WO2002067777A1 - Mesureur de graisse viscerale pourvu d'un tonometre - Google Patents

Mesureur de graisse viscerale pourvu d'un tonometre Download PDF

Info

Publication number
WO2002067777A1
WO2002067777A1 PCT/JP2002/000861 JP0200861W WO02067777A1 WO 2002067777 A1 WO2002067777 A1 WO 2002067777A1 JP 0200861 W JP0200861 W JP 0200861W WO 02067777 A1 WO02067777 A1 WO 02067777A1
Authority
WO
WIPO (PCT)
Prior art keywords
visceral fat
blood pressure
subject
cuff
meter
Prior art date
Application number
PCT/JP2002/000861
Other languages
English (en)
French (fr)
Inventor
Shozo Kawanishi
Koichi Okita
Original Assignee
Yamato Scale Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Scale Co., Ltd. filed Critical Yamato Scale Co., Ltd.
Priority to CA002437116A priority Critical patent/CA2437116C/en
Priority to EP02711285A priority patent/EP1369081B1/en
Priority to US10/470,744 priority patent/US6905464B2/en
Priority to DE60238111T priority patent/DE60238111D1/de
Priority to KR1020027014007A priority patent/KR100874377B1/ko
Publication of WO2002067777A1 publication Critical patent/WO2002067777A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content

Definitions

  • the present invention relates to a visceral fat meter with a sphygmomanometer capable of simultaneously measuring blood pressure and visceral fat mass.
  • This simple sphygmomanometer is based on the so-called oscillometric method (pressure pulse wave vibration method), which is different from the Korotkoff method based on auscultation, which has been conventionally used in the medical field and the like.
  • oscillometric method a force wave (arm band) is attached to a finger, a wrist or an arm, and air is sent to the cuff to compress an artery. It is a method of detecting and measuring blood pressure (systolic blood pressure and diastolic blood pressure) based on this component.
  • a cuff pressure signal is detected when the cuff is pressurized, and a simple cuff pressure signal is detected based on the maximum amplitude value of the pulse wave included in this signal.
  • the systolic blood pressure is estimated (e.g., the cuff pressure corresponding to the maximum amplitude of 1 Z2 of the pulse wave), and a value obtained by adding a predetermined value to the estimated systolic blood pressure is used as the pressurization target value.
  • the pressure rise rate during cuff pressurization should be the same as during systolic blood pressure and diastolic blood pressure. Compared to speed It is set to be high.
  • the visceral fat type obesity is determined.
  • Various indices body fat percentage, abdominal visceral fat cross-sectional area, etc.
  • the body fat percentage is determined based on the personal identification data such as the height, weight, age, and sex of the subject and the measured values of the biological impedance, and the abdominal visceral fat cross-sectional area. Is determined by CT cross-sectional measurement near the navel of the subject's abdomen, and by estimation calculation based on the data of the waist size near the navel of the abdomen and the personal identification data.
  • the present invention has been made in view of the above-mentioned problems, and is capable of grasping the state of obesity as well as managing the blood pressure value, thereby providing a more accurate, comprehensive, and diversified judgment.
  • a visceral fat meter with a sphygmomanometer capable of performing blood pressure measurement and disease prevention.Furthermore, even when the maximum amplitude value of the pulse wave when the cuff is pressurized is not accurately measured, Sphygmomanometer that blood pressure value measured at the time of subsequent decompression does not become inaccurate It is intended to provide an attached visceral fat meter. Disclosure of the invention
  • a visceral fat meter with a sphygmomanometer having the first feature of the present invention comprises:
  • a pulse wave signal is detected in the process of gradually reducing the force force, and an internal organ with a sphygmomanometer for obtaining blood pressure based on the detected pulse wave signal A fat scale,
  • An input unit for inputting personal data of the subject a calculation unit for calculating the visceral fat mass of the subject based on data input from the input unit, and a display unit for displaying a calculation result by the calculation unit. It is characterized by having.
  • the visceral fat content of the subject is calculated by the calculation unit based on the personal data input from the input unit, and the calculation result is displayed on the display unit.
  • the visceral fat mass in other words, the state of obesity can be grasped together with the management of the blood pressure value, and the blood pressure value associated with the visceral fat type obesity can be managed. Therefore, as compared with the conventional management using only the blood pressure value, more accurate, comprehensive, diversified judgment and disease prevention can be performed with a simple device.
  • the personal data input from the input unit is data including a height, a body weight, and a waist size of the subject
  • the arithmetic unit receives the data based on the data input from the input unit. It is preferable to calculate the BMI of the subject in addition to the visceral fat content of the examiner. In this way, not only the visceral fat content but also the BMI (physique index) data, which is used as an index for judging obesity or leanness, is calculated internationally. It becomes possible to grasp. In this case, it is preferable that the display unit displays the visceral fat content and the BMI of the subject in a plurality of ranks.
  • the calculation unit compares the visceral fat mass and BMl of the subject with those judgment reference values input in advance to determine obesity, and the display unit determines the obesity. It is preferable that the result of the diagnosis is displayed. It is preferable that the display unit simultaneously displays a blood pressure value and a visceral fat amount. In this way, the blood pressure value and the obesity status can be grasped at a glance simply by looking at the display.
  • the calculation unit calculates a change amount and a ratio between a past measurement value and a blood pressure value of the subject and a visceral fat amount, and the display unit displays the calculation results. It is preferred that This allows the subject to know the relationship between the degree of change in his or her own blood pressure value and the degree of change in visceral fat mass, and to more accurately grasp the state of health. Can help with management and prevention.
  • the visceral fat mass may be a cross-sectional area of abdominal visceral fat of a subject, which is used in a clinical setting as an index for determining obesity.
  • the cuff pressurization target value is determined from the systolic blood pressure estimated based on the pulse wave when the cuff is pressurized and the abdominal visceral fat cross-sectional area.
  • the cuff pressurization target value is determined from a systolic blood pressure estimated based on a pulse wave when the cuff is pressurized and a result of obesity determination.
  • the blood pressure value (systolic blood pressure) measured at the time of subsequent decompression due to insufficient pressurization And diastolic blood pressure) can be avoided.
  • a pulse wave signal is detected in the process of gradually reducing the force force, and an internal organ with a sphygmomanometer for obtaining blood pressure based on the detected pulse wave signal A fat scale,
  • An input unit for inputting personal data including the height, weight, and waist size of the subject, a current application electrode and a measurement electrode that are in contact with a part of the subject's body, and obtained from the measurement electrode
  • a biological impedance measuring unit for measuring the bioimpedance of the subject based on the signal and at least the BMI and body fat of the subject based on the data input from the bioimpedance measuring unit and the data input from the input unit. It is characterized by comprising a calculation unit for calculating one of the fat percentage and the visceral fat amount, and a display unit for displaying a calculation result by the calculation unit.
  • the biological impedance of the subject is measured, and the body fat percentage of the subject is calculated and displayed based on the measured value.
  • the subject can more accurately grasp the state of obesity in addition to grasping the blood pressure value, and can further enhance the effect obtained by the first invention.
  • any one of the BMI, the body fat percentage, and the visceral fat amount of the subject is displayed on the display section in a plurality of ranks. This makes it easier for the subject to judge his or her own obesity level.
  • the calculation unit performs a calculation of comparing any of the subject's BMI, body fat percentage, and visceral fat mass with those determination reference values input in advance to determine obesity, It is preferable that the display unit displays the result of obesity determination. It is preferable that the display unit simultaneously displays a blood pressure value and a visceral fat amount. In this way, the blood pressure value and the obesity status can be grasped at a glance simply by looking at the display.
  • the calculation unit calculates a change amount and a ratio between a past measurement value and a blood pressure value of the subject and a visceral fat amount, and the display unit displays the calculation results. It is preferred that
  • the visceral fat mass may be a cross-sectional area of abdominal visceral fat of a subject, which is used in a clinical setting as an index for determining obesity.
  • the cuff pressurization target value is determined from the systolic blood pressure estimated based on the pulse wave when the cuff is pressurized and the abdominal visceral fat cross-sectional area.
  • the cuff pressurization target value is determined from a systolic blood pressure estimated based on a pulse wave when the cuff is pressurized and a result of obesity determination.
  • FIG. 1 is an overall perspective view of a visceral fat meter with a sphygmomanometer according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram of the visceral fat meter with a sphygmomanometer according to the first embodiment.
  • FIG. 3 is a flowchart (first part) showing the operation of the visceral fat meter with a sphygmomanometer according to the first embodiment.
  • FIG. 4 is a flowchart (the latter stage) showing the operation of the visceral fat meter with a sphygmomanometer according to the first embodiment.
  • FIGS. 5A and 5B are explanatory diagrams of a blood pressure measurement method according to the first embodiment.
  • FIG. 6 is an overall perspective view of a visceral fat meter with a sphygmomanometer according to the second embodiment.
  • FIG. 7 is a block diagram of a visceral fat meter with a sphygmomanometer according to the second embodiment.
  • FIG. 8 is a flowchart (first part) showing the operation of the visceral fat meter with a sphygmomanometer according to the second embodiment.
  • FIG. 9 is a flowchart (the latter part) showing the operation of the visceral fat meter with a sphygmomanometer according to the second embodiment.
  • FIG. 1 shows an overall perspective view of a visceral fat meter with a sphygmomanometer according to a first embodiment of the present invention
  • FIG. 2 shows a block diagram of the visceral fat meter with the sphygmomanometer.
  • the visceral fat meter 1 with a sphygmomanometer according to the present embodiment measures blood pressure using a blood pressure measurement method based on a so-called oscillometric method (pressure pulse wave vibration method), and includes a main body 2 and a main body 2 of the main body.
  • a main component is a cuff (arm band) 4 that is connected via an air tube 3 and can be worn on the arm of the subject.
  • an air supply device 5 that is connected to the air tube 3 and supplies air to the cuff 4 and an exhaust valve that exhausts the air pressure of the force cuff 4 and detects the air pressure of the cuff 4
  • an air pressure sensor 6 for detecting a pulse wave component
  • the air supply device 5 and the air pressure sensor 6 are connected to a central processing unit (arithmetic unit) 8 via an I / O circuit 7.
  • the device main body 2 has a display unit 9 on the upper surface thereof and includes a power switch 10, a blood pressure measurement start switch 11, an increment no decrement key 12, and a display mode selection key 13.
  • An input key Z switch 14 is provided.
  • the central processing unit 8 is provided with a storage unit 15, and a data such as a personal data input by the input key / switch 14 is stored in the storage unit 15 via the IO circuit 7. It is to be remembered. Note that the increment in the present embodiment is The decrement key 12 and the display mode selection key 13 correspond to the input unit in the present invention.
  • the central processing unit 8 calculates the BMI and abdominal visceral fat cross-sectional area (AV), and stores the calculation result in the storage unit 15.
  • the arithmetic expressions used for these operations are stored in the storage unit 15 in advance, and these arithmetic expressions are called by the central processing unit 8 when executing the operations.
  • the simplest equation for calculating the abdominal visceral fat cross-sectional area (AV) is the regression equation shown in the following equation (1).
  • AV a 1 XW L + d 1 ?? (1)
  • a is the waist size
  • the coefficient a and the constant are regression analysis based on the correlation between the nest size of the population and the abdominal cross section CZT data. It is determined by statistical methods such as.
  • the BMI and abdominal visceral fat cross-sectional area (AV) calculated in step S3 and stored in the storage unit 15 are compared with a reference value for judging obesity.
  • the degrees are ranked and the results are stored in the storage unit 15.
  • the reference value and the comparison operation expression used for the comparison operation are stored in the storage unit 15, and are called by the central processing unit 8 when the operation is performed.
  • BMI 2 5 (both male and female), abdominal visceral fat cross-sectional area (AV) - 1 0 0 cm 2 ( both male and female) are used.
  • the BMI is used internationally as an index for judging obesity and leanness
  • the abdominal visceral fat cross-sectional area (AV) represents the distribution of visceral fat, and is an index for judging obesity. age It is used in clinical settings.
  • Obesity levels can be ranked using these BMI and AV indices. That is, in BMI, rank range of 2 5 to 30 I, and then rank III rank II, 35 or more ranges of 30 to 35, for the abdominal visceral fat cross-sectional area (AV), the range of 100-125 cm 2 No. I, is set to 125 to 150 ranks the range of cm 2 II, 150 cm 2 or more rank III a.
  • Air is supplied to the cuff 4 by the air supply device 5, and the air in the cuff 4 is pressurized.
  • step S10 Next, a cuff pressure (estimated systolic blood pressure) corresponding to the amplitude value A obtained in step S9 is obtained, and this value is stored in the storage unit 15.
  • the estimated systolic blood pressure is compared with a predetermined value (here, lO OmmHg) to determine the cuff pressurization target value.
  • a predetermined value here, lO OmmHg
  • step S14 In the determination in step S12, if the determination of at least one of the indicators of BMI and AV does not result in the determination of obesity, the pressurization target value ⁇ ⁇ of the force pressure is set to ( 4) Determined by the formula.
  • the estimated systolic blood pressure is compared with the predetermined value (10 OmmHg) based on the measurement of the maximum amplitude value Am ax ' , and the and when it is not in obesity in the determination of obesity is set to a predetermined value of the minimum pressurization target value of cuff [rho kappa is acceptable (e.g., 14 OmmHg).
  • each index (BMI and AV) is determined in the same manner as in step S 12. Are determined to be above the obesity judgment value, in other words, whether BMI> 25 and AV> 100 cm 2 are satisfied.
  • BM when the determination of at least one of the indicators of the I and AV does not become a judgment of obesity, that determine the pressurization target value [rho kappa cuff pressure (5).
  • pressurization target value [rho kappa cuff pressure in the manner described above is determined, pressurized to the cuff pressure reaches its pressurization target value [rho kappa and stops.
  • a 2 l / r XAma (8) Note that 0.5 can be used as the value of l / ⁇ , and 0.7 can be used as the value of 1 a. Further, instead of using these ⁇ and 1 NOR, an estimation formula or the like with further improved estimation accuracy may be used.
  • S22 The blood pressure measurement ends.
  • input data such as personal data (height, weight, gender, age, waist size), blood pressure measurement values (systolic blood pressure, diastolic blood pressure), and obesity are displayed on the display unit 9. Selective display of each index (BM I and abdominal visceral fat cross-sectional area), judgment result, and obesity degree (rank for each index) related to the judgment of (1).
  • the data of the blood pressure measurement value, the BMI and the data of the abdominal visceral fat cross-sectional area are stored each time the measurement is performed, and each of these data is measured last time It can be displayed together with the amount of change from the data at the time.
  • the ratio of the change amount of the blood pressure measurement value data and the data of the abdominal visceral fat cross-sectional area data may be calculated and displayed. In this way, the relationship between the distribution of visceral fat in the abdomen and the degree of each change in blood pressure and the rate of change can be known, and the health status can be more accurately determined based on these values. This will enable more appropriate health care.
  • by recording the change status of each data based on a planned blood pressure measurement schedule it is possible to monitor long-term changes and use it as a guideline for diagnosis.
  • FIG. 6 is an overall perspective view of a visceral fat meter with a sphygmomanometer according to a second embodiment of the present invention
  • FIG. 7 is a block diagram of the visceral fat meter with the sphygmomanometer.
  • the visceral fat meter 1A with a sphygmomanometer according to the present embodiment can measure the bioelectrical impedance of a subject in addition to the visceral fat meter 1 with a sphygmomanometer according to the first embodiment to determine the body fat percentage. It was made. Note that, in the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals in the drawings, and detailed description thereof will be omitted.
  • the electrodes 16 and 16 that allow the fingers (for example, thumb and forefinger) of both hands to contact the front and back of the upper left and right ends of the device main body 2A.
  • the bioimpedance between the fingers of both hands is measured by the bioimpedance measurement circuit 17 and the measured data is The data is input to the central processing unit 8 via the / O circuit 7 and stored in the storage unit 15 so that the body fat percentage can be calculated based on the measurement data.
  • a body fat percentage measurement start switch 18 is arranged in addition to the input keys Z switch in the first embodiment.
  • the electrode 16 is composed of, for example, a measurement electrode on the front side of the device main body 2A and a current application electrode on the back side.
  • reference numeral 19 denotes a stand for setting up the device main body 2A.
  • T 1 Turn ON the power switch 10 to put the device main unit 2 into operation.
  • T 2 Operate the display mode selection keys 13 and the increment Z decrement key 1 2 to select and input personal data of the subject, in other words, data such as height, weight, gender, waist size, etc. .
  • the data input in this manner is stored in the storage unit 15.
  • T 3 After turning on the body fat percentage measurement switch 18 so that the measurement of body fat percentage can be started, the fingers of both hands are brought into contact with the electrodes 16 and 16, and between the fingers of both hands. The bioimpedance is measured, and the measured data is stored in the storage unit 15.
  • T 4 The body fat percentage is calculated based on the measured data of the bioelectrical impedance and the personal data stored in the storage unit 15, and the calculation result is stored in the storage unit 15.
  • the BMI is calculated in the central processing unit 8 based on the personal data
  • the abdominal visceral fat cross-sectional area (AV) is calculated based on the personal data and the bioelectrical impedance or the body fat percentage.
  • the information is stored in the storage unit 15.
  • the arithmetic expressions used for these operations are stored in the storage unit 15 in advance, and the arithmetic expressions are called by the central processing unit 8 when executing the operations.
  • the equation for calculating the abdominal visceral fat cross-sectional area (AV) is obtained by adding the correction term of the biological impedance (Z) to the equation (1) in the first embodiment, and the following equation (9). The regression equation shown below is used.
  • the body fat percentage (FAT) is added as a correction term.
  • the following regression equation (10) can be used.
  • T5 The BMI, body fat percentage, and abdominal visceral fat cross-sectional area (AV) calculated in step T4 and stored in the storage unit 15 are compared with reference values for judging obesity. At the same time, the obesity degree is classified, and the result is stored in the storage unit 15.
  • the reference value and the comparison operation expression used for the comparison operation are stored in the storage unit 15, and are called by the central processing unit 8 when the operation is performed.
  • the BMI is used internationally as an indicator for judging obesity and leanness
  • the abdominal visceral fat cross-sectional area (AV) represents the distribution of visceral fat, It is used in clinical settings as an indicator.
  • Obesity degree rank by these BMI, body fat percentage and AV index It can be divided.
  • BMI ranks 25 to 30 as Rank I, 30 to 35 as Rank II, and 35 or higher as Rank III.
  • 25 to 30% range is rank II, 30% or more is rank III
  • 30-30% range is rank I
  • 35-40% range is rank II, 40% or more is rank III ing.
  • the abdominal visceral fat cross-sectional area (AV) is, 100 to 125 cm 2 in the range rank I, is set to 125 to 150 cm rank second range II, 0.99 cm 2 or more above the rank III.
  • the determination conditions in steps T13 and T16 are whether the body fat percentage (FAT) exceeds 20% for males and 30% for females. This is different from steps S12 and S15 in the first embodiment in that a judgment is made as to whether or not it exceeds the threshold.
  • the difference from the step S23 in the first embodiment is that the fat percentage is added, but there is basically no difference in the other points from the steps S5 to S23 in the first embodiment. Therefore, detailed description of the specific contents of each step will be omitted.
  • the waist size data may be obtained by estimation from the input data of the subject's height, weight, and age.
  • the following equation (13) is an example of this estimation equation.
  • W weight
  • H L height
  • Age age
  • the abdominal internal organs of the subject are calculated by the calculation formula used in each of the above embodiments.
  • the fat cross-sectional area can also be determined. By doing so, the labor of measuring and inputting the waist size can be omitted, so that the inside can be more easily performed. Visceral fat ”;

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

明細書
血圧計付き内臓脂肪計 技術分野
本発明は、 血圧と内臓脂肪量とを同時に測定することのできる血圧計付き内臓 脂肪計に関するものである。 背景技術
近年、 高血圧と各種疾病との関連については徐々に解明されつつあるが、 所謂 高血圧とされる、 収縮期血圧 1 4 O mmH g以上および拡張期血圧 9 O mmH g 以上においては、 特に脳出血、 脳梗塞の発症頻度が高くなるとされている。 この ことから、 高血圧に伴う疾病予防のための健康管理の重要性がより一層指摘され るようになってきており、 この高血圧の的確な予防のために、 血圧測定等の定期 的な検査に加えて、血圧の状況を日常的に把握することが必要となってきている。 最近では、 日常手軽に血圧測定を行うことのできる簡易血圧計が市場に出回つ ており、 個人の血圧管理を継続的に、 しかも簡単に行うことができるようになつ ている。 この簡易血圧計としては、 従来、 医療分野等において用いられてきてい る聴診によるコロトコフ法によるものとは異なり、 所謂オシロメトリック法 (圧 脈波振動法) に基づくものが主流となっている。 このオシロメトリック法は、 力 フ (腕帯) を指、 手首または腕に装着し、 そのカフに空気を送って動脈を圧迫し た後、 徐々に減圧する過程で、 圧力センサにより脈波成分を検出して、 この成分 に基づいて血圧 (収縮期血圧および拡張期血圧) を測定する方法である。
このオシロメトリック法を用いた電子血圧計においては、 カフの加圧目標値の 設定に際して、 例えばカフの加圧時にカフ圧信号を検出し、 この信号に含まれる 脈波の最大振幅値に基づき簡易的に収縮期血圧を推定し (例えば脈波の振幅が最 大振幅の 1 Z 2に対応するカフ圧)、この推定された収縮期血圧に所定値を加算し たものを加圧目標値に自動設定するようにされているものがある。 また、 この場 合、 血圧測定時間の短縮と被測定者への苦痛の軽減のために、 カフ加圧時の圧力 上昇速度は、 収縮期血圧および拡張期血圧の測定を行う力フ減圧時の速度に比べ て高く設定するようにされている。
ところで、 医療分野においては最近、 高血圧症と肥満との関係についての研究 等が進んできており、 単に肥満というのではなく、 体脂肪の分布が血圧に関連し ていることがわかってきている。 特に、 腹部型体脂肪分布 (内臓脂肪型肥満) と 高血圧との関連性が強いとする報告がなされている。
また、 従来、 肥満度を表す指標として一般的に用いられている BM I (B o d y M a s s I n d e x (体格指数) =体重/ (身長) 2) に加えて、 前記内 臓脂肪型肥満を判定するための各種指標 (体脂肪率、 腹部内臓脂肪横断面積等) が考え出されており、 これら指標のそれぞれが臨床現場において実証されてきて いる。 このうち、 体脂肪率は、 被検者の身長、 体重、 年齢、 性別等の個人特定デ 一夕と生体ィンピーダンスの測定値とに基づいて求められるものであり、 また腹 部内臓脂肪横断面積は、 被検者の腹部の臍付近の C T横断面測定によるほか、 腹 部の臍付近のウェストサイズのデータおよび前記個人特定データ等に基づき推定 演算によって求められるものである。
しかしながら、 前記従来の血圧計においては、 血圧値のみを測定してそれを管 理するものであるために、 前述の内臓脂肪型肥満との関連性を考慮した高血圧症 のより的確な判断が行えないという問題点がある。
また、 この種従来の血圧計では、 カフの加圧目標値の設定に際して、 加圧直後 におけるカフ圧信号の変動等によりノイズの影響を受け易いために、 加圧時にお ける脈波の検出が必ずしも正確に行えずに、 収縮期血圧の推定値が誤つたものと なり、 これに基づいて設定される加圧目標値が不適切なものになるという問題点 がある。 特に加圧目標値が異常に低く設定されたような場合には、 加圧不足によ り、 後の減圧時に測定される血圧値 (収縮期血圧値および拡張期血圧値) が不正 確なものとなってしまう。
本発明は、 前述のような問題点に鑑みてなされたもので、 血圧値の管理ととも に肥満の状況をも把握することができて、 より正確で、 かつ総合的、 多角的な判 断と疾病予防とを行うことのできる血圧計付き内臓脂肪計を提供することを目的 とし、 更に、 カフの加圧時における脈波の最大振幅値の測定が正確に行われなか つた場合にも、 後の減圧時に測定される血圧値が不正確になることのない血圧計 付き内臓脂肪計を提供することを目的とするものである。 発明の開示
前記目的を達成するために、 本発明の第 1の特徴を有する血圧計付き内臓脂肪 計は、
力フの加圧により被検者の生体動脈を圧迫した後、 前記力フを徐々に減圧する 過程で脈波信号を検出し、 この検出された脈波信号に基づき血圧を求める血圧計 付き内臓脂肪計であって、
被検者の個人データを入力する入力部と、 この入力部より入力されるデータに 基づき被検者の内臓脂肪量を演算する演算部と、 この演算部による演算結果を表 示する表示部を備えることを特徴とするものである。
本発明によれば、 入力部より入力される個人デ一夕に基づき被検者の内臓脂肪 量が演算部にて演算され、 この演算結果が表示部に表示されるので、 被検者は、 血圧値の管理とともに内臓脂肪量、 言い換えれば肥満の状況をも把握することが でき、 内臓脂肪型肥満と関連付けた血圧値の管理が行えることになる。 したがつ て、 従来の血圧値のみによる管理に比較して、 簡易的な装置によって、 より正確 で、 かつ総合的、 多角的な判断と疾病予防とを行うことができる。
本発明において、 前記入力部より入力される個人データは、 被検者の身長、 体 重およびウェス卜サイズを含むデータであり、 前記演算部は、 この入力部より入 力されるデータに基づき被検者の内臓脂肪量に加えて被検者の BM Iを演算する ものであるのが好ましい。 このようにすれば、 内臓脂肪量だけでなく、 国際的に 肥満もしくは痩せの判定の指標として用いられている B M I (体格指数) のデ一 タも演算されるので、 肥満の状況をより確実に把握することが可能となる。 この場合、 前記表示部には、 被検者の内臓脂肪量および B M Iが複数のランク に区分して表示されるのが好ましい。 このように肥満度を各指標毎にランク分け することで、 被検者による自己の肥満度の判定がより容易に行えることになる。 さらに、 前記演算部は、 前記被検者の内臓脂肪量および B M lと、 予め入力さ れたそれらの判定基準値とを比較演算して肥満症の判定を行い、 前記表示部は、 その肥満症の判定結果を表示するものであるのが好ましい。 また、 前記表示部は、 血圧値と内臓脂肪量とを同時に表示するものであるのが 好ましい。 こうすることで、 表示部を見るだけで、 一目瞭然に血圧値と肥満の状 況とを把握することができる。
さらに、 前記演算部は、 被検者の血圧値と内臓脂肪量のそれぞれについて過去 の測定値との変化量および比率を演算するものであり、 前記表示部は、 それら演 算結果を表示するものであるのが好ましい。 これにより、 被検者は、 自己の血圧 値の変化度合と内臓脂肪量の変ィヒ度合との関係を知ることができて健康状態をよ り正確に把握することができ、 より適正な健康管理および予防に役立てることが できる。
また、 前記内臓脂肪量は、 肥満症の判定の指標として臨床の場で用いられてい る被検者の腹部内臓脂肪横断面積であるのが良い。 ここで、 前記カフの加圧目標 値は、 カフの加圧時における脈波に基づいて推定される収縮期血圧と、 前記腹部 内臓脂肪横断面積とから決定されるのが好ましい。 また、 前記カフの加圧目標値 は、 カフの加圧時における脈波に基づいて推定される収縮期血圧と、 肥満症の判 定結果とから決定されるのが好ましい。 このようにすることで、 カフの加圧時に おける脈波の最大振幅値の測定が正確に行えなかつたような場合でも、 加圧不足 により、 後の減圧時に測定される血圧値 (収縮期血圧および拡張期血圧) が不正 確なものになるといった不具合の発生を回避することができる。
次に、 本発明の第 2の特徴を有する血圧計付き内臓脂肪計は、
力フの加圧により被検者の生体動脈を圧迫した後、 前記力フを徐々に減圧する 過程で脈波信号を検出し、 この検出された脈波信号に基づき血圧を求める血圧計 付き内臓脂肪計であって、
被検者の身長、 体重およびウェストサイズを含む個人データを入力する入力部 と、 被検者の身体の一部に接触される電流印加用電極および計測用電極と、 この 計測用電極より得られる信号により被検者の生体インピーダンスを測定する生体 ィンピーダンス測定部と、 この生体ィンピーダンス測定部より入力されるデータ と前記入力部より入力されるデータとに基づき少なくとも被検者の B M I、 体脂 肪率および内臓脂肪量のうちのいずれかを演算する演算部と、 この演算部による 演算結果を表示する表示部を備えることを特徴とするものである。 本発明によれば、 前記第 1の特徴を有する発明に加えて、 被検者の生体インピ 一ダンスが測定され、 この測定値に基づき被検者の体脂肪率が演算されて表示さ れるので、 被検者は、 血圧値の把握以外に肥満の状況をより正確に把握すること ができ、 前記第 1発明にて得られる作用効果をより高めることができる。
本発明において、 前記表示部には、 被検者の B M I、 体脂肪率および内臓脂肪 量のいずれかが複数のランクに区分して表示されるのが好ましい。 こうすること で、 被検者による自己の肥満度の判定がより容易に行えることになる。
また、 前記演算部は、 前記被検者の B M I、 体脂肪率および内臓脂肪量のいず れかと、 予め入力されたそれらの判定基準値とを比較演算して肥満症の判定を行 い、 前記表示部は、 その肥満症の判定結果を表示するものであるのが好ましい。 また、 前記表示部は、 血圧値と内臓脂肪量とを同時に表示するものであるのが 好ましい。 こうすることで、 表示部を見るだけで、 一目瞭然に血圧値と肥満の状 況とを把握することができる。
さらに、 前記演算部は、 被検者の血圧値と内臓脂肪量のそれぞれについて過去 の測定値との変化量および比率を演算するものであり、 前記表示部は、 それら演 算結果を表示するものであるのが好ましい。
また、 前記内臓脂肪量は、 肥満症の判定の指標として臨床の場で用いられてい る被検者の腹部内臓脂肪横断面積であるのが良い。 ここで、 前記カフの加圧目標 値は、 カフの加圧時における脈波に基づいて推定される収縮期血圧と、 前記腹部 内臓脂肪横断面積とから決定されるのが好ましい。 また、 前記カフの加圧目標値 は、 カフの加圧時における脈波に基づいて推定される収縮期血圧と、 肥満症の判 定結果とから決定されるのが好ましい。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る血圧計付き内臓脂肪計の全体斜視図で ある。
図 2は、 第 1の実施形態に係る血圧計付き内臓脂肪計のプロック図である。 図 3は、 第 1の実施形態に係る血圧計付き内臓脂肪計の動作を示すフローチヤ 一卜 (前段) である。 図 4は、 第 1の実施形態に係る血圧計付き内臓脂肪計の動作を示すフローチヤ ート (後段) である。
図 5 ( a) (b ) は、 第 1の実施形態における血圧の測定方法説明図である。 図 6は、 第 2の実施形態に係る血圧計付き内臓脂肪計の全体斜視図である。 図 7は、 第 2の実施形態に係る血圧計付き内臓脂肪計のプロック図である。 図 8は、 第 2の実施形態に係る血圧計付き内臓脂肪計の動作を示すフローチヤ ート (前段) である。
図 9は、 第 2の実施形態に係る血圧計付き内臓脂肪計の動作を示すフローチヤ ート (後段) である。 発明を実施するための最良の形態
次に、 本発明による血圧計付き内臓脂肪計の具体的な実施の形態について、 図 面を参照しつつ説明する。
図 1には、 本発明の第 1の実施形態に係る血圧計付き内臓脂肪計の全体斜視図 が示され、 図 2には、 同血圧計付き内臓脂肪計のブロック図が示されている。 本実施形態の血圧計付き内臓脂肪計 1は、 所謂オシロメトリック法 (圧脈波振 動法) による血圧測定法を用いて血圧を測定するもので、 機器本体 2と、 この機 器本体 2にエアチューブ 3を介して接続されて被検者の腕に装着可能なカフ (腕 帯) 4を主たる構成要素としている。 前記機器本体 2内には、 前記エアチューブ 3に接続され、 カフ 4に空気を供給するポンプおよび力フ 4の空気圧を排気する 排気弁等よりなる空気供給装置 5と、 カフ 4の空気圧を検出することにより脈波 成分を検出する空気圧センサ 6とが設けられ、 これら空気供給装置 5および空気 圧センサ 6が I /O回路 7を介して中央処理部 (演算部) 8に接続されている。 また、 前記機器本体 2には、 上面に、 表示部 9が配されるとともに、 電源スィ ツチ 1 0、 血圧測定開始スィツチ 1 1、 インクリメントノディクリメントキ一 1 2、 表示モード選択キー 1 3よりなる入力キー Zスィッチ 1 4が配されている。 さらに、 前記中央処理部 8には記憶部 1 5が付設され、 前記入力キー/スィッチ 1 4により入力された個人デ一夕等のデ一夕が I O回路 7を介してその記憶部 1 5に記憶されるようになっている。 なお、 本実施形態におけるインクリメント ディクリメントキ一 1 2、 表示モ一ド選択キー 1 3が本発明における入力部に 対応する。
次に、 前述の構成よりなる血圧計付き内臓脂肪計 1の動作を図 3および図 4に 示されるフローチャートによって説明する。 なお、 記号 Sはステップを示してい る。
S 1 :電源スィツチ 1 0を〇N操作して機器本体 2を作動状態にする。
5 2 :表示モード選択キー 1 3とインクリメント/ディクリメントキ一 1 2と を操作して、 被検者の個人データ、 言い換えれば身長、 体重、 性別、 ウェストサ ィズ等のデータを選択入力する。 こうして入力されたデ一夕は記憶部 1 5に記憶 される。
5 3 :記憶部 1 5に記憶された個人データに基づき、 中央処理部 8において B M Iおよび腹部内臓脂肪横断面積 (AV) の演算を行い、 その演算結果を記憶部 1 5に記憶させる。 ここで、 これら演算に使用される演算式は予め記憶部 1 5に 記憶されており、 演算実行時にそれら演算式が中央処理部 8に呼び出される。 前 記腹部内臓脂肪横断面積 (AV) の演算式としては、 最も簡易的なものとして、 次式 (1 ) にて示される回帰式が用いられる。
AV= a 1 XWL + d 1 …… ( 1 ) ここで、 まウェストサイズであり、 係数 a および定数 は、 集団のゥェ ストサイズと腹部横断面 CZTデータとの相関に基づいて、 回帰分析等の統計的 手法により決定される。
5 4:前記ステップ S 3にて演算されて記憶部 1 5に記憶された BM Iおよび 腹部内臓脂肪横断面積 (AV) について、 肥満症を判定するための基準値と比較 判定されるとともに、 肥満度のランク分けがされ、 その結果が記憶部 1 5に記憶 される。 ここで、 比較演算に用いられる基準値および比較演算式は記憶部 1 5に 記憶されており、 演算実行時にそれらが中央処理部 8に呼び出される。 また、 前 述の肥満症を判定するための基準値としては、 B M I = 2 5 (男女共)、腹部内臓 脂肪横断面積(AV) - 1 0 0 c m2 (男女共) が用いられる。 なお、 B M Iは、 国際的に肥満、 痩せの判定の指標として用いられているものであり、 また腹部内 臓脂肪横断面積 (AV) は、 内臓脂肪の分布量を表し、 肥満症の判定の指標とし て臨床の場で用いられているものである。 これら BM Iおよび A Vの各指標によ つて肥満度のランク分けが行えるようになつている。 すなわち、 BMIでは、 2 5〜30の範囲をランク I、 30〜35の範囲をランク I I、 35以上をランク I I Iとしており、 腹部内臓脂肪横断面積 (AV) については、 100〜125 cm2の範囲をランク I、 125〜150 cm2の範囲をランク I I、 150 cm 2以上をランク I I Iとしている。
S 5 :続いて、 血圧測定のためにカフ 4を被測定者の腕に装着する。
S 6 :血圧測定開始スィッチ 11を して血圧測定を開始する。
S 7 :空気供給装置 5によってカフ 4へ空気が送り込まれてカフ 4内の空気が 加圧される。
S 8 :カフ 4の加圧時のカフ圧を空気圧センサ 6で検出し、 カフ 4の加圧過程 における圧力信号に重畳される脈波を検出し、 この脈波振幅の最大値 Am a x ' を求めて記憶部 15に記憶する (図 5参照)。
S 9 :脈波振幅の最大値 Am a X ' から推定収縮期血圧 Pi ' を得るために、 例えば脈波の最大振幅値 Amax' の ΐΖαの振幅値 言い換えれば次式よ り得られる振幅値 A を求める。
Ax' = l/aXAma ' (2)
S 10 :次いで、 ステップ S 9にて求められた振幅値 A に相当するカフ圧 (推定収縮期血圧) を求め、 この値を記憶部 15に記憶する。
S 1 1 :次に、 カフの加圧目標値を決定するために、 推定収縮期血圧 に 基づき、 この推定収縮期血圧 を所定値 (ここでは、 l O OmmHg) と比 較する。
512 :推定収縮期血圧 Pi ' が 10 OmmHg未満の場合には、 測定および 推定誤差が生じた場合の担保として、 記憶されている肥満症の各指標 (BMIお よび AV)毎の判定結果に基づいて加圧目標値 Ρκを決定するために、各指標(Β Mlおよび AV) がいずれも肥満症の判定値を越えているか否か、 言い換えれば BMI>25および AV>100 c m2を満足しているか否かを判定する。
513 :各指標 (BMIおよび AV) がいずれも肥満症の判定であれば、 言い 換えれば BMI>25および AV>100 c m2を満足している場合には、 カフ 圧の加圧目標値 PKを (3) 式により決定する。
Ρκ=14 OmmHg + 20 X |3 …… (3) ここで、 /3は、ステップ S 4にて設定された各指標毎の肥満度ランク I, I I, I I Iに応じて表 1にて決定される数値である。 表 1
Figure imgf000011_0001
このように加圧目標値 Ρ κの決定要素に肥満症の判定結果を採り入れているの で、 加圧時における脈波の最大振幅値 Amax' の測定が正確に行われなかった ような場合でも、 加圧不足により、 後の減圧時に測定される血圧値 (収縮期血圧 および拡張期血圧)が不正確なものになるといつた不具合が発生することがない。
S 14 :ステップ S 12における判定において、 BMIと A Vのうち少なくと もいずれか一方の指標の判定が肥満症の判定とならなかった場合には、 力フ圧の 加圧目標値 Ρκを (4) 式により決定する。
Ρκ= 14 OmmHg (4) このように、 加圧時における脈波の最大振幅値 Am a x ' の測定に基づいて推 定収縮期血圧 が所定値 (10 OmmHg) と比較され、 この所定値未満で あり、 かつ肥満症の判定において肥満症ではないとされた場合には、 カフの加圧 目標値 Ρκが許容できる最低の所定値 (例えば 14 OmmHg) に設定される。 こうすることで、 最大振幅値 Amax, の測定および推定収縮期血圧 Pi ' の推 定誤差が生じた場合にも、 最低限度の加圧目標値 Ρκが設定されるので、 加圧不 足により、 後の減圧時に測定される血圧値 (収縮期血圧および拡張期血圧) が不 正確なものになるといった不具合が発生することがない。
S 15 :ステップ S 11の判定において、 推定収縮期血圧 Pi ' が 10 Omm Hg以上の場合には、ステップ S 12と同様にして、各指標(BMIおよび AV) がいずれも肥満症の判定値を越えているか否か、 言い換えれば BMI>25およ び AV>100 cm2を満足しているか否かを判定する。
516 : BM Iと A Vのうち少なくともいずれか一方の指標の判定が肥満症の 判定とならなかった場合には、 カフ圧の加圧目標値 Ρκを (5) 式により決定す る。
ΡΚ=Ρ +4 OmmHg …… (5)
517:一方、各指標(BM Iおよび AV)がいずれも肥満症の判定であれば、 言い換えれば BMI>25および AV>100 c m2を満足している場合には、 カフ圧の加圧目標値 Ρκを (6) 式により決定する。
Ρκ=Ρι' +20Χ]3 + 30 …… (6)
518 :前述のようにしてカフ圧の加圧目標値 Ρκが決定されると、 カフ圧が その加圧目標値 Ρκに達するまで加圧されて停止する。
519 :次いで、 加圧停止点に達したことが判定されると、 空気供給装置 5の 弁が排気側に切り替わり、 カフ 4の微速減圧を開始する。
S 20 :カフ 4への減圧過程における圧力信号に重畳される脈波を検出し、 こ の脈波の最大振幅値 Am axを求めて記憶する。 次に、 この脈波の最大振幅値 A m a xから収縮期血圧 P!を推定するために、 例えば脈波の最大振幅値 Am a x の 1 Ζ αの振幅値 A x, 言い換えれば次式より得られる振幅値 A xを求める。
Ax= l/aXAma (7) 次に、 前記脈波の最大振幅値 Ama Xから拡張期血圧 P2を推定するために、 例えば脈波の最大振幅値 Am a Xの 1 /ァの振幅値 A 2、 言い換えれば次式より 得られる振幅値 A 2を求める。
A2= l/r XAma (8) なお、 前記 l/αの値としては 0. 5、 また 1 ァの値としては 0. 7を用い ることができる。 また、 これら ΐΖα、 1ノアを用いるのではなく、 更なる推定 精度を向上させた推定式等を用いても良い。
S 21 :収縮期血圧および拡張期血圧の測定が終了すると、 急速減圧により力 フ 4の排気を短時間で終わらせた後、 カフ 4の減圧を停止させる。
S 22 :血圧測定が終了する。 S 2 3 :測定終了後には、 表示部 9に、 個人データ等 (身長、 体重、 性別、 年 齢、 ウェストサイズ) の入力データ、 血圧測定値 (収縮期血圧、 拡張期血圧)、 肥 満症の判定に関する各指標 (BM Iおよび腹部内臓脂肪横断面積) と判定結果お よび肥満度 (各指標毎のランク) についての選択表示を行う。
本実施形態の血圧計付き内臓脂肪計 1においては、 さらに、 測定の度に、 血圧 測定値のデータ、 B M Iおよび腹部内臓脂肪横断面積のデ一夕を記憶しておき、 これら各データを前回測定時のデータとの変化量とともに表示するようにするこ ともできる。 また、 血圧測定値のデータおよび腹部内臓脂肪横断面積のデータの 変化量の比率を求めて表示するようにすることもできる。 このようにすれば、 腹 部の内臓脂肪の分布量と血圧値の各変ィヒの程度と変化率の関係を知ることができ るので、 これらの値に基づいて健康状態をより正確に把握することができ、 より 適正な健康管理が行えることになる。 また、 計画的な血圧測定のスケジュールに 基づいて前記各データの変化状況を記録することで、 長期間の推移を監視すると ともに、 診断のための指針に役立てることも可能となる。
図 6には、 本発明の第 2の実施形態に係る血圧計付き内臓脂肪計の全体斜視図 が示され、 図 7には、 同血圧計付き内臓脂肪計のブロック図が示されている。 本実施形態の血圧計付き内臓脂肪計 1 Aは、 第 1の実施形態の血圧計付き内臓 脂肪計 1にさらに被検者の生体インピーダンスをも測定して体脂肪率も求めるこ とができるようにしたものである。 なお、 本実施形態において、 第 1の実施形態 と共通する部分には図に同一符号を付すに止めてその詳細な説明を省略すること とする。
本実施形態の血圧計付き内臓脂肪計 1 Aにおいては、 機器本体 2 Aの上部左右 端部の表裏に、 両手の指 (例えば親指と人差し指) を接触させることができる電 極 1 6 , 1 6が設けられ、 これら電極 1 6 , 1 6を両手の指で挟持することによ り、 これら両手の指間の生体インピーダンスが生体インピ一ダンス測定回路 1 7 にて測定され、 その測定データが I /O回路 7を介して中央処理部 8に入力され るとともに記憶部 1 5に記憶され、 この測定データに基づいて体脂肪率が演算で きるようになつている。 また、 前記機器本体 2 Aの上面には、 第 1の実施形態に おける各入力キー Zスィッチに加えて、 体脂肪率測定開始スィッチ 1 8が配され ている。 ここで、 前記電極 1 6は、 例えば機器本体 2 Aの表側の計測用電極と、 裏側の電流印加用電極とで構成される。 なお、 図 6において符号 1 9にて示され るのは機器本体 2 Aを立てるためのスタンドである。
次に、 本実施形態における血圧計付き内臓脂肪計 1 Aの動作について、 図 8お よび図 9に示されるフローチャートによって説明する。 なお、 記号 Tはステップ を示している。
T 1 :電源スィツチ 1 0を ON操作して機器本体 2を作動状態にする。
T 2 :表示モード選択キー 1 3とインクリメント Zディクリメントキ一 1 2と を操作して、 被測定者の個人データ、 言い換えれば身長、 体重、 性別、 ウェスト サイズ等のデ一夕を選択入力する。 こうして入力されたデ一夕は記憶部 1 5に記 憶される。
T 3 :体脂肪率測定開始スィツチ 1 8を ON操作して体脂肪率の測定が開始で きる状態にした後、 両手の指を電極 1 6, 1 6に接触させてそれら両手の指間の 生体インピーダンスを測定し、 この測定データを記憶部 1 5に記憶させる。
T 4 :前記生体インピーダンスの測定データと記憶部 1 5に記憶された個人デ —夕とに基づき体脂肪率を演算し、 その演算結果を記憶部 1 5に記憶させる。 ま た、前記個人データに基づき中央処理部 8において B M Iの演算を行うとともに、 個人デ一夕および生体インピーダンスまたは体脂肪率に基づき腹部内臓脂肪横断 面積 (AV) の演算を行い、 その演算結果を記憶部 1 5に記憶させる。 ここで、 これら演算に使用される演算式は予め記憶部 1 5に記憶されており、 演算実行時 にそれら演算式が中央処理部 8に呼び出される。 前記腹部内臓脂肪横断面積 (A V) の演算式としては、 前記第 1の実施形態における (1 ) 式に生体インピ一ダ ンス (Z) の補正項を加えたものとして、 次式 (9 ) にて示される回帰式が用い られる。
AV= a 2 XWL + b 2 X Z + d 2 …… ( 9 )
ここで、 まウェストサイズであり、 係数 a 2, 13 2ぉょび定数(1 2は、 集団の ウェストサイズおよび生体インピーダンスと腹部横断面 C/Tデータとの相関に 基づいて、 統計的手法により決定される。
この (9 ) 式の回帰式のほか、 体脂肪率 (F AT) を補正項として加えたもの として、 次式 (10) に示される回帰式が用いられ得る。
AV=a3 WL+c iXFAT+dg …… (10) なお、 この場合も、 係数 a 3, (:1ぉょび定数33は、 集団のウェストサイズお よび体脂肪率と腹部横断面 CZTデ一夕との相関に基づいて、 統計的手法により 決定される。
さらに、 前記 CZTデータに対してより高い相関係数 (r = 0. 9以上) が得 られる演算式として、 次式 (11) を用いることもできる。
AV=e
Figure imgf000015_0001
FAT-I- f x X WL 2 XHL X A g e + d 4
…… (11) ただし、 は身長、 Ageは年齢を表す。 なお、 この場合、 係数 お よび定数 d4は、 集団のウェストサイズの二乗に身長および体脂肪率を乗じたも のとウェストサイズの二乗に身長および年齢を乗じたものに対して、 腹部横断面 CZTデータとの相関に基づいて、 統計的手法により決定される。
また、 次式 (12) を用いても良い。
AV= f 2XWL 2XHLXAg e + giXFAT + ds …… (12) なお、 この場合、 係数 f 2, 81ぉょぴ定数(15は、 集団のウェストサイズの二 乗に身長年齢を乗じたものと体脂肪率に対して、 腹部横断面 C/Tデ一夕との相 関に基づいて、 統計的手法により決定される。
T5 :前記ステップ T 4にて演算されて記憶部 15に記憶された BMI、 体脂 肪率および腹部内臓脂肪横断面積 (AV) について、 肥満症を判定するための基 準値と比較判定されるとともに、 肥満度のランク分けがされ、 その結果が記憶部 15に記憶される。 ここで、 比較演算に用いられる基準値および比較演算式は記 憶部 15に記憶されており、演算実行時にそれらが中央処理部 8に呼び出される。 また、 前述の肥満症を判定するための基準値としては、 BMI =25 (男女共)、 体脂肪率 (男: 20 %、 女: 30 %)、 腹部内臓脂肪横断面積 (AV) =100 c m2 (男女共) が用いられる。 なお、 BMIは、 国際的に肥満、 痩せの判定の指 標として用いられているものであり、 また腹部内臓脂肪横断面積 (AV) は、 内 臓脂肪の分布量を表し、 肥満症の判定の指標として臨床の場で用いられているも のである。 これら BMI、 体脂肪率および AVの各指標によって肥満度のランク 分けが行えるようになつている。 すなわち、 BMIでは、 25〜30の範囲をラ ンク I、 30〜35の範囲をランク I I、 35以上をランク I I Iとしており、 体脂肪率では、 男の場合、 20〜25%の範囲をランク I、 25〜30%の範囲 をランク I I、 30%以上をランク I I Iとし、 女の場合、 30〜35%の範囲 をランク I、 35〜40%の範囲をランク I I、 40%以上をランク I I Iとし ている。 また、 腹部内臓脂肪横断面積 (AV) については、 100〜 125 cm 2の範囲をランク I、 125〜150 cm2の範囲をランク I I、 150 cm2以 上をランク I I Iとしている。
以下のステップ T6〜T 24においては、 ステップ T13, T16における判 定条件として、体脂肪率 (FAT)が男性の場合には 20 %を越えているか否か、 また女性の場合には 30%を越えているか否かの判断が加わる点が、 第 1の実施 形態におけるステップ S 12, S 15と異なり、 またステップ T24における表 示部 9の表示内容のうち、肥満症の判定に関する各指標に体脂肪率が加わる点が、 第 1の実施形態におけるステップ S 23と異なるだけで、 これ以外の点について は第 1の実施形態におけるステップ S 5〜S 23と基本的に異なるところがない。 したがって、 各ステップの具体的内容についてはその詳細な説明を省略すること とする。
前記各実施形態においては、 被検者の腹部内臓脂肪横断面積を求めるのに、 入 力された被検者の個人データ (身長、 体重、 年齢、 性別、 ウェストサイズ等) に 基づいて、 予め記憶されている演算式によって演算するものとしたが、 ウェスト サイズのデータについては、 被検者の身長、 体重、 年齢の各入力データから推定 によって求めるようにしても良い。 この推定式の一例としては次式 (13) があ る。
Figure imgf000016_0001
ここで、 W:体重、 HL:身長、 Age :年齢である。
さらに、 この演算により求められたウェストサイズと被検者の個人データ (身 長、 体重、 年齢、 性別等) とに基づいて、 前記各実施形態において用いられた演 算式により被検者の腹部内臓脂肪横断面積を求めることもできる。 このようにす れば、 ウェストサイズの測定およびその入力の手間が省けるので、 より簡便に内 臓脂肪』;を得ることができる,

Claims

請求の範囲
1 . カフの加圧により被検者の生体動脈を圧迫した後、 前記カフを徐々に減圧す る過程で脈波信号を検出し、 この検出された脈波信号に基づき血圧を求める血圧 計付き内臓脂肪計であって、
被検者の個人データを入力する入力部と、 この入力部より入力されるデータに 基づき被検者の内臓脂肪量を演算する演算部と、 この演算部による演算結果を表 示する表示部を備えることを特徴とする血圧計付き内臓脂肪計。
2 . 前記入力部より入力される個人デ一夕は、 被検者の身長、 体重およびウェス トサイズを含むデータであり、 前記演算部は、 この入力部より入力されるデータ に基づき被検者の内臓脂肪量に加えて被検者の B M Iを演算するものである請求 項 1に記載の血圧計付き内臓脂肪計。
3 . 前記表示部には、 被検者の内臓脂肪量および B M Iが複数のランクに区分し て表示される請求項 2に記載の血圧計付き内臓脂肪計。
4. 前記演算部は、 前記被検者の内臓脂肪量および B M lと、 予め入力されたそ れらの判定基準値とを比較演算して肥満症の判定を行い、 前記表示部は、 その肥 満症の判定結果を表示するものである請求項 2または 3に記載の血圧計付き内臓 脂肪計。
5 . 前記表示部は、 血圧値と内臓脂肪量とを同時に表示するものである請求項 1 に記載の血圧計付き内臓脂肪計。
6 . 前記演算部は、 被検者の血圧値と内臓脂肪量のそれぞれについて過去の測定 値との変化量および比率を演算するものであり、 前記表示部は、 それら演算結果 を表示するものである請求項 1に記載の血圧計付き内臓脂肪計。
7 . 前記内臓脂肪量は、 被検者の腹部内臓脂肪横断面積である請求項 1に記載の 血圧計付き内臓脂肪計。
8 . 前記カフの加圧目標値が、 カフの加圧時における脈波に基づいて推定される 収縮期血圧と、 前記腹部内臓脂肪横断面積とから決定される請求項 7に記載の血 圧計付き内臓脂肪計。
9 . 前記カフの加圧目標値が、 カフの加圧時における脈波に基づいて推定される 収縮期血圧と、 肥満症の判定結果とから決定される請求項 7に記載の血圧計付き 内臓脂肪計。
1 0 . カフの加圧により被検者の生体動脈を圧迫した後、 前記カフを徐々に減圧 する過程で脈波信号を検出し、 この検出された脈波信号に基づき血圧を求める血 圧計付き内臓脂肪計であって、
被検者の身長、 体重およびウェストサイズを含む個人デ一夕を入力する入力部 と、 被検者の身体の一部に接触される電流印加用電極および計測用電極と、 この 計測用電極より得られる信号により被検者の生体インピーダンスを測定する生体 ィンピーダンス測定部と、 この生体インピーダンス測定部より入力されるデータ と前記入力部より入力されるデータとに基づき少なくとも被検者の BM I、 体脂 肪率および内臓脂肪量のうちのいずれかを演算する演算部と、 この演算部による 演算結果を表示する表示部を備えることを特徴とする血圧計付き内臓脂肪計。
1 1 . 前記表示部には、 被検者の BM I、 体脂肪率および内臓脂肪量のいずれか が複数のランクに区分して表示される請求項 1 0に記載の血圧計付き内臓脂肪計。
1 2. 前記演算部は、 前記被検者の B M I、 体脂肪率および内臓脂肪量のいずれ かと、予め入力されたそれらの判定基準値とを比較演算して肥満症の判定を行い、 前記表示部は、 その肥満症の判定結果を表示するものである請求項 1 0または 1 1に記載の血圧計付き内臓脂肪計。
1 3. 前記表示部は、 血圧値と内臓脂肪量とを同時に表示するものである請求項 1 0に記載の血圧計付き内臓脂肪計。
1 4. 前記演算部は、 被検者の血圧値と内臓脂肪量のそれぞれについて過去の測 定値との変化量および比率を演算するものであり、 前記表示部は、 それら演算結 果を表示するものである請求項 1 0に記載の血圧計付き内臓脂肪計。
1 5. 前記内臓脂肪量は、 被検者の腹部内臓脂肪横断面積である請求項 1 0に記 載の血圧計付き内臓脂肪計。
1 6 . 前記カフの加圧目標値が、 カフの加圧時における脈波に基づいて推定され る収縮期血圧と、 前記腹部内臓脂肪横断面積とから決定される請求項 1 5に記載 の血圧計付き内臓脂肪計。
1 7 . 前記カフの加圧目標値が、 カフの加圧時における脈波に基づいて推定され る収縮期血圧と、 肥満症の判定結果とから決定される請求項 1 5に記載の血圧計 付き内臓脂肪計。
PCT/JP2002/000861 2001-02-23 2002-02-01 Mesureur de graisse viscerale pourvu d'un tonometre WO2002067777A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002437116A CA2437116C (en) 2001-02-23 2002-02-01 Visceral fat scale equipped with sphygmomanometer
EP02711285A EP1369081B1 (en) 2001-02-23 2002-02-01 Visceral fat meter provided with tonometer
US10/470,744 US6905464B2 (en) 2001-02-23 2002-02-01 Visceral fat meter provided with tonometer
DE60238111T DE60238111D1 (de) 2001-02-23 2002-02-01 Viszeralfettmesser mit tonometer
KR1020027014007A KR100874377B1 (ko) 2001-02-23 2002-02-01 혈압계가 부착된 내장지방계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-48940 2001-02-23
JP2001048940A JP4716586B2 (ja) 2001-02-23 2001-02-23 血圧計付き内臓脂肪計

Publications (1)

Publication Number Publication Date
WO2002067777A1 true WO2002067777A1 (fr) 2002-09-06

Family

ID=18910122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000861 WO2002067777A1 (fr) 2001-02-23 2002-02-01 Mesureur de graisse viscerale pourvu d'un tonometre

Country Status (9)

Country Link
US (1) US6905464B2 (ja)
EP (1) EP1369081B1 (ja)
JP (1) JP4716586B2 (ja)
KR (1) KR100874377B1 (ja)
CN (1) CN1321611C (ja)
CA (1) CA2437116C (ja)
DE (1) DE60238111D1 (ja)
TW (1) TW552128B (ja)
WO (1) WO2002067777A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020046278A1 (en) * 2000-07-17 2002-04-18 Roy Hays Method and system for global log on in a distributed system
US20050192841A1 (en) * 2000-09-01 2005-09-01 Roy Hays Method and system for collecting information before user registration
US6730038B2 (en) * 2002-02-05 2004-05-04 Tensys Medical, Inc. Method and apparatus for non-invasively measuring hemodynamic parameters using parametrics
US8272872B2 (en) * 2002-06-27 2012-09-25 National Wrestling Coaches Association System and method for calculating optimal performance and weight classification
US7089052B2 (en) * 2004-02-26 2006-08-08 Tanita Corporation Method and system for estimating visceral fat area
KR100565952B1 (ko) * 2004-07-23 2006-03-30 신재우 다기능 혈압계
TWM262152U (en) * 2004-08-31 2005-04-21 Avita Corp Sphygmomanometer
TWM262153U (en) * 2004-08-31 2005-04-21 Avita Corp Sphygmomanometer
JP4579669B2 (ja) * 2004-12-16 2010-11-10 富士通株式会社 信頼性検証プログラムおよび信頼性検証方法
KR100717405B1 (ko) * 2005-09-09 2007-05-11 삼성전자주식회사 생체 신호 측정기 및 이를 이용한 건강 관리 방법
JP2008142469A (ja) * 2006-12-13 2008-06-26 Tanita Corp 生体測定装置
US20080243009A1 (en) * 2007-03-30 2008-10-02 General Electric Company Method of controlling inflation of a cuff in blood pressure determination
US20090241177A1 (en) * 2008-03-21 2009-09-24 Computerized Screening, Inc. Security system for a community based managed health kiosk system
KR101009958B1 (ko) * 2008-09-25 2011-01-20 한국생산기술연구원 인체정보 측정 장치
KR20100060141A (ko) * 2008-11-27 2010-06-07 삼성전자주식회사 휴대용 혈압측정 장치 및 방법
JP5557321B2 (ja) * 2010-07-14 2014-07-23 株式会社タニタ 測定装置
US10874307B2 (en) * 2017-01-24 2020-12-29 Verily Life Sciences Llc Digital artery blood pressure monitor
CN110115573B (zh) * 2019-05-27 2024-09-17 威海威高瑞影医疗科技有限公司 一种血压间隔测量充气压力控制方法、装置及监护仪
US11328820B2 (en) * 2020-02-14 2022-05-10 Doctor on Demand, Inc. Decision engine based on disparate data sources

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739535A (ja) * 1993-07-28 1995-02-10 Akatsuki Denki Seisakusho:Kk 電子制御式ヘルス測定システム及び血圧・体内脂肪測定装置
JPH10192258A (ja) * 1997-01-08 1998-07-28 Matsushita Electric Works Ltd 体脂肪計
JPH1176187A (ja) * 1998-07-21 1999-03-23 Omron Corp 体脂肪計
JP2000237149A (ja) * 1999-02-25 2000-09-05 Matsushita Electric Works Ltd 健康測定機器
JP2000350710A (ja) * 1999-06-11 2000-12-19 Tanita Corp 体脂肪分布の測定方法及び測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579782A (en) * 1993-08-12 1996-12-03 Omron Corporation Device to provide data as a guide to health management
JP3590462B2 (ja) * 1995-09-20 2004-11-17 コーリンメディカルテクノロジー株式会社 血圧測定装置
US6354996B1 (en) * 1998-04-15 2002-03-12 Braun Gmbh Body composition analyzer with trend display
JP4046883B2 (ja) * 1999-02-09 2008-02-13 株式会社タニタ 体脂肪計及び健康管理システム
JP2001017401A (ja) * 1999-07-08 2001-01-23 Nippon Colin Co Ltd 体脂肪率測定機能を備えた血圧測定装置
TW529930B (en) * 1999-08-27 2003-05-01 Yamato Scale Co Ltd Health condition judging/displaying device
JP3722678B2 (ja) * 1999-10-27 2005-11-30 株式会社タニタ 体脂肪計
US6336136B1 (en) * 1999-12-24 2002-01-01 Scott C. Harris Internet weight reduction system
US7172560B2 (en) * 2000-04-05 2007-02-06 Matsushita Electric Industrial Co., Ltd. Living body information acquiring apparatus and living body information acquiring method
TW515705B (en) * 2000-05-31 2003-01-01 Yamato Scale Co Ltd Visceral fat meter
JP2002306439A (ja) * 2001-04-11 2002-10-22 Tanita Corp 内臓脂肪測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739535A (ja) * 1993-07-28 1995-02-10 Akatsuki Denki Seisakusho:Kk 電子制御式ヘルス測定システム及び血圧・体内脂肪測定装置
JPH10192258A (ja) * 1997-01-08 1998-07-28 Matsushita Electric Works Ltd 体脂肪計
JPH1176187A (ja) * 1998-07-21 1999-03-23 Omron Corp 体脂肪計
JP2000237149A (ja) * 1999-02-25 2000-09-05 Matsushita Electric Works Ltd 健康測定機器
JP2000350710A (ja) * 1999-06-11 2000-12-19 Tanita Corp 体脂肪分布の測定方法及び測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1369081A4 *

Also Published As

Publication number Publication date
US6905464B2 (en) 2005-06-14
CA2437116C (en) 2008-01-29
CN1321611C (zh) 2007-06-20
KR20020092437A (ko) 2002-12-11
CN1457244A (zh) 2003-11-19
JP2002248084A (ja) 2002-09-03
DE60238111D1 (de) 2010-12-09
JP4716586B2 (ja) 2011-07-06
US20040077955A1 (en) 2004-04-22
EP1369081A4 (en) 2006-08-09
TW552128B (en) 2003-09-11
EP1369081A1 (en) 2003-12-10
CA2437116A1 (en) 2002-09-06
KR100874377B1 (ko) 2008-12-18
EP1369081B1 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2002067777A1 (fr) Mesureur de graisse viscerale pourvu d'un tonometre
US10485434B2 (en) Non-invasive and non-occlusive blood pressure monitoring devices and methods
US5584298A (en) Noninvasive hemodynamic analyzer alterable to a continuous invasive hemodynamic monitor
JP5689116B2 (ja) 分節プレチスモグラフィを用いて反応性充血を検出及び評価する方法及び機器
US7465273B2 (en) Method for monitoring pre-eclamptic patients
WO2010073689A1 (ja) 電子血圧計および血圧測定方法
US20040243006A1 (en) Vascular disease examining system and bypass vascular diagnosing device
KR101798495B1 (ko) 웨어러블 손목 혈압계
US20170055858A1 (en) Method and system for facilitating patient self-measuring and recording
KR20090052442A (ko) 비침습 혈압측정 방법 및 장치
JP6239341B2 (ja) 大動脈血流波形分析による動脈硬化度の評価
KR20140013833A (ko) 호흡 조절에 의한 혈압 변화를 측정하기 위한 장치 및 방법
US8157733B2 (en) Blood pressure measurement apparatus
KR20100126127A (ko) 가변 특성비를 이용하는 혈압 추정 장치 및 방법
EP2706907B1 (en) Automated process for use in assessing cardiac filling pressure non-invasively
TWI657795B (zh) 無拘束式血壓量測裝置及使用其之血壓量測方法
JP4423766B2 (ja) 体脂肪率計および体脂肪率計付き血圧計
KR20090026003A (ko) 어드바이스 기능이 있는 혈압 측정 장치 및 그 방법
Zanatta et al. COMPARATIVE ANALYSIS OF THE RESULTS IN ARTERIAL STIFFNESS BETWEEN TWO ASSESSMENT METHODS–SPHYGMOCOR AGAINST MOBIL-PULSE WAVE VELOCITY–IN HYPERTENSIVE PATIENTS
KR20080074624A (ko) 혈압 측정 장치 및 그 방법
Beales How accurate are automated blood pressure monitors?
L. Antonova Recent patents on accuracy of blood pressure measurement
Jobbágy et al. Accurate blood pressure measurement at home
Ekstrum et al. ADMINISTRATION OF PULMONARY FUNCTION TESTING WITH PORTABLE SPIROMETRY IN AN OLDER POPULATION.
Sukor et al. The Correlation Between Finger Mean Arterial Pressure and Blood Pressure Measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027014007

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028003969

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027014007

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2437116

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10470744

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002711285

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002711285

Country of ref document: EP