WO2002070444A1 - Procede de production du bisphenol a - Google Patents

Procede de production du bisphenol a Download PDF

Info

Publication number
WO2002070444A1
WO2002070444A1 PCT/JP2002/001535 JP0201535W WO02070444A1 WO 2002070444 A1 WO2002070444 A1 WO 2002070444A1 JP 0201535 W JP0201535 W JP 0201535W WO 02070444 A1 WO02070444 A1 WO 02070444A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
phenol
adduct
solution
filter
Prior art date
Application number
PCT/JP2002/001535
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Hirano
Ken Fujimoto
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Priority to US10/258,578 priority Critical patent/US6686508B2/en
Priority to EP02700662A priority patent/EP1367043A4/en
Publication of WO2002070444A1 publication Critical patent/WO2002070444A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/82Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • C07C2531/08Ion-exchange resins
    • C07C2531/10Ion-exchange resins sulfonated

Definitions

  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polycarbonate resin, or epoxy resin, and the demand for bisphenol A is increasing more and more in recent years. It is in.
  • an acid has a catalytic action such as decomposition of bisphenol A into phenol and isopropyl alcohol under high temperature conditions.
  • a typical example of the acid is sulfonic acid in the production of bisphenol A using a sulfonic acid type cation exchange resin. This sulfonic acid reacts with iron and bisphenol A at a high temperature of 110 ° C. or more to produce a black solid sulfonic acid-containing heavy substance (hereinafter, may be referred to as an impurity). Generate Especially in the presence of water, the generation of this contaminant is accelerated. In order to improve the hue of the product Bisphenol A, it is necessary to remove these contaminants effectively. In particular, in recent years, as a raw material for polycarbonate resin, which is increasing in demand for optical applications, bisphenol A, which is more colorless and higher in purity than ever, is required.
  • An object of the present invention is to provide a method for efficiently producing high-quality bisphenol A having a good hue by reducing sulfonic acid-containing heavy substances in a product under such circumstances. is there.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, in a post-treatment step of a reaction mixture obtained by condensing phenol and acetone in the presence of an acid catalyst, bisphenol A and phenol were used. Dissolving the adduct of the present invention using a solution containing phenol, and crystallizing the adduct from the solution; at least one of the steps of separating the adduct is performed by a filter. It has been found that the purpose can be achieved by providing a filtration step. The present invention has been completed based on such findings.
  • the present invention comprises the steps of: condensing excess phenol and acetone in the presence of an acidic catalyst to produce bisphenol A; and (A) concentrating a reaction mixture substantially free of the acidic catalyst.
  • B a step of crystallizing and separating an adduct of bisphenol A and phenol from the concentrated residual liquid obtained in the above step (A), and
  • C a bisphenol A crystallized and separated in the above step (B).
  • Dissolving the adduct of phenol and phenol with a phenol-containing solution (D) crystallizing and separating the adduct of bisphenol A and phenol from the solution obtained in step (C) above; After dissolving the adduct using a fuanol-containing solution,
  • bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst.
  • an acid-type ion exchange resin can be used as the acidic catalyst.
  • the acid-type ion exchange resin is not particularly limited, and those conventionally used as a catalyst for bisphenol A can be used. From the viewpoint of catalytic activity and the like, in particular, the sulfonic acid-type cation exchange resin is used. Is preferred.
  • the sulfonic acid type cation exchange resin is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group, and examples thereof include a sulfonated styrene divinylbenzene copolymer and a sulfonated crosslinked styrene polymer.
  • a strongly acidic cation exchange resin having a sulfonic acid group examples thereof include a sulfonated styrene divinylbenzene copolymer and a sulfonated crosslinked styrene polymer.
  • Phenolformaldehyde sulfonic acid resin, benzeneformaldehyde monosulfonic acid resin and the like. ⁇ may be used alone or in combination of two or more.
  • mercaptans are usually used in combination with the acid-type ion exchange resin as a cocatalyst.
  • This mercaptan refers to a compound having an SH group in a free form in the molecule, such as an alkyl mercaptan, a substituent such as a carboxyl group, an amino group, or a hydroxyl group.
  • Alkyl mercaptans having at least one kind, for example, mercaptocarponic acid, aminoalkanethiol, mercapto alcohol and the like can be used.
  • Examples of such mercaptans include alkyl mercaptans such as methyl mercaptan, ethyl mercaptan, n-butyl mercaptan, and n-octyl mercaptan, and thiocarbons such as thioglycolic acid and monomercaptopropionic acid. Examples thereof include acids, aminoalkanethiols such as 2-aminoethanethiol, and mercapto alcohols such as mercaptoethanol. Of these, alkyl mercaptans are particularly preferred in terms of their effect as cocatalysts. In addition, these mercaps may be used alone or in combination of two or more.
  • These mercaps can be immobilized on the acid-type ion-exchange resin to function as a promoter.
  • the amount of the mercaptans is generally the raw material of ⁇ Se tons, from 0.1 to 2 0 mole 0/0, preferably, Ru is selected from the range from 1 to 1 0 mol 0/0.
  • the proportion of phenol and acetone used. However, it is desirable that the amount of unreacted acetone is as small as possible in view of the ease of purification of the resulting bisphenol A and the economics.Therefore, the phenol should be contained in excess of the stoichiometric amount. It is advantageous to use it. Usually, 3 to 30 moles, preferably 5 to 15 moles of phenol are used per mole of acetone.
  • the reaction solvent is generally not required, except that the reaction solution is reacted at a low temperature at which the viscosity of the reaction solution is too high or the solidification makes operation difficult.
  • the condensation reaction of phenol and acetate in the present invention may be of a batch type or a continuous type. It is advantageous to use a fixed bed continuous reaction system in which the reaction is carried out by continuously supplying (but not immobilizing the acid type ion exchange resin to the acid type ion exchange resin). At this time, one or more reaction towers may be arranged in series, but industrially, two or more reaction towers filled with an acid-type ion exchange resin are connected in series and fixed. It is particularly advantageous to employ a multi-bed continuous reaction system.
  • the acetone / phenol molar ratio is usually selected from the range of 1/30 to 13, preferably 1/15 to 15. If the molar ratio is less than 1 Z30, the reaction rate may be too slow. If the molar ratio is greater than 1Z3, the generation of impurities may increase, and the selectivity for bisphenol A tends to decrease.
  • the molar ratio of the mercaptans Z-aceton is usually from 0.1 / 100 to 200/100, preferably 1/100. It is selected in the range of 0 to 100/100. If the molar ratio is less than 0.1 / 100, the effect of improving the selectivity of bisphenol A may not be sufficiently exerted.If the molar ratio is greater than 20/100, the amount may be relatively small. The effect is not so much improved.
  • the reaction temperature is usually 40 to 150 ° C, preferably 60 to 110 ° C. ° C. If the temperature is lower than 40 ° C, the reaction rate is low, and the viscosity of the reaction liquid is extremely high. In some cases, the reaction liquid may be solidified. If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol A (p, p'-isomer) selectivity and the acid-type ion exchange resin of the catalyst may decompose or degrade. Furthermore, the raw material mixture LHSV (liquid hourly space velocity) is generally 0. 2 ⁇ 3 0 hr 1, selected preferably 0. 5 ⁇ 1 0 hr- 1 range.
  • LHSV liquid hourly space velocity
  • the reaction mixture thus obtained is substantially free of an acid-type ion exchange resin, that is, in the case of a batch reaction system, the catalyst is removed by filtration or the like, and the fixed bed continuous reaction is performed.
  • post-processing is performed as it is.
  • the following steps (A) to (E) are essential, and an adduct of bisphenol A and phenol is dissolved using a phenol-containing solution. At least one of the steps of crystallizing and separating the adduct from the solution is performed by a filtration step using a filter.
  • Step (A) is a step of concentrating the reaction mixture substantially containing no acid-type ion exchange resin.
  • this concentration step generally, first, unreacted acetone, by-product water, and low-boiling substances such as alkyl mercaptans are removed by vacuum distillation using a distillation column.
  • the vacuum distillation is generally carried out under the conditions of a pressure of about 6.5 to 80 kFa and a temperature of about 70 to 180 ° C. At this time, unreacted phenol is azeotroped, and a part thereof is removed out of the distillation tower from the top of the distillation column together with the low-boiling substance.
  • the temperature of the heating source used is preferably set to 190 ° C. or lower in order to prevent the thermal decomposition of bisphenol A.
  • SUS304, SUS316 and SUS316L are generally used as materials for the equipment.
  • the bottom liquid containing bisphenol A and phenol, etc., from which the low-boiling substances have been removed from the reaction mixture is subjected to vacuum distillation to distill off the phenol and to concentrate the bisphenol A.
  • concentration conditions There are no particular restrictions on the concentration conditions, but usually conditions of a temperature of about 100 to 170 ° C. and a pressure of about 5 to 70 kPa are employed. If this temperature is lower than 100 ° C., a high vacuum is required, and if it is higher than 170 ° C., extra heat removal is required in the next crystallization step, which is not preferable.
  • the concentration of Bisufuyunoru A in the concentrated residual liquid is good Mashiku 2 0-5 0% by weight, more preferably from 2 0-4 0 weight 0/0. This concentration is low recovery of bisphenol A is less than 2 0 weight 0 / o, there is Re emesis to 5 0 exceeds wt%, the slurry one transfer after crystallization becomes difficult.
  • the 1: 1 adduct of bisphenol A and phenol (hereinafter sometimes referred to as phenol adduct) is crystallized and separated from the concentrated residue obtained in the step (A). This is the step of performing
  • the concentrated residue is cooled to about 40 to 70 ° C., and phenol adduct is crystallized to form a slurry.
  • the cooling at this time may be performed using an external heat exchanger, or a vacuum cooling crystallization method in which water is added to the concentrated residual liquid and cooled using the latent heat of evaporation of water under reduced pressure. You may go there.
  • this vacuum cooling crystallization method about 3 to 20% by weight of water is added to the concentrated residue, and crystallization is performed at a normal temperature of 40 to 70 ° C. and a pressure of 3 to 13 kPa. Processing is performed.
  • Amount of 3 wt% non Mitsurude of the water is not sufficient heat removal capability, dissolution loss of 1 0 wt 0/0 by weight, Bisufu no Le A becomes large, which is undesirable.
  • the crystallization temperature is lower than 40 ° C, the viscosity of the crystallization liquid may increase or solidify, and if the crystallization temperature exceeds 70 ° C, bisphenol A conversion may occur. Dissolution mouth It becomes undesirably large.
  • the slurry containing the phenol adduct thus crystallized is separated into fu ⁇ ol adduct and a crystallization mother liquor containing a reaction by-product by known means such as filtration and centrifugation.
  • a part of the crystallized mother liquor may be recycled to the reactor as it is, or a part or all of the mother liquor may be subjected to an alkaline decomposition treatment to recover phenol and isopropenyl phenol.
  • a part or all of the compound can be isomerized and recycled as a crystallization raw material. .
  • the step (C) is a step of dissolving the phenol derivative crystallized and separated in the step (B) using a phenol-containing solution.
  • the phenol-containing solution used in the step (C) is not particularly limited.
  • the recovered phenol obtained in the concentration step in the step (A) and the phenol solution produced in the crystallization / separation step in the step (B) A washing solution of the phenolic product, a mother liquor in the solid-liquid separation of the crystallized phenolic product produced in the steps after the step (C), and a washing solution of the phenolic product can be exemplified.
  • step (C) the above-mentioned phenol-containing solution is added to the phenol adduct obtained in the step (B), the mixture is heated to about 80 to 110 ° C, and the phenol adduct is dissolved by heating, and A bisfunol A-containing solution having a preferred bisfunol A concentration for the precipitation operation is prepared.
  • the bisphenol A-containing solution prepared in this way has a low viscosity even at a relatively low temperature and is relatively easy to handle.So the solid-liquid separation of the crystallized phenol in the next step is performed by a filter. Suitable for
  • the phenol-adduct crystallization / separation operation and the phenol-adduct dissolution operation using a phenol-containing solution in the (D) ′ step are the same as the above-mentioned steps (B) and (C), respectively.
  • the step (E) is a step of heating and melting the phenolic product crystallized and separated in the step (D), and then distilling off the phenol.
  • the thus obtained bisphenol A in a molten state is formed into droplets by a granulation device such as a spray drier, cooled and solidified to obtain a product.
  • the droplets are formed by spraying, spraying, etc., and cooled by nitrogen, air, or the like.
  • the crystallization / separation / dissolution / dissolution / crystallization / separation operation is performed one or more times between the step (C) and the step (D) or in the step (D), the dissolution operation is performed.
  • the bisphenol A-containing solution By filtering the lysate with a filter, impurities contained in the lysate can be removed, and the decomposition of bisphenol A under high temperature conditions in the subsequent step can be prevented. As a result, the production of coloring substances is suppressed, and bisphenol A with improved hue is obtained.
  • the material of the filter to be used is not particularly limited, but a commonly used glass fiber filter is preferable because it is easy to handle.
  • the filtration accuracy of the filter used (the maximum diameter of impurities that can pass through the filter) differs depending on the particle size and content of the impurities, but is usually 20 m or less. 0; preferably not more than Lim.
  • the differential pressure before and after passing through the filter at the beginning of operation is about 0.03 to 0.04 MPa, but the differential pressure increases due to clogging and the like. , 0.10 to 0.20 MFa, the filter element is replaced with a new one.
  • sulfone from ion exchange resin reacts with bisphenol A and iron from a reactor or the like to produce black solid sulfonic acid-containing heavy substances (impurities).
  • impurities are often generated in the low boiling point removal step and the concentration step, which are performed after the reaction of the reaction solution after condensing the phenol and acetone, and thus the filter is installed in the step after the generation of the contaminants. It is important to perform this step, but it is not preferable to install it in a process where the fluid temperature is high after the formation, because bisphenol A will be decomposed before removing contaminants.
  • the mixture was distilled under reduced pressure at 4 kPa to distill off the phenol, and concentrated until the bisphenol A concentration became 40% by weight to obtain a phenol'bisphenol A solution.
  • the obtained slurry solution was subjected to solid-liquid separation to obtain bisphenol A • phenol adduct.
  • this solution was filtered through a glass fiber filter [glass fiber filter manufactured by Loki Techno Co., Ltd., filtration accuracy: 10 jLdm], followed by the same vacuum cooling crystallization and solid-liquid separation to obtain bisphenol A • phenol adduct. Obtained.
  • this adduct was washed with purified phenol to obtain a bisphenol A / phenol adduct crystal. This adduct crystal was heated and melted at 130 ° C., and then phenol was removed to obtain bisphenol A.
  • the above bisphenol A is heated at 220 ° C for 40 minutes in an air atmosphere.
  • the hue was visually evaluated using the APHA standard color and found to be APHA 15.
  • Example 1 the reaction product solution was filtered through a glass fiber filter (described above), and crystallization was performed by adding a phenol to the separated bisphenol A • phenol adduct and then dissolving the solution using a filter.
  • Bisphenol A was obtained in the same manner as in Example 1 except that the reaction was not carried out.
  • the hue of this bisphenol A was AF HA40.
  • Example 1 acetone tons, such as to remove water, (supra) glass fiber filters one at the resulting phenol-bisphenol A solution (Bisufuwenoru A concentration 4 0 by weight 0/6) and concentrated Bisphenol A was obtained in the same manner as in Example 1 except that filtration was further added, and phenol was added to the crystallized and separated phenol adduct, and the filtration of a solution in which the phenol was dissolved was omitted. The hue of this bisphenol A was APHA 30. Industrial applicability
  • high-quality bisphenol A having an improved hue can be efficiently produced by reducing sulfonic acid-containing heavy substances in a product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明細: ビスフヱノール Aの製造方法 技術分野
本発明はビスフエノール A 〔 2 , 2 —ビス ( 4 —ヒ ドロキシフエ二 ル) プロパン〕 の製造方法の改良に関し、 さらに詳しくは、 製品中の スルホン酸含有重質物を低減させて、 色相の良好な高品質のビスフユ ノール Aを効率よく製造する方法に関するものである。 背景技術 .
ビスフェノール Aはポリカーボネ一ト樹脂やポリァリ レ一ト樹脂な どのエンジニアリ ングプラスチック、 あるいはエポキシ樹脂などの原 料として重要な化合物であることが知られており、 近年その需要はま すます増大する傾向にある。
このビスフユノール Aは、 酸性触媒及び場合により用いられる硫黄 化合物などの助触媒の存在下に、 過剰のフ ノールとァセトンとを縮 合させることにより製造される。
この反応において用いられる酸触媒としては、 従来、 硫酸や塩化水 素などの無機鉱酸が用いられていたが、 近年、 陽イオン交換樹脂が注 目され (英国特許第 8 4 2 2 0 9号、 同第 8 4 9 5 6 5号、 同第 8 8 3 3 9 1号) 、 工業的に用いられるようになった。
—方、 助触媒として用いられる硫黄化合物としては、 メチルメル力 プタン、 ェチルメルカプタン、 チォグリコ一ル酸などの置換基を有す る若しくは有しないアルキルメルカプタン類が有効であることが知ら れている (米国特許第 2 3 5 9 2 4 2号、 同第 2 7 7 5 6 2 0号) 。 このメルカブタン類は、 反応速度を上げるとともに、 選択率を向上さ せる作用を有している。 例えば、 ビスフエノール Aの製造において、 反応副生物として、 主に 2— ( 2 —ヒ ドロキシフヱニル) 一 2— ( 4 ーヒ ドロキシフエニル) プロノ、"ン ( 0, p ' —体) が生成し、 その他 ト リスフエノ一ル、 ポリフエノールなどが生成する。 特に、 ポリ力一 ボネ一ト樹脂やポリァリ レート樹脂などの原料として用いる場合、 こ れらの副生物の含有量が少なく、 着色のない高純度のビスフ ノール Aが要求される。 このため、 反応速度を上げるとともに、 上記副生物 の生成を抑え、 選択率を高めるために、 助触媒としてメルカプタン類 が用いられる。
ところで、 酸は、 高温条件下においてビスフエノール Aをフエノー ルとイソプロべ二ルフヱノールに分解するなど、 触媒作用を有してい ることが知られている。 この代表的な酸としては、 スルホン酸型瘍ィ ォン交換樹脂を用いたビスフエノール Aの製造に-おけるスルホン酸が 挙げられる。 このスルホン酸は、 1 1 0 °C以上の高温下で、 鉄とビス フエノール Aと反応することによ り、 黒色固形のスルホン酸含有重質 物 (以下、 夾雑物と称すことがある。 ) を生成する。 特に水の存在下 では、 この夾雑物の生成が加速される。 製品ビスフヱノール Aの色相 を良好なものにするためには、 この夾雑物を効果的に取り除く ことが 必要である。 特に近年、 光学用途の需要が増大しているポリカーボネ 一ト樹脂の原料としては、 従来以上に無色で高純度のビスフユノール Aが要求されている。
上記夾雑物を取り除くためには、 フィルタ一を設置することが有効 である。 ビスフヱノール Aの製造において、 フィルタ一を設ける技術 としては、 例えばビスフエノール Aの製造プロセス中に焼結金属製フ ィルタ一を設置することにより、 不純物微粒子を微量しか含まないビ スフヱノール Aの製造方法 (特開平 1 1 — 1 8 0 9 2 0号公報) 、 フ ッ素樹脂製メ ンブレンフィルタ一を採用し、 不純物微粒子を低減させ たビスフヱノール Aの製造方法 (特開平 8 - 3 2 5 1 8 4号公報) が 提案されている。 しかしながら、 これらの方法においては、 フィルタ —の設置場所が好ましい場所とは云えず、 製品ビスフユノール Aの色 相については、 必ずしも満足し得るものではない。
さ らに、 反応工程出口、 低沸点物除去工程出口及び加熱溶融工程出 口の少なく とも 1箇所にグラスファイバ一製フィルタ一を設置するこ とにより、 フエノール含有量の少ないビスフエノール Aを製造する方 法が開示されている (特開 2 0 0 0 - 3 2 7 6 1 4号公報) 。 しかし ながら、 このフィルタ一設置場所について、 反応工程出口及び低沸点 物除去工程出口では、 スルホン酸含有物質を完全に捕捉することが不 可能であり、 捕捉できなかったスルホン酸含有物質は、 1 2 0 °C以上 の高温下で、 鉄どビスフヱノール Aと反応し、 スルホン酸含有重質物 を生成する。 このスルホン酸含有重質物は、 後工程での高温条件下で ビスフエノール Aを分解する触媒となり、 製品ビスフヱノール Aの色 相を悪化させる。 従って、 加熱溶融工程出口では溶融操作において高 '温条件となっているため、 一部が分解されると考えられる。 また、 流 体温度が高く、 ハン ドリ ングの面において、 フィルタ一清掃作業など が困難であり、 フィルターの仕様においても耐熱性が要求される。 以 上よ り、 上記 3箇所については、 最適なフィルタ一設置場所とは考え 難い。 発明の開示
本発明は、 このような状況下で、 製品中のスルホン酸含有重質物を 低減させて、 色相の良好な高品質のビスフ ノール Aを効率よく製造 する方法を提供することを目的とするものである。
本発明者は、 前記目的を達成するために鋭意研究を重ねた結果、 酸 触媒の存在下、 フ ノールとァセトンを縮合させて得られた反応混合 液の後処理工程において、 ビスフユノール Aとフヱノールとの付加物 をフユノール含有溶液を用いて溶解する工程と、 この溶液から当該付 加物を晶析; 分離する工程の間の少なく とも一つに、 フィルタ一によ る濾過工程を設けることにより、 その目的を達成し得ることを見出し た。 本発明は、 かかる知見に基づいて完成したものである。
すなわち、 本発明は、 酸性触媒の存在下、 過剰のフヱノールとァセ トンを縮合させてビスフヱノール Aを生成させたのち、 (A ) 実質上 上記酸性触媒を含まない反応混合液を濃縮する工程、 (B ) 上記 (A ) 工程で得られた濃縮残液からビスフユノール Aとフヱノールとの付 加物を晶析 · 分離する工程、 ( C ) 上記 (B ) 工程で晶析 ·分離され たビスフヱノール Aとフヱノールとの付加物をフヱノール含有溶液を 用いて溶解する工程、 (D ) 上記 ( C ) 工程で得られた溶液からビス フヱノ一ル Aとフヱノールとの付加物を晶析 · 分離し、 場合によ り、 さらに当該付加物をフユノール含有溶液を用いて溶解したのち、 晶析
- 分離する操作を 1回以上繰り返す工程及び (E ) 上記 (D ) 工程で 晶析 · 分離されたビスフユノール Aとフヱノールとの付加物を加熱溶 融後、 フヱノールを留去させる工程を必須工程として行うビスフヱノ —ル Aの製造方法において、 (C ) 工程または (D ) 工程でビスフユ ノール Aとフユノ一ルとの付加物をフュノ一ル含有溶液を用いて溶解 する工程と、 この溶液から当該付加物を晶析 · 分離する工程の間の少 なく とも一つに、 フィルタ一による濾過工程を設けることを特徴とす るビスフエノール Aの製造方法を提供するものである。 発明を実施するための最良の形態
本発明のビスフユノール Aの製造方法においては、 酸性触媒の存在 下、 過剰のフエノ一ルとァセトンを縮合させて、 ビスフヱノール Aを 生成させる。 上記酸性触媒としては、 酸型イオン交換樹脂を用いるこ とができる。 この酸型イオン交換樹脂としては、 特に制限はなく、 従 来ビスフエノール Aの触媒として慣用されているものを用いることが できるが、 特に触媒活性などの点から、 スルホン酸型陽イオン交換樹 脂が好適である。 該スルホン酸型陽ィォン交換樹脂については、 スルホン酸基を有す る強酸性陽イオン交換樹脂であれば良く、 特に制限されず、 例えばス ルホン化スチレンージビニルベンゼンコポリマ一、 スルホン化架橋ス チレンポリマ一、 フヱノールホルムアルデヒ ドースルホン酸樹脂、 ベ ンゼンホルムアルデヒ ド一スルホン酸樹脂などが挙げられる。 · これら はそれぞれ単独で用いてもよ く、 二種以上を組み合わせて用いてもよ い。
本発明の方法においては、 上記酸型イオン交換樹脂と共に、 通常助 触媒として、 メルカブタン類が併用される。 このメルカブタン類は、 分子内に S H基を遊離の形で有する化合物を指し、 このようなものと しては、 アルキルメルカプタンや、 力ルボキシル基、 アミ ノ基、 ヒ ド 口キシル基などの置換基一種以上を有するアルキルメルカプタン類、 , 例えばメルカプトカルポン酸、 アミ ノアルカンチオール、 メルカプト アルコールなどを用いることができる。 このようなメルカプタン類の 例と しては、 メチルメルカプタン、 ェチルメルカプタン、 n一ブチル メルカプタン、 n—ォクチルメルカプタン~などのアルキルメルカプ夕 ン、 チォグリ コール酸、 一メルカプトプロピオン酸などのチォカル ボン酸、 2—アミ ノエタンチオールなどのアミ ノアルカンチオール、 メルカプトエタノールなどのメルカプトアルコールなどが挙げられる が、 これらの中で、 アルキルメルカプタンが助触媒と しての効果の点 で、 特に好ま しい。 また、 これらのメルカプ夕ン類は、 単独で用いて もよく、 二種以上を組み合わせて用いてもよい。
これらのメルカプ夕ン類は、 前記酸型イオン交換樹脂上に固定化さ せ、 助触媒と して機能させることもできる。
前記メルカプタン類の使用量は、 一般に原料のァセ ト ンに対して、 0 . 1 ~ 2 0モル0 /0、 好ましく は、 1〜 1 0モル0 /0の範囲で選定され る。
また、 フエノールとァセト ンとの使用割合については特に制限はな いが、 生成するビスフエノ一ル Aの精製の容易ざや経済性などの点か ら、 未反応のァセトンの量はできるだけ少ないことが望ましく、 従つ て、 フエノールを化学量論的量より も過剰に用いるのが有利である。 通常、 アセト ン 1 モル当たり、 3〜 3 0モル、 好ましく は 5〜 1 5モ ルのフエノールが用いられる。 また、 このビスフエノール Aの製造に おいては、 反応溶媒は、 反応液の粘度が高すぎたり、 凝固して運転が 困難になるような低温で反応させる以外は、 一般に必要ではない。 本発明におけるフユノールとアセ ト ンとの縮合反応は、 回分式及び 連続式のいずれであってもよいが、 酸型ィォン交換樹脂を充填した反 応塔に、 フエノールとァセトンとメルカプタン類 (メルカプ夕ン類が 酸型イオン交換樹脂に固定化されない場合) を連続的に供給して反応 させる固定床連続反応方式を用いるのが有利である。 この際、 反応塔 は 1基でもよく、 また 2基以上を直列に配置してもよいが、 工業的に は、 酸型イオン交換樹脂を充填した反応塔を 2基以上直列に連結し、 固定床多段連続反応方式を採用するのが、 特に有利である。
この固定床連続反応方式における反応条件について説明する。
まず、 ァセ ト ン /フエノールモル比は、 通常 1 / 3 0〜 1 3、 好 ま しく は 1 / 1 5〜 1 5の範囲で選ばれる。 このモル比が 1 Z 3 0 よ り小さい場合、 反応速度が遅くなりすぎるおそれがあり、 1 Z 3よ り大きいと不純物の生成が多くなり、 ビスフユノール Aの選択率が低 下する傾向がある。 一方、 メルカブタン類が酸型イオン交換樹脂に固 定化されない場合、 メルカブタン類 Zアセ ト ンのモル比は、 通常 0 . 1 / 1 0 0〜 2 0 / 1 0 0、 好ましくは 1 / 1 0 0〜 1 0 / 1 0 0 の 範囲で選ばれる。 このモル比が 0 . 1 / 1 0 0 より小さい場合、 反応 速度ゃビスフヱノール Aの選択率の向上効果が十分に発揮されないお それがあり、 2 0 / 1 0 0より大きいとその量の割りには効果の向上 はあまり認められない。
また、 反応温度は、 通常 4 0 ~ 1 5 0 °C、 好ましく は 6 0〜 1 1 0 °Cの範囲で選ばれる。 該温度が 4 0 °C未満では反応速度が遅い上、 反 応液の粘度が極めて高く、 場合により、 固化するおそれがあり、 1 5 0 °Cを超えると反応制御が困難となり、 かつビスフヱノール A ( p, p ' —体) の選択率が低下する上、 触媒の酸型イオン交換樹脂が分解 又は劣化することがある。 さらに、 原料混合物の L H S V (液空間速 度) は、 通常 0 . 2〜 3 0 h r 1、 好ましくは 0 . 5〜 1 0 h r— 1の 範囲で選ばれる。
本発明においては、 このようにして得られた反応混合液を、 実質上 酸型イオン交換樹脂が含まれない状態、 すなわち回分反応方式の場合 は該触媒を濾過などにより除去し、 固定床連続反応方式の場合は、 そ のままの状態で後処理する。
この後処理としては、 本発明の方法では、 以下に示す (A ) 工程〜 ( E ) 工程を必須工程とすると共に、 ビスフヱノ一ル Aとフヱノール との付加物 フユノール含有溶液を用いて溶解する工程と、 この溶液 から当該付加物を晶析■ 分離する工程の間の少なく とも一つに、 フィ ルターによる濾過工程を施すことが行われる。
次に、 各工程について説明する。
( A ) 工程
( A ) 工程は、 前記の実質上酸型イオン交換樹脂を含まない反応混 合液を濃縮する工程である。
この濃縮工程においては、 通常、 まず、 蒸留塔を用いた減圧蒸留に よ り、 未反応アセト ン、 副生水及びアルキルメルカプタンなどの低沸 点物質を除去することが行われる。
減圧蒸留は、 一般に圧力 6 . 5〜 8 0 k F a程度及び温度 7 0〜 1 8 0 °C程度の条件で実施される。 この際、 未反応フユノールが共沸し 、 その一部が上記低沸点物質と共に、 蒸留塔の塔頂より系外へ除かれ る。 この蒸留においては、 ビスフヱノール Aの熱分解を防止するため に、 使用する加熱源の温度は 1 9 0 °C以下とすることが望ましい。 ま た、 機器の材料としては、 一般に S U S 3 0 4、 S U S 3 1 6及び S U S 3 1 6 Lが用いられる。
次に、 反応混合物から低沸点物質を除いた、 ビスフユノール A及び フェノールなどを含む塔底液に減圧蒸留を施してフヱノールを留去さ せ、 ビスフヱノール Aを濃縮する。 この濃縮条件については特に制限 はないが、 通常温度 1 0 0〜 1 7 0 °C程度及び圧力 5〜 7 0 k P a程 度の条件が採用される。 この温度が 1 0 0 °Cよい低いと高真空が必要 となり、 1 7 0 °Cより高いと次の晶析工程で余分の除熱が必要となり 、 好ましくない。 また、 濃縮残液中のビスフユノール Aの濃度は、 好 ましくは 2 0〜 5 0重量%、 より好ましくは 2 0〜 4 0重量0 /0の範囲 である。 この濃度が 2 0重量0 /o未満ではビスフエノール Aの回収率が 低く、 5 0重量%を超えると晶析後のスラリ一移送が困難となるおそ れがある。
( B ) 工程
' ( B ) 工程は、 上記 (A ) 工程で得られた濃縮残液からビスフヱノ —ル Aとフェノールとの 1 : 1付加物 (以下、 フヱノールァダク ト称 することがある。 ) を晶析 · 分離する工程である。
この工程においては、 まず、 上記濃縮残液を 4 0〜 7 0 °C程度に冷 却し、 フヱノールァダク トを晶析させ、 スラリーとする。 この際の冷 却は、 外部熱交換器を用いて行ってもよく、 また、 濃縮残液に水を加 え、 減圧下での水の蒸発潜熱を利用して冷却する真空冷却晶析法によ つて行ってもよい。 この真空冷却晶析法においては、 該濃縮残液に、 水を 3〜 2 0重量%程度添加し、 通常温度 4 0 - 7 0 °C . 圧力 3〜 1 3 k P aの条件で晶析処理が行われる。 上記水の添加量が 3重量%未 満では除熱能力が十分ではなく、 1 0重量0 /0を超えるとビスフ ノー ル Aの溶解ロスが大きくなり、 好ましくない。 このような晶析操作に おいて、 晶析温度が 4 0 °C未満では晶析液の粘度の増大や固化をもた らすおそれがあり、 7 0 °Cを超えるとビスフエノ一ル Aの溶解口スが 大きくなり、 好ましくない。
次に、 このようにして晶析されたフェノールァダク トを含むスラリ 一を、 濾過や遠心分離などの公知の手段により、 フユノールァダク ト と、 反応副生物を含む晶析母液とに分離する。 この晶析母液はそのま ま一部を反応器ヘリサイクルしたり、 一部又は全部をアル力リ分解処 理して、 フエノールとィソプロぺニルフエノールとして回収してもよ い。 また、 一部又は全部を異性化して、 晶析原料にリサイクルするこ ともできる。 .
( C ) 工程
( C ) 工程は、 上記 (B ) 工程で晶析 · 分離されたフヱノ一ルァダ ク トを、 フヱノール含有溶液を用いて溶解する工程である。
( C ) 工程において用いられるフ ノール含有溶液としては特に制 限はなく、 例えば前記 (A ) 工程の濃縮工程で得られた回収フ ノー ル、 (B ) 工程の晶析 · 分離工程で生成するフユノ一ルァダク トの洗 浄液、 本 (C ) 工程以降の工程で生成する、 晶析したフユノールァダ ク トの固液分離における母液ゃ該フヱノールァダク トの洗浄液などを 挙げることができる。
( C ) 工程においては、 (B ) 工程で得られたフエノールァダク ト に上記フヱノール含有溶液を加え、 8 0〜 1 1 0 °C程度に加熱し、 該 フヱノールァダク トを加熱溶解させ、 次工程の晶析操作に好ましいビ スフユノール A濃度を有するビスフユノール A含有溶液を調製する。 このようにして調製されたビスフヱノール A含有溶液は、 比較的低い 温度でも粘度が低くて取扱いが比較的容易であり、 次工程において晶 析したフヱノ一ルァダク トの固液分離をフィルタ一で行うのに適して いる。
( D ) 工程
( D ) 工程は、 上記 (C ) 工程で得られたビスフユノール A含有溶 液から、 フヱノ一ルァダク トを晶析 '分離し、 場合により高純度の製 品を得るために、 さらに当該フエノールァダク トをフエノール含有溶 液を用いて溶解したのち、 晶析 ·分離する操作を 1 回以上繰り返すェ 程である。
( D ) '工程におけるフェノールァダク トの晶析 · 分離操作及ぴフェ ノールァダク トのフユノール含有溶液による溶解操作は、 それぞれ前 記の (B ) 工程及び (C ) 工程と同じである。
( E ) 工程
( E ) 工程は、 上記 (D ) 工程で晶析 ·分離されたフヱノ一ルァダ ク トを加熱溶融後、 フヱノールを留去させる工程である。
この ( E ) 工程においては、 先ずフエノ一ルァダク トを 1 0 0〜 1 6 0 °C程度に加熱 ·溶融して液状混合物となし、 次いで減圧蒸留によ つてフヱノールを留去し、 溶融状態のビスフヱノール Aを回収する。 上記減圧蒸留は、 一般に圧力 1 〜 1 1 k P a、 温度 1 5 0〜 1 9 0 °C の範囲の条件で実施される。 残存フエノ一ルは、 さらにスチームス ト リ ッ ビングによ り除去することができる。
このようにして得られた溶融状態のビスフエノール Aは、 スプレー ドライヤーなどの造粒装置により、 液滴にされ、 冷却固化されて製品 となる。 該液滴は噴霧、 散布などにより形成され、 窒素や空気などに よつて冷却される。
本発明のビスフ ノール Aの製造方法における特徴は、 前記の (A ) 〜 ( E ) 工程において、 (C ) 工程または (D ) 工程でフヱノール ァダク トをフヱノール含有溶液を用いて溶解する工程と、 この溶液か ら当該フヱノールァダク トを晶析 · 分離する工程の間の少なく とも一 つにフィルタ一による濾過工程を設けることである。
すなわち、 前記 (C ) 工程と (D ) 工程の間、 あるいは該 (D ) ェ 程で晶析 · 分離一溶解一晶析 · 分離操作を、 さらに一回以上行う場合 には、 この溶解操作と晶析 · 分離操作の間に、 フィルターによる濾過 工程を少なく とも一つ設ける。 このように、 ビスフヱノール A含有溶 解液をフィルターで濾過することによ り、 該溶解液中に含まれる夾雑 物を取り除く ことができ、 後工程の高温条件下におけるビスフヱノ一 ル Aの分解を防止することができる。 その結果、 着色物質の生成が抑 制され、 色相の向上した製品ビスフヱノール Aが得られる。
この際、 用いられるフィルターの材質については特に制限はないが 、 一般的に使用されているガラス繊維フィルタ一が取扱いが容易で好 適である。 また、 用いられるフィルタ一の濾過精度 (フィルタ一を通 過できる夾雑物の最大径) は、 夾雑物の粒径や含有量などによっても 異なるが、 通常は 2 0 m以下のものであり、 1 0 ; Li m以下のものが 好ましい。 ガラス繊維フィルタ一を用いる場合、 運転初期のフィル夕 —通過前後での差圧は 0 . 0 3 〜 0 . 0 4 M P a程度であるが、 目詰 まり等によりその差圧は大きくなつていき、 0 . 1 0 〜 0 . 2 0 M F a程度となった時フィルタ一エレメ ントは新しいものと交換される。 ビスフヱノール Aの製造方法においては、 ィォン交換樹脂からのス ルフォン がビスフヱノール Aおよび反応器等からの鉄と反応するこ とにより、 黒色固形のスルホン酸含有重質物 (夾雑物) を生成する。 この夾雑物は、 フヱノールとァセトンを縮合させたのち、 反応液処理 の後工程として施される低沸点物除去工程及び濃縮工程で生成するこ とが多く、 従ってフィルター設置は夾雑物生成後の工程に行うことが 肝要であるが、 生成後の流体温度の高い工程に設置すると夾雑物を取 り除く前に、 ビスフエノール Aの分解が起こるために好ましくない。 また、 流体'温度が高い工程では、 流体の融点が高くて凝固し易いため 、 ハンドリング面において煩雑な操作が必要となる。 従って本発明の ように流体温度が低い工程にフィル夕一を設置することが肝要であり 、 また、 可及的速やかに夾雑物を取り除く ことによ り、 製造プロセス 内への夾雑物の拡散防止を図ることができ、 製品ビスフユノール Aの 色相を向上させることができる。 ' 次に、 本発明を実施例によりさらに詳しく説明するが、 本発明はこ れらの例によってなんら限定されるものではない。
〔実施例 1 〕
陽イオン交換樹脂 〔三菱化学 (株) 製、 「ダイヤイオン S K 1 0 3 H」 〕 を充填した固定床反応塔に、 モル比 1 0 : 1 のフヱノールとァ セトンを、 ェチルメルカプタンと共に、 連続的に L H S V 3 h r 1で 通液し、 7 5 °Cで反応を行った。 得られた反応生成液から塔底温度
1 7 0 °C、 圧力 6 7 k F aの条件で減圧蒸留によ りアセ トン、 水、 ェ チルメルカプタンなどを除去したのち、 さらに温度 1 3 0 ° (:、 圧力 1
4 k P aの条件で減圧蒸留し、 フヱノ一ルを留去させ、 ビスフユノー ル A濃度が 4 0重量%になるまで濃縮し、 フエノール ' ビスフヱノ一 ル A溶液を得た。
次に、 このビスフエノール A濃度が 4 0重量06のフヱノール ' ビス フエノール A溶液に水を加え、 減圧下で 5 0 °Cに冷却保持することに よ り、 ビスフエノール A · フェノールァダク トを晶析させてスラ リ― 溶液を得た。
次いで、 得られたスラリ一溶液を固液分離することにより、 ビスフ ェノール A · フェノールァダク トを得た。 このァダク トにフエノール を加え、 9 0 °Cに加熱してフヱノール 6 0重量%及ぴビスフヱノール A 4 0重量0 /0を含む溶液を調製した。 次いで、 この溶液をガラス繊維 フィルター [ロキテクノ (株) 製ガラス繊維フィルタ一、 濾過精度 1 0 jLd m ] で濾過したのち、 同様の真空冷却晶析及び固液分離を行い、 ビスフヱノール A · フエノールァダク トを得た。 次いでこのァダク ト を精製フヱノールにより洗浄を行い、 ビスフヱノール A · フヱノール ァダク ト結晶を得た。 このァダク ト結晶を 1 3 0 °Cにて加熱溶融した のち、 脱フエノールしてビスフエノール Aを得た。
上記ビスフエノール Aを空気雰囲気下で 2 2 0 °C . 4 0分間加熱し 、 APHA標準色を用い、 目視にて色相評価した結果、 APHA 1 5 であった。
〔比較例 1〕
実施例 1において、 反応生成液をガラス繊維フィルター (前出) で 濾過したこと及ぴ晶析 ' 分離したビスフヱノール A · フヱノールァダ ク トにフヱノールを加えて該ァダク トを溶解した溶液のフィルターに よる濾過を行わなかったこと以外は、 実施例 1 と同様にしてビスフヱ ノール Aを得た。 このビスフエノール Aの色相は AF HA 4 0であつ た。
〔比較例 2〕
実施例 1において、 アセ ト ン、 水などを除去し、 濃縮して得られた フェノール · ビスフエノール A溶液 (ビスフヱノール A濃度が 4 0重 量0 /6) でのガラス繊維フィルタ一 (前出) による濾過を追加し、 かつ 晶析 · 分離したフエノールァダク トにフエノールを加えて該ァダク ト を溶解した溶液のフィルタ一による濾過を省略した以外は、 実施例 1 と同様にしてビスフヱノール Aを得た。 このビスフヱノール Aの色相 は APHA 3 0であった。 産業上の利用可能性
本発明によれば、 製品中のスルホン酸含有重質物を低減させ、 色相 の向上した高品質のビスフヱノ一ル Aを効率よく製造することができ る。

Claims

請求の範囲
1 . 酸性触媒の存在下、 過剰のフエノールとァセトンを縮合させてビ スフエノ一ル Aを生成させたのち、 ( A ) 実質上上記酸性触媒を含ま ない反応混合液を濃縮する工程、 (B ) 上記 (A ) 工程で得られた濃 縮残液からビスフヱノール Aとフヱノールとの付加物を晶析 · 分離す る工程、 (C ) 上記 (B ) 工程で晶析 ·分離されたビスフヱノール A とフユノールとの付加物をフ ノ一ル含有溶液を用いて溶解する工程 、 ( D ) 上記 (C ) 工程で得られた溶液からビスフヱノール Aとフヱ ノールとの付加物を晶析 ·分離し、 場合により、 さらに当該付加物を フユノール含有溶液を用いて溶解 Lたのち、 晶析 · 分離する操作を 1 回以上繰り返す工程及び (E ) 上記 (D ) 工程で晶析 · 分離されたビ スフエノ一ル Aとフエノールとの付加物を加熱溶融後、 フヱノ一ルを 留去させる工程を必須工程として行うビスフ ノール Aの製造方法に おいて、 (C ) 工程または (D ) 工程でビスフヱノール Aとフエノー ルとの付加..物をフヱノール含有溶液を用いて溶解する工程と、 この溶 液から当該付加物を晶析 ·分離する工程の間の少なく とも一つに、 フ ィルタ一による濾過工程を設けることを特徴とするビスフ ノール A の製造方法。
2 . フィル夕一がガラス繊維フィルターである請求項 1記載のビスフ ヱノール Aの製造方法。
3 . 酸性触媒がスルホン酸型陽イオン交換樹脂である請求項 1又は 2 記載のビスフヱノール Aの製造方法。
PCT/JP2002/001535 2001-03-05 2002-02-21 Procede de production du bisphenol a WO2002070444A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/258,578 US6686508B2 (en) 2001-03-05 2002-02-21 Process for producing bisphenol A
EP02700662A EP1367043A4 (en) 2001-03-05 2002-02-21 PROCESS FOR PRODUCING BISPHENOL A

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001060201A JP4658355B2 (ja) 2001-03-05 2001-03-05 ビスフェノールaの製造方法
JP2001-60201 2001-03-05

Publications (1)

Publication Number Publication Date
WO2002070444A1 true WO2002070444A1 (fr) 2002-09-12

Family

ID=18919654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001535 WO2002070444A1 (fr) 2001-03-05 2002-02-21 Procede de production du bisphenol a

Country Status (8)

Country Link
US (1) US6686508B2 (ja)
EP (1) EP1367043A4 (ja)
JP (1) JP4658355B2 (ja)
KR (1) KR100843003B1 (ja)
CN (1) CN1213978C (ja)
MY (1) MY122918A (ja)
TW (1) TWI288743B (ja)
WO (1) WO2002070444A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003252295A1 (en) * 2002-08-28 2004-03-19 Idemitsu Kosan Co., Ltd. Process for producing bisphenol a
US7598424B2 (en) * 2003-03-27 2009-10-06 Mitsui Chemicals, Inc. Process for production of bisphenol A
EP1785188B1 (en) * 2004-07-02 2013-08-07 Mitsui Chemicals, Inc. Modified ion exchange resin and process for producing bisphenols
DE102005025788A1 (de) * 2005-06-04 2006-12-07 Bayer Materialscience Ag Verfahren zur Herstellung von hochreinem Bisphenol A
CN102304026B (zh) * 2011-07-04 2013-06-19 西南石油大学 一种脱除双酚a反应液中残留催化剂的方法
CN104056490B (zh) * 2014-07-02 2015-12-30 南通星辰合成材料有限公司 以玻璃纤维过滤实现熔融双酚a造粒喷嘴长周期运行方法
WO2018011700A1 (en) 2016-07-12 2018-01-18 Sabic Global Technologies B.V. Manufacture of bisphenol a
EP3487833B1 (en) 2016-07-22 2020-08-26 SABIC Global Technologies B.V. Manufacture of bisphenol a
KR102489404B1 (ko) * 2019-09-16 2023-01-16 주식회사 엘지화학 페놀계 부산물 분해 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648561A (en) * 1993-02-17 1997-07-15 China Petro-Chemical Corporation Process for the production of high purity and ultrapure bisphenol-A

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2359242A (en) 1941-08-23 1944-09-26 Dow Chemical Co Preparation of phenol-ketone condensation products
US4517387A (en) * 1982-09-30 1985-05-14 Mitsui Petrochemical Industries, Ltd. Process for production of 2,2-bis(4-hydroxyphenyl) propane
US5105026A (en) * 1990-11-15 1992-04-14 Shell Oil Company Process for preparing a bisphenol
PL164289B1 (pl) * 1990-11-24 1994-07-29 Inst Ciezkiej Syntezy Orga Sposób otrzymywani blsfenolu A PL PL
JPH08325184A (ja) * 1995-05-30 1996-12-10 Mitsubishi Chem Corp ビスフェノールaの製造方法
JP3946845B2 (ja) * 1997-12-24 2007-07-18 日本ジーイープラスチックス株式会社 ビスフェノール類の製造方法およびポリカーボネートの製造方法
JP3903634B2 (ja) * 1999-03-31 2007-04-11 三菱化学株式会社 ビスフェノールaの製造方法
JP3903644B2 (ja) * 1999-05-20 2007-04-11 三菱化学株式会社 ビスフェノールaの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648561A (en) * 1993-02-17 1997-07-15 China Petro-Chemical Corporation Process for the production of high purity and ultrapure bisphenol-A

Also Published As

Publication number Publication date
US6686508B2 (en) 2004-02-03
EP1367043A4 (en) 2005-12-28
TWI288743B (en) 2007-10-21
EP1367043A1 (en) 2003-12-03
CN1213978C (zh) 2005-08-10
KR20020097249A (ko) 2002-12-31
KR100843003B1 (ko) 2008-07-01
CN1457334A (zh) 2003-11-19
US20030120120A1 (en) 2003-06-26
JP4658355B2 (ja) 2011-03-23
JP2002255881A (ja) 2002-09-11
MY122918A (en) 2006-05-31

Similar Documents

Publication Publication Date Title
WO2000023408A1 (fr) Procede de production de bisphenol a
WO2002070443A1 (fr) Procede de preparation de bisphenol a
WO2001053238A1 (fr) Procede de preparation de bisphenol a
KR20020079995A (ko) 비스페놀 a의 제조방법
WO2002070444A1 (fr) Procede de production du bisphenol a
WO2003082785A1 (fr) Procede de production de bisphenol a
US6784324B2 (en) Process for producing bisphenol A
JPWO2014010510A1 (ja) ビスフェノールaの製造方法
EP3484843B1 (en) Manufacture of bisphenol a
JP3981334B2 (ja) ビスフェノールaの製造方法
WO2002072515A1 (fr) Procede de production de bisphenol a
WO2004108643A1 (ja) ビスフェノールaの製造方法
US7045664B2 (en) Process for producing bisphenol A
JP5421535B2 (ja) 高品質粒状ビスフェノールaの製造方法
JP4615831B2 (ja) ビスフェノールaの製造におけるフェノールの回収方法
KR102349519B1 (ko) 비스페놀a의 제조방법
WO2003043964A1 (fr) Procede de production de bisphenol a et appareil correspondant
JP4333276B2 (ja) 芳香族ポリカーボネートの製造方法
KR20080057307A (ko) 색상이 양호한 비스페놀 a의 제조방법
JP2003160524A (ja) ビスフェノールaの製造方法及びその装置
JP2003160523A (ja) ビスフェノールaの製造方法及びその装置
WO2004050593A1 (ja) ビスフェノールaの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN KR SG US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002700662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1791/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10258578

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027014797

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028005279

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027014797

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002700662

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002700662

Country of ref document: EP