WO2002070726A1 - Procede de preparation de derives de propoxyaniline optiquement actifs - Google Patents

Procede de preparation de derives de propoxyaniline optiquement actifs Download PDF

Info

Publication number
WO2002070726A1
WO2002070726A1 PCT/JP2002/002054 JP0202054W WO02070726A1 WO 2002070726 A1 WO2002070726 A1 WO 2002070726A1 JP 0202054 W JP0202054 W JP 0202054W WO 02070726 A1 WO02070726 A1 WO 02070726A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
same
microorganism
Prior art date
Application number
PCT/JP2002/002054
Other languages
English (en)
French (fr)
Inventor
Kouji Sato
Tsutomu Yagi
Kazuo Kubota
Akihiro Imura
Original Assignee
Daiichi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co., Ltd. filed Critical Daiichi Pharmaceutical Co., Ltd.
Priority to KR1020037011568A priority Critical patent/KR100868619B1/ko
Priority to CA002440411A priority patent/CA2440411A1/en
Priority to EP02702751A priority patent/EP1367132B1/en
Priority to AT02702751T priority patent/ATE439333T1/de
Priority to US10/469,827 priority patent/US7217560B2/en
Priority to JP2002570748A priority patent/JP4169332B2/ja
Priority to DE60233307T priority patent/DE60233307D1/de
Publication of WO2002070726A1 publication Critical patent/WO2002070726A1/ja
Priority to NO20033880A priority patent/NO20033880D0/no
Priority to HK04106493.5A priority patent/HK1063819A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/008Preparation of nitrogen-containing organic compounds containing a N-O bond, e.g. nitro (-NO2), nitroso (-NO)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/188Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a method for producing an optically active propoxyaniline derivative useful for producing an antibacterial compound and a method for producing an intermediate therefor.
  • compound (V) is obtained by protecting compound (A) obtained by protecting a hydroxyl group of a commercially available lactate ester with a tetrahydrovinylan group with lithium aluminum hydride to obtain compound (B).
  • the compound (C) is treated with sodium hydride to obtain a compound (D), and then the compound can be synthesized by removing the tetrahydropyrael group and reducing the nitro group.
  • lactate esters that are the raw materials for compound (A)
  • those that are inexpensive and readily available have an optical purity of about 97% ee, which is unsuitable as a raw material for levofloxacin, which requires a high optical purity of 99 ee or more. is there.
  • An object of the present invention is to provide an inexpensive and efficient method for producing an optically active propoxyaniline derivative and lepofloxacin useful as an antibacterial agent and a method for producing an intermediate therefor.
  • the present invention provides an ester asymmetric ester obtained by crushing cells of a microorganism having an ester asymmetric hydrolysis ability under high pressure, and purifying the cells by anion chromatography, hydrophobic chromatography, and then anion chromatography.
  • An object of the present invention is to provide an enzyme having hydrolytic ability.
  • the inventors of the present invention have found that, by treating a racemic lactate derivative with an enzyme having an asymmetric hydrolytic activity of an ester or the like, the ester portion of one of the optical isomers is specifically hydrolyzed.
  • the present inventors have found a method, and have also found that an optically active propoxydiline derivative can be produced in a shorter time and at a lower cost by using the compound obtained by the hydrolysis as an intermediate.
  • the present invention provides a compound represented by the formula (I):
  • the formula (I-a) ( I- a) ( I- a) is characterized in that the microorganism is isolated and collected from a culture solution of a microorganism having an ester asymmetric hydrolysis ability, the microorganism cell, or a reaction solution after treatment with the treated microorganism cell. _ a)
  • R 1 represents an alkyl group having 1 to 6 carbon atoms, and: 2 represents a protecting group for a hydroxyl group.
  • Y represents an alkoxy group having 1 to 6 carbon atoms, a halogen atom or a di (1-C 6 alkyl) amino group
  • R 3 and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms. Means a group.
  • R 5 represents an alkylsulfonyl group which may have a substituent or an arylsulfonyl group which may have a substituent
  • X 1 , X 2 , R 3 and R 4 are The compound (VIII) is closed under basic conditions to give a compound of the formula (IX)
  • R 6 is an alkyl group having 1 to 6 carbon atoms, or BZ 2 (where Z is a halogen atom, a C, -C 6 alkoxy group, or a C 2 -C 7 alkyl radicaloxyloxy group) Wherein X 1 and X 2 are the same as described above.)
  • the present invention provides an ester asymmetric obtained by crushing cells of a microorganism having an ester asymmetric hydrolysis ability under high pressure and purifying the resulting cells by anion chromatography, hydrophobic chromatography, and then anion chromatography.
  • An object of the present invention is to provide an enzyme having hydrolytic ability.
  • the present invention relates to a compound (I) obtained by treating a compound (I) with an enzyme having an ester asymmetric hydrolysis ability, a culture solution of a microorganism having an ester asymmetric hydrolysis ability, the microorganism cells, or the treated microorganism cells.
  • a compound obtained by treating a compound (I-a) obtained by isolation and collection from a liquid with a metal borohydride compound, and treating the resulting compound (II) and the compound (III) in the presence of a base (IV) is converted into an optically active propoxydiline derivative (V) in one step by a reduction reaction, and the compound (XII) useful as an antibacterial agent is produced from the compound (V).
  • X 1 , X 2 and X 3 each independently represent a halogen atom, and the halogen atom is preferably a fluorine atom.
  • RRs 3 and 4 mean an alkyl group containing any of linear, branched and cyclic, and preferably has 1 to 6 carbon atoms, particularly preferably a methyl group, an ethyl group and an isobutyl group.
  • R 2 represents a protecting group for a hydroxyl group.
  • This protecting group may be any commonly used one.
  • (substituted) means “may have a substituent”.
  • Specific examples include (substituted) alkoxyl carbonyl groups such as tertiary butoxycarbonyl group and 2,2,2-trichloroethoxycarbonyl group; benzyloxyca (Substituted) aralkyloxycarbonyl groups such as a luponyl group, a paramethoxybenzyloxycarbonyl group, a paranitrobenzyloxycarbonyl group; an acetyl group, a methoxyacetyl group, a trifluoroacetyl group, a chloroacetyl group, a vivaloyl group; (Substituted) acyl groups such as formyl group and benzoyl group; tertiary butyl group, aryl group (propenyl group), benzyl group, paranitrobenzyl group, paramethoxybenzyl group, trip
  • R 2 is preferably a group which can be removed under a reducing condition.
  • a (substituted) aralkyl group is preferable, and a (substituted) aralkyl group having a benzyl structure is particularly preferable.
  • Benzyl groups are preferred.
  • R 5 represents a (substituted) alkylsulfonyl group or a (substituted) arylsulfonyl group, preferably an alkylsulfonyl group having 1 to 6 carbon atoms or a (substituted) benzenesulfonyl group.
  • a methanesulfonyl group and a p-toluenesulfonyl group are particularly preferred.
  • R 6 represents a C 6 alkyl group or BZ 2 (where Z is a halogen atom, CL— (which represents a 6- alkoxy group or a C 2 -C 7 alkyl-propionyloxy group). .. the alkoxy groups, a methoxy group, an ethoxy group, isopropoxy group, tert an butoxy group and the like halogen atom, wherein X 1, X 2 ⁇ beauty X 3 same as are mentioned C 2 - Examples of the C 7 alkylcarbonyloxy group include an acetyloxy group, a propionyloxy group, a petyryloxy group, etc. Among them, BF 2 is particularly preferred as R 6 .
  • Y is an alkoxy group having 1 to 6 carbon atoms, a halogen atom or dialkyl It means an amino group, preferably an alkoxy group having 1 to 6 carbon atoms, particularly preferably a methoxy group and an ethoxy group.
  • the compound (I) is treated with an enzyme having an asymmetric hydrolytic activity of an ester, a culture solution of a microorganism having an asymmetric hydrolytic activity of the ester, the microorganism cells, or a processed product of the microorganism cells.
  • This is a step of obtaining a compound (I_a).
  • the compound (I) is suspended in an appropriate buffer solution, and then an enzyme, a culture solution of a microorganism, the microorganism cells or the treated microorganism cells are added, and the mixture is stirred and treated.
  • the enzyme used in the reaction is not particularly limited as long as it has an ester asymmetric hydrolysis ability. Examples of the enzyme include commercially available enzyme preparations derived from microorganisms, animals and plants.
  • lipase As the enzyme used in the present invention, lipase is preferable.
  • the lipase may be immobilized.
  • Microorganisms include the genus Cladosporium and Absidia
  • Molds such as genus (Absidia), genus Nannizzia, genus Aspergillus, genus Rhizopus, genus Mucor; genus Zygoascus, genus Candida, saccharomyces (Saccharomyces) ) Or a genus of Bacillus, a genus of Microbacterium, a genus of Micrococcus, a genus of Pseudomonas, a genus of Corynebacterium, a genus of Streptomyces And the like.
  • bacteria are preferred, and the genus Bacillus or the bacterium Microbacterium is more preferred.
  • Bacillus cereus or Microbacterium laevaniformas is preferred, particularly Bacillus cereus DSC0007, Bacillus cereus ATCC14579 (Baci 1 lus cereus ATCC14579), or Microbacterium laevianiforma.
  • IF0471 Microbacterium laevaniformasIF0471 is preferred.
  • processed microorganisms include crushed microorganisms and their purified products.
  • an enzyme purified from these microorganisms particularly bacterial cells.
  • a purified enzyme those obtained by crushing cells under high pressure and purifying them by anion chromatography, hydrophobic chromatography, and then anion chromatography are particularly preferable.
  • the degree of purification of the enzyme may be such that the desired activity is exhibited.
  • purified enzymes may be obtained by treating the cells as described above, or may be those produced by another host such as Escherichia coli by recombinant DNA technology.
  • an enzyme by recombinant DNA technology for example, the following procedure is used.
  • the purified enzyme is further purified by reverse-phase chromatography to determine the amino acid sequence of the protein, a probe is prepared based on the amino acid sequence, and the active fragment of the asymmetric hydrolase is derived from the DNA fragment of the bacterial cell.
  • Clone the DNA encoding this is amplified by PCR, a recombinant plasmid is prepared, introduced into E. coli, etc., and the E. coli, etc. is cultured to obtain a target enzyme.
  • ester moiety of one of the optical isomers is selectively hydrolyzed to produce a compound (I-b)
  • the compound (I_a) can be isolated and collected by adding an organic solvent such as ethyl acetate, chloroform, and the like to the mixed solution and performing a treatment such as stirring and liquid separation.
  • an organic solvent such as ethyl acetate, chloroform, and the like
  • the enzymes and bacterial cells used in the treatment are compounds
  • the treatment temperature for these hydrolysis and isolation may usually be in the range of 5 ° C to 6 Ot, but is preferably in the range of 20 ° C to 40 ° C.
  • the pH of the treatment solution may be in the range of 4 to 9, but is preferably in the range of 6 to 8.
  • the treatment time may be in the range of 1 hour to 7 days, but is preferably in the range of 1 hour to 30 hours.
  • the concentration of compound (I) in the treatment solution is usually in the range of 0.1% to 10% by weight, but is preferably in the range of 0.5% to 5%.
  • the amount of the culture solution of the enzyme and the microorganism, the amount of the microorganism cell, or the processed product of the microorganism cell is not particularly limited, but is 0.05 to 0 times by weight based on the dry weight with respect to the compound (I). 5 times is appropriate.
  • Step (b) is a step of obtaining compound (II) by treating compound (I-a) with a metal borohydride compound in a non-alcoholic solvent in the presence of a primary alcohol.
  • metal borohydride compound examples include sodium borohydride, lithium borohydride, calcium borohydride, potassium borohydride, zinc borohydride, magnesium borohydride, sodium cyanoborohydride, and the like. Wear. Of these, sodium borohydride is preferred.
  • the amount of the metal borohydride used may be in the range of 1 to 5 moles, and preferably about 1.1 to 2 moles, relative to Compound (Ia).
  • the solvent examples include hydrocarbon solvents such as n-hexane, n-pentane, cyclohexane, and cyclopentane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; getyl ether, diisopropyl ether (I PE), methyl tertiary butyl ether (MTBE), tetrahydrofuran (THF), dimethoxyethane, 1,4-dioxane, etc .; ether solvents; chloroform, methylene chloride, 1,2-dichloroethane (EDC ) And the like. In addition, water, acetates and the like can be mentioned. These solvents may be used alone or in combination of two or more. Among these solvents, aromatic hydrocarbon solvents such as toluene and xylene are preferable.
  • aromatic hydrocarbon solvents such as toluene and xylene are preferable.
  • the primary alcohol is not particularly limited, but is preferably methanol.
  • the amount of the primary alcohol to be used may be in the range of 3 to 15 moles, preferably about 4 to 8 moles, relative to Compound (I-a).
  • reaction temperature depends on the solvent used, but is from -78 ° C to the boiling point of the solvent, preferably from 10 ° C to the boiling point of the solvent. Reaction times can range from 1 to 24 hours, preferably from 2 to 16 hours.
  • Step (c) comprises treating compound (II) in a solvent in the presence of a base. This is a step of obtaining a compound (III).
  • solvent various solvents can be used.
  • hydrocarbon solvents such as n-hexane and n-pentane
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • IPA isopropanol
  • n-butanol tert-butanol alcoholic solvents: getyl ether, diisopropyl ether (IPE), methyl tertiary butyl ether (MTBE :), tetrahydrofuran (THF;), dimethoxy Ether solvents such as ethane and 1,4-dioxane
  • amide solvents such as dimethylformamide (DMF) and dimethylacetamide (DMA c)
  • chloroform methylene chloride, 1,2-dichloroethane
  • Examples include halogenated hydrocarbon solvents such as EDO.
  • water, acetonitrile, acetates, acetone, and the like may be used alone or in combination of two or more.
  • aromatic hydrocarbon solvents such as toluene and xylene are preferable.
  • the reaction temperature varies depending on the type of the base and the solvent used, but it is from 178 ° C to the boiling point of the solvent, preferably from 110 ° C to the boiling point of the solvent.
  • the base may be organic or inorganic, and may be an alkali metal or alkaline earth metal, such as sodium, potassium, lithium, magnesium, calcium, and other hydroxides, carbonates, bicarbonates, and alkoxides.
  • Metal hydrides such as sodium hydride, potassium hydride, lithium hydride, etc., alkyllithium reagents such as n-butyllithium, methyllithium, lithium disopropylamide, triethylamine, N, N-diisopropylethylamine, etc.
  • Non-5-ene DBN
  • dimethylaniline N-methylmorpholin and other heterocyclic compounds
  • carbonates of alkaline metal or alkaline earth metal such as carbonated lime, or alkaline metal or alkaline earth metal such as lithium hydroxide or hydroxide of alkaline earth metal Or alkali metal alkoxides such as sodium tert-butoxide and potassium tert-butoxide are preferred.
  • alkali metal or alkaline earth metal carbonate such as potassium carbonate
  • an alkaline metal or alkaline earth metal hydroxide such as a hydroxide lime.
  • the amount of the base to be used may generally be in the range of 0.1 to 15 times, and preferably about 1 to 5 times, the molar number of the compound (III).
  • quaternary ammonium salts such as tetrabutylammonium bromide and benzyl triethylammonium chloride, potassium iodide, and sodium or lithium earth metal such as sodium iodide are used. It may be carried out in the presence of iodide and chloroether.
  • Step (d) is a step of obtaining compound (V) by simultaneously performing conversion of the nitro group of compound (IV) to an amino group and deprotection of R 2 by a reduction reaction.
  • the reduction reaction can be performed by a usual hydrogenation method or the like.
  • a catalytic hydrogenation method in the presence of a catalyst may be mentioned, and a metal catalyst that is usually used may be used as a catalyst that can be used in this method.
  • a metal catalyst that is usually used may be used as a catalyst that can be used in this method.
  • palladium-carbon, Raney nickel and Raney cobalt are preferred.
  • the solvent is not particularly limited as long as it does not inhibit the reaction, and examples of the hydrocarbon include n-hexane, n-pentane, benzene, toluene, xylene and the like.
  • Alcohols include methanol, ethanol, propanol, isopropanol (IPA), n-butanol, and tertiary butanol.
  • ethers include getyl ether, diisopropyl ether (IPE), methyl tertiary butyl ether (MTBE), tetrahydrofuran (THF), dimethoxyethane, and 1,4-dioxane.
  • amide type examples include dimethylformamide (DMF) and dimethylacetamide (DMAc).
  • Halogenated hydrocarbons include chloroform, methylene chloride, 1,2-dichloroethane (EDC).
  • EDC 1,2-dichloroethane
  • water, acetonitrile, acetates, acetone and the like can be mentioned.
  • solvents may be used alone or in combination of two or more.
  • alcohol solvents such as methanol, ethanol, propanol and isopropanol (IPA), aromatic hydrocarbon solvents such as toluene and xylene, and mixed solvents of these and water are preferable.
  • ammonium formate As a hydrogen source, in addition to hydrogen gas, ammonium formate can be used.
  • the amount of ammonium formate may be in the range of 1 to 15 moles, and preferably about 2 to 5 moles, per mole of Compound (IV).
  • reaction temperature varies depending on the type of the base and the solvent used, but it is from 178 ° C to the boiling point of the solvent, preferably from room temperature to 80 ° C. Reaction times range from 1 to 24 hours, preferably from 2 to 16 hours.
  • Step (e) is a step of reacting compound (V) with a methylene malonate compound of formula (VI) to obtain compound (VII).
  • Examples of the methylene malonate compound (V I) to be used include getyl ethoxymethylene malonate, dimethylmethoxymethylene malonate and the like.
  • the methylene malonate compound (VI) is preferably used in an equimolar amount or more with respect to the compound (V), and the mixture is heated and stirred at about 100 to 180 ° C without solvent. It can be carried out by heating to reflux in an appropriate solvent.
  • the solvent at this time is not particularly limited as long as it does not adversely affect the reaction.
  • hydrocarbons such as benzene, toluene, xylene, n-hexane, cyclohexane, and n_pentane; methanol, Ethanol, propanols; lower alcohols such as butanols; ethers such as getyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane; N, N-dimethylformamide, N, N-dimethyl Amides such as acetoamide and N-methyl-2-pyrrolidone; aprotic polar solvents such as dimethyl sulfoxide and sulfolane; Can be When a solvent is used, the reaction may be performed at a temperature lower than the boiling point of the solvent.
  • Step (II) is a step of reacting compound (VII) with a sulfonyl compound to obtain compound (VIII).
  • Examples of the sulfonyl compound used include ⁇ -toluenesulfonyl chloride, methanesulfonyl chloride, and chloromethanesulfonyl chloride.
  • the reaction is preferably performed in the presence of a base.
  • a base examples include tertiary alkylamines such as triethylamine, tributylamine, and ⁇ , ⁇ -diisopropylethylamine; ⁇ , ⁇ -dimethylaniline, Dialkyl anilines such as ⁇ , ⁇ -ethylylaniline; heterocyclic amines such as pyridine, ⁇ , ⁇ -dimethylaminopyridine and ⁇ ⁇ ⁇ -methylmorpholine; be able to.
  • an aprotic solvent is preferable, and ethers such as getyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, and the like; ⁇ , ⁇ ⁇ ⁇ -dimethylformamide, ⁇ , ⁇ -dimethyla Examples include amides such as cetamide and di-methyl 2-pyrrolidone; dichloromethane, chloroform, 1,2-chloroethane, and the like.
  • the reaction temperature is preferably about 0 to 100 ° C.
  • Step (g) is a step of obtaining compound (IX) by cyclizing compound (VIII) under basic conditions.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base include metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate. Salts: metal bicarbonates such as sodium bicarbonate and potassium bicarbonate can be mentioned.
  • tertiary alkylamines such as triethylamine, triptylamine and N, N-diisopropylethylamine; dialkylanilines such as N, N-dimethylaniline and N, N-ethylylaniline; pyridine; N Heterocyclic amines such as N, N-dimethylaminopyridine and N-methylmorpholine; metal alkoxides such as sodium methoxide, sodium methoxide, sodium isopropoxide, and potassium tertiary ptoxide; and other 1,8-diazabicyclo [ 5,4,0] pentane, N-benzyltrimethylammonium octyloxide, and the like.
  • Reaction solvents include methanol, ethanol, propanols; lower alcohols such as butanols; getyl ether, tetraoctydrofuran, dioxane, 1,2-dimethoxyethane, 2-methoxyethyl ether, ethylene glycol getyl Ethers such as ethers; amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-methyl-1-pyrrolidone; aprotic polar solvents such as dimethyl sulfoxide and sulfolane And the like.
  • the reaction may be carried out at a temperature ranging from room temperature to 15 Ot.
  • Step (h) is a step of heating compound (IX) in the presence or absence of a boron compound to obtain compound (X).
  • (X) a compound in which R 6 is BZ 2 is obtained.
  • Specific examples of the boron compound include boron trifluoride 'tetrahydrofuran complex, boron trifluoride. And mono-ter complexes.
  • the reaction in the absence of a boron compound is preferably performed by heating to 100 to 200 ° C. in a solvent such as polyphosphoric acid.
  • the reaction in the presence of the boron compound is carried out by adding boron trifluoride / tetrahydrofuran complex, boron trifluoride / ethyl ether complex, etc. in a solvent such as acetic anhydride or propionic anhydride at 150 ° C. It is preferable to carry out by heating to 0 Ot.
  • Step (i) is a step of reacting compound (X) with 4-methylpiperazine to obtain compound (XI).
  • R 6 in the formula (X) is a Ct- C 6 alkyl group, it is hydrolyzed under basic or acidic conditions to form a carboxylic acid and then reacted with 4-methylpidazine. Is preferred.
  • the reaction is preferably performed in the presence of a base.
  • the base may be an inorganic base or an organic base, and examples of the inorganic base include alkali metal or alkaline earth metal carbonates and hydrogen carbonates.
  • examples of the organic base include a trialkylamine and a nitrogen-containing heterocyclic compound. Specifically, triethylamine, triptylamine, ethyldiisopropylamine, etc., or 4-methylmorpholine, dimethylaminopyridine, etc., or 4-methylpiperazine may be used in excess to double as a base. .
  • This reaction can use a solvent, for example, dimethyl sulfoxide.
  • Step (j) is a step of obtaining compound (XII) by hydrolyzing compound (XI).
  • This hydrolysis reaction can be performed, for example, by heating in a protic solvent in the presence of a base.
  • heating conditions in the presence of trialkylamine in an alcohol solvent can be exemplified.
  • heating and stirring may be performed in ethanol in the presence of triethylamine.
  • the compound in which X 1 is a fluorine atom is lepofloxacin.
  • the optical purity (% ee) of the obtained compound was measured by HPLC or GC.
  • the absolute configuration of the obtained compound was determined by comparing a separately synthesized absolute configuration with a known sample.
  • 2-Ethyl benzyloxypropionate (30 Omg) was suspended in 0.1 M phosphate buffer ( ⁇ 6.5) (30 ml), and lipase Fine Grade (Seikagaku Corporation, Rhizopus delemar; 6 mg) was added. The mixture was stirred at 30 ° C for 24 hours. Ethyl acetate was added to the reaction solution, the denatured protein was removed by celite filtration, the pH was adjusted to 7.0 with a 1N aqueous sodium hydroxide solution, and the mixture was separated and extracted. The organic layer was washed with a 5% aqueous sodium hydrogen carbonate solution and dried over anhydrous sodium sulfate.
  • Reference Example 1 A seed of Microbacterium laevaniformas IFO 14471 was inoculated into 100 ml of ordinary bouillon medium (Sakaguchi flask) and cultured with shaking at 30 ° C overnight. After collecting the cells by centrifugation, they were freeze-dried to obtain freeze-dried cells of IF014471.
  • IFO 14471 prepared according to Reference Example 1 by suspending 2.0 g (9.6 mm o 1) of 2-benzylethyl propionate in 100 ml of 0.1 M phosphate buffer (PH 7.0). Was added and the mixture was stirred at 30 ° C. Since the pH decreased as the reaction progressed (due to the formation of carboxylic acid), 1N sodium hydroxide was added to maintain the pH in the system between 6.8 and 7.2. After the reaction for 14 hours, 100 ml of ethyl acetate was added, and the mixture was stirred for a while.
  • Example 4 Ethyl (R) -1-benzyloxypropionate ATCC 14579 was prepared by suspending 2.0 g (9.6 mmo 1) of 2-benzyloxypropionate in 100 ml of 0.1 M phosphate buffer (pH 7.0) in the same manner as in Reference Example 1. Was added and the mixture was stirred at 30 ° C. As the reaction progressed and the pH dropped (due to the formation of carboxylic acid), 1N sodium hydroxide was added to keep the pH in the system between 6.8 and 7.2. After the reaction for 16 hours, 10 Oml of ethyl acetate was added, and the mixture was stirred for a while, and then the cells were removed by filtration through Celite.
  • Example 3 all aqueous layers in the extraction operation with ethyl acetate were collected, adjusted to PH2 with 10% hydrochloric acid, and then extracted twice with 10 Oml of ethyl acetate. After drying the organic layer, the solvent was distilled off and (S) -benzyloxypropionic acid was added in 0.83 g (48.
  • esters such as 1-4 can be used as a raw material for asymmetric hydrolysis of esters such as 1-4.
  • Example 7 (R) -1,3-difluoro-2- (2-benzyloxypropoxy) sodium tert-butoxy (63.6 mg) was suspended in toluene (0.5 ml) under ice-cooling. .
  • the solution was added to a toluene solution (0.5 ml) of 2,3,4-trifluoronitrobenzene (103.5 mg) under ice cooling, and the mixture was stirred for 1 hour. Water was added to the reaction solution, and extracted with toluene. The organic layer was washed with water and dried over anhydrous magnesium sulfate. After evaporating the solvent, the obtained residue was subjected to silica gel column chromatography to obtain the title compound (161.2 mg) as a yellow oily substance. Note that the spectrum data was consistent with that obtained in Example 6.
  • Example 11 1 2,3-difluoro-6- (2,2-diethoxycarboxyl) amino — [(R) —2- (methanesulfonyloxypropyl) oxy] benzene
  • Example 12 (S) -Jetyl (7,8-difluoro-3-methyl-3,4-dihydro-2H— [1,4] benzoxazine-4-yl) methylenemalonate Obtained in Example 11 Dissolve 3.00 g of 2,3-difluoro-6- (2,2- ethoxycarbonyldiylenyl) amino-[(R) -2- (methanesulfonyloxypropyl) oxy] benzene in 15 ml of anhydrous DMF 0.92 g of potassium carbonate was added, and the mixture was stirred at 80 ° C for 2 hours. The solvent was distilled off under reduced pressure, and the residue was extracted with ethyl acetate. The extract was washed with water and dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent under reduced pressure was subjected to silica gel column chromatography to obtain 2.14 g of the title compound.
  • the crushed cells were centrifuged with a centrifuge (10,000 G, 30 min) to obtain 85.0 ml of cell extract (total activity: 123 units, specific activity: 0.032 units / mg).
  • the bacterial cell extract was fractionated under the following anion chromatography purification conditions. The hydrolysis activity of 2 ethylbenzyloxypropionate in each fraction was measured to obtain an active fraction of 206 ml (total activity: 88 unit, specific activity: 0.058 unitZmg, activity yield: 72%).
  • Solution A 2 OmM phosphate buffer pH 7.0 (including 1 mM EDTA, DT
  • Solution B Solution A + 2.0M ammonium sulfate 600ml
  • Hydrophobic chromatography active fraction 1.0 ml was fractionated by anion chromatography (Mono Q). The hydrolysis activity of ethyl 2-benzyloxypropionate was measured for each fraction, and an active fraction (23-25 min) was found. The collected active fraction was desalted and concentrated by ultrafiltration, and the active body fraction 1.0 ml (total activity 5.
  • Solution B Solution A + 1.0 M NaC 1
  • an optically active propoxyaniline derivative (V) which is inexpensive and has high optical purity in a short process can be obtained, whereby lepofloxacin having high optical purity useful as an antibacterial agent can be industrially advantageously obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書 光学活性なプロポキシァニリン誘導体の製造方法 技術分野
本発明は、 抗菌性化合物の製造に有用な光学活性なプロポキシァニリン誘導体 の製造方法とそのための中間体の製造方法に関する。 背景技術
S一 (-) — 9一フルオロー 3—メチル _ 10— (4—メチル— 1—ピペラジ ニル) — 7—ォキソ一 2, 3—ジヒドロ一 7 H—ピリド [1, 2, 3 - - d e ] [1, 4] ベンゾォキサジン— 6—カルボン酸 (レポフロキサシン、 L VFX; 特開昭 62- 252790号公報) は優れた合成抗菌剤として知られている。 この合成抗菌剤の製造中藺体として式 (V)
Figure imgf000003_0001
(式中、 X1および X2は、 各々独立してハロゲン原子を意味する。) で表される 化合物 (以下、 化合物 (V) と表し、 他の番号で表される化合物も同様に表 す。) は有用であり、 下記の製法にて製造可能なことが知られている (特開平 1 - 250369号および特開平 2— 723号公報)。 OH ΟΊΉΡ
Me C02Me Me C02Me Me
Figure imgf000004_0001
(A) (B)
Figure imgf000004_0002
すなわち、 化合物 (V) は、 市販の乳酸エステルの水酸基をテトラヒドロビラ ニル基で保護して得た化合物 (A) を水素化リチウムアルミニウムにより還元し て化合物 (B) を得、 この化合物 (B) と化合物 (C) とを水素化ナトリウムで 処理して化合物 (D) を得、 その後、 テトラヒドロピラエル基を除去し、 ニトロ 基を還元することにより、 合成できる。
しかし、 化合物 (A) の原料である乳酸エステルのうち安価に入手容易なもの では光学純度が 97 %ee 程度であり、 99 ee 以上という高い光学純度を要求 されるレボフロキサシンの原料としては不適当である。
そのため、 乳酸エステルを用いない化合物 (B) の別途製造方法も開発されて いる (特開平 2— 265701) 。 また、 還元に用いる水素化リチウムアルミ二 ゥムは安全面より大量に取り扱うことは困難であった。 さらに、 上記の製造方法 は比較的工程数が多かった。 さらにまた、 テトラヒドロピラエル基を除去する際 にはラセミ化を伴なうことが報告されている (S. Ch l ade k, Ch em. I n d. (London), 1719 (1964))。
そのため、 化合物 (A) のテトラヒドロビラニル基をべンジル基とした化合物
((R) — 2—べンジロキシプロピオン酸エステル) の使用を検討した。 しかし、 従来は (R) — 2—べンジロキシプロピオン酸エステルとしては 9 7 % ee程度 の光学純度のものしか入手できなかった。 医薬としてのレポフロキサシンは 9 9 % ee 以上というさらに高い光学純度を要求されるのに対し、 中間工程で光学 純度を向上することが困難なため、 9 7 % ee 程度の (R ) — 2—べンジロキシ プロピオン酸ェチルはレポフロキサシンの原料としては使用できなかった。
そこで、 これらの課題を解決すべき方法の開発が望まれていた。
本発明の目的は、 光学活性なプロポキシァニリン誘導体及び抗菌剤として有用 なレポフロキサシンの安価で効率的な製造方法とそのための中間体の製造方法を 提供することである。
さらに本発明は、 エステル不斉加水分解能を有する微生物の菌体を、 高圧下に 破砕し、 陰イオンクロマトグラフィー、 疎水クロマトグラフィー、 次いで陰ィォ ンクロマトグラフィ一で精製することにより得られるエステル不斉加水分解能を 有する酵素を提供するものである。
発明の開示
本発明者らは鋭意検討した結果、 ラセミ体である乳酸エステル誘導体をエステ ル不斉加水分解能を有する酵素等で処理することにより、 一方の光学異性体のェ ステル部分を特異的に加水分解する方法を見出し、 また、 この加水分解により得 られた化合物を中間体として用いることにより従来より安価かつ短工程で光学活 性なプロボキシァ二リン誘導体が製造できることを見出した。 また、 エステル不 斉加水分解反応により生じた不要な光学異性体をラセミ化によって基質に戻すリ サイクル法も見出した。 これらの知見により光学純度の高いレポフロキサシンが 効率的に製造できることを見出し、 本発明を完成した。
すなわち、 本発明は、 式 (I )
Figure imgf000006_0001
(式中、 ; 1は炭素数 1から 6のアルキル基を意味し、 ; R2は水酸基の保護基を意 味する。) で表される化合物を、 エステル不斉加水分解能を有する酵素、 または エステル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該微 生物菌体処理物で処理した後の反応液から単離採取することを特徵とする式 ( I -a) (I_a)
Figure imgf000006_0002
(式中、 R1はおよび R2は前記と同じ。) で表される光学活性な化合物の製造方 法に係るものである。
また、 本発明は、 式 (I)
Figure imgf000006_0003
(式中、 Rlおよび R2は前記と同じ。) で表される化合物を、 エステル不斉加水 分解能を有する酵素、 またはエステル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該微生物菌体処理物で処理した後の反応液から単離採取 して式 ( I— a)
OR2
(I-a)
M& CO 'で R1
(式中、 R1および R2は前記と同じ。) で表される光学活性な化合物を得、 この 化合物 (I -a) を非アルコール系溶媒中、 一級アルコール類存在下で、 水素化 ホウ素金属化合物で処理して式 (I I)
Figure imgf000007_0001
(式中、 R2は前記と同じ。)
で表される光学活性な化合物を得、 この化合物 (I I) と式 (I I I)
Figure imgf000007_0002
(式中、 X1、 X2および X3は、 各々独立してハロゲン原子を意味する。) で表さ れる化合物を塩基で処理して、 式 (IV)
Figure imgf000007_0003
(式中、 R2、 X1および X2は、 前記と同じ。) で表される光学活性な化合物を得、 二の化合物 (I V) のニトロ基のアミノ基への変換と R2の脱離とを同時に行う 二とを特徴とする式 (V)
Figure imgf000008_0001
(式中、 X1および X2は、 前記と同じ。) で表される化合物の製造方法に係るも のである。
さらに本発明は、 式 (I)
Figure imgf000008_0002
(式中、 R1は炭素数 1から 6のアルキル基を意味し、 : 2は水酸基の保護基を意 味する。) で表される化合物を、 エステル不斉加水分解能を有する酵素、 または エステル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該微 生物菌体処理物で処理した後の混合液から単離採取して式 ( I— a)
Figure imgf000008_0003
(式中、 R1及び R2は前記と同じ。) で表される光学活性な化合物を得、 この化 合物 (I一 a) を非アルコール系溶媒中、 一級アルコール類存在下で、 水素化ホ ゥ素金属化合物で処理して式 (I I)
Figure imgf000008_0004
(式中、 R2は前記と同じ。)
で表される化合物を得、 この化合物 (I I) と、 式 (I I I)
Figure imgf000009_0001
(式中、 X1、 X2および X3は、 各々独立してハロゲン原子を意味する。) で表さ れる化合物を塩基で処理して、 式 (I V)
(IV)
Figure imgf000009_0002
(式中、 R2、 X1および X2は、 前記と同じ。) で表される光学活性な化合物を得、 この化合物 (I V) のニトロ基のアミノ基への変換と R2の脱離とを同時に行つ て、 式 (V)
Figure imgf000009_0003
(式中、 X1および X2は、 前記と同じ。) で表される化合物を得、 この化合物 (V) に式 (V I )
,COORJ
γ一 CH=C、 (VI)
、COOR4
(式中、 Yは炭素数 1〜6のアルコキシ基、 ハロゲン原子又はジ ( 一 C 6アル キル) アミノ基を意味し、 R3および R4は各々独立して炭素数 1〜 6のアルキル 基を意味する。) で表される化合物を反応させて、 式 (VI I)
Figure imgf000010_0001
(式中、 X1、 X2、 R3および R4は前記と同じ。) で表される化合物を得、 この化 合物 (V I I) にスルホニル化合物を反応させて式 (V I I I)
Figure imgf000010_0002
(式中、 R5は置換基を有していてもよいアルキルスルホニル基または置換基を 有していてもよいァリールスルホニル基を意味し、 X1、 X2、 R3および R4は前 記と同じ。) で表される化合物を得、 この化合物 (V I I I) を塩基条件下に閉 環して式 (I X)
Figure imgf000010_0003
(式中、 X1、 X2、 R3および R4は前記と同じ。) で表される化合物を得、 .の化 合物 (I X) をホウ素化合物の存在下又は非存在下に加熱して式 (X)
Figure imgf000011_0001
(式中、 R6は炭素数 1〜6のアルキル基、 又は BZ2 (ここで Zは、 ハロゲン原 子、 C,-C6アルコキシ基、 又は C2— C7アルキル力ルポ二ルォキシ基を示す) を示し、 X1および X2は前記と同じ。) で表される化合物を得、 この化合物
(X) に 4ーメチルピペラジンを反応させて式 (X I)
Figure imgf000011_0002
(式中、 X1および R6は前記と同じ。) で表される化合物を得、 次いで加水分解 することを特徴とする、 式 (X I I)
Figure imgf000011_0003
(式中、 X1は前記と同じ。) で表される化合物の製造方法に係るものである。 さらに本発明は、 エステル不斉加水分解能を有する微生物の菌体を、 高圧下に 破碎し、 陰イオンクロマトグラフィー、 疎水クロマトグラフィー、 次いで陰ィォ ンクロマトグラフィーで精製することにより得られるエステル不斉加水分解能を 有する酵素を提供するものである。 発明を実施するための最良の形態
本発明は、 化合物 (I) をエステル不斉加水分解能を有する酵素、 またはエス テル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該微生物 菌体処理物で処理した後の混合液から単離採取して得られた化合物 (I一 a) を 水素化ホウ素金属化合物で処理し、 得られた化合物 (I I) と化合物 (I I I) とを塩基存在下で処理して得た化合物 (I V) を還元反応により一工程で光学活 性プロボキシァ二リン誘導体 (V) に導き、 当該化合物 (V) から抗菌剤として 有用な化合物 (X I I) を製造するものである。
本発明による化合物 (I) から化合物 (X I I) への反応工程図を下記に示す。
Figure imgf000012_0001
(I) (I-a) (Π)
Figure imgf000012_0002
Figure imgf000013_0001
反応工程中の置換基について説明する。
X 1、 X2および X3は、 各々独立してハロゲン原子を意味するが、 ハロゲン原 子としてはフッ素原子が好ましい。
R R 3および; 4は、 直鎖状、 分岐状、 環状のいずれをも含むアルキル基を 意味するが、 炭素数は 1から 6が好ましく、 特にメチル基、 ェチル基、 イソブチ ル基が好ましい。
R 2は、 水酸基の保護基を意味する。 この保護基は、 通常使用されるものであ ればよい。 例えば、 (置換) アルコキシカルボニル基類、 (置換) ァラルキルォキ シカルボニル基類、 (置換) ァシル基類、 (置換) アルキル基類、 (置換) ァルケ ニル基類、 (置換) ァラルキル基類、 アルキル基あるいはァラルキル基 (これら は、 同一でも異なっていてもよい) によって置換された置換シリル基類である
〔本明細書において 「(置換)」 とは、 「置換基を有していてもよい」 との意味で ある。〕。 具体的には、 第三級ブトキシカルポニル基、 2 , 2 , 2—トリクロロェ トキシカルポニル基等の (置換) アルコキシ力ルポニル基類;ベンジルォキシカ ルポニル基、 パラメトキシベンジルォキシカルポニル基、 パラニトロベンジルォ キシカルポニル基等の (置換) ァラルキルォキシ力ルポニル基類;ァセチル基、 メトキシァセチル基、 トリフルォロアセチル基、 クロロアセチル基、 ビバロイル 基、 ホルミル基、 ベンゾィル基等の (置換) ァシル基類;第三級ブチル基、 ァリ ル基 (プロぺニル基)、 ベンジル基、 パラニトロべンジル基、 パラメトキシベン ジル基、 トリフエニルメチル基、 フエネチル基等の (置換) アルキル基類、 (置 換) アルケニル基、 または (置換) ァラルキル基類;メトキシメチル基、 第三級 ブトキシメチル基、 テトラヒドロピラニル基、 2, 2 , 2—トリクロ口エトキシ メチル基等のエーテル類; トリメチルシリル基、 イソプロピルジメチルシリル基、 第三級プチルジメチルシリル基、 トリベンジルシリル基、 第三級プチルジフエ二 ルシリル基等の置換シリル基類である。 以上の保護基のうち、 R 2としては、 還 元条件で除去できるものが好ましく、 具体的には (置換) ァラルキル基が好まし' く、 さらにべンジル構造を有する (置換) ァラルキル基、 特にべンジル基が好ま しい。
R 5は、 (置換) アルキルスルホニル基または (置換) ァリールスルホニル基を 意味するが、 炭素数 1〜6のアルキルスルホニル基または (置換) ベンゼンスル ホニル基が好ましい。 このうち、 特にメタンスルホニル基、 p—トルエンスルホ ニル基が好ましい。
R 6は 一 C 6アルキル基、 又は B Z 2 (ここで Zはハロゲン原子、 C L— (:6ァ ルコキシ基又は C 2—C 7アルキル力ルポニルォキシ基を示す) を意味する。 炭素 数 1〜 6のアルコキシ基としては、 メトキシ基、 エトキシ基、 イソプロポキシ基、 t e r t一ブトキシ基等が挙げられる。 ハロゲン原子としては、 前記 X1、 X2及 び X 3と同じものが挙げられる。 C 2—C 7アルキルカルボニルォキシ基としては、 ァセチルォキシ基、 プロピオニルォキシ基、 プチリルォキシ基等が挙げられる。 このうち、 R 6としては B F 2が特に好ましい。
Yは炭素数 1〜 6のアルコキシ基、 ハロゲン原子又はジ ( ー ァルキル) アミノ基を意味するが、 炭素数 1〜6のアルキコキシ基が好ましく、 特にメトキ シ基、 エトキシ基が好ましい。
なお、 上記工程図では片方の異性体のみの製法を示したが、 化合物 (I一 a) の立体配置が逆のものを使用すれば、 もう一方の異性体も同様に合成することが できる。 また、 化合物 (I) を利用すれば、 化合物 (V) のラセミ体も得ること ができる。
以下に、 本願発明を各工程毎に詳細に述べる。
工程 (a)
工程 (a) は、 化合物 (I) を、 エステル不斉加水分解能を有する酵素、 また はエステル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該 微生物菌体処理物にて処理することにより化合物 (I _a) を得る工程である。 まず、 化合物 (I) を適当な緩衝液に懸濁し、 次いで酵素、 微生物の培養液、 該微生物菌体または該微生物菌体処理物を加え攙拌して処理する。 反応に使用す る酵素はエステル不斉加水分解能を有していれば特に限定されないが、 酵素とし ては微生物、 動物および植物由来の市販酵素製剤が挙げられる。
本発明に用いられる酵素としては、 リパーゼが好ましい。 リパーゼは固定化さ れたものでもよい。
また、 微生物としては、 クラドスポリゥム(Cladosporium)属、 アブシディア
(Absidia)属、 ナンニジァ(Nannizzia)属、 ァスペルギルス(Aspergillus)属、 リ ゾパス(Rhizopus)属、 ムコール(Mucor)属等のカビ;ジゴァスカス(Zygoascus)属、 キャンディダ(Candida)属、 サッカロマイセス属(Saccharomyces)等の酵母;また はバチルス(Bacillus)属、 マイクロパクテリゥム(Microbacteri画)属、 マイクロ コッカス(Micrococcus)属、 シユードモナス(Pseudomonas)属、 コリネバクテリウ ム(Corynebacterium)属、 ストレプトマイセス(Streptomyces)属等の細菌が挙げ られる。 これらの微生物のうちでも細菌が好ましく、 さらにバチルス(Bacillus) 属またはマイクロパクテリゥム(Microbacter ium)属が好ましく、 さらにバチルス セレウス(Bacillus cereus)、 またはマイクロバクテリゥム ラエヴァニフォル マス(Microbacterium laevaniformas)が好ましく、 特にバチルス セレウス DSC0007 (Bacillus cereus DSC0007)、 バチルス セレウス ATCC14579 (Baci 1 lus cereus ATCC14579), またはマイクロパクテリゥム ラエヴァニフォルマス IF0 14471 (Microbacterium laevaniformasIF0 471)が好ましい。
さらにこれらの微生物菌体処理物としては、 微生物菌体破碎物及びそれらの精 製品が挙げられる。
本発明においては、 これらの微生物、 特に細菌類の菌体から精製した酵素を用 いるのが反応効率の点からより好ましい。 このような精製酵素としては、 菌体を、 高圧下に破碎し、 陰イオンクロマトグラフィー、 疎水クロマトグラフィー、 次い で陰イオンクロマトグラフィーで精製することにより得られるものが特に好まし い。 なお、 酵素の精製の程度は、 所望の活性を示す程度でよい。
また、 これらの精製酵素は、 上記の如く菌体を処理して得られるものでもよく、 さらに組換え D N A技術により大腸菌等の他の宿主で生産させたものでもよい。 組換え DNA技術により酵素を得るには、 例えば次の手順が挙げられる。 まず、 前記の精製酵素を逆相クロマトグラフィーでさらに精製して蛋白質のアミノ酸配 列を決定し、 そのアミノ酸配列を基にプローブを作成し、 菌体の DNA断片から 不斉加水分解酵素の活性本体をコードする DNAをクローニングする。 次いでこ れを PCRで増幅し、 組換えプラスミド調製し、 大腸菌等への導入、 当該大腸菌 等を培養して目的酵素を得ることができる。
この処理によって、 下記の化合物 (I)
Figure imgf000016_0001
(式中、 R1および R2は前記と同じ。)
のうちの一方の光学異性体のエステル部分が選択的に加水分解されて、 化合物 (I一 b)
OR
Me' 、C02H
(式中、 R2は前記と同じ。)
が生成し、 未反応の化合物 ( I一 a)
Figure imgf000017_0001
(式中、 R1および R2は前記と同じ。)
が混合液から単離できる。 すなわち、 この混合液に酢酸ェチル、 クロ口ホルム等 の有機溶媒を加えて攪拌 ·分液等の処理をすることにより、 化合物 (I _a) を 単離採取することができる。 なお、 処理に用いた酵素および菌体等は、 化合物
(I -a) の抽出前に、 濾過等により除いておくのがよい。
これらの加水分解及び単離の処理温度は、 通常 5°Cから 6 Otの範囲であれば よいが、 好ましくは 20°Cから 40°Cの範囲である。 また、 処理液の pHは、 4 から 9の範囲であればよいが、 好ましくは 6から 8の範囲である。 処理時間は、 1時間から 7日間の範囲であればよいが、 好ましくは 1時間から 30時間の範囲 である。 処理液中の化合物 (I) の濃度は、 通常は重量割合で 0. 1 %から 1 0%の範囲で行なうが、 好ましくは 0. 5 %から 5 %の範囲である。 酵素および 微生物の培養液、 該微生物菌体または該微生物菌体処理物の使用量は特に限定さ れないが、 乾燥重量に基づいて、 化合物 (I) に対し重量比で 0. 05倍から0. 5倍が適当である。
また、 反応混合物から分離された化合物 (I一 b) は、 エステル化後ラセミ化 反応に供し、 さらにエステル不斉加水分解反応に付すことにより再利用できる。 工程 (b) 工程 (b) は、 化合物 (I一 a) を非アルコール溶媒中、 一級アルコール類存 在下で、 水素化ホウ素金属化合物で処理することにより化合物 (I I) を得るェ 程である。
水素化ホウ素金属化合物としては、 水素化ホウ素ナトリウム、 水素化ホウ素リ チウム、 水素化ホウ素カルシウム、 水素化ホウ素カリウム、 水素化ホウ素亜鉛、 水素化ホウ素マグネシウム、 シァノ水素化ホウ素ナトリゥム等を挙げることがで きる。 これらのうち、 水素化ホウ素ナトリウムが好ましい。 水素化ホウ素金属化 合物の使用量は、 化合物 (I— a) に対して 1から 5倍モルの範囲でよく、 好ま しくは 1. 1から 2倍モル程度である。
溶媒としては、 n一へキサン、 n—ペンタン、 シクロへキサン、 シクロペン夕 ン等の炭化水素系溶媒;ベンゼン、 トルエン、 キシレン等の芳香族炭化水素系溶 媒;ジェチルエーテル、 ジイソプロピルエーテル ( I PE)、 メチル第三級プチ ルェ一テル (MTBE)、 テトラヒドロフラン (THF)、 ジメトキシェタン、 1, 4—ジォキサン等のエーテル系溶媒;クロ口ホルム、 塩化メチレン、 1, 2—ジ クロロェタン (EDC) 等のハロゲン化炭化水素系溶媒が挙げられる。 この他に、 水、 酢酸エステル類等を挙げることができる。 これらの溶媒は単独でもよいが複 数種を組み合わせてもよい。 これらの溶媒のうち、 トルエン、 キシレン等の芳香 族炭化水素系溶媒が好ましい。
一級アルコール類は、 特に限定されないが、 メタノールが好ましい。 一級アル コール類の使用量は、 化合物 (I一 a) に対して 3から 15倍モルの範囲でよく、 好ましくは 4から 8倍モル程度である。
反応温度は使用する溶媒により異なるが、 — 78°Cから溶媒の沸点で、 好まし くは 10 °Cから溶媒の沸点である。 反応時間は 1から 24時間の範囲でよく、 好 ましくは 2から 16時間の範囲である。
工程 (c)
工程 (c) は、 化合物 (I I) を溶媒中、 塩基存在下にて処理することにより 化合物 (I I I) を得る工程である。
溶媒は各種溶媒を使用することができ、 例えば、 n—へキサン、 n—ペンタン 等の炭化水素系溶媒;ベンゼン、 トルエン、 キシレン等の芳香族炭化水素系溶 媒;メタノール、 エタノール、 プロパノール、 イソプロパノール (I PA)、 n ーブタノール、 第三級ブ夕ノールのアルコール系溶媒;ジェチルエーテル、 ジィ ソプロピルエーテル (I PE)、 メチル第三級ブチルエーテル (MTBE:)、 テト ラヒドロフラン (THF;)、 ジメトキシェタン、 1, 4一ジォキサン等のェ一テ ル系溶媒; ジメチルホルムアミド (DMF)、 ジメチルァセトアミド (DMA c) 等のアミド系溶媒;クロ口ホルム、 塩化メチレン、 1, 2—ジクロロェタン
(EDO 等のハロゲン化炭化水素系溶媒を挙げることができる。 この他に、 水、 ァセトニトリル、 酢酸エステル類、 アセトン等を挙げることができる。 これらの 溶媒は単独でもよいが複数種を組み合わせてもよい。 これら溶媒のうち、 トルェ ン、 キシレン等の芳香族炭化水素系溶媒が好ましい。
反応温度は塩基の種類や使用する溶媒により異なるが、 一 78°Cから溶媒の沸 点で、 好ましくは一 10°Cから溶媒の沸点である。
塩基としては、 有機または無機のいずれであってもよく、 アルカリ金属または アルカリ土類金属、 例えば、 ナトリウム、 カリウム、 リチウム、 マグネシウム、 カルシウム等の水酸化物、 炭酸塩、 炭酸水素塩およびアルコキサイド等、 水素化 ナトリウム、 水素化カリウム、 水素化リチウム等の金属水素化物、 n—プチルリ チウム、 メチルリチウム、 リチウムジィソプロピルアミド等のアルキルリチウム 試薬、 トリェチルァミン、 N, N—ジィソプロピルェチルァミン等の三級ァミン 類、 その他、 1, 8—ジァザビシクロ [5. 4. 0] ゥンデセ一 7—ェン (DB
U)、 1, 8—ジァザビシクロ [4. 3. 0] ノン一 5—ェン (DBN)、 ジメチ ルァニリン、 N—メチルモルフオリン等の複素環化合物を用いることができる。 これらの塩基のうち、 炭酸力リゥム等のアル力リ金属またはアル力リ土類金属の 炭酸塩、 または水酸化力リウム等のアル力リ金属またはアル力リ土類金属の水酸 化物、 または第三級ブトキシナトリウム、 第三級ブトキシカリウム等のアルカリ 金属アルコキサイドが好ましい。 また、 炭酸カリウム等のアルカリ金属またはァ ルカリ土類金属の炭酸塩および水酸化力リゥム等のアル力リ金属またはアル力リ 土類金属の水酸化物を組み合わせて使用することもできる。 塩基の使用量は通常、 化合物 (I I I) のモル数に対して 0. 1から 15倍モルの範囲でよく、 好まし くは 1から 5倍モル程度である。
また、 反応を促進させるためにテトラプチルアンモニゥムブロミド、 ベンジル トリェチルアンモニゥムクロリド等の四級アンモニゥム塩ゃヨウ化カリウム、 ョ ゥ化ナトリゥム等のアル力リ金属またはアル力リ土類金属のヨウ化物およびクラ ゥンエーテル等の存在下で行うこともある。
工程 (d)
工程 (d) は、 化合物 (I V) のニトロ基のアミノ基への変換と R2の脱保護 とを還元反応によって同時に行うことにより化合物 (V) を得る工程である。
還元反応は、 通常の水素添加法等により行うことができる。 例えば、 触媒存在 下の接触水添法が挙げられるが、 この方法に用いることのできる触媒としては、 通常使用される金属触媒でよい。 これらのうちで好ましくは、 パラジウム—炭素、 ラネーニッケル、 ラネ一コバルトである。
溶媒は反応を阻害しないものであれば特に制限されないが、 炭化水素系として は、 n—へキサン、 n—ペンタン、 ベンゼン、 トルエン、 キシレン等が挙げられ る。 アルコール系としては、 メタノール、 エタノール、 プロパノール、 イソプロ パノール (I PA)、 n—ブタノ一ル、 第三級ブタノ一ルが挙げられる。 エーテ ル系としては、 ジェチルエーテル、 ジイソプロピルエーテル (I PE)、 メチル 第三級ブチルエーテル (MTBE)、 テトラヒドロフラン (THF)、 ジメトキシ ェタン、 1、 4一ジォキサン等が挙げられる。 アミド系としてはジメチルホルム アミド (DMF)、 ジメチルァセトアミド (DMA c) 等が挙げられる。 ハロゲ ン化炭化水素系としては、 クロ口ホルム、 塩化メチレン、 1、 2—ジクロロエタ ン (E D C) 等が挙げられる。 この他に、 水、 ァセトニトリル、 酢酸エステル類、 ァセトン等を挙げることができる。 これらの溶媒は単独でもよいが複数種を組み 合わせてもよい。 これら溶媒のうち、 メタノール、 エタノール、 プロパノール、 イソプロパノール (I P A) 等のアルコール系溶媒、 トルエン、 キシレン等の芳 香族炭化水素系溶媒、 またはこれらと水の混合溶媒が好ましい。
水素源としては、 水素ガスのほかにギ酸アンモニゥムを使用することができる。 ギ酸アンモニゥム量は、 化合物 (I V) のモル数に対して 1から 1 5倍モルの範 囲でよく、 好ましくは 2から 5倍モル程度である。
反応温度は塩基の種類や使用する溶媒により異なるが、 一 7 8 °Cから溶媒の沸 点で、 好ましくは室温から 8 0 °Cである。 反応時間は 1から 2 4時間の範囲でよ く、 好ましくは 2から 1 6時間の範囲である。
工程 (e )
工程 ( e ) は、 化合物 (V) に式 (V I ) のメチレンマロネート化合物を反応 せさて化合物 (V I I ) を得る工程である。
用いるメチレンマロネート化合物 (V I ) としては、 ジェチル エトキシメチ レンマ口ネート、 ジメチルメトキシメチレンマロネート等が挙げられる。
この反応は、 例えば化合物 (V) に対して好ましくは等モル以上のメチレンマ ロネ一ト化合物 (V I ) を用い、 無溶媒で両者を 1 0 0〜1 8 0 °C程度に加熱攪 拌するか、 適当な溶媒中で加熱還流することによつて実施できる。
この際の溶媒としては、 反応に対して悪影響を与えないものならば特に限定さ れず、 例えばベンゼン、 トルエン、 キシレン、 n—へキサン、 サイクロへキサン、 n _ペンタン等の炭化水素類;メタノール、 エタノール、 プロパノール類;ブタ ノール類等の低級アルコール類;ジェチルエーテル、 テトラハイドロフラン、 ジ ォキサン、 1, 2—ジメトキシェタン等のエーテル類; N, N—ジメチルホルム アミド、 N, N—ジメチルァセトアミド、 N—メチルー 2—ピロリドン等のアミ ド類;ジメチルスルホキサイド、 スルホラン等の非プロトン性極性溶媒等を挙げ ることができる。 溶媒を使用する場合には、 反応は溶媒の沸点以下の温度で実施 すればよい。
工程 ( f )
工程 (ί) は、 化合物 (V I I) にスルホニル化合物を反応させて化合物 (V I I I) を得る工程である。
用いるスルホニル化合物としては ρ—トルエンスルホニルクロリド、 メタンス ルホニルクロリド、 クロロメタンスルホニルクロリド等が挙げられる。
反応は塩基の存在下に行うのが好ましく、 当該塩基としては、 トリェチルアミ ン、 卜リブチルァミン、 Ν, Ν—ジィソプロピルェチルァミン等の三級アルキル アミン類; Ν, Ν—ジメチルァニリン、 Ν, Ν—ジェチルァニリン等のジアルキ ルァニリン類; ピリジン、 Ν, Ν -ジメチルァミノピリジン、 Ν—メチルモルホ リン等の複素環ァミン類; 1, 8—ジァザビシクロ [5, 4, 0] ゥンデセン等 を例示することができる。
溶媒を使用する場合は、 非プロトン系の溶媒が望ましく、 ジェチルエーテル、 テトラハイドロフラン、 ジォキサン、 1, 2—ジメトキシェタン等のエーテル 類; Ν, Ν—ジメチルホルムアミド、 Ν, Ν—ジメチルァセトアミド、 Ν—メチ ルー 2—ピロリドン等のアミド類;ジクロロメタン、 クロ口ホルム、 1 , 2—ジ クロ口エタン等を例示することができる。 反応温度は 0〜100°C程度が好まし い。
工程 (g)
工程 (g) は、 化合物 (V I I I) を塩基条件下に閉環させて化合物 (I X) を得る工程である。
用いる塩基としては無機塩基、 有機塩基の何れでもよく、 無機塩基としては水 酸化リチウム、 水酸化ナトリウム、 水酸化カリウム等の金属水酸化物、 炭酸リチ ゥム、 炭酸ナトリウム、 炭酸カリウム等の金属炭酸塩類;炭酸水素ナトリウム、 炭酸水素カリウム等の金属炭酸水素塩類を挙げることができる。 有機塩基として はトリエチルァミン、 トリプチルァミン、 N, N—ジィソプロピルェチルァミン 等の三級アルキルアミン類; N, N—ジメチルァニリン、 N, N—ジェチルァニ リン等のジアルキルァニリン等、 ピリジン、 N, N—ジメチルァミノピリジン、 N—メチルモルホリン等の複素環ァミン類;ナトリウムメトキサイド、 ナトリウ ムェトキサイド、 ナトリウムイソプロポキサイド、 カリウム第三級プトキサイド 等の金属アルコキサイド等、 この他 1, 8—ジァザビシクロ [ 5, 4 , 0 ] ゥン デセン、 N—ベンジルトリメチルアンモニゥム八ィドロキサイド等を例示するこ とができる。
反応溶媒としてはメタノール、 エタノール、 プロパノール類;ブタノール類等 の低級アルコール類;ジェチルエーテル、 テトラ八ィドロフラン、 ジォキサン、 1 , 2—ジメトキシェタン、 2—メトキシェチルエーテル、 エチレングリコー ル ·ジェチルエーテル等のエーテル類; N, N—ジメチルホルムアミド、 N, N ージメチルァセトアミド、 N, N—メチル一 2—ピロリドン等のアミド類;ジメ チルスルホキサイド、 スルホラン等の非プロトン性極性溶媒等を挙げることがで きる。
反応温度は室温から 1 5 O tの範囲で実施すればよい。
また、 この閉環反応では反応促進剤としてヨウ化カリウム、 ヨウ化ナトリウム、 クラウンエーテル等をプロポキシベンゼン化合物に対して 1 / 2 0当量またはそ れ以上を加えるのが有効なことである。
工程 ( h )
工程 ( h ) は、 化合物 ( I X) をホウ素化合物の存在下又は非存在下に加熱し て化合物 (X) を得る工程である。
反応をホウ素化合物の非存在下に行えば、 式 (X) 中、 R6が C 6ァルキ ル基である化合物が得られる。 一方、 反応をホウ素化合物の存在下に行えば、 式
(X) 中、 R6が B Z 2である化合物が得られる。 ホウ素化合物としては、 具体的 には、 三フッ化ホウ素 'テトラヒドロフラン錯体、 三フッ化ホウ素 .ジェチルェ 一テル錯体等が挙げられる。
ホウ素化合物の非存在下の反応は、 ポリリン酸等の溶媒中で 1 0 0 〜 2 0 0 °Cに加熱して行うのが好ましい。 ホウ素化合物の存在下の反応は、 無水酢 酸、 無水プロピオン酸等の溶媒中で、 三フッ化ホウ素 ·テトラヒドロフラン錯体、 三フッ化ホウ素 ·ジェチルェ一テル錯体等を加えて 1 5 0 °C〜2 0 O tに加熱し て行うのが好ましい。
工程 ( i )
工程 ( i ) は、 化合物 (X) に 4ーメチルピペラジンを反応させて化合物 (X I ) を得る工程である。 なお、 式 (X) 中の R6が C t一 C 6アルキル基である場 合は、 塩基性または酸性条件下で加水分解してカルボン酸にしてから 4—メチル ピぺラジンを反応させるのが好ましい。
反応は塩基の存在下に行うのが好ましい。 この塩基は無機塩基でも、 有機塩基 でもよく、 無機塩基としては、 アルカリ金属、 もしくはアルカリ土類金属の炭酸 塩、 炭酸水素塩等を挙げることができる。 有機塩基としてはトリアルキルアミン や含窒素複素環化合物を挙げることができる。 具体的には、 トリェチルァミン、 トリプチルァミン、 ェチルジィソプロピルァミン等、 また、 4一メチルモルホリ ン、 ジメチルァミノピリジン等、 さらには 4ーメチルピペラジンを過剰量使用し て塩基と兼用させてもよい。 この反応は、 溶媒、 例えばジメチルスルホキシドを 使用することができる。
工程 ( j )
工程 (j ) は、 化合物 (X I ) を加水分解して化合物 (X I I ) を得る工程で ある。
この加水分解反応は、 例えば、 塩基存在下でプロトン性溶媒中加熱することに より行うことができる。 例えば、 アルコール溶媒中、 トリアルキルアミン存在下 に加熱する条件を例示することができるが、 具体的にはエタノール中、 トリェチ ルァミンの存在下に加熱攪拌すればよい。 式 (X I I) 中、 X1がフッ素原子である化合物がレポフロキサシンである。 実施例
以下、 実施例および参考例を挙げて本発明をさらに具体的に説明するが、 本発 明はこれらに限定されるものではない。
なお、 得られた化合物の光学純度 (%e e) は、 HPLCまたは GCに付して測 定した。
得られた化合物の絶対配置は、 別途合成した絶対配置が既知のサンプルと比較 して決定されたものである。
実施例 1 : (R) 一 2—ベンジロキシプロピオン酸ェチル
2—ベンジロキシプロピオン酸ェチル (30 Omg) を 0. 1Mリン酸緩衝液 (ρΗ6. 5) (30m l ) に懸濁し、 リパーゼ F i n e G r a d e (生化学 工業社製、 リゾパス デレマー; 6mg) を加え 30°Cにて 24時間攪拌した。 反応液に酢酸ェチルを加え、 セライトろ過により変性蛋白質を除去し、 更に 1N 水酸化ナトリウム水溶液にて PH 7. 0に調整後、 分液抽出した。 有機層を 5% 炭酸水素ナトリウム水溶液にて洗浄し、 無水硫酸ナトリウムにて乾燥した。 溶媒 留去することにより、 油状の標題化合物 (102 mg、 98. 8 % e e) を得た。 Ή-NMR (CDC 13) δ : 1. 30 (3 Η, t , J = 6. 8Hz), 1. 4 4 (3H, d, J = 6. 8Hz), 4. 05 ( 1 H, q, J = 6. 8Hz), 4. 2 2 (1H, q, J = 6. 8Hz), 4. 23 ( 1 H, q, J = 6. 8 H z), 4. 45 ( 1H, d, J = 1 1. 7 Hz), 4. 67 ( 1 H, d, J = 1 1. 7 H z) 7. 23 - 7. 42 (5H, m)
実施例 2 : (R) 一 2—ベンジロキシ一 1—プロパノール
40°Cにて、 水素化ホウ素ナトリウム (21. 8mg) をトルエン 0. 8m l に懸濁し、 その溶液に実施例 1で得た (R) — 2—ベンジロキシプロピオン酸ェ チル (100mg、 98. 8 % e e) のトルエン溶液 (0. 8m l ) を加えた。 反応液に MeOH (0. 15ml) を加え、 そのままの温度にて 3時間攪拌した。 反応液に水を加え、 トルエンにて抽出した。 有機層を水、 飽和塩化アンモニゥム 水溶液にて洗浄後、 無水硫酸マグネシウムにて乾燥した。 溶媒留去後、 得られた 残渣をシリカゲル力ラムクロマトグラフィーに付し、 油状物質として標題化合物
(79mg、 99%e e) を得た。
Ή-NMR (CDC 13) δ : 1. 1 7 (3Η, d, J = 6. 3Hz), 2. 2 0 (1H, b s), 3. 43— 3. 72 (3H, m), 4. 48 ( 1 H, d, J = 11. 7Hz), 4. 64 (1H, d, J = 11. 7Hz), 7. 22— 7. 44
(5H, m)
参考例 1 , マイ ク ロバクテリ ゥム ラエヴァニフォルマス (Microbacterium laevaniformas)IFO 14471 の種菌を普通ブイヨン培地 100 ml (坂口フラスコ) に接種し、 30°Cで一晩振とう培養した。 遠心分離により集菌後、 凍結乾燥し IF0 14471の凍結乾燥菌体を得た。
実施例 3 : (R) — 2 _ベンジロキシプロピオン酸ェチル
2—べンジロキシプロピオン酸ェチル 2. 0 g (9. 6 mm o 1 ) を 0. 1M リン酸塩緩衝液 (PH7. 0) 100mlに懸濁し、 参考例 1にしたがつて調製 した I F O 14471の凍結乾燥菌体 100 mgを加え 30 °Cで攪拌した。 反 応の進行に伴い (カルボン酸の生成により) pHが低下するので、 1N水酸化ナ トリウムを加え系内の pHを 6. 8から 7. 2の間に保った。 14時間反応後、 酢酸ェチル 100mlを加え暫く攪拌した後、 セライト濾過により菌体を除いた。 分液後、 更に酢酸ェチル 100mlで抽出を行った後、 酢酸ェチル層を集め 5 % 重曹水で 2回洗浄して完全にカルボン酸を除去した。 有機層を乾燥後、 溶媒を溜 去することにより標題化合物を 0. 93 g (46. 5%、 99. 9%e e) 得た。
— NMRは実施例 1と一致した。
実施例 4 : (R) 一 2一べンジロキシプロピオン酸ェチル 2—べンジロキシプロピオン酸ェチル 2. 0 g (9. 6mmo 1 ) を 0. 1M リン酸塩緩衝液 (pH7. 0) 100mlに懸濁し、 参考例 1と同様の方法で調 製した ATCC 14579の凍結乾燥菌体 10 Omgを加え 30°Cで攪拌した。 反応の進行に伴い (カルボン酸の生成により) pHが低下するので、 1N水酸化 ナトリゥムを加え系内の p Hを 6. 8から 7. 2の間に保った。 16時間反応後、 酢酸ェチル 10 Omlを加え暫く攪拌した後、 セライト濾過により菌体を除いた。 分液後、 更に酢酸ェチル 100mlで抽出を行った後、 酢酸ェチル層を集め 5 % 重曹水で 2回洗浄して完全にカルボン酸を除去した。 有機層を乾燥後、 溶媒を溜 去することにより標題化合物を 0. 88 g (44. 0 %, 99. 9 % e e ) 得た。
— NMRは実施例 1と一致した。
実施例 5 : 2一べンジロキシプロピオン酸ェチル (ラセミ化工程)
実施例 3で酢酸ェチルによる抽出操作の際のすべての水層を集め 10%塩酸に より PH2に調整した後、 酢酸ェチル 10 Omlで 2回抽出した。 有機層を乾燥 後、 溶媒を溜去して (S) —べンジロキシプロピオン酸を 0. 83 g (48.
0 %, 96 % e e) 得た。 そのうちの 0. 8 g (4. 4mmo 1 ) をエタノール
10mlに溶解し、 濃硫酸 0 lml加えて加熱還流した。 8時間後、 溶媒を 溜去により除き残渣を酢酸ェチル 2 Om 1で抽出した。 5%重曹水 (10m l) 及び水 (10ml) で洗浄した後、 有機層を乾燥後溶媒を溜去して (S) —ベン ジロキシプロピオン酸ェチルを得た。 これをトルエン 10mlに溶解し氷冷攪拌 下、 ナトリウムエトキシド 0. 33 g (1. 1 e q) を加え室温で 14時間攪拌 し、 光学活性カラムを用いたガスクロマトグラフィーを用いてラセミ化反応終了 を確認した。 その後、 反応液を 10%クェン酸水溶液 (10ml) 中に滴下した。 有機層を水 1 Omlで洗浄し乾燥後、 溶媒を溜去することにより、 標題化合物を
0. 74 g得た。 — NMRは実施例 1と一致した。 このラセミ体は、 実施例
1〜 4のようなエステル不斉加水分解の原料として用いることができる。
比較例 1 : (R) 一 2一べンジロキシプロピオン酸メチル _ 30°Cにて、 ベンジルブロマイド (9. 86 g) および 60%水素化ナトリ ゥム (2. 1 1 g) のジメチルホルムアミド (DMF) およびテトラヒドロフラ ン (THF) の混合溶液 (50m l、 3 : 2容積比) に溶解した。 その溶液に (R) 一乳酸メチル (5. 0 g、 99%e e) を加えた。 そのままの温度にて、 30分間攪拌した。 次いで、 室温にて 30分間攪拌し、 さらに 50°Cにて 30分 間攪拌した。 反応液に水、 ジィソプロピルェ一テルを加え、 有機層を水にて洗、净 後、 無水硫酸マグネシウムにて乾燥した。 溶媒留去後、 得られた残渣をシリカゲ ルカラムクロマトグラフィーに付し、 黄色油状物質として標題化合物 (8. 87 g, 92. 1 % e e) を得た。
Ή-NMR (CDC 13) δ : 1. 44 (3H, d, J = 6. 8Hz), 3. 7 5 (3H, s), 4. 0 7 (1H, q, J = 6. 9Hz), 4. 45 ( 1 H, d, J = 1 1. 7Hz), 4. 69 (1H, d, J = 1 1. 7Hz), 7. 22-7. 37 (5H, m)
実施例 6 : (R) 一 3, 4—ジフルオロー 2— (2—べンジロキシプロボキシ) ニトロベンゼン
氷冷下、 水酸化カリウム (5. 40 g) および炭酸カリウム (3. 33 g) を トルエン 1 8 0m lに懸濁した。 その溶液に、 実施例 2と同様にして得られた
(R) _ 2 _ベンジロキシ— 1一プロパノール (4. 0 g) および 2, 3, 4一 トリフルォロニトロベンゼン (4. 1 3 g) のトルエン溶液 (40m 1 ) を加え、 そのままの温度にて 1時間攪拌した。 反応液に水を加え、 トルエンにて抽出した。 有機層を水にて洗浄後、 無水硫酸マグネシウムにて乾燥した。 溶媒留去後、 得ら れた残渣をシリカゲルカラムクロマトグラフィーに付し、 黄色油状物質として標 題化合物 (7. 55 g) を得た。
Ή一 NMR (CDC 13) 6 : 1. 2 9 (3H, d, J = 6. 4Hz), 3. 9
3-4. 03 (2H, m), 4. 53 -4. 65 (2H, m), 6. 9 0 - 6. 9
9 (1H, m), 7. 23 - 7. 35 ( 5 H, m) , 7. 60 - 7. 6 6 ( 1 H, m)
実施例 7 : (R) 一 3,—4—ジフルオロー 2— (2—べンジロキシプロボキシ) 氷冷下、 ターシャルブトキシナトリウム (63. 6mg) をトルエン (0. 5 ml) に懸濁した。 その溶液に、 実施例 2と同様にして得られた (R) — 2_ベ ンジロキシー 1一プロパノール (l O Omg) 加えた。 次いで、 氷冷下、 その溶 液を 2, 3, 4 _トリフルォロニトロベンゼン (103. 5mg) のトルエン溶 液 (0. 5m l) へ加え、 1時間攪拌した。 反応液に水を加え、 トルエンにて抽 出した。 有機層を水にて洗浄後、 無水硫酸マグネシウムにて乾燥した。 溶媒留去 後、 得られた残渣をシリカゲルカラムクロマトグラフィーに付し、 黄色油状物質 として標題化合物 (161. 2mg) を得た。 なお、 スペクトルデータは実施例 6で得たものと一致した。
実施例 8 : (R) -3, 4—ジフルオロー 2 - (2—ヒドロキシプロボキシ) ァ 二リン
室温にて、 実施例 6で得られた (R) — 3, 4ージフルオロー 2— (2—ベン ジロキシプロポキシ) ニトロベンゼン (1. 0 g) をエタノール (10m l) に 溶解し、 7. 5%Pd-C (1. 0 g) を加え、 水素雰囲気下、 6時間攪拌した c Pd_Cを濾去後、 得られた濾液を減圧下濃縮し、 得られた残渣をシリカゲル力 ラムクロマトグラフィーに付し、 油状物質として標題化合物 (600mg、 99. 0%e e) を得た。
Ή-NMR (CDC 13) 23 ( 3 H, d, J = 6. 3Hz), 3. 8
1-4. 89 (1H, m), 4. 06-4. 17 (2H, m), 6. 37— 6. 4 4 (1H, m), 6. 77 - 6. 87 (1 H, m)
実施例 9 : (R) 一 3, 4ージフルオロー 2— (2—ヒドロキシプロボキシ) ァ ニリン
室温にて、 実施例 6で得られた (R) — 3, 4—ジフルオロー 2— (2—ベン ジロキシプロポキシ) ニトロベンゼン (0. 3 g) をトルエン (3ml) に溶解 し、 10%Pd— C (9 Omg) を加え、 80°Cにて水素雰囲気下、 4時間攪拌 した。 Pd— Cを濾去後、 得られた濾液を減圧下濃縮し、 得られた残渣をシリカ ゲルカラムクロマトグラフィーに付し、 油状物質として標題化合物 (181. 0 mg、 99. 0%e e) を得た。 スペクトルデータは実施例 8で得たものと一致 した。
実施例 10 : 2, 3—ジフルオロー 6— (2, 2—ジエトキシカルボ二ルェテ二 ル) アミノー [(R) — 2—ヒドロキシプロボキシ] ベンゼン
100°Cにて、 実施例 8と同様にして得られた (R) — 3, 4ージフルオロー 2- (2—ヒドロキシプロボキシ) ァニリン (1. 02 g) およびジェチルエト キシメチレンマロネート (1. 14g) を無溶媒にて 1時間攪拌した。 さらに微 減圧にて発生するエタノールを除去しながら 30分間攪拌した。 反応混合物を放 冷後、 減圧下濃縮し、 得られた残渣をシリカゲルカラムクロマトグラフィーに付 し、 標題化合物 (1. 83 g, 99. 0%e e) を白色結晶として得た。
融点: 52— 55 °C
一 NMR (270 MHz, CDC 13) δ : 1. 22— 1. 46 (m, 9H),
3. 55 (d, 1H, J = 4. 5Hz)、 3. 88— 4. 43 (m, 7H), 6.
75 - 7. 08 (m, 2H), 8. 48 (d, 1 H, J = 14. 5Hz)
実施例 1 1 : 2, 3—ジフルオロー 6— (2, 2—ジエトキシカルポ二ルェテ二 ル) ァミノ— [(R) — 2— (メタンスルホニルォキシプロピル) ォキシ] ベン ゼン
実施例 10と同様にして得られた 2, 3ージフルオロー 6 - (2, 2 -ジエト キシカルポ二ルェテニル) アミノー [(R) — 2— (ヒドロキシプロピル) ォキ シ] ベンゼン 3. 008を1, 2—ジクロロェタン 3 Om 1に溶解し、 氷冷撹拌 下にトリェチルァミン 0. 98 gを加え、 さらに同温度でメタンスルホニルクロ ライド 1. O l gを撹拌下に加えた。 室温で 2時間撹拌して不溶物を濾去した。 濾液を 1, 2—ジクロロェタンにて希釈し水洗後無水硫酸マグネシウムで乾燥し た。 乾燥した有機層にシリカゲル 1. 5 gをカロえ、 30分間撹拌した後、 不溶物 を濾去した。 溶媒を減圧留去し、 残渣をジイソプロピルエーテルより結晶化後濾 取した。 標記の化合物 3. 27 gを得た。
一 NMR (CDC 13) δ : 1. 22- 1. 47 (6H, m), 1. 58 (3 H, d, J = 7 H z ), 1. 50 (3H, d, J = 7Hz), 3. 13 (3 H, s), 3. 98 -4. 60 (6H, m), 4. 95 - 5. 35 ( 1 H, m), 6. 79-7. 14 (2H, m), 8. 41 ( 1 H, d, J = 13. 5Hz)
実施例 12 : (S) ージェチル (7, 8—ジフルオロー 3—メチル— 3, 4—ジ ヒドロ— 2H— [1, 4] ベンゾォキサジン— 4 _ィル) メチレンマロネート 実施例 1 1で得られた 2, 3—ジフルオロー 6— (2, 2 _ジェトキシカルボ 二ルェテニル) アミノー [(R) - 2- (メタンスルホニルォキシプロピル) ォ キシ] ベンゼン 3. 00 gを無水 DMF、 15m 1に溶解し、 炭酸カリウム 0. 92 gを加え、 80°Cで 2時間撹拌した。 溶媒を減圧留去し、 残'渣を酢酸ェチル で抽出し、 抽出液を水洗して無水硫酸マグネシウムで乾燥した。 溶媒を減圧留去 して得た残渣をシリカゲルカラムクロマトグラフィーに付し、 標記の化合物 2. 14 gを得た。
XH-NMR (CDC 13) δ : 1. 22— 1. 42 (9H, m), 3. 90-4.
44 (7H, m), 6. 74- 6. 88 (2H, m), 7. 78 ( 1 H, s) 実施例 13 : (3 S) -9, 10—ジフルオロー 3—メチル一 7—ォキソ一 2,
3—ジヒドロー 7 H—ピリド [1, 2, 3— d e] [1, 4] ベンゾォキサジン
- 6一力ルボン酸ポロンジフルオリドキレート錯体
実施例 12で得られた ( S ) —ジェチル (7, 8—ジフルオロー 3—メチル
—3, 4—ジヒドロ一 2 H— [1, 4] ベンゾォキサジン _ 4一ィル) メチレン マロネート (2 g) および無水酢酸 (2ml) を混合して 140°Cにて 47 %三 フッ化ホウ素 'テトラヒドロフラン錯体 (0. 8m l ) を加え、 そのままの温度 で 1時間加熱攪拌した。 生成する低沸点物を留去した後に反応液を室温までに冷 却する。 反応混合物にアセトン (10ml) を加えてそのままの温度で 30分攪 拌した。 析出した結晶を集めてアセトンで洗浄し、 標記の化合物 1. 55 gを得 た。
実施例 14 : (3 S) - (一) — 9—フルオロー 3—メチルー 10— (4—メチ ルー 1ーピペラジニル) 一 7—ォキソ _2, 3—ジヒドロ一 7H—ピリド [1, 2, 3 - d e ] [1, 4] ベンゾォキサジン一 6—力ルボン酸 (レポフロキサシ ン)
実施例 13で得られた (3 S) -9, 10—ジフルオロー 3—メチルー 7—才 キソー 2, 3—ジヒドロ一 7H—ピリド [1, 2, 3 - d e] [1, 4] ベンゾ ォキサジン一 6—力ルボン酸ボロンジフルオリドキレート錯体 (31 Omg) を ジメチルスルホキシド (6m l ) に溶解し、 トリェチルァミン (0. 32ml) および N—メチルピペラジン (0. 13ml) を加え、 室温で 17時間攪拌した 後減圧乾固した。 残留物をジェチルエーテルで洗浄した後、 トリェチルァミン
(0. 5ml ) を含む 95 %エタノール (20m 1 ) に溶解して 8時間加熱還流 した。 冷後減圧乾固して得た残留物を、 希塩酸 (5%) に溶解してクロ口ホルム と振り分け、 水層を水酸化ナトリウム (Imo lZ l) で pHl lとし、 次いで 塩酸 (lmo l/l) で pH7. 4に調整した。 これをクロ口ホルム ( 50 m 1 X 3) で抽出して芒硝乾燥後クロ口ホルムを留去し、 得た粉末をエタノールージ ェチルエーテルより再結晶し、 透明微針晶の標記の化合物 12 Omgを得た。 融点: 225〜 227 °C (分解)
元素分析: C18H2。FN34 · 1/2H2〇として;
計算値: C, 58. 37 ; H, 5. 72 ; N, 11. 35 分析値: C, 58. 17 ; H, 5. 58 ; N, 1 1. 27 実施例 15
(1) 菌体破砕 (フレンチプレス) ATCC 14579の坂口培養菌体 (培地量 1200m l) を 20mMリン 酸緩衝液 8 Om l (pH 7. 0, 含 1 mM EDTA, DTT) に懸濁し、 フレ ンチプレスにて 15000 p s iの圧力をかけて菌体を破碎した。
破碎した菌体を遠心分離機 (10, 000 G, 30m i n) にて遠心分離する ことにより、 菌体抽出液 85. 0ml (総活性 123 u n i t, 比活性 0. 03 2 u n i t/mg) を得た。 菌体抽出液を下記の陰イオンクロマト精製条件にて分画した。 各画分につき 2 一べンジロキシプロピオン酸ェチルの加水分解活性を測定し、 活性画分 206m 1 (総活性 88 u n i t , 比活性 0. 058un i tZmg, 活性収率 72%) を得た。
陰イオンクロマトグラフィ一精製条件
担体; S ou r c e Q (ファルマシアバイォテク) 400ml
カラム; 5 Ommx 20 OmmH
移動相; A液: 2 OmMリン酸緩衝液 pH7. 0 (含 1 mM EDTA, DT
T) 900ml
Β液: Α液 +1. OM NaC 1 90 Oml
A→B l i ne r g r ad i en t
検出; 280 nm, 温度; 4°C
15分毎に画分分取、 2一べンジロキシプロピオン酸ェチルの加水分解反応
(3) 疎水クロマトグラフィー
陰イオン交換カラム活性画分 206mlに硫酸アンモニゥム 54. 4g (2.
0M相当) を少量ずつ添加し、 30分攪拌後、 生じた沈殿物を遠心分離 (10,
000 G, 3 Om i n) にて除去した。 得られた上清を下記の疎水クロマトダラ フィ一精製条件にて分画した。 各画分につき 2—べンジロキシプロピオン酸ェチ ルの加水分解活性を測定し、 活性画分 (251— 308m i n) を見出した。 分 取した活性画分を限外ろ過にて脱塩濃縮し、 活性本体画分 1. 0ml (総活性 1 6. 8 un i t, 比活性 3. 23 un i t/mg, 活性収率 19%) を得た。 疎水クロマトグラフィ一精製条件
担体; Re s ou r c e ETH (フアルマシアバイオテク) 100ml カラム; 45mmX 6 OmmH
移動相; A液: 2 OmMリン酸緩衝液 pH 7. 0 (含 1 mM EDTA, DT
T) 600ml
B液: A液 +2. 0M硫安 600ml
B→A l i ne r g r ad i en t
検出'; 280 nm, 温度; 4°C
7分毎に画分を分取、 2—べンジロキシプロピオン酸ェチルの加水分解反応実施 (4) 陰イオンクロマトグラフィー (Mono Q)
疎水クロマトグラフィー活性画分 1. 0m lを陰イオンクロマトグラフィー (Mono Q) にて分画した。 各画分につき 2—べンジロキシプロピオン酸ェ チルの加水分解活性を測定し、 活性画分 (23— 25m i n) を見出した。 分取 した活性画分を限外ろ過にて脱塩濃縮し、 活性本体画分 1. 0ml (総活性 5.
9 un i t, 比活性 4. 54un i t/mg, 活性収率 35 %) を得た。 この活 性本体の分子量は、 約 38, 000 (SDS PAGE)、 約 40, 000 (ゲ ル濾過) であった。
陰イオンクロマトグラフィー (Mono Q) 精製条件
カラム;陰イオン交換カラム Mo n o Q lm l
ク)
移動相; A液: 20 mMリン酸緩衝液 (p H 7. 0 )
B液: A液 + 1. 0M NaC 1
A→B l i n e r g r ad i en t 流速; 1 . 0 m l /m i n .
検出; 2 8 0 nm, 温度; r t
1分毎に画分分取、 2 - オン酸ェチルの加水分解反応実施
表 ATCC14579単離精製結果
総活性 比活性 活性収率
(mg) (uni ) (unit/mg) (%)
抽出液 3893 123 0.032 100
陰イオンクロマ卜 1508 88 0.058 72 疎水クロマト 5.2 16.8 3.23 14
Mono Q 1.3 5.9 4.54 4.8 得られた微生物由来精製酵素を用いて実施例 1、 2、 3及び 4と同様にエステ ル不斉加水分解反応を行ったところ、 光学純度 9 9 % ee 以上の (R) — 2—べ :ォン酸ェチルが効率良く得られた。
産業上の利用可能性
本発明方法によれば、 安価でかつ短工程で光学純度の高い、 光学活性プロポキ シァニリン誘導体 (V) が得られ、 これにより抗菌剤として有用な光学純度の高 いレポフロキサシンが工業的に有利に得られる。

Claims

請求の範囲 式 (I )
(り
Figure imgf000036_0001
(式中、 R1は炭素数 1から 6のアルキル基を意味し、 R2は水酸基の保護基を意 味する。) で表される化合物を、 エステル不斉加水分解能を有する酵素、 または エステル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該微 生物菌体処理物で処理した後の混合物から単離採取することを特徴とする式 ( I 一 a )
Figure imgf000036_0002
(式中、 R1及び R2は前記と同じ。) で表される光学活性な化合物の製造方法。
2 . R2が置換基を有していてもよいァラルキル基である請求項 1記載の製造 方法。
3 . R2がべンジル基である請求項 1または 2記載の製造方法。
4. R1がェチル基である請求項 1〜 3のいずれか 1項記載の製造方法。
5 . 酵素がリバ一ゼである請求項 1〜4のいずれか 1項記載の製造方法。
6 . 微生物が細菌である請求項 1〜4のいずれか 1項記載の製造方法。
7 . 細菌が、 バチルス(Baci l lus)属、 マイクロパクテリゥム(Microbacter i霞) 属、 マイクロコッカス属、 シユードモナス(Pseudomonas)属、 コリネバクテリウ ム(Corynebac teriumu)属、 およびストレブトマイセス(S treptomyces)属からなる 群から選ばれるものである請求項 6記載の製造方法。
8 . 細菌が、 ノ チルス(Bac i 1 lus)属またはマイクロバクテリ ゥム (Microbacteri腿)属であるものである請求項 6記載の製造方法。
9. 細菌が、 バチルス セレウス(Bacillus cereus)、 またはマイクロバクテ リウム ラエヴァニフォルマス(Microbacterium laevaniformas)である請求項 6 記載の製造方法。
10. 細菌が、 バチルス セレウス DSC0007 (Bacillus cereus DSC0007)、 バチ ルスセレウス ATCC14579 (Bacillus cereus ATCC14579), またはマイクロバクテ リウム ラエヴァニフォルマス IF014471 (Microbacterium laevani formasIF0144 71)である請求項 6記載の製造方法。
11. 酵素が、 エステル不斉加水分解能を有する微生物の菌体を、 高圧下に破砕 し、 陰イオンクロマトグラフィー、 疎水クロマトグラフィー、 次いで陰イオンク 口マトグラフィ一で精製することにより得られるエステル不斉加水分解能を有す る酵素である請求項 1〜 4のいずれか 1項記載の製造方法。
12. 式 (I) . (り
Figure imgf000037_0001
(式中、 R1は炭素数 1から 6のアルキル基を意味し、 R2は水酸基の保護基を意 味する。) で表される化合物を、 エステル不斉加水分解能を有する酵素、 または エステル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該微 生物菌体処理物で処理した後の混合液から単離採取して式 ( I一 a) ( )
Figure imgf000037_0002
(式中、 R1及び R2は前記と同じ。) で表される光学活性な化合物を得、 この化 合物 (I一 a) を非アルコール系溶媒中、 一級アルコール類存在下で、 水素化ホ ゥ素金属化合物で処理して式 (I I)
Figure imgf000038_0001
(式中、 R2は前記と同じ。)
で表される化合物を得、 この化合物 (I I ) と、 式 (I I I )
Figure imgf000038_0002
(式中、 X1、 X2および X3は、 各々独立してハロゲン原子を意味する。) で表さ れる化合物とを塩基存在下で処理して、 式 (I V)
Figure imgf000038_0003
(式中、 R2、 X1および X2は、 前記と同じ。) で表される化合物を得、 この化合 物 (I V) のニトロ基のアミノ基への変換と R2の脱離とを同時に行うことを特 徴とする式 (V)
Figure imgf000038_0004
(式中、 X1および X2は、 前記と同じ。) で表される化合物の製造方法。
13. 式 ( I V) (IV)
Figure imgf000039_0001
(式中、 X1および X2は、 各々独立してハロゲン原子を意味する。 R2は水酸基 の保護基を意味する。) で表される化合物のニト口基のアミノ基への変換と R2の 脱離とを同時に還元条件下で行い、 式 (V)
(v)
Figure imgf000039_0002
(式中、 X1および X2は、 前記と同じ。) で表される化合物を得ることを特徴と する請求項 1 2記載の製造方法。
14. 非アルコール系溶媒が芳香族炭化水素である請求項 1 2または 1 3記載の 製造方法。
15. 一級アルコール類がメタノールである請求項 1 2〜1 4のいずれか 1項記 載の製造方法。
16. 水素化ホウ素金属化合物が水素化ホウ素ナトリウムである請求項 1 2〜1 5のいずれか 1項記載の製造方法。
17. R2が置換基を有していてもよいァラルキル基である請求項 1 2〜1 6の いずれか 1項記載の製造方法。
18. R2がべンジル基である請求項 1 2〜 1 7のいずれか 1項記載の製造方法
19. 式 (I )
Figure imgf000040_0001
(式中、 は炭素数 1から 6のアルキル基を意味し、 R2 は水酸基の保護基を 意味する。) で表される化合物を、 エステル不斉加水分解能を有する酵素、 また はエステル不斉加水分解能を有する微生物の培養液、 該微生物菌体、 もしくは該 微生物菌体処理物で処理した後の混合物から単離採取することを特徴とする式
( I一 a )
Figure imgf000040_0002
(式中、 R1及び R2は前記と同じ。) で表される光学活性な化合物を得、 この化 合物を非アルコール系溶媒中、 一級アルコール類存在下で、 水素化ホウ素金属化 合物で処理して式 (I I )
Figure imgf000040_0003
(式中、 R2は前記と同じ。)
で表される光学活性な化合物を得、 この化合物 (I I ) と式 (I I I )
Figure imgf000040_0004
(式中、 X1、 X2および X3は、 各々独立してハロゲン原子を意味する。) で表さ れる化合物を塩基で処理して、 式 (I V)
Figure imgf000041_0001
(式中、 R2、 X1および X2は、 前記と同じ。) で表される光学活性な化合物を得、 この化合物 (I V) のニトロ基のアミノ基への変換と R2の脱離とを同時に行つ て、 式 (V)
Figure imgf000041_0002
(式中、 X1および X2は、 前記と同じ。) で表される化合物を得、 この化合物 (V) に式 (V I)
-COORJ
Y— CH=C、 (VI)
、COOR4
(式中、 Yは炭素数 1〜6のアルコキシ基、 ハロゲン原子又はジ (Ct一 C6アル キル) アミノ基を意味し、 R3および R4は各々独立して炭素数 1〜6のアルキル 基を意味する。) で表される化合物を反応させて、 式 (V I I)
Figure imgf000041_0003
(式中、 X1、 X2、 R3および R4は前記と同じ。) で表される化合物を得、 この化 合物 (V I I) にスルホニル化合物を反応させて式 (V I I I)
Figure imgf000042_0001
(式中、 R5は置換基を有していてもよいアルキルスルホニル基または置換基を 有していてもよいァリールスルホニル基を意味し、 X1、 X2、 R3および R4は前 記と同じ。) で表される化合物を得、 この化合物 (V I I I) を塩基条件下に閉 環して式 (I X)
Figure imgf000042_0002
(式中、 X1、 X2、 R3および R4は前記と同じ。) で表される化合物を得、 この化 合物 (I X) をホウ素化合物の存在下又は非存在下に加熱して式 (X)
Figure imgf000042_0003
(式中、 R6は炭素数 1~6のアルキル基、 又は BZ2 (ここで Zはハロゲン原子、
C,-Cf,アルコキシ基、 又は C2— C7アルキルカルボ二ルォキシ基を示す) を示 し、 X1および X2は前記と同じ。) で表される化合物を得、 この化合物 (X) に 4—メチルピペラジンを反応させて式 (X I )
Figure imgf000043_0001
(式中、 X1および R6は前記と同じ。) で表される化合物を得、 次いで加水分解 することを特徴とする、 式 (X I I )
Figure imgf000043_0002
(式中、 X1は前記と同じ。) で表される化合物の製造方法。
20. 式 (I V)
Figure imgf000043_0003
(式中、 X1 および X2 は、 各々独立してハロゲン原子を意味する。 R2 は水酸 基の保護基を意味する。) で表される化合物の二ト口基のアミノ基への変換と R2 の脱離とを同時に還元条件下で行い、 式 (V)
Figure imgf000044_0001
(式中、 X1 および X2は、 前記と同じ。) で表される化合物を得ることを特徴と する請求項 2 0記載の製造方法。
21. 非アルコール系溶媒が芳香族炭化水素である請求項 1 9または 2 0記載の 製造方法。
22. 一級アルコール類がメタノールである請求項 1 9〜2 1のいずれか 1項記 載の製造方法。
23. 水素化ホウ素金属化合物が水素化ホウ素ナトリウムである請求項 1 9〜2 2のいずれか 1項記載の製造方法。
24. R2 が置換基を有していてもよいァラルキル基である請求項 1 9〜2 3の いずれか 1項記載の製造方法。
25. R2 がべンジル基である請求項 1 9〜2 4のいずれか 1項記載の製造方法。
26. X1がフッ素原子である請求項 1 9〜2 5のいずれか 1項記載の製造方法。
27. エステル不斉加水分解能を有する微生物の菌体を、 高圧下に破碎し、 陰ィ オンクロマ卜グラフィ一、 疎水クロマトグラフィー、 次いで陰イオンクロマ卜グ ラフィ一で精製することにより得られるエステル不斉加水分解能を有する酵素。
PCT/JP2002/002054 2001-03-07 2002-03-06 Procede de preparation de derives de propoxyaniline optiquement actifs WO2002070726A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020037011568A KR100868619B1 (ko) 2001-03-07 2002-03-06 광학활성인 프로폭시아닐린 유도체의 제조방법
CA002440411A CA2440411A1 (en) 2001-03-07 2002-03-06 Process for preparation of optically active propoxyaniline derivatives
EP02702751A EP1367132B1 (en) 2001-03-07 2002-03-06 Process for preparation of optically active propoxyaniline derivatives
AT02702751T ATE439333T1 (de) 2001-03-07 2002-03-06 Verfahren zur herstellung optisch aktiver propoxyanilinderivate
US10/469,827 US7217560B2 (en) 2001-03-07 2002-03-06 Process for preparation of optically active propoxyaniline derivatives
JP2002570748A JP4169332B2 (ja) 2001-03-07 2002-03-06 光学活性なプロポキシアニリン誘導体の製造方法
DE60233307T DE60233307D1 (de) 2001-03-07 2002-03-06 Verfahren zur herstellung optisch aktiver propoxyanilinderivate
NO20033880A NO20033880D0 (no) 2001-03-07 2003-09-02 Fremgangsmåte for fremstilling av optiske aktive propoksyanilinderivater
HK04106493.5A HK1063819A1 (en) 2001-03-07 2004-08-30 Process for preparation of optically active propoxyaniline derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001063945 2001-03-07
JP2001-63945 2001-03-07

Publications (1)

Publication Number Publication Date
WO2002070726A1 true WO2002070726A1 (fr) 2002-09-12

Family

ID=18922847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002054 WO2002070726A1 (fr) 2001-03-07 2002-03-06 Procede de preparation de derives de propoxyaniline optiquement actifs

Country Status (13)

Country Link
US (1) US7217560B2 (ja)
EP (1) EP1367132B1 (ja)
JP (1) JP4169332B2 (ja)
KR (1) KR100868619B1 (ja)
CN (1) CN100465286C (ja)
AT (1) ATE439333T1 (ja)
CA (1) CA2440411A1 (ja)
DE (1) DE60233307D1 (ja)
ES (1) ES2329554T3 (ja)
HK (1) HK1063819A1 (ja)
NO (1) NO20033880D0 (ja)
TW (1) TWI311589B (ja)
WO (1) WO2002070726A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024015425A1 (en) 2022-07-14 2024-01-18 Fmc Corporation Herbicidal benzoxazines

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542600B1 (ko) * 2004-05-17 2006-01-11 주식회사 카이로켐 광학활성 (s)-피리도벤즈옥사진 카르복실산 반수화물 유도체의 제조 방법
ES2255871B1 (es) * 2004-12-31 2007-08-16 Quimica Sintetica, S.A. Procedimiento para la obtencion de levofloxacino exento de sales.
CN105198904B (zh) * 2014-06-25 2017-08-15 上虞京新药业有限公司 左氧氟沙星及氧氟沙星的制备方法
CN105732660B (zh) * 2014-12-10 2017-11-21 浙江京新药业股份有限公司 左氧氟沙星中间体的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135600A (ja) * 1984-12-04 1986-06-23 Nissan Chem Ind Ltd 酵素による2―(4―ヒドロキシフェノキシ)プロピオン酸低級アルキルの光学分割法
JPS6363397A (ja) * 1986-09-04 1988-03-19 Nissan Chem Ind Ltd 光学活性α−ヒドロキシカルボン酸誘導体の製造方法
EP0322815A2 (en) * 1987-12-25 1989-07-05 Daiichi Pharmaceutical Co., Ltd. Propoxybenzene derivatives and process for preparing the same
JPH02156892A (ja) * 1988-12-10 1990-06-15 Nitto Chem Ind Co Ltd 光学活性α−ヒドロキシカルボン酸の製造法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985365A (en) * 1981-11-28 1991-01-15 Sumitomo Chemical Company, Ltd. Process for producing optically active benzyl alcohol compound
NO166131C (no) 1985-06-20 1991-06-05 Daiichi Seiyaku Co Analogifremgangsmaate for fremstilling av s(-)-pyridobenzoksazinforbindelser.
US5108916A (en) * 1989-06-05 1992-04-28 Rhone-Poulenc Rorer, S.A. Process for stereoselectively hydrolyzing, transesterifying or esterifying with immobilized isozyme of lipase from candida rugosa
JPH0568577A (ja) 1990-12-11 1993-03-23 Mercian Corp プロポキシベンゼン誘導体の製造方法
IT1247533B (it) * 1991-04-26 1994-12-17 Mini Ricerca Scient Tecnolog Processo per la separazione degli isomeri ottici di acidi carbossilici alfa-sostitutivi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135600A (ja) * 1984-12-04 1986-06-23 Nissan Chem Ind Ltd 酵素による2―(4―ヒドロキシフェノキシ)プロピオン酸低級アルキルの光学分割法
JPS6363397A (ja) * 1986-09-04 1988-03-19 Nissan Chem Ind Ltd 光学活性α−ヒドロキシカルボン酸誘導体の製造方法
EP0322815A2 (en) * 1987-12-25 1989-07-05 Daiichi Pharmaceutical Co., Ltd. Propoxybenzene derivatives and process for preparing the same
JPH02156892A (ja) * 1988-12-10 1990-06-15 Nitto Chem Ind Co Ltd 光学活性α−ヒドロキシカルボン酸の製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024015425A1 (en) 2022-07-14 2024-01-18 Fmc Corporation Herbicidal benzoxazines

Also Published As

Publication number Publication date
JPWO2002070726A1 (ja) 2004-07-02
EP1367132A4 (en) 2006-05-31
ES2329554T3 (es) 2009-11-27
ATE439333T1 (de) 2009-08-15
US20040077060A1 (en) 2004-04-22
CN1496409A (zh) 2004-05-12
HK1063819A1 (en) 2005-01-14
EP1367132B1 (en) 2009-08-12
KR20040007459A (ko) 2004-01-24
TWI311589B (en) 2009-07-01
CA2440411A1 (en) 2002-09-12
KR100868619B1 (ko) 2008-11-13
DE60233307D1 (de) 2009-09-24
JP4169332B2 (ja) 2008-10-22
NO20033880L (no) 2003-09-02
EP1367132A1 (en) 2003-12-03
US7217560B2 (en) 2007-05-15
CN100465286C (zh) 2009-03-04
NO20033880D0 (no) 2003-09-02

Similar Documents

Publication Publication Date Title
JP5106478B2 (ja) ベンゾオキサジン誘導体の製造法およびその製造中間体
WO2002070726A1 (fr) Procede de preparation de derives de propoxyaniline optiquement actifs
WO2015119261A1 (ja) ロスバスタチンカルシウム及びその中間体の製造方法
JPH07507795A (ja) カンプトテシンおよびカンプトテシン類似体の不斉合成の方法および中間体
EP1020458A1 (en) Optically active 1,4-benzodioxine-2-carboxylic acid derivatives and process for producing the same
CN100432060C (zh) 制备苯并嗪衍生物用中间体及其制备方法
JPWO2003040382A1 (ja) 光学活性クロマン誘導体の製造法および中間体
JP3814766B2 (ja) 光学活性な2−ハロ−1−(置換フェニル)エタノールの製造法
JP4599691B2 (ja) 光学活性化合物およびその製造方法
JPH11313695A (ja) 光学活性3,3,3−トリフルオロ−2−ヒドロキシ−2−メチルプロピオン酸の製造方法
JP2002121179A (ja) ベンゾオキサジン誘導体の製造法およびその製造中間体
JPH09143148A (ja) 2−ベンジル−3−[(p−トルエンスルホニル)オキシ]プロピルアセテートの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002570748

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002702751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037011568

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028060970

Country of ref document: CN

Ref document number: 10469827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2440411

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2002702751

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020037011568

Country of ref document: KR