WO2002067004A1 - Method and apparatus for detection and measurement of accumulations of magnetic particles - Google Patents
Method and apparatus for detection and measurement of accumulations of magnetic particles Download PDFInfo
- Publication number
- WO2002067004A1 WO2002067004A1 PCT/US2002/005116 US0205116W WO02067004A1 WO 2002067004 A1 WO2002067004 A1 WO 2002067004A1 US 0205116 W US0205116 W US 0205116W WO 02067004 A1 WO02067004 A1 WO 02067004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- magnetic
- excitation current
- sensing element
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/74—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
- G01N27/745—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids for detecting magnetic beads used in biochemical assays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
- G01R33/1215—Measuring magnetisation; Particular magnetometers therefor
Definitions
- This invention relates generally to sensing the presence of magnetic particles
- the ligand is accomplished through the use of a second molecular species
- the antiligand or the receptor which specifically binds to the ligand of interest.
- the presence of the ligand of interest is detected by measuring, or inferring, either directly
- antiligand which are typically an antigen and an antibody.
- the teaching of Elings is to
- the scanner may be based on fluorescence, optical density, light scattering, color and reflectance, among others.
- Elings further teaches that the magnetic
- particles of interest proteins, viruses, cells, DNA fragments, for example.
- earth magnets and iron pole pieces are commercially available for this purpose.
- Radioactive methods present health and disposal problems of the resulting low-level radioactive waste, and they are also relatively slow. Fluorescent or phosphorescent techniques are limited in their quantitative accuracy and dynamic range because emitted
- photons may be absorbed by other materials in the sample (see Japanese patent publication 63-90765, published 21 Apr. 1988, Fujiwara et al.). Furthermore, the signal from the sample
- fluorescent or phosphorescent molecules normally decays over a period of hours or perhaps
- the force is measured as an apparent change in the
- the pair of coils (such as magnetic particles which are part of magnetic bound complexes) the pair of coils
- the oscillating drive field produces a corresponding oscillating magnetization in the magnetic particles, which can then be detected by the
- the high frequency oscillating field (typically
- sensors such as fluxgate, giant magneto-resistance (GMR), colossal magneto-resistance (CMR), and Hall effect sensors, all still employing an AC drive field.
- GMR giant magneto-resistance
- CMR colossal magneto-resistance
- Hall effect sensors all still employing an AC drive field.
- the detection system described by Simmonds exploits the fundamental magnetic behavior of the material comprising the magnetic particles to detect and measure their magnetization.
- the beads used in these applications are typically described as
- the beads are magnetic only when placed in an applied magnetic field. More specifically, they are not magnetic in the absence of an externally
- the tape or disc is specifically designed to have a high remanent magnetization and a large
- the magnetic particles typically used in biotechnology applications are comprised
- iron oxide which is typically a mixture of Fe 3 O 4 and Fe 2 O 3 , and measurements on
- the sensors must be of the type which
- the present invention provides a greatly simplified and
- a central feature of this invention is the use of a DC magnetic field (which replaces
- the requisite DC magnetic field can be generated without power consumption
- DC magnetic field cost less than about 25 cents.
- the components used to generate the high frequency AC field used in previous devices cost in excess of twenty dollars and require significant power.
- Hall sensors is not substantially degraded in high fields.
- Hall sensors can be designed
- the sensor area should also be matched
- a typical Hall sensor that might be used in this type of implementation is biased
- the dielectric properties in the sample substrate can cause significant impairment
- one sensor is subtracted from the other to form a resultant signal indicative of the difference
- the measurement is performed by moving a well-defined pattern of magnetically susceptible particles past the two Hall sensors and in close proximity to them,
- the pattern of magnetic particles is detected by the first Hall sensor as it moves past, and then after
- the difference signal between the two sensors is a function of the position of the two sensors
- Fig. 1 is a perspective representation of a preferred embodiment of the apparatus of
- Fig. 2 shows a Hall sensor as employed in the Fig. 1 embodiment
- Fig. 3 is a perspective view of an alternative embodiment of the invention.
- Fig. 4 is a block diagram of exemplary circuitry which would be employed with the
- Fig. 5 is a block diagram of exemplary circuitry which could be employed with the
- Fig. 6 is a block diagram incorporating an alternative manner of biasing the Hall
- Fig. 7 is a schematic cross section showing the motion of the sample relative to the sensors of Fig. 1;
- Fig. 8 is a plot of sensor outputs pursuant to the motion illustrated in Fig. 7.
- structure 11 is shown as having an E configuration, with gap 12 formed between middle leg
- the magnet is comprised of magnet elements 11 A and 1 IB and iron pole pieces 11C and 11D.
- Hall sensors 15 and 16 are mounted on surface 17, which is
- J: ⁇ 1730 ⁇ 043wo ⁇ Application.doc contemplated to be a flexible printed circuit board providing all the external connections
- Sample 21 is placed in a defined pattern (generally 1mm x 2mm) on substrate 22
- Fig. 4 circuitry, for example, as discussed in detail below. Further details of this motion
- substrate 22 may be formed with extension 20 on
- bar code 19 which is printed bar code 19.
- the bar code is read by optical detector or bar code reader 28, shown with appropriate electrical leads 29.
- the bar code is spaced from sample pattern 21 by a predetermined distance and reader 28 has a fixed position with respect to the Hall
- the signals from the reader can then provide information about the position of the sample pattern with respect to the Hall sensors.
- the optical detector is a fairly sophisticated commercial device
- the first pulse corresponds to the leading edge of the bar coded line
- the second pulse in quadrature
- these pulses are used to trigger the data collection electronics which
- the pulses from the optical detector can be used to initiate and terminate the data collection process.
- code information can tell the electronic control system when to start and stop the data
- the applied magnetic field from magnet 11 is
- the circuit of Fig. 4 relates to the Fig. 1 embodiment. This preferred embodiment
- This circuitry then produces signals indicative of the sum and difference of the sensor signals in the pair. Further signal processing by balancing stage 27 is accomplished by adjusting the balance gain by means of element 30 to minimize the output signal of this stage in the absence of a magnetic sample in the proximity of the sensors. The resultant
- the output of the lock-in stage represents the amount of
- the lock-in stage is employed for signal processing by the lock-in technique.
- alternating excitation means 24 is the current
- This difference signal may be
- the output signal of the lock-in stage will be indicative of the amount of particle material 21 present. It is desirable to select the excitation frequency such that signal detection occurs in a region of frequency space where sensor noise and
- the implementation may also include analog-to-digital or digital-to-analog conversion, or both.
- the requisite DC magnetic field may
- single sided magnet design does allow the use of larger and bulk substrates, it has
- Fig. 1 embodiment cannot be used and a • good estimate of the particle count is needed.
- This measurement in the Fig. 3 apparatus is made by moving a well-defined pattern of magnetically susceptible particles 36 on substrate 37 into proximity of sensor 41 in the
- Magnet structure 43 is comprised of permanent
- the mounting device may be any non-conductive material such as plastic.
- plastic 40 A may be filed with plastic 40 A. That may be a separate plastic
- Mounting device 40 is configured
- Signal balancing occurs by adjusting the balancing gain in balancing
- stage 47 with balancing device 48 to minimize the output signal of this stage in the absence
- the output of the lock-in stage represents the amount of particle material 36 present.
- Hall sensors 15, 16 are connected in series, so exactly the same bias current flows in both sensors. Since any variations in the bias current
- Hall sensors 15, 16 is connected in parallel. This design is more susceptible to erroneous
- the voltage taps of the two Hall sensors are connected together and a single differential amplifier 56 is used to detect the difference of the Hall voltages across the two sensors.
- Reference input through amplifier 57 and balancing stage 58 and lock-in stage 59 function in the same manner as previously described.
- Fig. 8 illustrates an ensemble of measurements plotted versus sample position.
- the solid curve represents a curve fit of an ideal response function using the method of least squares. It is clear that using both the position and signal voltage information, an absolute
- magnet pole pieces are preferably made of iron, the requirement is to
- the pole pieces could be curved so that the gap
- Substrate 22 could be a lateral flow membrane having region of interest 21.
- the substrate is preferably non-conductive and made of non-magnetic material, and could be made of plastic, wood, or other material satisfying these requirements.
- Substrate 22 can be made of plastic, wood, or other material satisfying these requirements.
- J: ⁇ 1730 ⁇ 043wo ⁇ Application.doc be moved by hand past the sensors, or the motion may be mechanized by using a stepper
- the system of the invention has excellent sensitivity, in the range of 1 nanovolt to
- the invention is for a very sensitive magnetic sensor in the
- N is the voltage change detected
- I is the bias current
- n is the carrier density
- B is the applied field
- d is the thickness of the sensing surface
- e is the carrier charge.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Measuring Magnetic Variables (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| HK04100451.8A HK1058550B (en) | 2001-02-16 | 2002-02-12 | Method and apparatus for detection and measurement of accumulations of magnetic particles |
| EP02719038A EP1360515B1 (en) | 2001-02-16 | 2002-02-12 | Method and apparatus for detection and measurement of accumulations of magnetic particles |
| CA002438423A CA2438423C (en) | 2001-02-16 | 2002-02-12 | Method and apparatus for detection and measurement of accumulations of magnetic particles |
| JP2002566677A JP2004519666A (ja) | 2001-02-16 | 2002-02-12 | 磁性粒子の蓄積を検出および測定する方法と装置 |
| DE60214674T DE60214674T2 (de) | 2001-02-16 | 2002-02-12 | Verfahren und vorrichtung zur detektion und messung von anhäufungen magnetischer teilchen |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/785,403 | 2001-02-16 | ||
| US09/785,403 US6518747B2 (en) | 2001-02-16 | 2001-02-16 | Method and apparatus for quantitative determination of accumulations of magnetic particles |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2002067004A1 true WO2002067004A1 (en) | 2002-08-29 |
| WO2002067004B1 WO2002067004B1 (en) | 2002-10-24 |
Family
ID=25135405
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2002/005116 Ceased WO2002067004A1 (en) | 2001-02-16 | 2002-02-12 | Method and apparatus for detection and measurement of accumulations of magnetic particles |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6518747B2 (enExample) |
| EP (1) | EP1360515B1 (enExample) |
| JP (1) | JP2004519666A (enExample) |
| CN (1) | CN1300598C (enExample) |
| AT (1) | ATE339696T1 (enExample) |
| CA (1) | CA2438423C (enExample) |
| DE (1) | DE60214674T2 (enExample) |
| WO (1) | WO2002067004A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005111597A1 (ja) * | 2004-05-17 | 2005-11-24 | The Circle For The Promotion Of Science And Engineering | 磁性微粒子の検出装置 |
| WO2007105143A3 (en) * | 2006-03-15 | 2008-03-06 | Koninkl Philips Electronics Nv | Sensor device with alternating excitation fields |
| FR2922472A1 (fr) * | 2007-10-22 | 2009-04-24 | Snecma Sa | Dispositif et procede de detection,de localisation et de comptage de billes de grenaillage dans une piece mecanique creuse |
| WO2010076032A1 (en) | 2008-12-30 | 2010-07-08 | Microcoat Biotechnologie Gmbh | Device, instrument and process for detecting magnetically labeled analytes |
| WO2018134609A1 (en) * | 2017-01-19 | 2018-07-26 | MIDS Medical Limited | Device and method for accurate measurement of magnetic particles in assay apparatus |
Families Citing this family (124)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6897654B2 (en) * | 2002-04-12 | 2005-05-24 | California Institute Of Technology | System and method of magnetic resonance imaging |
| US8697029B2 (en) * | 2002-04-18 | 2014-04-15 | The Regents Of The University Of Michigan | Modulated physical and chemical sensors |
| JP4066716B2 (ja) * | 2002-05-28 | 2008-03-26 | アイシン精機株式会社 | 位置検出センサ |
| EP1525447A4 (en) * | 2002-05-31 | 2006-12-06 | Univ California | METHOD AND DEVICE FOR DETECTING INTERESTING SUBSTANCES |
| US20090224755A1 (en) * | 2004-11-30 | 2009-09-10 | Koninklijke Philips Electronics, N.V. | Means and method for sensing a magnetic stray field in biosensors |
| EP1679524A1 (en) * | 2005-01-11 | 2006-07-12 | Ecole Polytechnique Federale De Lausanne Epfl - Sti - Imm - Lmis3 | Hall sensor and method of operating a Hall sensor |
| US7300631B2 (en) | 2005-05-02 | 2007-11-27 | Bioscale, Inc. | Method and apparatus for detection of analyte using a flexural plate wave device and magnetic particles |
| US7611908B2 (en) * | 2005-05-02 | 2009-11-03 | Bioscale, Inc. | Method and apparatus for therapeutic drug monitoring using an acoustic device |
| US7648844B2 (en) * | 2005-05-02 | 2010-01-19 | Bioscale, Inc. | Method and apparatus for detection of analyte using an acoustic device |
| US7749445B2 (en) * | 2005-05-02 | 2010-07-06 | Bioscale, Inc. | Method and apparatus for analyzing bioprocess fluids |
| GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
| JP4801447B2 (ja) * | 2006-01-13 | 2011-10-26 | 旭化成株式会社 | 磁気センサを用いた測定装置及び測定方法 |
| JP4676361B2 (ja) * | 2006-03-09 | 2011-04-27 | 株式会社日立製作所 | 磁気的免疫検査装置 |
| US9329181B2 (en) * | 2006-03-21 | 2016-05-03 | Magnisense Technology Limited | Magnetic immunochromatographic test method and device |
| GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
| WO2007129262A1 (en) * | 2006-05-10 | 2007-11-15 | Koninklijke Philips Electronics N.V. | Magneto-resistive sensors with improved output signal characteristics |
| US8133439B2 (en) | 2006-08-01 | 2012-03-13 | Magic Technologies, Inc. | GMR biosensor with enhanced sensitivity |
| US7729093B1 (en) * | 2006-09-28 | 2010-06-01 | Headway Technologies, Inc. | Detection of magnetic beads using a magnetoresistive device together with ferromagnetic resonance |
| US8217647B2 (en) * | 2006-12-19 | 2012-07-10 | Koninklijke Philips Electronics N.V. | Measuring agglutination parameters |
| US8970215B2 (en) * | 2007-01-12 | 2015-03-03 | Koninklijkle Philips N.V. | Sensor device for and a method of sensing particles |
| US9068977B2 (en) * | 2007-03-09 | 2015-06-30 | The Regents Of The University Of Michigan | Non-linear rotation rates of remotely driven particles and uses thereof |
| US20100144939A1 (en) * | 2007-03-19 | 2010-06-10 | Koji Okada | Flame Retardant Polycarbonate Resin Composition |
| US8283912B2 (en) * | 2007-04-03 | 2012-10-09 | Koninklijke Philips Electronics N.V. | Sensor device with magnetic washing means |
| US9752615B2 (en) | 2007-06-27 | 2017-09-05 | Brooks Automation, Inc. | Reduced-complexity self-bearing brushless DC motor |
| US8823294B2 (en) * | 2007-06-27 | 2014-09-02 | Brooks Automation, Inc. | Commutation of an electromagnetic propulsion and guidance system |
| US8659205B2 (en) | 2007-06-27 | 2014-02-25 | Brooks Automation, Inc. | Motor stator with lift capability and reduced cogging characteristics |
| KR101660894B1 (ko) | 2007-06-27 | 2016-10-10 | 브룩스 오토메이션 인코퍼레이티드 | 다차원 위치 센서 |
| US8283813B2 (en) | 2007-06-27 | 2012-10-09 | Brooks Automation, Inc. | Robot drive with magnetic spindle bearings |
| JP5416104B2 (ja) * | 2007-06-27 | 2014-02-12 | ブルックス オートメーション インコーポレイテッド | セルフベアリングモータ用位置フィードバック |
| CN101754811A (zh) * | 2007-07-09 | 2010-06-23 | 皇家飞利浦电子股份有限公司 | 具有磁场发生器的微电子传感器设备以及载体 |
| CN101801817B (zh) | 2007-07-17 | 2015-07-22 | 布鲁克斯自动化公司 | 具备集成到室壁上的电动机的基片加工装置 |
| US8354280B2 (en) * | 2007-09-06 | 2013-01-15 | Bioscale, Inc. | Reusable detection surfaces and methods of using same |
| CN101281191B (zh) * | 2007-11-14 | 2012-10-10 | 石西增 | 一种对磁敏传感生物芯片进行自动测量的仪器 |
| US8154273B2 (en) * | 2008-10-10 | 2012-04-10 | Beckman Coulter, Inc. | Detecting and handling coincidence in particle analysis |
| US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
| US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
| DE102010009161A1 (de) | 2010-02-24 | 2011-08-25 | Technische Hochschule Mittelhessen, 35390 | Verbesserung der Nachweisgrenze von magnetisch markierten Proben |
| JP5560334B2 (ja) * | 2010-07-21 | 2014-07-23 | 株式会社日立製作所 | 磁場計測装置 |
| WO2012027747A2 (en) | 2010-08-27 | 2012-03-01 | The Regents Of The University Of Michigan | Asynchronous magnetic bead rotation sensing systems and methods |
| WO2012136970A1 (en) | 2011-04-07 | 2012-10-11 | Milan Momcilo Popovich | Laser despeckler based on angular diversity |
| US9816993B2 (en) | 2011-04-11 | 2017-11-14 | The Regents Of The University Of Michigan | Magnetically induced microspinning for super-detection and super-characterization of biomarkers and live cells |
| DE102011017096A1 (de) * | 2011-04-14 | 2012-10-18 | Austriamicrosystems Ag | Hall-Sensor-Halbleiterbauelement und Verfahren zum Betrieb des Hall-Sensor-Halbleiterbauelementes |
| HUE034396T2 (en) | 2011-07-12 | 2018-02-28 | Foodchek Systems Inc | Culture media, Method for Salmonella and E. coli cultivation and Method for Detection of Salmonella and E. coli |
| WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
| EP2995986B1 (en) | 2011-08-24 | 2017-04-12 | Rockwell Collins, Inc. | Data display |
| US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| ES2608930T3 (es) | 2012-01-04 | 2017-04-17 | Magnomics, S.A. | Dispositivo monolítico que combina CMOS con sensores magnetorresistivos |
| US20150010265A1 (en) | 2012-01-06 | 2015-01-08 | Milan, Momcilo POPOVICH | Contact image sensor using switchable bragg gratings |
| EP2842003B1 (en) | 2012-04-25 | 2019-02-27 | Rockwell Collins, Inc. | Holographic wide angle display |
| US9797817B2 (en) | 2012-05-03 | 2017-10-24 | The Regents Of The University Of Michigan | Multi-mode separation for target detection |
| US9456744B2 (en) | 2012-05-11 | 2016-10-04 | Digilens, Inc. | Apparatus for eye tracking |
| EP2685273A1 (en) * | 2012-07-13 | 2014-01-15 | Université Montpellier 2, Sciences et Techniques | Micromagnetometry detection system and method for detecting magnetic signatures of magnetic materials |
| US20140028305A1 (en) * | 2012-07-27 | 2014-01-30 | International Business Machines Corporation | Hall measurement system with rotary magnet |
| US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
| US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
| US9727772B2 (en) | 2013-07-31 | 2017-08-08 | Digilens, Inc. | Method and apparatus for contact image sensing |
| US9360294B2 (en) * | 2013-10-31 | 2016-06-07 | Ascension Technology Corporation | Magnetic sensors |
| US9983110B2 (en) | 2013-11-04 | 2018-05-29 | The Regents Of The University Of Michigan | Asynchronous magnetic bead rotation (AMBR) microviscometer for analysis of analytes |
| KR102686315B1 (ko) | 2013-11-13 | 2024-07-19 | 브룩스 오토메이션 인코퍼레이티드 | 씰링된 로봇 드라이브 |
| US10348172B2 (en) | 2013-11-13 | 2019-07-09 | Brooks Automation, Inc. | Sealed switched reluctance motor |
| KR20220000416A (ko) | 2013-11-13 | 2022-01-03 | 브룩스 오토메이션 인코퍼레이티드 | 브러쉬리스 전기 기계 제어 방법 및 장치 |
| TWI695447B (zh) | 2013-11-13 | 2020-06-01 | 布魯克斯自動機械公司 | 運送設備 |
| US9910105B2 (en) | 2014-03-20 | 2018-03-06 | Lockheed Martin Corporation | DNV magnetic field detector |
| US9557391B2 (en) | 2015-01-23 | 2017-01-31 | Lockheed Martin Corporation | Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system |
| US9614589B1 (en) | 2015-12-01 | 2017-04-04 | Lockheed Martin Corporation | Communication via a magnio |
| US10338162B2 (en) | 2016-01-21 | 2019-07-02 | Lockheed Martin Corporation | AC vector magnetic anomaly detection with diamond nitrogen vacancies |
| US9274041B2 (en) * | 2014-04-15 | 2016-03-01 | Spectro Scientific, Inc. | Particle counter and classification system |
| WO2016020632A1 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Method for holographic mastering and replication |
| US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
| US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
| CN104502242A (zh) * | 2014-11-20 | 2015-04-08 | 北京航空航天大学 | 一种基于径向磁场的双边对称结构在线磨粒监测方法及监测传感器 |
| US20180275402A1 (en) | 2015-01-12 | 2018-09-27 | Digilens, Inc. | Holographic waveguide light field displays |
| WO2016113534A1 (en) | 2015-01-12 | 2016-07-21 | Milan Momcilo Popovich | Environmentally isolated waveguide display |
| JP6867947B2 (ja) | 2015-01-20 | 2021-05-12 | ディジレンズ インコーポレイテッド | ホログラフィック導波路ライダー |
| WO2016126436A1 (en) | 2015-02-04 | 2016-08-11 | Lockheed Martin Corporation | Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system |
| US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
| WO2016146963A1 (en) | 2015-03-16 | 2016-09-22 | Popovich, Milan, Momcilo | Waveguide device incorporating a light pipe |
| US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
| US9678040B2 (en) | 2015-04-09 | 2017-06-13 | International Business Machines Corporation | Rotating magnetic field hall measurement system |
| EP3359999A1 (en) | 2015-10-05 | 2018-08-15 | Popovich, Milan Momcilo | Waveguide display |
| WO2017127096A1 (en) | 2016-01-21 | 2017-07-27 | Lockheed Martin Corporation | Diamond nitrogen vacancy sensor with dual rf sources |
| CN109073889B (zh) | 2016-02-04 | 2021-04-27 | 迪吉伦斯公司 | 全息波导光学跟踪器 |
| EP3208627B1 (en) * | 2016-02-19 | 2021-09-01 | Université de Montpellier | Measurement system and method for characterizing at least one single magnetic object |
| EP3433659B1 (en) | 2016-03-24 | 2024-10-23 | DigiLens, Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
| US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
| US10345396B2 (en) | 2016-05-31 | 2019-07-09 | Lockheed Martin Corporation | Selected volume continuous illumination magnetometer |
| US10338163B2 (en) | 2016-07-11 | 2019-07-02 | Lockheed Martin Corporation | Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation |
| US10371765B2 (en) | 2016-07-11 | 2019-08-06 | Lockheed Martin Corporation | Geolocation of magnetic sources using vector magnetometer sensors |
| US10527746B2 (en) | 2016-05-31 | 2020-01-07 | Lockheed Martin Corporation | Array of UAVS with magnetometers |
| US10359479B2 (en) | 2017-02-20 | 2019-07-23 | Lockheed Martin Corporation | Efficient thermal drift compensation in DNV vector magnetometry |
| US10330744B2 (en) | 2017-03-24 | 2019-06-25 | Lockheed Martin Corporation | Magnetometer with a waveguide |
| US10408890B2 (en) | 2017-03-24 | 2019-09-10 | Lockheed Martin Corporation | Pulsed RF methods for optimization of CW measurements |
| US10571530B2 (en) | 2016-05-31 | 2020-02-25 | Lockheed Martin Corporation | Buoy array of magnetometers |
| US10677953B2 (en) | 2016-05-31 | 2020-06-09 | Lockheed Martin Corporation | Magneto-optical detecting apparatus and methods |
| US10317279B2 (en) | 2016-05-31 | 2019-06-11 | Lockheed Martin Corporation | Optical filtration system for diamond material with nitrogen vacancy centers |
| US10345395B2 (en) | 2016-12-12 | 2019-07-09 | Lockheed Martin Corporation | Vector magnetometry localization of subsurface liquids |
| US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
| WO2018129398A1 (en) | 2017-01-05 | 2018-07-12 | Digilens, Inc. | Wearable heads up displays |
| US10371760B2 (en) | 2017-03-24 | 2019-08-06 | Lockheed Martin Corporation | Standing-wave radio frequency exciter |
| US10459041B2 (en) | 2017-03-24 | 2019-10-29 | Lockheed Martin Corporation | Magnetic detection system with highly integrated diamond nitrogen vacancy sensor |
| US10338164B2 (en) | 2017-03-24 | 2019-07-02 | Lockheed Martin Corporation | Vacancy center material with highly efficient RF excitation |
| US20180275207A1 (en) * | 2017-03-24 | 2018-09-27 | Lockheed Martin Corporation | Magneto-optical defect center sensor with vivaldi rf antenna array |
| US10379174B2 (en) | 2017-03-24 | 2019-08-13 | Lockheed Martin Corporation | Bias magnet array for magnetometer |
| JP7399084B2 (ja) | 2017-10-16 | 2023-12-15 | ディジレンズ インコーポレイテッド | ピクセル化されたディスプレイの画像分解能を倍増させるためのシステムおよび方法 |
| WO2019136476A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Waveguide architectures and related methods of manufacturing |
| WO2019136473A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Methods for fabricating optical waveguides |
| KR102768598B1 (ko) | 2018-01-08 | 2025-02-13 | 디지렌즈 인코포레이티드. | 도파관 셀 내의 홀로그래픽 격자의 높은 처리능력의 레코딩을 위한 시스템 및 방법 |
| KR102819207B1 (ko) | 2018-01-08 | 2025-06-11 | 디지렌즈 인코포레이티드. | 도파관 셀을 제조하기 위한 시스템 및 방법 |
| JP7487109B2 (ja) | 2018-03-16 | 2024-05-20 | ディジレンズ インコーポレイテッド | 複屈折制御を組み込むホログラフィック導波管およびその加工のための方法 |
| WO2020023779A1 (en) | 2018-07-25 | 2020-01-30 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
| DE102018008519A1 (de) * | 2018-10-30 | 2020-04-30 | Giesecke+Devrient Currency Technology Gmbh | Magnetische Prüfung von Wertdokumenten |
| WO2020149956A1 (en) | 2019-01-14 | 2020-07-23 | Digilens Inc. | Holographic waveguide display with light control layer |
| WO2020163524A1 (en) | 2019-02-05 | 2020-08-13 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
| EP3924759B1 (en) | 2019-02-15 | 2025-07-30 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
| US20220283377A1 (en) | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
| US20200292745A1 (en) | 2019-03-12 | 2020-09-17 | Digilens Inc. | Holographic Waveguide Backlight and Related Methods of Manufacturing |
| CN114207492A (zh) | 2019-06-07 | 2022-03-18 | 迪吉伦斯公司 | 带透射光栅和反射光栅的波导及其生产方法 |
| CN114341729A (zh) | 2019-07-29 | 2022-04-12 | 迪吉伦斯公司 | 用于使像素化显示器的图像分辨率和视场倍增的方法和设备 |
| KR102775783B1 (ko) | 2019-08-29 | 2025-02-28 | 디지렌즈 인코포레이티드. | 진공 격자 및 이의 제조 방법 |
| WO2022140763A1 (en) | 2020-12-21 | 2022-06-30 | Digilens Inc. | Eye glow suppression in waveguide based displays |
| WO2022150841A1 (en) | 2021-01-07 | 2022-07-14 | Digilens Inc. | Grating structures for color waveguides |
| JP2024508926A (ja) | 2021-03-05 | 2024-02-28 | ディジレンズ インコーポレイテッド | 真空周期的構造体および製造の方法 |
| ES2927494B2 (es) * | 2021-12-22 | 2023-07-20 | Univ Madrid Politecnica | Aparato para medir la susceptibilidad magnética de muestras minerales |
| CN114779351A (zh) * | 2022-05-10 | 2022-07-22 | 包头市英思特稀磁新材料股份有限公司 | 磁组件成品检验治具及磁组件成品生产线 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4537861A (en) * | 1983-02-03 | 1985-08-27 | Elings Virgil B | Apparatus and method for homogeneous immunoassay |
| GB2207510A (en) * | 1987-07-21 | 1989-02-01 | Manchester Lasers | Magnetic sensor |
| US6046585A (en) * | 1997-11-21 | 2000-04-04 | Quantum Design, Inc. | Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3195043A (en) * | 1961-05-19 | 1965-07-13 | Westinghouse Electric Corp | Hall effect proximity transducer |
| DE1498531C3 (de) * | 1963-11-27 | 1973-11-29 | Varian Mat Gmbh, 2800 Bremen | Vorrichtung zur Bestimmung der Massenzahl aus der im Spalt des Trenn magneten eines Massenspektrometers herrschenden Feldstarke |
| US4037150A (en) * | 1973-05-30 | 1977-07-19 | Sergei Glebovich Taranov | Method of and apparatus for eliminating the effect of non-equipotentiality voltage on the hall voltage |
| US4518919A (en) * | 1981-01-16 | 1985-05-21 | Tokyo Shibaura Denki Kabushiki Kaisha | Detecting device for detecting a magnetic strip embedded in a sheet |
| AT373174B (de) * | 1982-06-23 | 1983-12-27 | Voest Alpine Ag | Vorrichtung zum zufuehren von blechtafeln zu einer biegemaschine |
| GB8408529D0 (en) | 1984-04-03 | 1984-05-16 | Health Lab Service Board | Concentration of biological particles |
| EP0167196B1 (de) * | 1984-07-05 | 1988-09-07 | De La Rue Giori S.A. | Verfahren zum Verarbeiten von Wertscheinbahnen oder Wertscheinbogen zu Wertscheinbündeln |
| JPS6390765A (ja) | 1986-10-03 | 1988-04-21 | Nippon Telegr & Teleph Corp <Ntt> | Squid免疫測定法 |
| JPH0619469B2 (ja) | 1988-04-13 | 1994-03-16 | 大和製衡株式会社 | 金属等の異物混入検出器 |
| US4913863A (en) | 1989-01-30 | 1990-04-03 | Hoechst Celanese Corporation | Split extrusion die assembly for thermoplastic materials and methods of using the same |
| US5001424A (en) | 1989-02-03 | 1991-03-19 | Product Resources, Inc. | Apparatus for measuring magnetic particles suspended in a fluid based on fluctuations in an induced voltage |
| TW199858B (enExample) | 1990-03-30 | 1993-02-11 | Fujirebio Kk | |
| DE4022739A1 (de) * | 1990-07-17 | 1992-01-23 | Gao Ges Automation Org | Vorrichtung zur pruefung von mit magnetischen eigenschaften ausgestatteten messobjekten |
| IL100866A (en) * | 1991-02-06 | 1995-10-31 | Igen Inc | Method and apparatus for magnetic microparticulate based luminescence assay including plurality of magnets |
| FR2679660B1 (fr) | 1991-07-22 | 1993-11-12 | Pasteur Diagnostics | Procede et dispositif magnetique d'analyse immunologique sur phase solide. |
| US5445970A (en) | 1992-03-20 | 1995-08-29 | Abbott Laboratories | Magnetically assisted binding assays using magnetically labeled binding members |
| US5445971A (en) | 1992-03-20 | 1995-08-29 | Abbott Laboratories | Magnetically assisted binding assays using magnetically labeled binding members |
| AU686604B2 (en) | 1993-05-17 | 1998-02-12 | Fujirebio Inc. | Method and apparatus for performing an indirect agglutination immunoassay |
| US5486457A (en) | 1993-08-25 | 1996-01-23 | Children's Medical Center Corporation | Method and system for measurement of mechanical properties of molecules and cells |
| JPH07210833A (ja) * | 1994-01-11 | 1995-08-11 | Murata Mfg Co Ltd | 磁気センサ装置 |
| US5656429A (en) | 1994-10-03 | 1997-08-12 | Adelman; Lonnie W. | Polynucleotide and protein analysis method using magnetizable moieties |
| CN2207510Y (zh) * | 1994-11-11 | 1995-09-13 | 钱淑俊 | 多功能探照灯装置 |
| JP4024964B2 (ja) * | 1998-07-28 | 2007-12-19 | キヤノン電子株式会社 | 磁気インク検知用磁気センサー、その信号処理方法、及び磁気インク検知装置 |
-
2001
- 2001-02-16 US US09/785,403 patent/US6518747B2/en not_active Expired - Lifetime
-
2002
- 2002-02-12 CN CNB028003187A patent/CN1300598C/zh not_active Expired - Fee Related
- 2002-02-12 AT AT02719038T patent/ATE339696T1/de not_active IP Right Cessation
- 2002-02-12 JP JP2002566677A patent/JP2004519666A/ja active Pending
- 2002-02-12 DE DE60214674T patent/DE60214674T2/de not_active Expired - Lifetime
- 2002-02-12 EP EP02719038A patent/EP1360515B1/en not_active Expired - Lifetime
- 2002-02-12 WO PCT/US2002/005116 patent/WO2002067004A1/en not_active Ceased
- 2002-02-12 CA CA002438423A patent/CA2438423C/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4537861A (en) * | 1983-02-03 | 1985-08-27 | Elings Virgil B | Apparatus and method for homogeneous immunoassay |
| GB2207510A (en) * | 1987-07-21 | 1989-02-01 | Manchester Lasers | Magnetic sensor |
| US6046585A (en) * | 1997-11-21 | 2000-04-04 | Quantum Design, Inc. | Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005111597A1 (ja) * | 2004-05-17 | 2005-11-24 | The Circle For The Promotion Of Science And Engineering | 磁性微粒子の検出装置 |
| WO2007105143A3 (en) * | 2006-03-15 | 2008-03-06 | Koninkl Philips Electronics Nv | Sensor device with alternating excitation fields |
| FR2922472A1 (fr) * | 2007-10-22 | 2009-04-24 | Snecma Sa | Dispositif et procede de detection,de localisation et de comptage de billes de grenaillage dans une piece mecanique creuse |
| WO2010076032A1 (en) | 2008-12-30 | 2010-07-08 | Microcoat Biotechnologie Gmbh | Device, instrument and process for detecting magnetically labeled analytes |
| EP2219033A1 (en) | 2008-12-30 | 2010-08-18 | MicroCoat Biotechnologie GmbH | Device, instrument and process for detecting magnetically labeled analytes |
| WO2018134609A1 (en) * | 2017-01-19 | 2018-07-26 | MIDS Medical Limited | Device and method for accurate measurement of magnetic particles in assay apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60214674D1 (de) | 2006-10-26 |
| CN1300598C (zh) | 2007-02-14 |
| EP1360515B1 (en) | 2006-09-13 |
| US20020135358A1 (en) | 2002-09-26 |
| US6518747B2 (en) | 2003-02-11 |
| HK1058550A1 (en) | 2004-05-21 |
| CA2438423A1 (en) | 2002-08-29 |
| ATE339696T1 (de) | 2006-10-15 |
| EP1360515A1 (en) | 2003-11-12 |
| WO2002067004B1 (en) | 2002-10-24 |
| CA2438423C (en) | 2009-09-15 |
| DE60214674T2 (de) | 2007-09-13 |
| CN1457434A (zh) | 2003-11-19 |
| JP2004519666A (ja) | 2004-07-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1360515B1 (en) | Method and apparatus for detection and measurement of accumulations of magnetic particles | |
| EP1036328B1 (en) | Method and apparatus for making quantitave measurements of localized accumulations of magnetic particles | |
| US6597176B2 (en) | Method and apparatus for making measurements of patterns of magnetic particles in lateral flow membranes and microfluidic systems | |
| Baselt et al. | Biosensor based on force microscope technology | |
| US20090224755A1 (en) | Means and method for sensing a magnetic stray field in biosensors | |
| US20090072815A1 (en) | Calibration of a magnetic sensor device | |
| CN101454683A (zh) | 具有自适应场补偿的传感器设备 | |
| EP1685418A2 (en) | On-chip magnetic particle sensor with improved snr | |
| WO2005010543A1 (en) | On-chip magnetic sensor device with suppressed cross-talk | |
| CN101315429B (zh) | 目标物质检测套件和目标物质检测方法 | |
| KR101235845B1 (ko) | 자기저항센서를 이용한 검출시스템 및 이를 이용한 검출방법 | |
| HK1058550B (en) | Method and apparatus for detection and measurement of accumulations of magnetic particles |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 028003187 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| AK | Designated states |
Kind code of ref document: B1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: B1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| B | Later publication of amended claims | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2002719038 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2002566677 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2438423 Country of ref document: CA |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002719038 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2002719038 Country of ref document: EP |