され、 残りは排水処理される。
圧送ポンプ 12 による 1 回分の打込動作が終了すると、 第 2の開閉弁 18 が閉じられると共にビス トン 30 が下降し、 同時に第 1 の開閉弁 16 が開 いて新たなスラリー 44がシリ ンダ 28内に充填される。
この圧送ポンプ 12 によるスラリー 44 の打込動作を所定時間継続する と、 フィルタープレス機 14 の各濾室 36 内は水分が抜けて固化した脱水 ケーキ 54で満たされることとなる。
この段階に至ると、 電磁開閉弁 25 が開かれると共に、 エアコンプレツ サ 20から高圧のエアが濾板 32 のスラリ一導入孔 38 に逆方向から供給さ れ、 導入孔 38 内に詰まったスラリーが帰還経路 27 を迪つてスラリー供 給源 22 に戻された後、 濾板 32 が左右に開かれる。 この結果、 濾板 32, 32 間に蓄積された脱水ケーキ 54は自重によって剥離落下し、 排出ホッパ 56を介してベル トコンベア 58上に導かれる。
このフィルタープレス式脱水システム 10 を用い、 上記圧送ポンプ 12 によってフィルタープレス機 14内の最終的な脱水圧力を 3.5〜4.0Mp a以 上に高めることで、 従来、 有効な脱水が困難とされてきた有機系のスラ リ 一についても高い脱水効果を実現することが可能となった。
例えば、 生ゴミを含むスラリーを脱水対象と した場合でも含水率 50 % 以下の脱水ケーキ 54 が得られ、 廃棄物の減容化に大いに貢献できるもの と期待されている。
しかしながら、 従来のフィルタープレス式脱水システム 10にあっては、 十分な脱水効果を奏するためには比較的長時間を要するという問題があつ た。
第 2 0図はフィルタープレス機 14 内の脱水圧力と排水量との関係を示 したグラフであり、 図示の通り、 フィルタープレス機 14 への打込開始と 同時に急激に排水量が立ち上がり、 脱水開始から僅か 10 分程度でピーク に達してしまい、 その後は圧力が上昇するにもかかわらず排水量が低下し ていき、 結局必要な排水量を得るためには長時間の圧縮処理が必要となつ ている。
この原因と しては、 圧縮初期の段階で生成されたケーキが固く締まって 抵抗となり、 後続の脱水が阻害されることが考えられる。 すなわち、 第 2 1 図の(a )に示すように、 圧縮開始直後はケーキ層 54 が薄いため抵抗が 少なく 、大量の濾水 62が濾布 42 を透過して排出される力《、第 2 1 図の(b ) に示すように、 すぐにケーキ層 54 が厚く なリ、 また加圧されて固く締ま つてく る。 この結果、 圧送ポンプ 12 が高い圧力を付加しても水分が濾布 42 に到達し難く なり、 排水量が減少していく 。 このため、 必要な脱水量 を得るためには長時間の処理を要することとなる。
この問題を解決する一つの方策と しては、 脱水時の濾板 32, 32 間の距 離を狭く設定することが挙げられる。 この場合には、 個々の濾室 36 内の ケーキ厚みが薄く なリ、 その分抵抗を低く抑えることが可能となる。 ただし、 これでは必要な処理能力を稼ぐために濾板 32 の枚数を増やす 必要があり、 フィルタープレス機 14 の大型化やコス トアップに直結する という問題がある。 機器の小型化や低コス ト化の観点からすれば、 ある程 度濾板 32, 32 間の距離を広く設定し、 濾板 32 の枚数を抑える必要があ る。
また、 他の方策と しては、 スラリー 44 中に脱水助剤を添加しておき、 ケーキ層 54 中に水路を形成することが挙げられる。 これならば、 ケーキ 層 54 が厚く形成されていても上記水路を伝って水分は濾布 42 に容易に 到達できるため、 濾板 32, 32 間の距離を比較的広く設定することができ る。
ただし、 この方法は無機汚泥に対してはある程度有効であると しても、 有機汚泥には適用できないという問題がある。 すなわち、 有機汚泥の場合 にはタンパク質、 炭水化物、 油脂、 繊維質、 無機質から構成されており、 物理的には親水性コロイ ドを形成しているが、 この親水性コロイ ドゃバク テリァの細胞膜を破壊するには 3.5Mpa以上の脱水圧力が必要とされ、 こ の高圧によって脱水助剤による水路が圧潰されてしまう。
したがって、 この発明の第 1 の目的は、 濾板間に形成される脱水ケーキ の厚さを比較的厚く設定しつつも、 脱水効率を高めることで脱水時間の短 縮を可能とする技術を提供することにある。
つぎに、 一口に有機系の汚泥といっても、 その成分は生成原因物質ゃ処 理方法、 季節等によって様々であり、 バクテリアの含有率が特に高い汚泥 に対しては、 フィルタープレス機による濾過処理だけでは十分な脱水効果 が得られない場合があった。
したがって、 この発明の第 2の目的は、 スラ リー状の有機系汚泥にバク テリアが多く含まれる場合であっても、 フィルタープレス機を用いた高効 率の脱水処理を可能とする技術を提供することにある。
つぎに、 有機系スラリーにおける親水性コロイ ドゃ細胞膜の破壊を効果 的に実現するためには、 圧送ポンプ 12 に供給される前段階において可能 な限り表面付着水や間隙水を除去しておく ことが望ましいといえる。
しかしながら、 スラリー中の水分を低減させると、 スラ リーの流動性が 損なわれるため団塊を形成し易くなリ、 このスラリ一の団塊間に多くの空 気が混入することとなる。
そして、 第 2 2図に示すように、 圧送ポンプ 12 のシリ ンダ 28 内ゃフ ィルタープレス機 14 に連通する送泥管 26 b内に空気溜 45 が多数存在し ていると、 せっかく ピス トン 30 によってスラリー 44 を圧縮しても空気 溜 45 によって逆ボンビング現象が生じ、 押出し作用が吸収されてしまう こととなる。 この結果、 本来であれば高圧でフィルタープレス機 14 内に 打ち込まれる害のスラリー 44が、圧送ポンプ 12 とフィルタープレス機 14 との間で停滞してしまい、 所期の脱水効果を挙げられなく なるという問題 が生じる。
したがって、 この発明の第 3の目的は、 圧送ポンプにおける加圧時にお いてスラ リー中の空気を効果的に除去することを可能とする技術を提供す 」とにある。
ところで、 上記のように圧送ポンプ 12 の前後には必ず一対の開閉弁を 設ける必要がある。 すなわち、 圧送ポンプ 12 の前段に介装される第 1 の 開閉弁 16 は、 ピス トン 30 が後退する際に開いてスラリーをシリ ンダ 28 内に充填させると共に、 ピス トン 30 が前進する際には閉じてスラリーが 逆流することを防止する機能を果たしている。 これに対し圧送ポンプ 12 の後段に介装される第 2の開閉弁 18 は、 ピス トン 30 が後退する際に閉 じてスラ リーの逆流を防ぎ、 ピス トン 30 が前進する際には開いてスラリ 一をフィルタープレス機 14側に送り出す機能を果たす。
油圧などの流体制御分野においてこのような機能が求められる場合には, 第 2 3図に示すポール型逆止弁 61が一般に用いられる。
これはバルブケース 62 内にボール (鋼球) 63 と、 台座部 64 と、 スプ リング 65 とを収納させたものであり、 スプリ ング 65 の付勢を受けたボ —ル 63 によって通常は流入口 66が閉塞されている。 また、 台座部 64の 背面 64 aは排出口 68 と対向する位置に配置されており、 OUT 側からの 圧力が加わる構造となっている。
そして、 「スプリ ング 65 の付勢力 + OUT 側の圧力」 よりも大きな IN 側の圧力が流入口 66 に加えられた場合には、 ボール 63 が後退して流入 口 66 が開放され、 流体が内部に流入する。 この流体は、 ケース 62 内の 流路 67を経由して排出口 68から吐出される。
このボール型逆止弁 61 の場合、 構造が極めて単純であるのみならず、 IN 側の圧力がスプリ ング 65 の付勢力 + OUT 側の圧力よりも大きく なつ た場合には自然に開放され、 特別な制御手段を講じる必要がないという利 点を備えている。
しかしながら、 フィルタープレス式脱水システムにおいてこのような構 造の逆止弁を用いると、固形成分を含んだスラ リー状物質がスプリ ング 65 の間を通り抜けることとなり、 スプリ ング 65 にスラリーが固着してその 作動を阻害するようになるという問題が生じる。
このため、 スラ リーの脱水分野においては、 電気信号によって開閉制御 できる電磁開閉弁を圧送ポンプ 12の前後に介装することが行われている。 この場合には、 開閉制御にスプリングを用いる必要がないため、 スラ リ 一がスプリ ングに付着して動作不良を起こすという問題は生じない。
また、 フィルタ一プレス機 14 内のスラリーを供給源 22 に戻す場合、 両方の電磁開閉弁を同時に開けばスラリーを圧送ポンプ 12 を経由して供 給源 22 に戻すことができ、 場 によっては帰還経路 27 や電磁開閉弁 25 を省略できる利点もある。
しかしながら、 フィルタ一プレス機 14 における脱水処理が進み、 フィ ルタープレス機 14 側の圧力が上昇するに従って電磁開閉弁のタイ ミング 制御が難しくなリ、 圧送ポンプ 12 のピス トン 30 が戻リ工程に入つた際 に誤ってフィルタープレス機 14 側の電磁開閉弁を開放すると、 スラリー の逆流現象が生じて大きな衝撃音が発生し、 圧送ポンプ 12 や配管系にダ メージを与える危険性があった。
したがって、 この発明の第 4の目的は、 スラリーの付着によって動作不 良を起こすことのない逆止弁や開閉弁を提供することにある。 発 明 の 開 示
上記の第 1 の目的を達成するため、 この発明に係る第 1 のフィルタープ レス式脱水システムは、 フィルタープレス機と、 スラリー供給源から導か れたスラリーを圧縮してフィルタープレス機に打ち込む油圧駆動の圧送ポ ンプと、圧送ポンプに供給される油圧の流量を加減する圧力制御バルブと、 フィルタープレス機から排出される濾水の流量を検出する流量センサと、 上記フィルタープレス機における脱水圧力を検出する圧力センサと、 上記 流量センサ及び圧力センサからの入力信号に応じて上記圧力制御バルブに 対する制御信号を出力する制御手段とを備えたことを特徴と している。
また、 この発明に係るフィルタ一プレス式脱水システムの制御方法は、 上記流量センサによって検出された単位時間当たリの濾水の流量が予め設 定された流量よりも多い場合には、 上記圧送ポンプに供給する圧油の流量 を減少させてフィルタープレス機内の脱水圧力を低下させ、 上記流量セン ザによって検出された単位時間当たりの濾水の流量が予め設定された流量 よリ も少ない場合には、 上記圧送ポンプに供給する圧油の流量を増加させ てフィルタープレス機内の脱水圧力を上昇させ、 以てフィルタ一プレス機 内の脱水進度を調整することを特徴と している。
このように、 フィルタープレス機から排出される濾水の流量が予め設定 されたパターンから外れている場合には圧送ポンプに供給する圧油の流量 を増減させて加圧力を調節することによ り、 フィルタープレス機内の脱水 圧力を調整することができ、 ひいては脱水の進度を制御することが可能と なる。
このため、 脱水の初期段階でケーキ層が固く締まらないように圧送ポン プの加圧力を抑制し、 比較的高い脱水効率を長時間維持することが可能と なる。 これにより、 一定の脱水量を得るまでの時間を短縮化することもで きる。
上記の第 2の目的を達成するため、 この発明に係る第 2のフィルタープ レス式脱水システムは、 フィルタープレス機と、 スラリーを圧縮して上記 フィルタ一プレス機に打ち込む圧送ポンプと、 該圧送ポンプの前段に配置 される前処理装置とを備えたフィルタープレス式脱水システムであって、 上記前処理装置は、 スラリー供給源側から上記圧送ポンプ側にスラリーを 移送するための送泥路と、 該送泥路上の汚泥に対してマイクロ波を照射す るためのマイクロ波発振機とを備えたことを特徴と している。
マイクロ波加熱の特徴と して、 一般に以下のものが挙げられる。
(1) 高速加熱性
マイクロ波は光速度で瞬間的に被加熱物の中に浸透して熱に変換される ため、 予熱時間や熱伝導に要する時間が不要である。
(2) 高熱効率性
被加熱物自体が発熱体となるため、 周囲の空気や設備を熱するロスが生 じない。
(3) 取扱容易性 瞬時の起動 停止切替え、 及び出力調整による温度制御が容易である。 (4) 均一加熱性
被加熱物の各部が同時に発熱するので、 複雑な形状のものでも比較的均 一に加熱することができる。
したがって、 送泥路上を移送中のスラリーにマイクロ波を照射すること により、 短時間の中に内部に含まれるバクテリアの細胞膜や親水コロイ ド を加熱 , 破壊することが十分に可能となる。
このように、 マイク口波の照射によって事前にスラリー内の細胞膜や親 水コロイ ドを加熱 ■ 破壊しておく ことにより、 フィルタープレス機によつ て効果的な脱水処理が可能となる。
マイクロ波の照射は、 あく までも内包水分の膨張による細胞膜や親水コ ロイ ドの破壊が目的であり、 スラリー全体の乾燥までは企図していないた め、 ランニングコス 卜の上昇も最小限に抑えることができる。
この前処理装置と して、例えばマイク口波透過性素材よ りなる円筒体と、 該円筒体内に配置されたスク リューフィーダと、 該スク リューフィーダを 回転駆動させるモータ と、 上記円筒体の外周を気密に覆うマイクロ波反射 性素材よリなる外殻部と、 該外殻部内に配置されたマイク口波発振機とを 備えたものを用いることができる。 この場合、 円筒体及びスク リューフィ —ダが 「送泥路」 に該当する。
マイクロ波発振機から出力されたマイクロ波は、 外殻部の内面で反射さ れ、 円筒体内を移動中にスラリーに照射される。
また、 この発明に係るスラリーの脱水方法は、 スラ リー供給源から移送 されたスラリーに対してマイクロ波を照射し、 内部に含まれる細胞膜や親 水コロイ ドを加熱 ■ 破壊する工程と、 このスラリーを圧縮してフィルター プレス機に打ち込む工程と、 フィルタープレス機内の濾布によってスラ リ 一の固液分離を実行する工程とを備えたことを特徴と している。 上記の第 3の目的を達成するため、 この発明に係る脱気装置は、 圧送ポ ンプとフィルタープレス機との間に介装される脱気装置であって、 圧送ポ ンプから供給されたスラリーを取り込む導入口と、 圧送ポンプ側からフィ ルタープレス機側に向けて口径が拡大する口径拡張部と、 排気誘導管を有 する空気排出部と、 圧送ポンプ側からフィルタ一プレス機側に向けて口径 が縮小する口径収縮部と、 スラリーをフィルタ一プレス機に向けて送り出 す吐出口とを備え、 上記排気誘導管の少なく とも一端には排気管が接続さ れると共に、 上記口径収縮部側の表面には通気口が形成されており、 該通 気口に流入した空気が上記排気管を経由して外部に排出されるように構成 した。 上記導入口—口径拡張部—空気排出部一口径収縮部—吐出口は、 そ れぞれ連通状態となされている。
しかして、圧送ポンプから上記導入口に勢いよく供給されたスラリーは、 流路の口径 (断面積) が急拡大する口径拡張部においてその流速が減ぜら れる。 この結果、 スラリーの内部圧力が低下し、 内包していた空気が膨張 してスラリーから遊離する。
この空気に対しては、 再び流路が狭まる口径収縮部において後方へ押し 出される力が作用するため、 排気誘導管の通気口から排気管を経由して外 部に排出される。
上記空気排出部は、 口径拡張部と口径収縮部との間に、 着脱自在に介装 されることが望ましい。
この結果、 上記通気口に固形物が詰まった場合でも、 取り外して洗浄し たり、 新品と交換することが容易となる。
上記空気排出部と して、 それぞれ排気誘導管を有する第 1 の排出ュニッ ト及び第 2の排出ユニッ トを備えたものを採用し、 これを上記口径拡張部 と口径収縮部との間にスライ ド自在に介装することにより、 口径拡張部及 ぴ口径収縮部間に介装される排出ュニッ 卜と、 外部に露出する排出ュニッ 卜とを、 交代可能となしてもよい。
この場合、 一方のユニッ トの排気誘導管が目詰まりを起こした場合、 他 方のュニッ トを装置内部に装填すると共に、 外部に排出されたュニッ 卜の 排気誘導管に対して洗浄を施すことが可能となリ、 メ ンテナンス性の向上 が図れる。
上記空気排出部の排気誘導管内に、 多孔質のセラミ ックフィルタあるい は中空繊維フィルタを装着させてもよい。
この結果、 空気誘導管内に固形物が進入することを有効に防止できると 共に、 外部に排出される空気の浄化も実現できる。
上記空気排出部の排気誘導管は、 例えば断面が略楔形状をなすように形 成されており、 その尖端部が圧送ポンプ側に向く と共に、 平面部がフィル タープレス機側に向く ように位置決め配置され、 該平面部に上記通気口が 形成される。
このように、 断面楔形の排気誘導管を用い、 その尖端部を圧送ポンプ側 に向けることによ り、 スラリー通過時の抵抗を低減できる。 これに対し、 空気抵抗の大きい平面部に通気口を設けることにより、 空気を効率よく通 気口に導く ことができる。
上記排気管に開閉弁を介装させると共に、 フィルタープレス機側の圧力 を検出する圧力センサを設け、 さらにフィルタープレス機側の圧力が設定 値以上になった場合に上記開閉弁を閉じる制御手段を設けることが望まし い。
フィルタ一プレス機側の圧力が高く なると、 圧送ポンプから供給される スラリーの流速が低下し、 上記した空気の膨張 ■ 遊離効果がなく なると同 時に、 スラリ一が排気誘導管の通気口に向けて逆流する可能性が生じるた め、 上記開閉弁を自動的に閉じる機構を設けることが有効である。
上記の第 4の目的を達成するため、 この発明に係る逆止弁は、 流入口及 び排出口を有するケースと、 該ケース内に配置され、 上記流入口と対向す る第 1 の開口部と、 上記排出口と対向する第 2の開口部とを有する弁体収 納部と、 上記流入口と排出口とを連通する流路と、 上記第 1の開口部内に 摺動自在に収納され、 上記流入口を開閉するキャップ状の弁体と、 上記第 2の開口部内に摺動自在に収納されたキャップ状の受圧部材と、 上記弁体 と受圧部材とを接続する連結部と、 上記弁体収納部内に配置され、 上記弁 体を閉方向に付勢するスプリングと、 上記弁体の外面と第 1の開口部の内 面との間に介装され、 上記弁体収納部内に液体が流入することを防止する 第 1 のシール部材と、 上記受圧部材の外面と第 2の開口部の内面との間に 介装され、 上記弁体収納部内に液体が流入することを防止する第 2のシー ル部材とを備えたことを特徴としている。
この場合、 弁体を閉じ方向に付勢するスプリングが、 弁体、 受圧部材、 及びシール部材を介して液密に封止された弁体収納部内に配置されておリ . スラリーに直接触れることがないため、 動作不良を起こす危険性がない。
また、 この発明に係る開閉弁は、 流入口及び排出口を有するケースと、 該ケース内に配置され、 上記流入口と対向する第 1 の開口凹部と、 上記排 出口と対向する第 2の開口凹部と、 両開口凹部を区画する隔壁部と、 該隔 壁部に形成された貫通孔とを有する弁体収納部と、 上記流入口と排出口と を連通する流路と、 上記第 1 の開口凹部内に摺動自在に収納され、 上記流 入口を開閉するキャップ状の弁体と、 上記第 2の開口凹部内に摺動自在に 収納されたキャップ状の受圧部材と、 上記貫通孔に摺動自在に揷通された 状態で、 その先端部が上記弁体に接続されると共に、 後端部が上記受圧部 材に接続され、 以て弁体と受圧部材とを一体化する連結部と、 上記第 1 の 開口凹部内に配置され、 上記弁体を閉方向に付勢するスプリングと、 上記 弁体の外面と第 1 の開口凹部の内面との間に介装され、 第 1 の開口凹部内 を液密に封止する第 1 のシール部材と、 上記受圧部材の外面と第 2の凹部 の内面との間に介装され、 第 2の開口凹部内を液密に封止する第 2のシー ル部材と、 上記連結部材の外面と上記貫通孔の内面との間に介装され、 第 1 の開口凹部と第 2の開口凹部間で液体が流通することを防止する第 3の シール部材と、 上記第 1 の開口凹部と連通された第 1 の油圧ポー トと、 上 記第 2の開口凹部と連通された第 2の油圧ポー トとを備えたことを特徴と している。
この開閉弁は、 上記逆止弁と基本構成を共通にするため、 通常時は逆止 弁と して同様の機能を発揮し得る。 もちろん、 スプリングは液密に封止さ れた第 1 の開口凹部内に収納されているため、 スラリー付着による動作不 良の虞は全く ない。
さらに、 電磁切換弁等を用いて第 2の油圧ポー 卜に圧油を導く と同時に 第 1 の油圧ポー トをタンクに接続することにより、 弁体ゃ受圧部材に加わ る圧力にかかわらず、 強制的に開放することができる。 このため、 脱水処 理の最終段階において、 濾板のスラリー導入孔内に詰まっているスラリ一 をフィルタープレス機側からスラリー供給源側に戻す場合でも、 わざわざ 迂回専用の電磁開閉弁や帰還経路を設ける必要がなくなる。 図 面 の 簡 単 な 説 明
第 1 図は、 この発明に係る第 1 のフィルタープレス式脱水システムの全 体構成を示す概念図である。
第 2図は、 上記脱水システムにおける排水量と脱水圧力との関係を示す グラフである。
第 3図は、 上記脱水システムにおける脱水圧力の制御パターンを示すグ ラフである。
第 4図は、 上記脱水システムにおける脱水圧力の制御パターンを示すグ ラフである。 第 5図は、 上記脱水システムにおける脱水圧力の制御パターンを示すグ ラフである。
第 6図は、 この発明に係る第 2のフィルタープレス式脱水システムの全 体構成を示す概念図である。
第 7図は、 上記脱水システムにおける前処理装置の構造を示す模式図で ある。
第 8図は、 この発明に係る脱気装置を組み込んだ第 3のフィルタープレ ス式脱水システムの全体構成を示す概念図である。
第 9図は、 脱気装置の内部構造を示す縦断面図である。
第 1 0図は、 脱気装置の内部構造を示す横断面図である。
第 1 1 図は、 脱気装置の他の構成例を示す横断面図である。
第 1 2図は、 第 1 1 図の A— A断面図である。
第 1 3図は、 この発明に係る逆止弁の構造 (閉塞時) を示す断面図であ る。
第 1 4図は、 上記逆止弁の構造 (開放時) を示す断面図である。
第 1 5図は、 第 1 3図の B— B断面図である。
第 1 6図は、 この発明に係る開閉弁の構造 (閉塞時) を示す断面図であ る。
第 1 7図は、 上記開閉弁の構造 (開放時) を示す断面図である。
第 1 8図は、 一般的なフィルタープレス式脱水システムの全体構成を示 す概念図である。
第 1 9図は、 フィルタ一プレス機における脱水のメカニズムを示す模式 図である。
第 2 0図は、 従来の脱水システムにおける排水量と脱水圧力との関係を 示すグラフである。
第 2 1 図は、 フィルタープレス機における脱水ケーキ生成のメカニズム を示す模式図である。
第 2 2図は、 従来の脱水システムにおけるスラリーと空気溜との関係を 示す部分断面図である。
第 2 3図は、 ボール型逆止弁の構造を示す断面図である。 発明を実施するための最良の形態
第 1 図は、 この発明に係る第 1 のフィルタープレス式脱水システム 100 の全体構成を示す概念図であり、 第 1 8図で示した従来の脱水システムと 同様、 ピス トン式の圧送ポンプ 12 と、 フィルタープレス機 14 と、 第 1 の開閉弁 16及び第 2の開閉弁 18 と、 エアコンプレッサ 20を備えている。 また、 図示は省略したが、 上記と同様のスラリー供給源 22 が送泥管 26 を介して第 1 の電磁弁 18 に接続されており、 また排水管 50 は上記と同 様の貯水槽 24に接続されている。
この脱水システム 100 にあっては、 さらに、 排水管 50 の途中に介装さ れた流量センサ 170 と、 第 2の開閉弁 18 及びフィルタープレス機 14 と を連通する送泥管 26 の途中に介装された圧力センサ 172 と、 圧送ポンプ 12 と油圧駆動源 15 との間に介装された圧力制御バルブ 174 (リ リーフバ ルブ) と、 制御部 176 とを備えている。
上記制御部 176 は、 プログラマブルコン トローラやパソコン等の CPU と、 制御プログラムを格納した記憶手段を備えており、 信号増幅部 178 を介して上記流量センサ 170、 圧力センサ 172、 及び圧力制御バルブ 174 と電気的に接続されている。
上記圧力制御バルブ 174 は、 制御部 176 からの制御信号に応じて油圧 駆動源 15 から圧送ポンプ 12 に供給される圧油の流量を無段階に調整可 能とするものであり、 具体的には電磁比例制御弁より構成される。
以下において、 この脱水システム 10 によるスラリーの脱水工程につい て説明する。
まず、 スラリー供給源から送り出されたスラリーは、 送泥管 26 を経由 して第 1 の開閉弁 16 に到達し、 圧送ポンプ 12 のシリ ンダ 28及び第 2の 開閉弁 18 を通過してフィルタープレス機 14内に充填される。
フィルタープレス機 14 の各濾室内にスラリーが一通り行き渡った時点 で、 第 1 の開閉弁 16 が閉じられ、 油圧駆動源 15 から圧油の供給を受け て圧送ポンプ 12 のピス トン 30が圧縮方向に移動し、 シリ ンダ 28 内のス ラリーをフィルタープレス機 14側に打ち込む。
つぎに、 第 2の開閉弁 18 を閉じると同時にピス トン 30 が戻り、 第 1 の開閉弁 16 を開いてスラリーがシリンダ 28内に充填される。
ここで第 1 の開閉弁 16 を閉じると同時に第 2の開閉弁 18 を開き、 ピ ス 卜ン 30 を駆動させることにより、 スラ リーがフィルタープレス機 14 に圧送される。
圧送ポンプ 12 による上記のスラリー打込動作を継続することによ り、 フィルタープレス機 14の集水管 48 から排水管 50 に向けて濾水が流れ出 す。
この排水管 50 を通過する濾水の流量は流量センサ 170 によつて検出さ れ、 制御部 176に入力される。
また、 圧送ポンプ 12 からフィルタープレス機 14 に向かうスラリーの 打込圧力 (=フィルタープレス機 14内の脱水圧力) も圧力センサ 172 に よって検出され、 制御部 176 に入力される。
制御部 176 (こおいては、 各センサからの入力信号を所定のプログラム に従って演算処理し、 圧送ポンプ 12 による加圧力を加減すべく圧力制御 弁 174に制御信号を出力する。
これを受けた圧力制御弁 174 は、 油圧駆動源 15 から圧送ポンプ 12 に 供給される圧油の流量を調節し、 圧送ポンプ 12の加圧力を制御する。 このように、 フィルタープレス機 14 から排出される濾水の流量とフィ ルタープレス機 14 内の脱水圧力に応じて圧送ポンプ 12 による加圧力を 加減することにより、 フィルタープレス機 14 における脱水効率を最適化 することができる。
すなわち、 従来の脱水システム 10 の場合には圧送ポンプ 12 の加圧力 を制御することは特に行われず、 フィルタープレス機 14 内の抵抗に応じ て脱水圧力が自然に決定されていたため、 第 2 0図のグラフに示したよう に、 脱水初期の段階で急激に脱水圧力が伸びて多くの排水量が得られる代 わりに、 すぐにケーキ層 54 が固く締まって水通りを阻害し、 排水量が一 気に減少することとなる。
これに対し、 この発明に係る第 1 の脱水システム 100 の場合には、 第 2図に示すように、 脱水圧力の上昇を比較的緩やかなカーブを描く ように 調整することでケーキ層 54 の固化具合を制御し、 以て排水量が急速に減 少することを抑えることができる。
具体的には、 単位時間当たりの濾水の排出量がプログラムされた設定値 よリも多い場合、 制御部 176 は圧力制御弁 174 に制御信号を出力して圧 送ポンプ 12に供給する圧油の量を必要量低減させる。 同時に、 制御部 176 は圧力センサ 172 からの出力を監視し、 フィルタープレス機 14内の脱水 圧力が狙い通りに低下した ;!とを確認する。
反対に、 単位時間当たりの濾水の排出量がプログラムされた設定値よ り も少ない場合、 制御部 176 は圧力制御弁 174 に制御信号を出力して圧送 ポンプ 12 に供給する圧油の量を必要量増加させる。 同時に、 制御部 176 は圧力センサ 172 からの出力を監視し、 フィルタープレス機 14 内の脱水 圧力が狙い通りに上昇したことを確認する。
この結果、 第 2図の通り排水量のピークを比較的長時間維持することが でき、 従来の場合と同じ排水量をより短時間で得ることが可能となる。 上記脱水圧力の上昇パターンは丄定ではなく、 脱水対象となるスラリー の特性に応じて当然に異なったものとなる。 特に有機系汚泥の場合、 その 組成によって脱水の難易やケーキの形成進度に大きな差異があるため、 第 2図に示した理想的な排水量の推移を実現するためには脱水圧力を処理対 象毎にきめ細かく制御することが必要となる。
例えば、 第 3図に示すように、 脱水工程の前半までは圧力を徐々に上昇 させ、 ピーク近く に達した時点でその圧力を維持したり、 第 4図に示すよ うに、 圧力の上昇、 下降を繰り返しながら全体と して圧力が上昇するよう に圧送ポンプ 12 の加圧制御を行う ことが該当する。 第 5図は両パターン の折衷型を示すものであり、 脱水工程の前半までは圧力の上昇 , 下降を繰 リ返した後、 ピーク圧力まで滑らかに上昇させ、 この圧力を暫く維持する ように圧送ポンプ 12の加圧制御が行う場合である。
第 6図は、 この発明に係る第 2のフィルタープレス式脱水システム 200 の全体構成を示す概念図であリ、第 1 8図で示した従来の脱水システム 10 と同様、 ピス トン式の圧送ポンプ 12 と、 フィルタ一プレス機 14 と、 モ ータ及び油圧ポンプからなる油圧駆動源 15 と、 第 1 の開閉弁 16 及び第 2の開閉弁 18 と、 エアコンプレッサ 20 を備えている。
また、 第 1 の開閉弁 16 の前段には、 スラリー投入ホッパー 270 と、 前 処理装置 272 とが配置されている。
上記前処理装置 272 は、 第 7図に示すように、 円筒体 276 と、 この円 筒体 276 内に配置されたスク リューフィーダ 278 と、 このスク リューフ ィ一ダ 278 を回転駆動するための減速モータ 280 と、 円筒体 276 の外周 を気密に覆う外殻部 282 と、 この外殻部 282 の内部に配置された一対の マイク口波発振機 284 と、 各マイク口波発振機 284 の O N Z O F Fや出 力を制御するための制御装置 286 とを備えている。
円筒体 276は、 マイク口波の透過特性に優れた樹脂材ょ リ構成される。 また、 上記外殻部 282 の少なく とも内面は、 マイクロ波の反射特性に 優れた金属材ょ り構成される。
スク リ ユーフ ィ ーダ 278 のフィ ンのピッチは、 マイ ク ロ波の波長 ( 12.2cm) を考慮し、 12.2cm以上に設定されている。
円筒体 276の先端小径部 287は、 第 1 の開閉弁 16 と連通接続されてい る。
また、 円筒体 276 の後端部には分岐管 288 が設けられており、 この分 岐管 288を介して投入ホッパー 270の開口部 290 と連通接続されている。 以下において、 この脱水システム 200 によるスラ リーの脱水工程につ いて説明する。
まず、 投入ホッパー 270内にスラリー状の有機系汚泥が投入されると、 攪拌スク リユー 292 の回転によって混練されながら開口部 290 から円筒 体 276内に供給される。
円筒体 276 内においては、 スク リューフィーダ 278 の回転によって汚 泥が先端方向に移送される。 そして、 スラ リーが外殻部 282 内に達した 時点で、 マイクロ波発振機 284 から出力されたマイクロ波を受けて加熱 される。
この結果、 バクテリァの細胞内や親水コ ロイ ド内に蓄積された水分が膨 張し、 細胞膜や親水コ ロイ ドが構造破壊される。
マイクロ波による加熱処理済みのスラリーは、 第 1 の開閉弁 16 を介し て圧送ポンプ 12内に供給される。
後は上記と同様、 圧送ポンプ 12 のシリ ンダ 28及び第 2の開閉弁 18 を 通過してスラ リーはフィルタープレス機 14内に充填される。
そして、 フィルタ一プレス機 14 の各濾室内にスラリーが一通り行き渡 つた時点で、 第 1 の開閉弁 16 が閉じられ、 油圧駆動源 15 から圧油の供 給を受けて圧送ポンプ 12のピス トン 30が圧縮方向に移動し、シリ ンダ 28 内のスラリーをフィルタープレス機 14側に打ち込む。
つぎに、 第 2の開閉弁 18 を閉じると同時にピス トン 30 が戻り、 第 1 の開閉弁 16 を開いてスラリーがシリンダ 28内に充填される。
ここで第 1 の開閉弁 16 を閉じると同時に第 2の開閉弁 18 を開き、 ピ ス トン 30 を駆動させることにより、 スラリーがフィルタープレス機 14 に圧送される。
圧送ポンプ 12 による上記のスラリー打込動作を継続することにより、 汚泥に含まれる水分が濾布を介して固体成分と分離される。 分離された濾 水は、 フィルタープレス機 14の集水管 48から外部に排出される。
上記のように、 前処理装置 272 内においてスラリーに含まれる細胞膜 や親水コ口ィ ドが加熱 ■ 破壊されているため、 例え汚泥中に多量のバクテ リアが含まれていたと しても、 フィルタープレス機 14 において極めて効 果的な脱水処理が可能となる。
第 8図は、 この発明に係る第 3のフィルタープレス式脱水システム 300 の全体構成を示す概念図であリ、第 1 8図で示した従来の脱水システム 10 と同様、 ピス トン式の圧送ポンプ 12 と、 フィルタ一プレス機 14 と、 油 圧駆動源 15 と、 第 1 の開閉弁 16及び第 2の開閉弁 18 と、 エアコンプレ ッサ 20 と、 スラリ一供給源 22 と、 貯水槽 24とを備えている。
この第 3の脱水システム 300 にあっては、 さらに、 第 2の開閉弁 18 と フィルタープレス機 14 との間に介装された脱気装置 362 と、 送泥管 26 bの途中に介装された圧力センサ 363 と、 脱気装置 362 の排気系に介装 された電磁開閉弁 364 と、 圧力センサ 363及び電磁開閉弁 364 と電気的 に接続された制御部 365 を備えている。
上記制御部 365 は、 プログラマブルコン トローラやパソコン等の CPU と、 制御プログラムを格納した記憶手段を備えている。
上記脱気装置 362 は、 第 9図の縦断面図及び第 1 0図の横断面図に示 すように、 略直方体形状の筐体 366 と、 スラリーの導入口 367 と、 筐体 366内に収容された口径拡張部 368 と、空気排出部 369 と、口径収縮部 370 と、 スラリーの吐出口 371 とを備えている。
上記導入口 367 は、 圧送ポンプ 12 側の送泥管 26 a と連通接続されて おり、 該送泥管 26 a と略等しい口径を備えている。
また、 上記吐出口 371 は、 フィルタープレス機 14 側の送泥管 26 b と 連通接続されており、 該送泥管 26 b と略等しい口径を備えている。
口径拡張部 368 は、 導入口 367 と一体形成されており、 圧送ポンプ 12 側からフィルタープレス機 14 側に向けて口径が拡張する漏斗形状を備え ている。
また、 上記口径収縮部 370は、 上記吐出口 371 と一体形成されており、 圧送ポンプ 12 側からフィルタープレス機 14 側に向けて口径が縮小する 漏斗形状を備えている。
空気排出部 369 は、 口径拡張部 368 と口径収縮部 370 との間に介装さ れており、 略矩形状の枠部材 372 と、 該枠部材 372 の底面 373 に立設さ れた複数本の排気誘導管 374を備えている。
上記枠部材 372 は、 口径拡張部 368 の開口部と連通する第 1 の開口部 375 と、 口径収縮部 370 の開口部と連通する第 2の開口部 376 を備えて おり、 各排気誘導管 374 は第 1 の開口部 375 と第 2の開口部 376 との間 に所定の間隔をおいて配列されている。
各排気誘導管 374 は、 第 1 0図に示すように、 断面が略楔形状を備え ておリ、 その尖端部 374 aが圧送ポンプ 12側がに向く と共に、 平面部 374 bがフィルタープレス機 14側に向く ように位置決めされている。
この平面部 374 bには、 上から下に向けて多数の通気口 377 が所定の 間隔をおいて穿設されており、 各通気口 377 は排気誘導管管 374 の中心 部を貫く空洞部 374 c と連通されている。 各排気誘導管 374 の上端開口部 374 dは、 共通の集気ボックス 378 に 連通接続されておリ、 該集気ボックス 378 には排気管 379 が連通接続さ れている。
上記枠部材 372 は、 筐体 366 内のガイ ド部 380 に沿ってスライ ド自在 に装着されており、 他の空気排出部 369 と容易に交換可能となされてい る。
なお、 枠部材 72 の表面と口径拡張部 368及び口径収縮部 370の端面と の間には、 それぞれ適当なシール部材 38 1 が介装されており、 気密性が 確保されている。
以下において、 この第 3の脱水システム 300 によるスラリーの脱水ェ 程について説明する。
まず、 スラリー供給源 22 から送り出されたスラリーは、 送泥管 26 を 経由して第 1 の開閉弁 16 に到達し、 圧送ポンプ 12 のシリンダ 28、 第 2 の開閉弁 18、 脱気装置 362 を通過してフィルタープレス機 14 内に充填 される。
フィルタープレス機 14 の各濾室内にスラリーが一通り行き渡った時点 で、 油圧駆動源 15 から圧油の供給を受けて圧送ポンプ 12 のピス トン 30 が圧縮方向に移動し、 シリ ンダ 28内のスラリーをフィルタ一プレス機 14 側に打ち込む。
つぎに、 ピス トン 30 が戻ると同時に第 2の開閉弁 18 が閉じ、 第 1 の 開閉弁 16が開いてスラリ一がシリンダ 28内に充填される。
ここで再びピス トン 30 を駆動させると、 第 1 の開閉弁 16 が閉じると 同時に第 2の開閉弁 18 が開き、 スラリーがフィルタ一プレス機 14 側に 圧送され、 脱気装置 362 を通過する過程でスラリー中の空気が効果的に 除去される。
圧送ポンプ 12 による上記のスラリー打込動作を継続することにより、 フィルタープレス機 14の集水管 48 から排水管 50 に向けて濾水が流れ出 す。
ここで、 上記脱気装置 362 における空気除去のメカニズムについて説 明する。
まず、 圧送ポンプ 12の駆動によってスラリーが高圧で打ち出されると、 空気溜を含んだスラリーは一定以上の流速で脱気装置 362 の導入口 367 に送り込まれる。
つぎに、 スラ リーが導入口 367 よ りも断面積が急拡大する口径拡張部 368 に達すると、 そこで流速が急激に減ぜられ、 内部圧力が低下する。 こ の結果、 スラリーに内包された空気溜が膨張し、 スラリーから遊離するこ ととなる。
そして、 口径収縮部 370 において流路が再び狭まるため、 膨張した空 気には収縮に伴い後方に押し出される力が働き、 上記通気口 377 内に誘 導されることとなる。
通気口 377 から空洞部 374 cに達した空気は、 排気誘導管 374 内を上 昇して集気ボックス 378 に集められ、 排気管 379 を介して外部に排出さ れる。
脱水処理が進行し、 ケーキ層の増大によってフィルタープレス機 14 側 の圧力が上昇してく ると、 口径拡張部 368 に供給されるスラリーの流速 が低下し、 空気溜の膨張 ■ 遊離効果が低減すると共に、 スラリーが通気口 377 内に逆流する可能性も高まるため、 電磁開閉弁 364 を閉鎖して脱気 処理が停止される。 具体的には、 圧力センサ 363 から入力される圧力が 設定値以上となった時点で、 制御部 365 から電磁開閉弁 364 に制御信号 が出力され、 排気管 379が自動的に閉鎖される。
上記の脱気装置 362 を継続的に使用していく と、 どう しても固形物が 通気口 377内に入り込み、 目詰まりを起こすこととなる。 この場合には、 空気排出部 369 を筐体 366 から抜き出して洗浄したり、 新しいものと交 換すればよい。あるいは、排気管 379から洗浄水を供給して排気誘導管 374 内を逆洗し、 固形物を通気口 377から排出させることもできる。
さらに、 上記排気誘導管 374 の空洞部 374 c内に多孔質のセラミ ック フィルタや中空繊維フィルタを装着させることにより、 上記目詰まりを有 効に防止できると同時に、 外部に排出される空気の浄化を行うことができ る。
第 1 1 図及び第 1 2図は、 脱気装置 362 の他の構成例を示しておリ、 空気排出部 369 の枠部材 372 内に二組の排気ユニッ トを備えたことを特 徴と している。
すなわち、 枠部材 372 内には 4本の排気誘導管 374 を備えた第 1 の排 気ユニッ ト 382 と、 同じく 4本の排気誘導管 374 を備えた第 2の排気ュ ニッ ト 383 が配置されており、 各ュニッ 卜の排気誘導管 374 はそれぞれ 異なる集気ボックス 378に連通接続されている。
また、 枠部材 372の両側面には連結片 384 a , 384 bが接続されている。 筐体 366 の下面には油圧駆動のシリンダ 385 が装着されておリ、 該シ リンダ 385 の一対の駆動軸 385 a , 385 bはそれぞれ上記連結片 384 a , 384 bに接続されている。
このため、 上記シリ ンダ 385 の駆動軸 385 a , 385 bを左右に駆動させ ることにより、 空気排出部 369 は筐体 366 のガイ ド部 380 に沿ってスラ イ ド移動し、 筐体 366 内にセッ トされる排気ユニッ トを切り替えること が可能となる。
このように、 空気排出部 369 に二組の排気ユニッ トを設け、 シリ ンダ 駆動によって筐体 366 内にセッ トされるユニッ トを交代可能に構成した 結果、 脱気装置 362 の運転効率やメ ンテナンス性を向上させることがで きる。 すなわち、 一方のユニッ トを使用して脱気を行っていたところ、 目詰ま リを起こ して脱気効果が落ちてきた場合には、 即座に枠部材 372 をスラ イ ドさせて他方のユニッ トと交代することにより、 脱気効果を持続させる ことができる。
筐体 366 外に取り出されたユニッ トに対しては、 第 1 1 図に示すよう にシャワー 386 によって排気誘導管 374 の表面を洗浄したり、 第 1 2図 に示すように排気管 379 に洗浄水を導き、 排気誘導管 374 内を逆洗する ことができる。
因みに、 排気管 379 には 4個の電磁開閉弁が介装されており、 第 1 の 排気ユニッ ト 382 を脱気処理に用いると同時に第 2の排気ユニッ ト 383 を逆洗する場合には、第 1 の開閉弁 364 a及び第 2の開閉弁 364 bを開き、 第 3の開閉弁 364 c及び第 4の開閉弁 364 dを閉じておく 。
反対に、 第 2の排気ユニッ ト 383 を脱気処理に用いると同時に第 1 の 排気ユニッ ト 382 を逆洗する場合には、 第 3の開閉弁 364 c及び第 4の 開閉弁 364 dを開き、 第 1 の開閉弁 364 a及び第 2の開閉弁 364 bを閉じ ておけばよい。
この発明に係る逆止弁 470 は、 第 1 8図に示したフィルタープレス式 脱水システム 10 において、 圧送ポンプ 12 の前後に介装されて第 1 の開 閉弁 16 及び第 2の開閉弁 18 と して機能するものであリ、 第 1 3図〜第 1 5図に示すように、 スラリ一の流入口 471 及び排出口 472 を備えた円 筒状のバルブケース 473 と、 円筒状の弁体収納部 474 と、 先端が尖った キャップ状 (コーン状) の弁体 475 と、 キャップ状の受圧部材 476 と、 連結棒 477 と、 コイルスプリ ング 478 とを備えている。
上記弁体収納部 474 は、 ケース 473 の内面に立設された 3枚の支持部 材 479 によつてケース 473 の中央付近に支持されておリ、 流入口 471 と 対向する第 1 の開口凹部 480 と、 排出口 472 と対向する第 2の開口凹部 481 と、 両開口凹部間を区画する隔壁部 482 とを備えている。 また、 こ の隔壁部 482 の中央部には、 第 1 の開口凹部 480 と第 2の開口凹部 481 間を貫く貫通孔 483 が形成されている。
弁体収納部 474 の外周面とバルブケースの内周面との間には、 スラ リ 一の流路 484が形成されている。
上記弁体 475は、第 1 の開口凹部 480内に摺動自在に収納されている。 また、 上記受圧部材 476 は、 第 2の開口凹部 481 内に摺動自在に収納さ れている。
上記スプリ ング 478 は、 弁体 475 の内部に揷入され、 弁体 475 と共に 第 1 の開口凹部 480 内に収納されている。 この結果、 スプリング 478 の 一端は弁体 475の内面に接すると共に、 他端は隔壁部 482 に接している。 上記隔壁部 482 の貫通孔 483 には連結棒 477が揷通されており、 その 先端部はスプリ ング 478 を揷通した上で弁体 475 の内面にネジ止めされ ている。 また、 連結棒 477 の後端部は受圧部材 476 の平面部 476 a を貫 通し、 外側でナツ ト 485によってネジ止めされている。
この結果、弁体 475 と受圧部材 476は連結棒 477を介して一体化され、 一方が摺動すると他方も同じ方向に摺動することとなる。
第 1 の開口凹部 480 の内周面と弁体 475 の外周面との間には、 シール 部材と しての O リ ング 486 が介装されており、 また第 2の開口凹部 481 の内周面と受圧部材 476 の外周面との間にも Oリ ング 486 が介装されて いる。
この結果、 第 1 の開口凹部 480 は弁体 475 及び Oリ ング 486 によって 液密に封止されることとなり、 第 2の開口凹部 481 も受圧部材 476 及び ◦リ ング 486によって液密に封止されることとなる。
したがって、 弁体 475 ゃ受圧部材 476 が摺動を繰り返しても、 スラリ 一が第 1 の開口凹部 480 や第 2の開口凹部 481 内に進入する危険性はな い。
上記弁体 475 は、 通常は上記スプリング 478 によつて流入口 471 を閉 • じる方向に付勢されている。 また、 上記受圧部材 476 の平面部 476 a に は、 排出口 472側からの圧力がかかる。
これに対し、 流入口 471側から 「スプリ ング 478の付勢力 +排出口 472 側の圧力」 よりも大きな圧力が加えられた場合には、 第 1 4図に示すよう に弁体 475が後方に移動し、 流入口 471が開放される。
なお、 第 1 の開口凹部 480 の内周面にはス トツパ 487 が突設されてい るため、 弁体 475 が後退し過ぎて受圧部材 476 の全体が第 2の開口凹部 481から飛び出してしまう ことはない。
以下に、 この逆止弁 470 を第 1 の開閉弁及び第 2の開閉弁と して組み 込んだフィルタ一プレス式脱水システム 10 によるスラリーの脱水工程に ついて説明する (第 1 8図の第 1 の開閉弁 16 及び第 2の開閉弁 18 を、 第 1 の逆止弁 470 a及び第 2の逆止弁 470 b と読み替える)。
まず、 スラリー供給源 22 から送り出されたスラ リーは、 送泥管 26 を 経由して第 1 の逆止弁 470 a に到達し、 弁体 475 を押圧する。 この結果、 流入口 471 が開いてスラリーが内部に流入し、 流路 484 を経由して排出 口 472から圧送ポンプ 12のシリンダ 28内に送り出される。
つぎにスラリーは、第 2の逆止弁 470 bの弁体 475を押圧して流入口 471 を開き、 排出口 472からフィルタープレス機 14に送り出される。
フィルタープレス機 14 の各濾室 36 内にスラリーが一通り行き渡った 時点で、 油圧駆動源 15 から圧油の供給を受けて、 圧送ポンプ 12 のビス トン 30が圧縮方向に移動する。
この際、 第 1 の逆止弁 470 aの受圧部材 476 にはビス トン 30 による圧 力が加わるため、 その流入口 471 は閉じられる。 これに対し、 第 2の逆 止弁 470 bの弁体 475 にはビス トン 30 による圧力が加わるため、 その流 入口 47 1 は開かれる。 この結果、 シリ ンダ 28 内のスラ リーはフィルタ一 プレス機 14側に打ち込まれる。
つぎに、 ピス トン 30 が戻り始めると、 今度は第 1 の逆止弁 470 aの受 圧部材 476 及び第 2の逆止弁の弁体 475 に負圧がかかるため、 第 1 の逆 止弁 470 aが開かれると共に、 第 2の逆止弁 470 bは閉塞される。 この結 果、 シリ ンダ 28内に新たなスラリーが充填される。
ここで再びビス トン 30 を駆動させると、 上記と同様、 第 1 の逆止弁 470 aが閉じると同時に第 2の逆止弁 470 bが開き、 スラリーがフィルタープ レス機 14側に圧送される。
圧送ポンプ 12 による上記のスラリー打込動作を継続することによ り、 フィルタープレス機 14の集水管 48から排水管 50 に向けて濾水が流れ出 す。
脱水工程の最終段階にいたると、 上記のように電磁開閉弁 25 が開かれ ると共に、 エアコンプレッサ 20から高圧のエアがフィルタ一プレス機 14 内に供給され、 濾板 32 のスラリー導入孔 38 内に詰まったスラリーが帰 還経路 27 を迪つてスラ リ一供給源 22に戻される。
この逆止弁 470 にあっては、 スプリ ング 478 が第 1 の開口凹部 480 内 に収納され、 スラ リーと接触することがないため、 スラ リーの付着による 動作不良を起こす危険性が一切ない。
第 1 6図及び第 1 7図は、 この発明に係る開閉弁 488 を示しておリ、 図示の通り上記の逆止弁 470 と大部分の構成を共通にするため、 同一部 材には同一の符号を用いることで重複説明を避け、 以下においては相違点 を中心に説明する。
まず第 1 に、 弁体収納部 474の隔壁部 482 に設けられた貫通孔 483 の 内周面と、 連結棒 477 の外周面との間には O リング 486 が嵌装されてお り、 この結果、 第 1 の開口凹部 480 と第 2の開口凹部 48 1 間において液 密性が確保されている。
第 2に、 ケース 473には第 1 の油圧ポー卜 489 と第 2の油圧ポート 490 が設けられており、 第 1 の油圧ポート 489 は第 1 の油路 491 を介して第 1 の開口凹部 480 と連通接続されると共に、 第 2 .の油圧ポート 490 は第 2の油路 492を介して第 2の開口凹部 481と連通接続されている。
この第 1 の油圧ポート 489 及び第 2の油圧ポート 490 には、 電磁切換 弁 493 が接続されている。 この結果、 この電磁切換弁 493 に制御信号を 出力して油圧の方向を切り換えることにより、 弁体 475 ゃ受圧部材 476 に加わる圧力の大小に関わらず、 強制的に開閉することが可能となる。 例えば、 第 1 の油圧ポート 489 に圧油を供給すると同時に、 第 2の油 圧ポート 490 をタンクに接続すれば、 第 1 の開口凹部 480 内に圧油が充 填され、 弁体 475 を内側から圧迫するため、 例え流入口 471 側から啓開 圧力が加わっていたと しても、 流入口 471が開放されることはない。
これに対し、 第 2の油圧ポー ト 490 に圧油を供給すると同時に、 第 1 の油圧ポート 489 をタンクに接続すれば、 第 2の開口凹部 48 1 内に圧油 が充填され、 受圧部材 476 を内側から圧迫するため、 例え排出口 472 側 から圧力が加わっていたとしても、 流入口 471が強制的に開放される。
この開閉弁 488 を、 第 1 8図のフィルタープレス式脱水システム 10 に おける第 1 の開閉弁及び第 2の開閉弁として用いた場合、 何れの油圧ポー 卜にも圧油を供給しない場合には、 上記の逆止弁 470 と全く同様に動作 する (以下、 第 1 8図の第 1 の開閉弁 16 及び第 2の開閉弁 18 を、 第 1 の開閉弁 488 a及び第 2の開閉弁 488 bと読み替える)。
すなわち、 圧送ポンプ 12 のピス トン 30 が後退するときには、 第 1 の 開閉弁 488 aが開く と共に第 2の開閉弁 488 bが閉じてスラリーがシリン ダ 28内に充填され、 ピス トン 30が前進するときには、 第 1 の開閉弁 488 aが閉じると共に第 2の開閉弁 488 bが開いてスラリーがフィルタープレ ス機 14側に圧送される。
この際、 弁体 475 の開閉動作は弁体 475 及び受圧部材 476 に加わる圧 力によって自動的に決定されるため、 従来の電磁開閉弁のように開閉のタ イミングを誤ってフィルタ一プレス機 14 側からスラリーが逆流する危険 性はない。
また、 スプリ ング 478 がスラリーに接することもないため、 ボール型 逆止弁 61のように動作不良を起こす虞もない。
フィルタープレス機 14 からスラリーを戻す場合には、 電磁切換弁 493 に制御信号を出力して第 2の油圧ポー ト 490 に圧油を供給すると共に、 第 1 の油圧ポー卜 489 をタンクに接続することによ り、 第 1 の開閉弁 488 a及び第 2の開閉弁 488 b強制的に開放すればよく、 わざわざ迂回用の電 磁開放弁 25や帰還経路 27 を用意する必要はない。 産業上の利用可能性
この発明に係る第 1 のフィルタープレス式脱水システム及ぴ制御方法に よれば、 フィルタープレス機から排出される濾水の流量に応じてフィルタ 一プレス機内の脱水圧力を調整することができ、 脱水の進度を制御するこ とが可能となる。
このため、 脱水の初期段階でケーキ層が固く締まらないように圧送ボン プの加圧力を抑制し、 比較的高い脱水効率を長時間維持することにより、 一定の脱水量を得るまでの時間を短縮化することが可能となる。
この発明に係る第 2のフィルタープレス式脱水システム及び脱水方法に よれば、 マイク口波の照射によつて事前にスラリ一内の細胞膜や親水コ口 イ ドを加熱 ' 破壊しておく ことができ、 後続するフィルタ一プレス機によ つて効果的な脱水処理が可能となる。
この発明に係る脱気装置を用いれば、 圧送ポンプとフィルタープレス機 との間においてスラリー中に含まれる空気を効果的に除去できるため、 圧 送ポンプの加圧動作がスラリーに着実に伝わり、 所期の圧力でフィルタ一 プレス機に打ち込むことが可能となる。
この発明に係る逆止弁にあっては、 弁体を閉じ方向に付勢するスプリ ン グが、 弁体、 受圧部材、 及びシール部材を介して液密に封止された弁体収 納部内に配置されており、 スラ リーに直接触れることがないため、 動作不 良を起こす危険性が全くなくなる。
この発明に係る開閉弁にあっては、 通常時は上記逆止弁と同じ作用効果 を発揮すると共に、 電磁切換弁等を用いて第 2の油圧ポー 卜に圧油を導く と同時に第 1 の油圧ポートをタ ンクに接続することによ り、 弁体や受圧部 材に加わる圧力にかかわらず、 強制的に開放することができる。
このため、 脱水処理の最終段階において、 濾板のスラリー導入孔内に詰 まっているスラリーをフィルタ一プレス機側からスラリ一供給源側に戻す 場合でも、 わざわざ迂回専用の電磁開閉弁や帰還経路を設ける必要がなく なる利点がある。

Claims

請 求 の 範 囲
1 . フィルタープレス機と、 スラリー供給源から導かれたスラリーを圧縮 してフィルタ一プレス機に打ち込む油圧駆動の圧送ポンプと、 圧送ポンプ に供給される圧油の流量を加減する圧力制御バルブと、 フィルタープレス 機から排出される濾水の流量を検出する流量センサと、 上記フィルタープ レス機における脱水圧力を検出する圧力センサと、 上記流量センサ及び圧 力センサからの入力信号に応じて上記圧力制御バルブに対する制御信号を 出力する制御手段とを備えたことを特徴とするフィルタープレス式脱水シ ステム。
2 . 請求の範囲 1 に記載のフィルタープレス式脱水システムにおいて、 上 記流量センサによつて検出された単位時間当たリの濾水の流量が予め設定 された流量よりも多い場合には、 上記圧送ポンプに供給する圧油の流量を 減少させてフィルタープレス機内の脱水圧力を低下させ、 上記流量センサ によって検出された単位時間当たリの濾水の流量が予め設定された流量よ リも少ない場合には、 上記圧送ポンプに供給する圧油の流量を増加させて フィルタ一プレス機内の脱水圧力を上昇させ、 以てフィルタープレス機内 の脱水進度を調整することを特徴とするフィルタープレス式脱水システム の制御方法。
3 . フィルタープレス機と、 スラリーを圧縮して上記フィルタ一プレス機 に打ち込む圧送ポンプと、 該圧送ポンプの前段に配置される前処理装置と を備えたフィルタープレス式脱水システムであって、
上記前処理装置は、 スラリー供給源側から上記圧送ポンプ側にスラリー を移送するための送泥路と、 該送泥路上の汚泥に対してマイク口波を照射 するためのマイクロ波発振機とを備えたことを特徴とするフィルタープレ ス式脱水システム。
4 . 上記前処理装置が、 マイクロ波透過性素材よ りなる円筒体と、 該円筒 体内に配置されたスク リューフィーダと、 該スク リユーフィーダを回転駆 動させるモータ と、 上記円筒体の外周を気密に覆うマイクロ波反射性素材 よリなる外殻部と、 該外殻部内に配置されたマイク口波発振機とを備えて いることを特徴とする請求の範囲 3に記載のフィルタ一プレス式脱水シス テム。
5 .スラリー供給源から移送されたスラ リーに対してマイクロ波を照射し、 内部に含まれる細胞膜や親水コ ロイ ドを加熱 ' 破壊する工程と、
このスラリーを圧縮してフィルタープレス機に打ち込む工程と、 フィルタ一プレス機内の濾布によってスラリーの固液分離を実行するェ 程と、
を備えたことを特徴とするスラリーの脱水方法。
6 . 圧送ポンプとフィルタープレス機との間に介装される脱気装置であつ て、
圧送ポンプから供給されたスラリーを取り込む導入口と、
該導入口と連通し、 圧送ポンプ側からフィルタープレス機側に向けて口 径が拡大する口径拡張部と、
該口径拡張部と連通し、 排気誘導管を有する空気排出部と、
該空気排出部と連通し、 圧送ポンプ側からフィルタープレス機側に向け て口径が縮小する口径収縮部と、
該口径収縮部と連通し、 スラ リーをフィルタープレス機に向けて送り出 す吐出口とを備え、
上記排気誘導管の少なく とも一端には排気管が接続されると共に、 上記 口径収縮部側の表面には通気口が形成されておリ、 該通気口に流入した空 気が上記排気管を経由して外部に排出されるように構成したことを特徴と する脱気装置。
7 . 上記空気排出部は、 口径拡張部と口径収縮部との間に着脱自在に介装 されていることを特徴とする請求の範囲 6に記載の脱気装置。
8 . 上記空気排出部は、 それぞれ排気誘導管を有する第 1 の排出ユニッ ト 及び第 2のュニッ 卜を備え、 上記口径拡張部と口径収縮部との間にスライ ド自在に介装され、 以て口径拡張部と口径収縮部との間に介装される排出 ユニッ トを交代可能となしたことを特徴とする請求の範囲 6に記載の脱気 装置。
9 . 上記空気排出部の排気誘導管内には、 多孔質のセラミ ックフィルタ あ るいは中空繊維フィルタが装着されていることを特徴とする請求の範囲 6 〜 8の何れかに記載の脱気装置。
1 0 . 上記空気排出部の排気誘導管は断面が略楔形状をなしておリ、 その 尖端部が圧送ポンプ側に向く と共に、 平面部がフィルタープレス機側に向 く ように位置決め配置され、 該平面部に上記通気口が形成されていること を特徴とする請求の範囲 6 〜 9の何れかに記載の脱気装置。
1 1 . 上記排気管に介装された開閉弁と、 フィルタープレス機側の圧力を 検出する圧力センサと、 フィルタープレス機側の圧力が設定値以上になつ た場合に上記開閉弁を閉じる制御手段とを備えたことを特徴とする請求の 範囲 6 〜 1 0の何れかに記載の脱気装置。
1 2 . 流入口及び排出口を有するケースと、
該ケース内に配置され、 上記流入口と対向する第 1 の開口部と、 上記排 出口と対向する第 2の開口部とを有する弁体収納部と、
上記流入口と排出口とを連通する流路と、
上記第 1 の開口部内に摺動自在に収納され、 上記流入口を開閉するキヤ ップ状の弁体と、
上記第 2の開口部内に摺動自在に収納されたキャップ状の受圧部材と、 上記弁体と受圧部材とを接続する連結部と、
上記弁体収納部内に配置され、 上記弁体を閉方向に付勢するスプリ ング 上記弁体の外面と第 1 の開口部の内面との間に介装され、 上記弁体収納 部内に液体が流入することを防止する第 1 のシール部材と、
上記受圧部材の外面と第 2の開口部の内面との間に介装され、 上記弁体 収納部内に液体が流入することを防止する第 2のシール部材と、
を備えたことを特徴とする逆止弁。
1 3 . 流入口及び排出口を有するケースと、
該ケース内に配置され、 上記流入口と対向する第 1 の開口凹部と、 上記 排出口と対向する第 2の開口凹部と、 両開口凹部を区画する隔壁部と、 該 隔壁部に形成された貫通孔とを有する弁体収納部と、
上記流入口と排出口とを連通する流路と、
上記第 1の開口凹部内に摺動自在に収納され、 上記流入口を開閉するキ ヤップ状の弁体と、
上記第 2の開口凹部内に摺動自在に収納されたキャップ状の受圧部材と 上記貫通孔に摺動自在に揷通された状態で、 その先端部が上記弁体に接 続されると共に、 後端部が上記受圧部材に接続された連結部と、
上記第 1の開口凹部内に配置され、 上記弁体.を閉方向に付勢するスプリ ングと、
上記弁体の外面と第 1 の開口凹部の内面との間に介装され、 第 1 の開口 凹部内を液密に封止する第 1 のシール部材と、
上記受圧部材の外面と第 2の開口凹部の内面との間に介装され、 第 2の 開口凹部内を液密に封止する第 2のシール部材と、
上記連結部材の外面と上記貫通孔の内面との間に介装され、 第 1 の開口 凹部と第 2の開口凹部間で液体が流通することを防止する第 3のシール部 材と、
上記第 1 の開口凹部と連通された第 1 の油圧ポートと、 上記第 2の開口凹部と連通された第 2の油圧ポートと、 を備えたことを特徴とする開閉弁。
PCT/JP2002/003206 2001-03-30 2002-03-29 Systeme d'epuration de type presse a filtre, procede d'epuration, clapet de non-retour, et vanne d'ouverture/de fermeture WO2002078815A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/473,393 US20040149649A1 (en) 2001-03-30 2002-03-29 Filter press type dewatering system, dewatering method, deaerator, check valve, and opening/closing valve

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2001-100736 2001-03-30
JP2001100735A JP2002292206A (ja) 2001-03-30 2001-03-30 脱気装置
JP2001-100735 2001-03-30
JP2001100736A JP2002295699A (ja) 2001-03-30 2001-03-30 逆止弁及び開閉弁
JP2001-100734 2001-03-30
JP2001100734A JP2002292210A (ja) 2001-03-30 2001-03-30 フィルタープレス式脱水システム及び制御方法
JP2002-075819 2002-03-19
JP2002075819A JP2003275792A (ja) 2002-03-19 2002-03-19 フィルタープレス式脱水システム及び脱水方法

Publications (1)

Publication Number Publication Date
WO2002078815A1 true WO2002078815A1 (fr) 2002-10-10

Family

ID=27482165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003206 WO2002078815A1 (fr) 2001-03-30 2002-03-29 Systeme d'epuration de type presse a filtre, procede d'epuration, clapet de non-retour, et vanne d'ouverture/de fermeture

Country Status (4)

Country Link
US (1) US20040149649A1 (ja)
CN (1) CN1261184C (ja)
TW (1) TW536416B (ja)
WO (1) WO2002078815A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320042A (zh) * 2018-11-04 2019-02-12 贵州苗家尚品生态农业发展有限公司 一种牛粪便压缩脱水除臭装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2412613A1 (en) * 2002-11-22 2004-05-22 Mcn Bioproducts Inc. Filtration of viscous oilseed slurries
CA2582927C (en) * 2004-09-30 2013-06-11 Technological Resources Pty. Limited Microwave treatment of minerals
US8535542B2 (en) * 2008-10-31 2013-09-17 Daniel J. Simpson Filter press with integrated radio frequency heating
EP2299155A1 (en) * 2009-09-22 2011-03-23 Nuovo Pignone S.p.A. Poppet valve with diverging-converging flow passage and method to reduce total pressure loss
US20110084029A1 (en) * 2009-10-08 2011-04-14 Dominick O' Reilly Waste treatment system
US20110089097A1 (en) * 2009-10-19 2011-04-21 O'reilly Dominick Attachment and system for dewatering material
US20110094395A1 (en) * 2009-10-26 2011-04-28 O'reilly Dominick Method and attachment for dewatering logs
US8580084B2 (en) 2010-02-01 2013-11-12 Daniel J. Simpson Desalination method using a filter press
US9138668B2 (en) * 2010-02-19 2015-09-22 Daniel J. Simpson Dewatering of drilling mud using a filter press
US9303211B2 (en) 2011-06-20 2016-04-05 Daniel J. Simpson Bitumen extraction and dewatering in a filter press
CN103086584A (zh) * 2013-02-25 2013-05-08 周海波 淤泥处理系统及方法
CN105561645B (zh) * 2016-01-25 2018-08-17 佛山市金凯地过滤设备有限公司 一种齿状式保压压滤方法
CN105864128B (zh) * 2016-05-27 2017-10-13 广东省机械研究所 一种压滤机自动平衡压力装置
CN105967486A (zh) * 2016-05-31 2016-09-28 成都恒力达科技有限公司 一种处理污泥的环保设备
CN106381835B (zh) * 2016-08-29 2018-07-17 娄晓曼 一种河湖疏浚底泥的快速排水固结装置
CN106348564A (zh) * 2016-09-30 2017-01-25 周孝芳 污泥脱水前期热压干化处理设备
DE102016220107B4 (de) * 2016-10-14 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Entgasungsvorrichtung
WO2018093783A1 (en) * 2016-11-17 2018-05-24 Superior Industries, Inc. Filter press apparatus, systems and methods
CN106587563A (zh) * 2016-12-14 2017-04-26 安徽省通源环保科技有限公司 污泥高干压榨方法
CN107008042B (zh) 2017-06-03 2023-01-17 苏州城投环境科技发展有限公司 基于电磁力的污水污泥减量化脱水装置
CN107381989A (zh) * 2017-08-23 2017-11-24 郑州天舜电子技术有限公司 环保型污泥处理装置
US10780449B2 (en) 2018-07-09 2020-09-22 A. Raymond Et Cie Spray accessory having filter for vehicle washer spray system
CN109224546A (zh) * 2018-10-29 2019-01-18 兰州有色冶金设计研究院有限公司 一种过滤洗涤一体装置和方法
CZ308199B6 (cs) * 2019-03-12 2020-02-19 ISITRADE s.r.o. Zařízení pro tepelnou úpravu potravin
CN109973468B (zh) * 2019-04-29 2023-12-29 新乡航空工业(集团)有限公司 纯净、恒压、精准流量调节油源处理系统
CN110216912B (zh) * 2019-05-24 2020-11-24 华中科技大学 一种基于计算机控制的机械压滤脱水试验装置
CN110645479A (zh) * 2019-10-11 2020-01-03 云南大红山管道有限公司 一种具有双重自动卸压保护装置的浆体管道及其卸压方法
CN111288031B (zh) * 2020-02-21 2022-08-12 太原理工大学 一种交变液压力发生装置及压滤机
CN114645740B (zh) * 2020-12-18 2023-11-14 江苏核电有限公司 一种抗燃油油箱加装微正压除水降酸值装置及方法
CN113209679B (zh) * 2021-05-21 2021-11-23 中国矿业大学(北京) 板框式压滤机的智能监测与优化控制系统及其控制方法
CN113599867B (zh) * 2021-08-25 2022-08-12 北京科技大学 一种微细粒粘滞物料压滤脱水过程检测控制装置及方法
CN113908598B (zh) * 2021-10-21 2022-08-09 象山德曼机械有限公司 一种浓缩脱水一体设备及浓缩脱水方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139183A (en) * 1975-05-28 1976-12-01 Sumitomo Heavy Ind Ltd Apparatus for the heat treatment of sludge by microwave
JPS56145105A (en) * 1980-04-11 1981-11-11 Toshiba Corp Apparatus for thermal denitration of metal nitrate
JPS5710398A (en) * 1980-06-23 1982-01-19 Ebara Infilco Co Ltd Treatment of muddy substance
JPS6257615A (ja) * 1985-09-05 1987-03-13 フエニツクス テクノロジ− インコ−ポレイテツド 流送液体もしくは流送スラリ−のインライン脱気装置
JPS6234566Y2 (ja) * 1982-01-22 1987-09-03
US5263679A (en) * 1993-03-10 1993-11-23 Bushnell Engineering, Inc. Valve with actuator
JPH06134497A (ja) * 1992-10-26 1994-05-17 Toufuku Kk 2段式スラリー処理方法及び装置
JPH09276612A (ja) * 1996-04-10 1997-10-28 Toyo Constr Co Ltd 汚泥の脱水処理工法とその脱水処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151080A (en) * 1978-02-13 1979-04-24 Enviro Development Co., Inc. System and apparatus for control and optimization of filtration process
GB2035447B (en) * 1978-10-14 1983-07-27 Craggs T Liquid pumping apparatus
US4439325A (en) * 1982-08-06 1984-03-27 Cpc Engineering Corporation Pressurized filtration system
DE3426523A1 (de) * 1984-07-18 1986-01-30 Netzsch-Mohnopumpen GmbH, 8264 Waldkraiburg Verfahren und einrichtung zum beschicken einer filtervorrichtung
US5275740A (en) * 1992-06-08 1994-01-04 Jwi, Inc. Filter press with adaptive automated control arrangement
US6132176A (en) * 1999-01-08 2000-10-17 United States Filter Corporation Flow control sensor and method for filling of a filter press

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139183A (en) * 1975-05-28 1976-12-01 Sumitomo Heavy Ind Ltd Apparatus for the heat treatment of sludge by microwave
JPS56145105A (en) * 1980-04-11 1981-11-11 Toshiba Corp Apparatus for thermal denitration of metal nitrate
JPS5710398A (en) * 1980-06-23 1982-01-19 Ebara Infilco Co Ltd Treatment of muddy substance
JPS6234566Y2 (ja) * 1982-01-22 1987-09-03
JPS6257615A (ja) * 1985-09-05 1987-03-13 フエニツクス テクノロジ− インコ−ポレイテツド 流送液体もしくは流送スラリ−のインライン脱気装置
JPH06134497A (ja) * 1992-10-26 1994-05-17 Toufuku Kk 2段式スラリー処理方法及び装置
US5263679A (en) * 1993-03-10 1993-11-23 Bushnell Engineering, Inc. Valve with actuator
JPH09276612A (ja) * 1996-04-10 1997-10-28 Toyo Constr Co Ltd 汚泥の脱水処理工法とその脱水処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320042A (zh) * 2018-11-04 2019-02-12 贵州苗家尚品生态农业发展有限公司 一种牛粪便压缩脱水除臭装置

Also Published As

Publication number Publication date
US20040149649A1 (en) 2004-08-05
CN1261184C (zh) 2006-06-28
CN1499993A (zh) 2004-05-26
TW536416B (en) 2003-06-11

Similar Documents

Publication Publication Date Title
WO2002078815A1 (fr) Systeme d'epuration de type presse a filtre, procede d'epuration, clapet de non-retour, et vanne d'ouverture/de fermeture
CN102225260B (zh) 一种自动压滤脱水设备及其工作方法
CN104860504A (zh) 基于双体式污水污泥深度脱水装置的脱水方法
CN107382009A (zh) 超高压污泥高干度脱水方法
CN104803575A (zh) 超高压污水污泥深度脱水装置
CN104857749A (zh) 双体式污水污泥深度脱水装置
CN104817245A (zh) 污水污泥超高压脱水装置
JP2007075748A (ja) 固液分離装置
CN105561645A (zh) 一种齿状式保压压滤方法及设备
CN104926063A (zh) 基于污水污泥二次深度脱水装置的脱水方法
CN104649561B (zh) 一种变容式压滤机的压榨方法
JP2011098262A (ja) 加圧脱水装置および加圧脱水方法
CN219239492U (zh) 一种自吸式压滤脱水设备及固液分离器
JP6752430B1 (ja) フィルタープレス型脱水乾燥装置、及び、このフィルタープレス型脱水乾燥装置を用いた脱水乾燥方法
JP5614573B2 (ja) 含液廃棄物の乾燥方法とその装置
CN202113660U (zh) 一种自动压滤脱水设备
JP6484363B2 (ja) フィルタプレス脱水装置及びフィルタプレス脱水装置の運転方法
JP2002292210A (ja) フィルタープレス式脱水システム及び制御方法
CN105152510A (zh) 推压式泥浆脱水处理设备及处理方法
JP2002292206A (ja) 脱気装置
JP2002295699A (ja) 逆止弁及び開閉弁
KR20130018279A (ko) 고체 액체 분리 방법
CN211486683U (zh) 陶瓷泥浆脱水设备
CN204644090U (zh) 污水污泥超高压脱水装置
JP5985984B2 (ja) 固液分離装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 02807694X

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10473393

Country of ref document: US

122 Ep: pct application non-entry in european phase