WO2002075458A2 - Thermoplastic substrates for holographic data storage media - Google Patents
Thermoplastic substrates for holographic data storage media Download PDFInfo
- Publication number
- WO2002075458A2 WO2002075458A2 PCT/US2002/007986 US0207986W WO02075458A2 WO 2002075458 A2 WO2002075458 A2 WO 2002075458A2 US 0207986 W US0207986 W US 0207986W WO 02075458 A2 WO02075458 A2 WO 02075458A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- thermoplastic
- holographic
- substrate portions
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24047—Substrates
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0065—Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24044—Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/245—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
- G11B7/2534—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/26—Apparatus or processes specially adapted for the manufacture of record carriers
- G11B7/263—Preparing and using a stamper, e.g. pressing or injection molding substrates
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2250/00—Laminate comprising a hologram layer
- G03H2250/37—Enclosing the photosensitive material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2260/00—Recording materials or recording processes
- G03H2260/12—Photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2270/00—Substrate bearing the hologram
- G03H2270/10—Composition
- G03H2270/14—Plastic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
Definitions
- the present invention relates to holographic data storage media.
- Holographic data storage media can offer higher storage densities than traditional media.
- data can be stored throughout the volume of the medium rather than the medium surface.
- data can be superimposed within the same media volume through a process called shift multiplexing. For these reasons, theoretical holographic storage densities can approach tens of terabits per cubic centimeter.
- holographic data storage media entire pages of information can be stored as optical interference patterns within a photosensitive optical material. This can be done by intersecting two coherent laser beams within the optical material.
- the first laser beam called the object beam
- the reference beam interferes with the object beam to create an interference pattern that can be stored in the optical material as a hologram.
- the stored hologram is later illuminated with only the reference beam, some of the reference beam light is diffracted by the hologram. Moreover, the diffracted light creates a reconstruction of the original object beam.
- the data encoded in the object beam can be recreated and detected by a data detector such as a camera.
- the invention is directed towards holographic data storage media, holographic data storage systems, and methods for making holographic data storage media.
- the holographic data storage media may incorporate thermoplastic substrates having reduced substrate thicknesses.
- holographic data storage media incorporate thermoplastic substrates within a particular thickness range.
- a holographic data storage medium may include a first thermoplastic substrate portion having a thickness less than or approximately equal to 2 mm, a second thermoplastic substrate portion having a thickness less than or approximately equal to 2 mm, and a holographic recording material sandwiched between the first and second thermoplastic substrate portions.
- the first and second thermoplastic substrate portions may be made of at least one of the following: polycarbonate, polymethylmethacrylate PMMA), and amorphous polyolefin.
- the holographic recording material may be made of a photopolymer.
- the holographic data storage medium for instance, may take the form of a disk or a card.
- the first and second thermoplastic substrate portions may be injection molded substrate portions.
- each of the first and second thermoplastic substrate portions may have thicknesses less than or equal to approximately 2 mm, less than or equal to approximately 1.2 mm, or even less than or equal to approximately 0.6 mm.
- Optimal substrate thicknesses may have a lower limit determined by other variables such as birefringence and stiffness. Therefore, in one particular embodiment, each of the first and second thermoplastic substrate portions have thicknesses less than 1.3 mm and greater than 0.5 mm. 1.3 mm to 0.5 mm, for instance, may define an optimal thermoplastic substrate thickness range.
- the invention may comprise a holographic data storage system.
- the system may include a laser that produces at least one laser beam and optical elements through which the laser beam passes.
- the system may also include a data encoder, such as a spatial light modulator, that encodes data in at least part of the laser beam.
- the system may include a holographic recording medium that stores at least one hologram.
- the holographic recording medium may include one or more of the features mentioned above, such as thin thermoplastic substrate portions.
- the system may also include a data detector, such as a camera, that detects the hologram.
- the invention may comprise a method of fabricating holographic media.
- the method may include injection molding a first substrate portion and a second substrate portion, and depositing a photopolymer between the first and second substrate portions.
- Injection molding the first and second thermoplastic substrate portions may comprise injection molding the first and second thermoplastic substrate portions to have sufficiently thin substrate thicknesses.
- Depositing the photopolymer may comprise injecting the photopolymer between the first and second substrate portions. For instance, for a disk shaped medium, the photopolymer may be injected by center dispensing the photopolymer through an inner diameter ofthe substrate portions of the medium.
- the method may also include forcing the first substrate portion onto an upper reference plane and forcing the second substrate portion onto a lower reference plane.
- the photopolymer may then be cured in situ.
- Substrate thicknesses less than or equal to approximately 2.0 mm, less than or equal to approximately 1.2 mm, or less than or equal to approximately 0.6 mm may be highly advantageous. In particular, substrate thicknesses in these ranges may minimize the negative effects ofthe edge wedge phenomenon that is described in detail below.
- the edge wedge phenomenon is the result of differential cooling ofthe thermoplastic material as it solidifies in an injection molding cavity. The differential cooling, for instance, can result in substrates that exhibit cusps at the substrate edges that are thicker than the average thickness ofthe substrate.
- the range of 0.5 mm to 1.3 mm may define an optimal thermoplastic substrate thickness range for sandwich construction holographic media.
- Figure 1 illustrates an optical arrangement for holographic recording.
- Figure 2 is an enlarged view of an exemplary 10 by 10 bit pixel array that can be stored on a holographic medium as a hologram.
- Figure 3 illustrates how sequential pages or pixel arrays may be stored on a holographic data storage medium.
- Figures 4A and 4B illustrate an exemplary holographic data storage medium in accordance with one embodiment ofthe invention.
- Figure 5 illustrates an exemplary system for fabricating holographic data storage media.
- Figures 6A and 6B illustrate an exemplary substrate exhibiting cusps.
- Figure 7 is an enlarged cross sectional view of an edge of a substrate that exhibits a cusp caused by the edge wedge phenomenon.
- Figure 8 illustrates a system suitable for reading and writing to a holographic recording medium.
- Figure 1 illustrates an optical arrangement for holographic recording.
- laser 10 produces laser light that is divided into two components by beam splitter 14. These two components generally have an approximately equal intensity and may be spatially filtered to eliminate optical wave front errors.
- the first component exits beam splitter 14 and follows an object path.
- This "object beam” may then pass through a collection of object beam optical elements 18 A- 18E and a data encoder such as a Spatial Light Modulator (SLM) 20.
- SLM Spatial Light Modulator
- lens 18A may expand the laser light and lens 18B may condition the laser light so that the photons are traveling substantially parallel when they enter SLM 20.
- SLM 20 may encode data in the object beam, for instance, in the form of a holographic bit map (or pixel array).
- Figure 2 shows an enlarged view of an exemplary 10 by 10 bit pixel array.
- the encoded object beam may pass through lenses 18C, 18D, and 18E before illuminating a holographic recording media plane 21.
- lens 18C is located one focal length from SLM 20 and one focal length from Fourier transform plane 24A.
- Lens 18D is located one focal length from Fourier transform plane 24 A and one focal length from image plane 22A.
- Lens 18E is located one focal length from image plane 22 A and one focal length from Fourier transform plane 24B.
- the second component exits the beam splitter 14 and follows a reference path.
- This "reference beam” may be directed by reference beam optical elements such as lenses 26 and mirrors 28.
- the reference beam illuminates the media plane 21, interfering with the object beam to create a hologram on medium 25.
- medium 25 may take the form of a disk shaped medium or a card shaped medium.
- the disk may be rotatable within a holographic disk drive to read and write data.
- storage medium 25 is typically located in proximity to one ofthe Fourier transform planes.
- the data encoded in the object beam by SLM 20 can be recorded in medium 25 by simultaneously illuminating the object and reference paths.
- the data encoded in the hologram may be read, again, e.g., using an optical arrangement similar to that shown in Figure 1.
- the reference beam is allowed to illuminate the hologram on medium 25.
- This recreated object beam passes through lens 18F, permitting a reconstruction ofthe bit map that was encoded in the object beam to be observed at image plane 22B. Therefore, a data detector, such as camera 30 can be positioned at image plane 22B to read the data encoded in the hologram.
- the holographic bit map encoded by SLM 20 comprises one "page" of holographic data.
- the page may be an array of binary information that is stored in a particular location on the holographic medium as a hologram.
- a typical page of holographic data may be 1000 bit by 1000 bit pixel array that is stored in 1 square mm of medium surface area, although the scope ofthe invention is not limited in that respect. Because holographic data is stored throughout the medium volume, however, sequential pages may be overlapped in the recording process by a process called shift multiplexing.
- sequential pages are recorded at shifted locations around the medium.
- the shift distances are typically much less than the recorded area in one dimension (the down-track dimension) and approximately equal to the recorded area in the other dimension (the cross-track dimension).
- Figure 3 illustrates how sequential pages may be stored on medium 32.
- a portion 33 of medium 32 is enlarged for illustrative purposes.
- sequential pages of data 34 are overlapped in the down-track dimension 36.
- Later pages 38 in the sequence of pages also overlap one another in the down-track dimension 36 but do not overlap pages in the cross- track dimension 39.
- the respective pages of data for instance, may each cover approximately 1 square millimeter of surface area on the medium.
- the down-track dimension for instance may be approximately 10 ⁇ m, while the cross-track dimension may be approximately 1 mm.
- shift multiplexing sometimes referred to as phase correlation multiplexing, sequential pages are overlapped in the recording process in both the cross track dimension and the down track dimension.
- a holographic data storage system may implement one or more tracking techniques. Exemplary tracking techniques, for instance, are described in copending and commonly assigned U.S. Application Serial No. 09/813,065 to Jathan Edwards, entitled “TRACKING TECHNIQUES FOR HOLOGRAPHIC DATA STORAGE MEDIA,” filed March 20, 2001.
- Figures 4 A and 4B illustrate an exemplary embodiment of a holographic data storage medium 40.
- Figure 4A is a top view illustrating the disk shape of medium 40.
- Figure 4B is a cross sectional view illustrating the sandwich construction of medium 40.
- medium 40 includes a substrate having a first thermoplastic substrate portion 41 and a second thermoplastic substrate portion 42.
- Holographic recording material 43 may comprise a photopolymer that is sandwiched between the respective substrate portions 41, 42.
- the substrate portions 41, 42 may be made of at least one ofthe following: polycarbonate, polymethylmethacrylate, or amorphous polyolefin.
- polycarbonate polymethylmethacrylate
- amorphous polyolefin polyethylene glycol dimethacrylate
- FIG. 5 illustrates an exemplary system for fabricating high optical quality holographic data storage media.
- the system 50 may include at least two flat portions 51, 52.
- thermoplastic substrate portions 41, 42 may be forced against the respective flat portions 51, 52 so that the outer surface ofthe substrate portions 41, 42 substantially conform to respective flat portions 51, 52.
- a force may be applied via a vacuum, or the force may come from hydraulic pressure, e.g., if holographic recording material 43 is injected between the substrate portions.
- a holographic recording material 43 may be dispensed between the respective thermoplastic substrate portions 41, 42.
- the holographic recording material 43 may be injected by center dispensing a photopolymer through an inner diameter ofthe thermoplastic substrate portions 41, 42. In center dispensing, the photopolymer material flows radially to fill the cavity between the substrate portions 41, 42. Photopolymer material flow lines may be symmetric to the disk shaped medium.
- the injection process may also force the thermoplastic substrate portions 41, 42 against the respective flat portions 51, 52.
- the first and second flat portions 51, 52 may be positioned to define upper and lower reference planes.
- the upper flat portion 51 or lower flat portion 52 may be adjusted slightly so that the parallelism of medium surface is maintained throughout medium fabrication.
- substrate portions 41, 42 may need to be parallel to within one optical fringe.
- an interferometer may be implemented to measure parallelism.
- the system 50 may be mechanically pre-calibrated to ensure that the upper and lower surfaces ofthe resulting fabricated media will be sufficiently parallel. If the system is mechanically pre-calibrated to ensure parallelism, the positions ofthe upper and lower flat portions 51, 52 may be carefully pre-defined so that the upper and lower surfaces ofthe resulting fabricated media will be sufficiently parallel. In addition, if the system is mechanically pre-calibrated, an interferometer used to monitor parallelism may be unnecessary.
- Holographic recording material may be a photopolymer material. After the medium has been fabricated, the holographic recording material may have a thickness of approximately 1 mm. Thermoplastic substrate portions 42, 43 may each have thickness less than or equal to approximately 2 mm, less than or equal to approximately 1.2 mm, or even less than or equal to approximately 0.6 mm. Thus, the total thickness ofthe holographic recording medium may be less than or equal to approximately 5 mm, less than or equal to approximately 3.4 mm, or even less than or equal to approximately 2.2 mm. As described below, however, an optimal range of respective substrate thicknesses may fall within 0.5 mm to 1.3 mm.
- Thermoplastic substrate portions 42, 43 may be comprised of a suitable thermoplastic such as polycarbonate, polymethylmethacrylate, amorphous polyolefin, or the like. Moreover, thermoplastic substrate portions 42, 43 may be fabricated by an injection molding process. Injection molding the substrates, for instance, can provide many advantages in fabrication.
- injection molded substrates can be mass-produced at relatively low cost.
- the injection molds may be adapted to provide the substrates with additional features such as surface variations that are optically detectable. These optically detectable surface variations can carry precision tracking and/or pre-format information.
- U.S. Application Serial No. 09/813,065 by Jathan Edwards describes how prerecorded surface variations may provide precision tracking features to a holographic medium. For these and other reasons, it may be highly advantageous to fabricate the respective substrate portions by injection molding.
- thermoplastic substrate portions raises additional challenges.
- injection molding can result in substrate portions exhibiting an "edge wedge” phenomenon.
- the "edge wedge” phenomenon is the result ofthe cooling and solidification ofthe thermoplastic in an injection mold. As a thermoplastic material cools and solidifies in an injection mold, the thermoplastic material at the inner and outer edges ofthe mold may cool at a different rate than the rest ofthe thermoplastic material.
- This differential cooling can result in a substrate thickness that is non- uniform.
- small cusps at the edges of an injection molded disk substrate may have a thickness that is greater than the average disk thickness.
- the presence of such cusps is referred to as the "edge wedge” phenomenon or “edge wedge” problem.
- Figures 6A-6B illustrate an exemplary substrate 60 exhibiting a cusp 62 caused by the edge wedge phenomenon.
- Figure 6A is a top view of substrate 60 and Figure 6B is an enlarged cross sectional view ofthe outer edges of substrate 60.
- outer edges of substrate 60 exhibits a cusp 62 that makes the outermost substrate thickness larger than the average substrate thickness.
- an edge wedge phenomenon may occur at any location within the mold cavity wherein there is a thermal gradient in the molding tool.
- one or more edge wedge cusps may also be observed at or near the inner diameter of substrate 60.
- Figure 7 is an enlarged cross sectional view of an edge of substrate 70 exhibiting a cusp 72 caused by the edge wedge phenomenon.
- Figure 7 may correspond to either the inner or outer edge of a disk shaped substrate.
- the extent ofthe edge wedge phenomenon can be measured with variables X and Y.
- the variable Y can be used to measure the difference between the maximum thickness ofthe disk at a cusp and the average thickness ofthe disk.
- the variable X can be used to measure the distance between an edge ofthe disk and the point on the disk where the disk thickness becomes substantially uniform.
- the variable X may be typically about 1-2 mm millimeters and the variable Y may be on the order of tens of microns.
- the edge wedge phenomenon presents a significant obstacle to the fabrication of high optical quality holographic media.
- substrate portions 41 and 42 are forced against the respective flat portions 51, 52.
- the presence of cusps on the edges of substrate portions 41, 42 may undermine the ability to achieve uniform holographic recording material thickness.
- substrate portions 41, 42 exhibit cusps, for example, it can be particularly difficult to ensure that the outer surface of substrate portions 41, 42 are parallel to within one optical fringe. In short, the presence of cusps can undermine the ability to create a high optical quality holographic data storage medium.
- the usefulness ofthe disk can be reduced by the presence of cusps on the substrate portions. For instance, the storage density ofthe disk may be reduced if, during media fabrication, the substrate portions cannot be made to be sufficiently parallel to cause the holographic recording material to have a substantially uniform thickness.
- substrate portions may be fabricated to be sufficiently thin. In this manner, the edge wedge phenomenon may be reduced dramatically. In particular, thinner injection molded substrates exhibit smaller edge wedge phenomenon cusps. For instance, referring again to Figure 7, the variable Y can be reduced significantly when the thickness of injection molded substrates is reduced. Specifically, substrate portion thickness less than or equal to approximately 2 mm, less than or equal to approximately 1.2 mm, and even less than or equal to approximately 0.6 mm are useful to overcome edge wedge problems. As mentioned above, however, other media design variables such as birefringence and media stiffness may pose limitations on how thin a useful substrate can be made. In general, thicker substrates are stiffer and have lower birefringence. Thus, as described in the example below, there may exist an optimal substrate thickness range in which a number of variables fall within acceptable range for a high quality sandwich construction holographic data storage medium.
- thermoplastic materials such as polycarbonate, polymethylmethacrylate, and amorphous polyolefin are injection molded to fabricate 120-mm diameter substrates and 130-mm diameter substrates having thicknesses of 2.0 mm, 1.2 mm and 0.6 mm.
- the edge wedge is then measured for each respective substrate thickness, e.g., by measuring the variable Y as shown in Figure 7.
- Holographic data storage media are then fabricated using the respective substrates of differing thicknesses and the media fabrication techniques described above.
- thinner substrates In addition to overcoming the edge wedge problems, thinner substrates also produce advantages in overall media thickness. Thinner substrates, for instance, can reduce the total material cost of an individual medium. There may, however, be a lower limit to the thickness of a substrate portion that could be dictated, e.g., by substrate birefringence, stiffness, and/or other factors such as environmental protection capability. In short, the optimal thickness range for thermoplastic substrate portions for use in a sandwich construction holographic data storage medium is approximately 0.5 mm to 1.3 mm.
- substrate portions may be formed from a thermoplastic such as a polycarbonate, polymethylmethacrylate, amorphous polyolefin, or the like.
- the substrate material should be capable of confining a viscous photopolymer during the fabrication process.
- the material should be capable of exhibiting surface variations, e.g., embossed or molded surface variations, that can carry precision tracking and/or pre-format information.
- the material should be capable of encapsulating the holographic recording material to protect the holographic recording material from environmental contamination.
- the material should have relatively low birefringence. Birefringence is generally a measure ofthe variation ofthe index of refraction with orientation in the material. Large variations in the index of refraction with orientation, for instance, are generally undesirable for holographic media substrate materials.
- thermoplastic material referred to as amorphous polyolefin (APO) appears to be well suited as a substrate material for use in holographic media. In addition to meeting the design criteria above, APO does not absorb water vapor. Therefore, if APO is used as a holographic medium substrate, an anti-reflective coating can be applied to the medium without the need to bake or de-gas the substrate.
- APO amorphous polyolefin
- the optimal thickness range falls between approximately 0.5 mm and 1.3 mm. Birefringence may be too high if the substrate thickness is less than 0.5 mm, and edge wedge may become a problem if substrate thickness is greater than 1.3 mm. Therefore 0.5 mm to 1.3 mm represents the optimal range for thermoplastic substrates used in sandwich construction holographic data storage media, and APO appears to be the most suitable thermoplastic material for such substrates.
- Figure 8 illustrates a system 100 suitable for reading and writing to a holographic recording medium.
- System 100 includes at least one laser 102 that produces laser light 104.
- Laser light 104 passes through optical elements 106.
- optical elements 106 may include one or more beam splitters, lenses and mirrors.
- a data encoder, such as SLM 108 may be positioned within the optical elements to encode data in the laser light 104.
- the optical elements 106 may conform to the optical arrangement shown in Figure 1, although the scope ofthe invention is not limited in that respect.
- Medium 110 is positioned where it can be written with holographic bit maps. Medium 110, for instance may include one or more ofthe features described above, including thin substrate portions.
- Each substrate portion may have a thickness less than or equal to approximately 2 mm, less than or equal to approximately 1.2 mm, or even less than or equal to approximately 0.6 mm. Moreover, each substrate portion may fall within the optimal thickness range of approximately 0.5 mm to 1.3 mm.
- Data detector 112 such as a camera is positioned to detect data encoded bit maps on medium 110.
- a tracking detector (not shown) such as a PSD, a segmented detector array, a two-element photodetector or the like, may be positioned to detect light diffracted from medium 110 in a manner that enables system 100 to accurately locate track locations on medium 110.
- At least one laser 102 may be carried on a record/read head (not shown). Additional lasers (not shown) may also be carried on the record/read head. In this manner, laser 102 may be properly positioned to read and write holograms on the medium 110.
- a sandwich construction holographic data storage medium has been described.
- the substrate portions of medium may be of adequate thickness to overcome edge wedge problems.
- the medium may form part of a holographic data storage system.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
- Manufacturing Optical Record Carriers (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002574003A JP2004524571A (ja) | 2001-03-20 | 2002-03-18 | ホログラフィック・データ記憶媒体用の熱可塑性基板 |
| DE10296527T DE10296527T5 (de) | 2001-03-20 | 2002-03-18 | Thermoplastische Substrate für holografische Datenspeichermedien |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/812,518 | 2001-03-20 | ||
| US09/812,518 US6611365B2 (en) | 2001-03-20 | 2001-03-20 | Thermoplastic substrates for holographic data storage media |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2002075458A2 true WO2002075458A2 (en) | 2002-09-26 |
| WO2002075458A3 WO2002075458A3 (en) | 2003-10-16 |
Family
ID=25209821
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2002/007986 Ceased WO2002075458A2 (en) | 2001-03-20 | 2002-03-18 | Thermoplastic substrates for holographic data storage media |
Country Status (4)
| Country | Link |
|---|---|
| US (4) | US6611365B2 (enExample) |
| JP (1) | JP2004524571A (enExample) |
| DE (1) | DE10296527T5 (enExample) |
| WO (1) | WO2002075458A2 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006109224A3 (en) * | 2005-04-11 | 2007-07-26 | Koninkl Philips Electronics Nv | Holographic recording and/or read-out device and holographic carrier |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6611365B2 (en) | 2001-03-20 | 2003-08-26 | Imation Corp. | Thermoplastic substrates for holographic data storage media |
| US6625100B2 (en) * | 2001-03-20 | 2003-09-23 | Imation Corp. | Tracking techniques for holographic data storage media |
| KR100894195B1 (ko) | 2001-05-14 | 2009-04-22 | 디시이 아프릴리스, 인코포레이티드 | 정확히 평행한 표면을 갖는 광학 기록 매체 제조 방법 및장치 |
| US8786923B2 (en) * | 2002-11-22 | 2014-07-22 | Akonia Holographics, Llc | Methods and systems for recording to holographic storage media |
| US8199388B2 (en) * | 2002-11-22 | 2012-06-12 | Inphase Technologies, Inc. | Holographic recording system having a relay system |
| JP4325276B2 (ja) * | 2003-05-28 | 2009-09-02 | コニカミノルタエムジー株式会社 | ホログラフィック記録メディア及びその製造方法 |
| US7455889B2 (en) * | 2004-03-24 | 2008-11-25 | Imation Corp. | Holographic media fabrication techniques |
| JP2007066465A (ja) * | 2005-09-01 | 2007-03-15 | Fujifilm Corp | 光記録媒体及びその製造方法 |
| US7173744B1 (en) * | 2005-12-02 | 2007-02-06 | Inphase Technologies, Inc. | Article comprising holographic medium between substrates having environmental barrier seal and process for preparing same |
| TW200741383A (en) * | 2006-03-29 | 2007-11-01 | Koninkl Philips Electronics Nv | Setup for storing data in a holographic storage medium |
| US7967761B2 (en) * | 2006-12-01 | 2011-06-28 | Radi Medical Systems Ab | Sensor and guide wire assembly |
| US7768683B2 (en) * | 2007-01-12 | 2010-08-03 | International Business Machines Corporation | Apparatus and method to align the elements of a holographic information data storage system |
| US7995444B2 (en) | 2008-02-12 | 2011-08-09 | International Business Machines Corporation | Apparatus and method to store and retrieve information using an optical holographic data storage medium |
| US7986602B2 (en) | 2008-02-12 | 2011-07-26 | International Business Machines Corporation | Apparatus and method to set a rotation rate for an optical and holographic data storage medium |
| TWI530943B (zh) | 2014-12-26 | 2016-04-21 | 國立中央大學 | 全像儲存層、應用其的全像碟片以及其製造方法 |
| WO2024206691A1 (en) * | 2023-03-29 | 2024-10-03 | Digilens Inc. | Surface mounted volume phase structure and methods of manufacturing thereof |
Family Cites Families (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4330604A (en) | 1980-08-04 | 1982-05-18 | Hughes Aircraft Company | Fabrication of holograms on plastic substrates |
| JPS61126648A (ja) | 1984-11-26 | 1986-06-14 | Nippon Telegr & Teleph Corp <Ntt> | デイスク張り合せ装置及びその方法 |
| JPS6374618A (ja) | 1986-09-19 | 1988-04-05 | Hitachi Ltd | デイスク基板のプラスチツク成形金型 |
| JPS63124247A (ja) | 1986-11-13 | 1988-05-27 | Matsushita Electric Ind Co Ltd | 光デイスクの製造方法 |
| JP2561130B2 (ja) | 1988-06-27 | 1996-12-04 | 富士写真フイルム株式会社 | 光磁気記録媒体 |
| JPH02134219A (ja) | 1988-11-15 | 1990-05-23 | Sekisui Chem Co Ltd | 情報記録媒体用基板の成形金型 |
| EP0386971A1 (en) | 1989-03-06 | 1990-09-12 | Hitachi Maxell Ltd. | Method of producing optical disk, jig for carrying out the method, and optical disk produced by the method |
| US5279689A (en) | 1989-06-30 | 1994-01-18 | E. I. Du Pont De Nemours And Company | Method for replicating holographic optical elements |
| CA2044427C (en) | 1990-06-13 | 1997-02-11 | Junichiro Nakayama | Magneto-optical disk and manufacturing methods thereof |
| US5487926A (en) | 1990-11-22 | 1996-01-30 | Tdk Corporation | Optical disk |
| EP0488239B1 (en) | 1990-11-28 | 1997-07-30 | Sharp Kabushiki Kaisha | Method for manufacturing a stamper |
| US5326240A (en) | 1991-10-12 | 1994-07-05 | Sony Corporation | Metal mold device for molding a disc substrate |
| JPH05278088A (ja) | 1992-03-04 | 1993-10-26 | Sharp Corp | 光ディスク成形用金型 |
| US5470627A (en) | 1992-03-06 | 1995-11-28 | Quantum Corporation | Double-sided optical media for a disk storage device |
| DE4208328C2 (de) | 1992-03-16 | 2002-11-14 | Bayer Ag | Verfahren und Vorrichtung zur löschbaren Speicherung von Information |
| JP3104406B2 (ja) | 1992-06-15 | 2000-10-30 | 松下電器産業株式会社 | 光ディスク用原板とその製造方法 |
| JP2973155B2 (ja) | 1993-10-29 | 1999-11-08 | 株式会社名機製作所 | ディスク基板並びに該ディスク基板の成形に用いる成形金型 |
| US5460763A (en) | 1993-12-24 | 1995-10-24 | Kabushiki Kaisha Meiki Seisakusho | Sprueless disc mold and disc molding method thereof |
| DE69520920T2 (de) * | 1994-10-03 | 2001-09-27 | Matsushita Electric Industrial Co., Ltd. | Optisches Informationsmedium, sowie Einheit und Verfahren zu dessen Herstellung |
| JPH08180463A (ja) | 1994-12-20 | 1996-07-12 | Pioneer Video Corp | 光学式ディスク |
| US5597613A (en) | 1994-12-30 | 1997-01-28 | Honeywell Inc. | Scale-up process for replicating large area diffractive optical elements |
| JPH08203125A (ja) | 1995-01-31 | 1996-08-09 | Pioneer Electron Corp | 貼り合わせ型光ディスク及びその製造方法 |
| US5719691A (en) | 1995-05-05 | 1998-02-17 | Lucent Technologies Inc. | Phase correlation multiplex holography |
| JPH09180251A (ja) | 1995-12-22 | 1997-07-11 | Pioneer Electron Corp | ディスク基板、その成形用金型及び光ディスク |
| US5812288A (en) | 1995-12-27 | 1998-09-22 | Lucent Technologies Inc. | Holographic storage of digital data |
| SE506451C2 (sv) * | 1996-04-01 | 1997-12-15 | Toolex Alpha Ab | Förfarande och anordning för sammanlimning av substrat till dataskivor |
| US6042684A (en) | 1996-04-01 | 2000-03-28 | Toolex Alpha Ab | Method and apparatus for glueing together disc elements |
| JPH09295319A (ja) | 1996-05-01 | 1997-11-18 | Sony Corp | ディスク基板の成形用金型 |
| US5838650A (en) | 1996-06-26 | 1998-11-17 | Lucent Technologies Inc. | Image quality compensation method and apparatus for holographic data storage system |
| US5874187A (en) | 1996-08-15 | 1999-02-23 | Lucent Technologies Incorporated | Photo recording medium |
| JP3452113B2 (ja) | 1996-08-30 | 2003-09-29 | ソニー株式会社 | 光情報記録装置および方法、光情報再生装置および方法ならびに光情報記録媒体 |
| JPH10188365A (ja) | 1996-12-20 | 1998-07-21 | Pioneer Electron Corp | 貼り合わせディスクの製造方法 |
| JPH10230524A (ja) | 1997-02-20 | 1998-09-02 | Hitachi Ltd | 光ディスク基板の成形型および製造方法 |
| US5893998A (en) | 1997-02-21 | 1999-04-13 | Sony Corporation | Boundary apparatus for optical component molding |
| US6154441A (en) | 1997-04-17 | 2000-11-28 | Imation Corp. | Method for centering a hub in an optical disc, and an optical storage system using such disc |
| US5932042A (en) | 1997-06-19 | 1999-08-03 | Gensel; Lewis | Compact disc curing assembly line with deforming to a predetermined curvature prior to complete cure |
| WO1999007542A1 (de) * | 1997-08-06 | 1999-02-18 | Krauss-Maffei Kunststofftechnik Gmbh | Verfahren und vorrichtung zum verkleben von zwei dvd (digital versatile disc)-halbseiten |
| JPH1196601A (ja) | 1997-09-17 | 1999-04-09 | Nikon Corp | 光ディスクおよびその製造方法 |
| DE69941481D1 (de) * | 1998-02-27 | 2009-11-12 | Optware Corp | Verfahren und vorrichtung für optische informationen, verfahren und vorrichtung zur wiedergabe von optischen informationen, vorrichtung zur aufzeichnung, wiedergabe von optischen informationen sowie optisches informationsaufzeichnungsmedium |
| JP2002536778A (ja) | 1999-02-12 | 2002-10-29 | ゼネラル・エレクトリック・カンパニイ | データ記憶媒体 |
| US6348983B1 (en) * | 2000-06-08 | 2002-02-19 | Lucent Technologies Inc. | Holographic storage medium having enhanced temperature operating range and method of manufacturing the same |
| JP2002074749A (ja) * | 2000-08-30 | 2002-03-15 | Sony Corp | 光学記録媒体およびその製造方法 |
| US6625100B2 (en) | 2001-03-20 | 2003-09-23 | Imation Corp. | Tracking techniques for holographic data storage media |
| US6538776B2 (en) | 2001-03-20 | 2003-03-25 | Imation Corp. | Self-referenced holographic storage |
| US6611365B2 (en) | 2001-03-20 | 2003-08-26 | Imation Corp. | Thermoplastic substrates for holographic data storage media |
| JP2004310999A (ja) * | 2003-03-24 | 2004-11-04 | Fuji Xerox Co Ltd | 光記録媒体と光記録媒体の製造方法 |
| JP2005301202A (ja) * | 2004-03-19 | 2005-10-27 | Fuji Xerox Co Ltd | ホログラム記録媒体およびこれを用いたホログラム記録方法 |
| WO2005109114A1 (ja) * | 2004-05-10 | 2005-11-17 | Konica Minolta Medical & Graphic, Inc. | ホログラフィック記録メディア、ホログラフィック記録方法及びホログラフィック情報メディア |
-
2001
- 2001-03-20 US US09/812,518 patent/US6611365B2/en not_active Expired - Fee Related
-
2002
- 2002-03-18 JP JP2002574003A patent/JP2004524571A/ja not_active Withdrawn
- 2002-03-18 WO PCT/US2002/007986 patent/WO2002075458A2/en not_active Ceased
- 2002-03-18 DE DE10296527T patent/DE10296527T5/de not_active Withdrawn
-
2003
- 2003-05-19 US US10/441,426 patent/US20040042055A1/en not_active Abandoned
-
2004
- 2004-02-18 US US10/781,439 patent/US6850345B2/en not_active Expired - Fee Related
- 2004-10-11 US US10/962,630 patent/US7034971B2/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006109224A3 (en) * | 2005-04-11 | 2007-07-26 | Koninkl Philips Electronics Nv | Holographic recording and/or read-out device and holographic carrier |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004524571A (ja) | 2004-08-12 |
| WO2002075458A3 (en) | 2003-10-16 |
| US7034971B2 (en) | 2006-04-25 |
| US20050041272A1 (en) | 2005-02-24 |
| US6850345B2 (en) | 2005-02-01 |
| DE10296527T5 (de) | 2004-04-22 |
| US20020135829A1 (en) | 2002-09-26 |
| US20040042055A1 (en) | 2004-03-04 |
| US6611365B2 (en) | 2003-08-26 |
| US20040165235A1 (en) | 2004-08-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6611365B2 (en) | Thermoplastic substrates for holographic data storage media | |
| RU2459284C2 (ru) | Устройства и способы хранения данных | |
| CN101681144B (zh) | 单目全息数据存储系统结构 | |
| Orlic et al. | 3D bit-oriented optical storage in photopolymers | |
| US6556531B1 (en) | Multi-layered holographic read-only memory and data retrieval method | |
| US4943126A (en) | Replication of carriers bearing digitally recorded information | |
| US20040001400A1 (en) | Optical data storage system with focus and tracking error correction | |
| JP2003521744A (ja) | 情報をホログラフィック媒体に記録するための方法及びシステム | |
| EP1051667A4 (en) | Optical data storage through selective local change of a format hologram | |
| KR101610961B1 (ko) | 광 데이터 저장 디스크를 복제하는 방법 | |
| KR20100074080A (ko) | 데이터 저장 매체에 사용되는 방법 및 시스템 | |
| US6804034B2 (en) | Fluid containment substrates for holographic media | |
| JP2004524571A5 (enExample) | ||
| WO2006093054A1 (ja) | ホログラム記録媒体及びホログラム記録再生装置 | |
| CN101582269A (zh) | 聚焦光学系统和光盘母盘曝光装置 | |
| JP2005078691A (ja) | ホログラフィック記録媒体 | |
| WO2015163026A1 (ja) | 光学部品、およびその製造方法 | |
| US20040190095A1 (en) | Optical recording medium and optical recording method | |
| JPH04229417A (ja) | 情報の光学記憶装置 | |
| US20030147327A1 (en) | Holographic storage device with faceted surface structures and associated angle multiplexing method | |
| JPS63500747A (ja) | 光学的デ−タ蓄積媒体の複製 | |
| Orlic et al. | Optical Data Storage Using Microholographic Gratings | |
| JPH0291833A (ja) | 光学的記録媒体及びその製造方法 | |
| JPS63271741A (ja) | 光記録媒体の製造方法 | |
| KR19990081766A (ko) | 광기록 매체 및 그 제조방법 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): DE JP |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2002574003 Country of ref document: JP |