JP4676361B2 - 磁気的免疫検査装置 - Google Patents

磁気的免疫検査装置 Download PDF

Info

Publication number
JP4676361B2
JP4676361B2 JP2006063776A JP2006063776A JP4676361B2 JP 4676361 B2 JP4676361 B2 JP 4676361B2 JP 2006063776 A JP2006063776 A JP 2006063776A JP 2006063776 A JP2006063776 A JP 2006063776A JP 4676361 B2 JP4676361 B2 JP 4676361B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetization
sample
magnetization direction
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006063776A
Other languages
English (en)
Other versions
JP2007240349A (ja
Inventor
塚本  晃
和夫 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006063776A priority Critical patent/JP4676361B2/ja
Priority to US11/699,375 priority patent/US20070212794A1/en
Priority to US11/715,916 priority patent/US8945469B2/en
Publication of JP2007240349A publication Critical patent/JP2007240349A/ja
Application granted granted Critical
Publication of JP4676361B2 publication Critical patent/JP4676361B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles

Description

本発明は磁性微粒子を用いた種々のタンパク質(免疫グロブリン、腫瘍マーカ、ホルモンなど)、病原菌、がん細胞、DNA、環境有害物質等の分析装置に関し、特に超電導量子干渉素子(SQUID:Superconducting QUantum Interference Device)を使用した磁気的免疫検査装置に関する。
近年、免疫反応によって種々の病原菌、がん細胞、DNA、環境有害物質等の検査対象を高感度に検出する要求が高まっており、そのための免疫検査装置の開発が盛んに行われている。免疫検査の一般的な方法として、検出対象とする抗原に選択的に結合する検出用抗体を蛍光酵素等の光学マーカで標識して、抗原−抗体の結合反応を光学マーカからの光信号を検出し、抗原の種類及び量を検出する光学的方法がある。しかし、光学的方法では、検出感度が十分ではなく、また、未結合の光学マーカを洗い流す工程(洗浄工程)が必要であった。
光学的方法を上回る検出感度を得るために、近年、磁気微粒子とSQUID磁気センサを用い、抗原抗体反応を検出する磁気的方法が提案されている。この磁気的方法では、磁気微粒子で磁気的に標識された抗体(以下、磁気マーカという)を、非常に高感度なSQUID磁気センサを用いて検出する。
磁気マーカを検出する方法については、
(1)磁化率の測定、
(2)磁気緩和の測定、および
(3)残留磁気の測定、
に基づく方法が提案されている。以下、(1)〜(3)について説明する。
(1)磁化率を測定する方法:
SQUID磁気センサの磁束検出方向と直角な方向から、磁気マーカを磁化させる直流磁界を印加し、SQUID磁気センサの磁束検出領域内を移動する磁気マーカより生じた磁界の変化を測定している(例えば、特許文献1)。あるいは、磁気マーカに対して交流磁界を印加し、その信号をSQUID磁気センサを用いて抗原抗体反応を検出している(例えば、特許文献2)。
(2)磁気緩和を測定する方法:
磁気マーカへの1mTのパルス磁界印加直後から1秒後までの磁気緩和を測定している。測定は未結合の磁気マーカが共存する溶液中で行なっており、結合した磁気マーカを検出している(例えば、非特許文献1、非特許文献2)。あるいは、液相及び固相中の被検体を磁気緩和測定により定量的に検出する方法、磁気緩和測定での検出のための化合物、並びに分析及び免疫マグネトグラフィーにおけるそれらの使用に関する報告がある(例えば、特許文献3)。
(3)残留磁気を測定する方法:
磁気微粒子のサイズが大きくなると、磁気微粒子の残留磁気は緩和しなくなる。SQUID磁気センサから離れた場所で磁気マーカに0.1T程度の磁界を印加し、磁気マーカに残留磁化を発生させる。この後に、試料を乗せた基板を移動し残留磁化をSQUID磁気センサで測定する(例えば、特許文献4、非特許文献4)。
一般的な免疫検査で行われているように、未結合の磁気マーカを除去するための洗浄工程の後に測定することもできるが、溶液中で未結合の磁気微粒子はブラウン運動によりランダムに運動するので、洗浄工程なしで測定することも可能である(例えば、非特許文献5)。この場合、検査時間短縮や装置の簡略化が可能などのメリットがある。
以下、抗原抗体反応を検出する磁気的方法に関する具体例を説明しておく(例えば、特許文献4)。
図1(a)−(e)は、抗原抗体反応を用いた従来技術の磁気的免疫検査方法の手順例として洗浄工程なしで残留磁気を測定する方法を模式的に説明する図である。
図1(a)に示すように、前処理として、まず試料容器1の底面1aに検出対象である抗原と結合する抗体2を固定する。以下これを固定抗体という。次に、壁面への非特異吸着を防止するためブロッキング剤3を入れ、容器内面をブロッキング剤3で覆う。このようにして得られた試料容器1に定量すべき物質が含まれた試料5を注入すると、試料に含まれる抗原6は、図1(b)に示すように、抗原抗体反応により固定抗体2と結合する。次に、試料容器に抗原6と結合する磁気マーカを含む溶液を注入すると、図1(c)に示すように、一部の磁気マーカ7aは固定抗体2に結合している抗原6aに抗原抗体反応によって結合する。また、一部の磁気マーカ7bは固定抗体2と結合していない溶液中の抗原6bと結合する。抗原に結合していない未結合の磁気マーカ7cと溶液中の抗原6bと結合した磁気マーカ7bは溶液中をブラウン運動によってランダムに動く。
この状態で、試料に外部磁場を、図1(d)に示す矢印の方向に印加すると、すべての磁気マーカは印加された磁場の方向に磁化される。図の矢印は磁化の方向を示す。残留磁気を有する磁性微粒子を含む磁気マーカを使用すると、磁場がなくなっても残留磁気が残る。
しかし、図1(e)に示すように印加磁場がなくなると、未結合の磁気マーカ7cと溶液中の抗原6bと結合した磁気マーカ7bは溶液中をブラウン運動によってランダムに動くため、磁化の方向もランダムになり、これらの磁気マーカからの磁気信号は相互に打ち消し、正味の磁気信号を発生しない。即ち、未結合の磁気マーカを洗浄によって除去する必要がない。一方、固定抗体2に結合している抗原6aと結合した磁気マーカ7aはブラウン運動を起こさないため、印加磁場がなくなっても、磁化された方向に残留磁気を保持しており、固定抗体2に結合している抗原6aの量に比例した磁気信号が発生する。固定抗体2に結合している抗原6aの量は、試料に含まれる抗原の量に依存するため、この磁気信号を高感度のSQUID磁気センサで検出することによって、調べたい抗原の量を測定できる。
光学マーカを用いた免疫検査では洗浄工程が必須であることを考慮すると、この洗浄工程が不要であるという特徴は、磁気マーカを用いた免疫検査における長所の1つである。
特開2001−33455号公報 特開2001−133458号公報 特表平10−513551号公報 特開2005―257425号公報 特表平11−508031号公報 Y. R. Chemla, et al.: Proc. National Acad. Sciences of U.S.A. 97, 14268 (2000) A. Haller, et al.: IEEE Trans. Appl. Supercond. 11, 1371 (2001) R. Kotitz, et al.: IEEE Trans. Appl. Supercond. 7, 3678(1997) K. Enpuku, et al.: IEEE Trans. Appl. Supercond. 13, 371 (2003)
磁気緩和あるいは残留磁気を測定する磁気的免疫検査の長所である洗浄工程なしでの分析を行うためには、未結合の磁気マーカが溶液中でブラウン運動することで、各磁気マーカの残留磁気の方向がランダムになる必要がある。この場合、未結合の磁気マーカ7cからの磁気信号は互いにうち消すため溶液全体からは磁気信号が検出されない(図1(e))。しかし、発明者らが行った実験の結果では、磁気シールド内部に残留する磁場により、その磁場の方向に未結合の磁気マーカが配向するため、溶液から未結合の磁気マーカの磁気信号が発生することがわかった。磁気シールドにより試料およびセンサの周辺に残留している磁場は低減されているが、完全にゼロ磁界を達成することは困難であった。
完全に磁場が遮蔽され、ブラウン運動が十分に起きている場合と残留磁場がある場合の磁気マーカの状態を図2(a),(b)に模式的に示す。完全に磁場が遮蔽された場合、図2(a)に示すように、ブラウン運動により各微粒子がランダムに運動するため、各磁気マーカの磁化は互いにうち消しマクロな磁気信号は発生しない。磁気マーカ11の近辺に表示されている矢印10はそれぞれの磁気マーカ11が保持している磁化の方向を示す。しかし、図2(b)に示すように残留磁場があると、その方向にバイアスがかかるため、完全にランダムにならない。残留磁場の大きさにより配向の度合いが異なるが、残留磁場の方向に揃う傾向がある。そのため、残留磁場の方向にマクロな磁気信号が発生する。固定された磁気マーカを測定したい場合、この未結合マーカからの磁気信号はバックグラウンド信号(ノイズ)となるため、S/N比の低下、最低検出量の増加(分解能の低下)となる。
密閉性の高い多重構造の磁気シールドを用いることで、必要なレベルまで残留磁界を低減できたとしても、装置コストの低減や試料交換などの操作性を考えると、なるべく簡易な磁気シールドの使用が望まれる。
そこで、本発明の目的は、磁気シールドで低減できずに残留した磁場の影響を容易に除去できる方法を提供し、未結合マーカからの信号の影響を十分に低減した高感度な磁気的免疫検査装置を提供することにある。
本発明者らは、固定抗体と結合した磁気マーカの磁化方向と未結合磁気マーカの磁化方向を互いに直交させることで、上記課題を解決できることを見いだした。
図3を参照して、SQUIDマグネトメータの下を磁性体試料が通過した場合に、SQUIDに検出される磁気信号波形を説明する。検出コイルのコイル面はx−y平面に配置されているものとし、磁性体試料はx−y平面と平行に検出コイルの真下をx方向に通過するものとする。図3では、検出コイルと磁性体試料との位置関係と磁性体試料の移動方向とをx−y平面図とx−z平面図とで示し、磁性体試料の磁化方向による検出コイルの磁気信号のx位置依存性を示す。(a),(b),(c)は、それぞれ、磁性体試料がx方向,y方向,z方向に磁化されている場合を示している。
磁性体試料がx方向に磁化されている場合、磁性体試料がSQUIDに近づくにつれて、磁性体試料から発生する磁束が下から上にSQUIDの検出コイル部分に鎖交し始めるため、SQUIDが磁束を検出し、SQUIDの出力信号が変化する。試料が検出コイルの丁度中心にくると、試料から出た磁束が下から上に検出コイルに鎖交するが、同時に試料に戻る同じ量の磁束が上から下に検出コイルを鎖交するためSQUIDの出力信号はゼロとなる。さらに、試料が移動しSQUIDから遠ざかると、磁性体試料からの磁束が上から下にSQUIDの検出コイル部分に鎖交するため、出力信号はマイナス方向に変化する。さらに遠ざかると信号は再びゼロとなる。この波形はセンサの直上のx位置を原点とすると、原点対称となっている。なお、磁気信号の極性は、磁化の極性、SQUID検出コイルの極性により変化するため、得られる波形が上下逆方向となる場合がある。
次に、磁性体試料がy方向に磁化されている場合、磁性体試料がSQUIDに近づくにつれて、磁性体試料から発生する磁束が一方からSQUIDに入った磁束がSQUIDの他方から出る形になり、この場合はSQUIDに鎖交する正味の磁気信号がないことになり、出力信号はつねにゼロである。
最後に、磁性体試料がz方向に磁化されている場合、磁性体試料がSQUIDに近づくにつれて、磁性体試料から発生する磁束が上から下にSQUIDに鎖交し始めるため、SQUIDが磁束を検出し、SQUIDの出力信号が変化する。試料が検出コイルの丁度真下にくると、下から上に磁束が検出コイルに鎖交するするためSQUIDの出力信号は逆方向に極大を示す。さらに、試料が移動しSQUIDから遠ざかると、再び磁束が上から下にSQUIDに鎖交するため、元の方向に出力信号が発生する。
上記(a)、(b)、(c)の各場合の磁気信号を見ると容易に分るように、(a)の場合は、検出コイルの中心点を境として磁気信号が原点対称中心となっている。したがって、信号が得られた後に、原点を境として、x方向に信号を区分して、それぞれの信号の差を取れば、原点の片側の信号の振幅が2倍となった信号が得られる。これに対して(c)の場合は、原点を通る縦軸に対して対称に変化する信号であるので、同様な処理をすると、信号はゼロとなる。一方、信号の和を取る処理をすれば、(a)の場合は、信号はゼロとなるのに対して、(c)の場合は2倍の振幅を持つものとなる。
したがって、計測したい信号がどちら磁化方向となっているかに応じて加算または減産の処理をすることにより、所望の信号を得ることができる。
したがって、測定すべき固定された磁気マーカを、xあるいはz方向に磁化し、ノイズとなる溶液中の未結合磁気マーカの磁化方向を固定された磁気マーカの磁化方向と直交するように制御すれば、得られる波形は対称性が異なる2つの波形、すなわち、固定されたマーカの波形と溶液中のマーカの波形の和となる。この測定波形から、対称性の違いを利用して固定されたマーカの波形を得ることは容易にできる。
溶液中の磁気マーカの磁化の方向を固定された磁気マーカの磁化方向と直交するように制御するためには、試料測定位置近傍の残留磁界のうち、固定された磁気マーカの磁化方向成分をゼロにすることで実現できる。また別の方法として、マーカの磁化方向と直交する方向に磁界を加え、溶液中の未結合磁気マーカの磁化の方向を固定された磁気マーカの磁化方向と直交するように制御することでも実現できる。特に、図3に示した例からわかるように、溶液中の未結合磁気マーカの磁化の方向をy方向に制御すれば、y方向に磁化した磁気マーカからの磁気信号はSQUIDによって検出されないので、信号分離を行う必要がない。さらに別の方法としては、シールド内の残留磁場の方向が固定された磁気マーカの磁化方向と直交する方向になるような構造の磁気シールドを使用することでも、溶液中の未結合磁気マーカの磁化の方向を固定された磁気マーカの磁化方向と直交する方向に配向できる。また、これらの方法は組み合わせて用いることも可能である。
図4は、SQUIDマグネトメータに代えて、1次微分平面型検出コイルを有するSQUIDグラジオメータを使用し、この上を磁性体試料が通過した場合に、SQUIDに検出される信号波形を示す。図4では、x−z平面図は省略した。図4でも、検出コイルのコイル面はx−y平面に配置されているものとし、磁性体試料はx−y平面と平行に検出コイルの直下をx方向に通過するものとする。検出コイルに垂直な方向をz、試料の移動方向をx、xとzに垂直な方向をyとする。図4(a)、(b)、(c)は、それぞれ、図3(a)、(b)、(c)と同様、磁性体試料がx,y,z方向に磁化されている場合を示している。検出コイルの微分方向はx方向であり、図の検出コイルの実線部分と点線部分は検出コイルの極性が逆であることを示している。磁性体試料がx方向、y方向、z方向に磁化されている場合のSQUIDに検出される信号波形は、図3とは異なり、縦軸対称、ゼロ、原点対称となる。図3に示したマグネトメータの場合と同様に、x方向に磁化した試料と、z方向に磁化した試料によるSQUIDに検出される信号波形は対称性が異なるため、容易に分離することができる。やはり、y方向に磁化した試料からの磁気信号はそもそも検出されないので、分離する必要がない。
したがって、マグネトメータの場合と同様に、溶液中の磁気マーカの磁化の方向を固定された磁気マーカの磁化方向と直交するように制御するために、試料測定位置近傍の残留磁界のうち、固定された磁気マーカの磁化方向成分をゼロにすることで実現できる。あるいは別の方法として、磁気マーカの磁化方向と直交する方向に磁界を加え、溶液中の未結合磁気マーカの磁化の方向を固定された磁気マーカの磁化方向と直交するように制御することでも実現できる。さらに別の方法としては、シールド内の残留磁場の方向が固定された磁気マーカの磁化方向と直交する方向になるような構造の磁気シールドを使用することでも、溶液中の未結合磁気マーカの磁化の方向を固定された磁気マーカの磁化方向と直交する方向に配向できる。また、これらの方法は組み合わせて用いることも可能である。
さらに高次のグラジオメータや検出コイルの形状や構成が異なる場合であっても、試料の磁化方向により、対称性の異なる信号波形が得られれば、本発明の方法で目的の信号波形を得ることができる。
全方向の直流磁界を磁気シールドによりゼロにすることは、困難であるが、本発明のように一方向の磁場を制御することは容易に実現可能である。例えば、SQUID磁気センサ近傍に補正用コイルを設け、補正用コイルに流す直流電流を調整することで測定位置近傍に残留する磁場の一方向成分をキャンセルすることができる。また、溶液中の固定されていない磁気マーカの磁化の方向を、固定された磁気マーカの磁化方向と垂直になるように制御することも比較的容易に実現できる。例えば、永久磁石あるいはコイルを配置し、磁界を印加することで溶液中の固定されていない磁気マーカの磁化の方向を制御可能である。また、シールド内の残留磁場の方向を制御することも容易に実現できる。例えば、円筒型の磁気シールドの場合、円筒の中心軸方向のシールド率が中心軸方向に垂直な方向よりも低いため、円筒型の磁気シールドの中心部では中心軸方向の磁界を残すことができる。
さらに上記方法を組み合わせて、本発明の試料測定位置近傍に残留する直流磁場を測定対象の磁気微粒子の磁化方向と垂直な方向に制御することが可能である。
本発明によれば、残留磁界により溶液状態の磁気マーカから磁気信号が発生する場合でも、容易に固定された磁気マーカとの信号分離が可能となるため、溶液状態の磁気マーカから磁気信号の影響を除去し、高感度な免疫検査が可能となる。また、本発明により、高感度な免疫検査を実現するために必要であった、多重の密閉性の良い磁気シールドが不要となり、装置コストの低減、操作性の向上が可能となる。
(実施例1)
以下の説明では、残留磁気信号を有する磁気微粒子で標識された抗体(磁気マーカ)を使用し、1次微分の平面型SQUIDグラジオメータで検査試薬と反応した試料からの磁気信号を検出する磁気的免疫検査装置を例に、本発明の実施例を説明する。以下の開示は、本発明の一実施例にすぎず、本発明の技術範囲を何ら限定するものではない。
図5は本発明の実施例1の免疫検査装置の構成を示す断面図である。環境磁気雑音のSQUIDへの入力を低減するために、SQUIDを冷却するための冷却容器(外槽21、断熱真空層22および内槽23よりなる)は電磁シールド19および磁気シールド30、31によって囲まれている。電磁シールド19はアルミニウムなど電気抵抗が低い金属材料で構成されており、磁気シールド30、31は、パーマロイ等の高透磁率材料から構成されている。磁気シールド30の一部には試料容器71を挿入するための切欠き穴38が形成されている。
試料容器71は非磁性の円盤型試料台32に、固定ネジ33により回転軸35に固定されている。図6に試料容器71の一例の平面図を示す。容器は樹脂などの非磁性材料で作製されている。容器71は円形で、外周部に12カ所の円錐台の形状の窪み部分70があり、中央には装置に固定するための穴72が開いている。窪み部分の底面の直径は5mmである。
試料容器の窪み部分70に磁気マーカを含む試料14が入れられている。試料台32は回転機構34に接続された回転軸35によって回転する。回転機構34は、移動ステージ36、37上で3次元方向に移動可能に保持されている。移動ステージ36、37上での回転機構35の移動により、試料容器71の一部が切り欠き穴31を通って、磁気シールド30の内部へ移動され、窪み部分70の底面とサファイヤウインドウ29が近接するように位置調整される。試料容器の窪み部分70は、図1で説明したように、底面に検出対象である抗原と結合する抗体2が固定され、周りの壁面がブロッキング剤3で覆われている。
試料14とSQUID28の検出コイルとの距離を小さくし、試料から発生する磁気信号の検出感度及び空間分解能を高くするために、サファイヤウインドウ29の下部にSQUID28の検出コイルが配置されている。試料容器71が回転することで、複数の試料14が順次、SQUID28の検出コイルの上を通過し、そのときの磁気信号が計測される。サファイヤウインドウ29は非磁性の円筒部品17に固定されており、上下方向に位置合わせが可能である。この円筒部品17に残留磁場補正のための補正用コイル16が巻かれており、このコイルに電流を流すことでSQUIDの検出コイルに対して垂直方向の補正磁場を印加できる。補正用コイル16の中心軸はSQUIDの検出コイルの中心を通る。ここでは、単純な構造のソレノイドコイルを使用したが、より均一な磁場分布が得られるヘルムホルツコイルやその他の形状のコイルを使用することもできる。すなわち、SQUID上の試料検出位置の磁界を補正できれば本発明の効果を得ることができる。
SQUID28は冷却容器の断熱真空層22に配置され、熱伝導率の高い銅ロッド26及びサファイアロッド13を介して液体窒素24により間接的に冷却されている。冷却容器の外槽21、内槽23は、SUSやFRP等の非磁性材料で構成される。SQUID28と銅ロッド26との間にサファイアロッド13を介することにより、銅ロッド26から発生する磁気雑音の影響を低減する効果がある。
実施例1の免疫検査装置ではSQUID28として、高温超電導SQUIDグラジオメータを使用した。図7は高温超電導SQUIDグラジオメータの構成を模式的に示す平面図である。検出コイル62及びSQUIDリング64は、SrTiOやMgO等の単結晶を結晶方位をずらしてバイクリスタル接合面61で張り合わされた構造のバイクリスタル基板60上に形成されたYBaCu等の高温超電導材料を加工することで作製した。SQUIDリング64は、バイクリスタル基板60に形成されたバイクリスタル接合面61を横切っており、バイクリスタル接合面61上に形成された超電導薄膜に粒界ジョセフソン結合65が形成されている。その結果、SQUIDリング64には2カ所の粒界ジョセフソン結合65が形成される。今回使用したSQUIDでは、1枚の基板上に同じ検出コイルと結合した2つのSQUIDリング64,64’が形成されており、そのうち特性が良い方のSQUIDを使用した。
検出コイル62は、一辺が5mmの2つのループを持つ8の字型の微分コイルを構成しており、検出コイル62に磁束が入力すると、2つのループの各ループに生じる誘導電流の差分量が検出コイルの中央部分66を経由してSQUIDリング64、64’に流れる。この電流が磁束として検出される。フィードバックコイル67,67’は、検出コイル62のうち片方のループを囲むように基板60上にパターニングされ形成されている。2つのフィードバックコイル67,67’の内、片方を使用した。配線の接続が必要なところには超電導薄膜の上に、金の配線パッド63,63’および68,68’がパターニングされている。配線パッド63はSQUIDリング64と電気接続されており、配線パッド68はフィードバックコイル67と電気接続されている。
試料容器は図7(a)の矢印方向69に沿って、SQUIDの上を通過する。なお試料は容器底面に対して垂直方向に磁化されており、この磁化方向は検出コイル面に垂直な方向である。したがって、固定された磁気マーカからの磁気信号とSQUIDの関係、および得られる磁気信号波形は図4(c)に対応する。
実施例1では、総IgE(免疫グロブリンE)の検出を行った。図8に使用した検査プロトコルを示す。まず、ステップ81で非磁性反応容器71の窪み部分70の底面に1次抗体(抗IgE抗体)を固定させた。実施例1では、固定抗体を反応容器に直接固定した場合について述べるが、ポリマービーズやセルロース糸など数ミクロン以上のサイズがあり測定中に大きく動かない固体に固定抗体を結合させ、それらを非磁性反応容器71の窪み部分70に入れることでも同様な測定を行うことができる。
抗体を固定した後、ステップ82でBSA(ウシ血清アルブミン)を用いてブロッキング処理を行った。洗浄後、ステップ83でIgEを含むテスト試料を入れ、固定された抗IgE抗体とIgEの反応を行った。テスト試料には100pgのIgEを含む50μlのPBS(りん酸緩衝生理食塩水)溶液を使用した。またリファレンスとしてIgEを含まない50μlのPBS溶液もリファレンス試料として使用した。30分後、ステップ84で、その上から磁気マーカを入れ、IgEと磁気マーカの反応を行った。実施例1では、ポリマーでコーティングされた直径25nmのFe(マグネタイト)微粒子の表面に抗IgE抗体が結合された構造の磁気マーカを使用した。さらに、30分後、ステップ85で、反応容器底面を永久磁石(ネオジウム磁石、直径30mm、表面磁束密度400mT)に1分間乗せ、図3、図4で説明したz方向の磁化を行った。磁化後の試料容器を測定装置に装着し、ステップ86で、試料から発生する磁気信号を計測した。ここで、各ステップにおける条件は、各ステップの脇に付記した。
図9に(a)IgEを100pg含む試料から得られた磁気信号波形と(b)IgEを含まないレファレンス試料から得られた磁気信号波形を示す。ゼロ磁場環境ではブラウン運動により正味の磁気信号が発生しないはずのリファレンス試料からも磁気信号が発生しており、磁気シールドでは遮蔽しきれない磁場が測定試料位置近傍に残っていることを示している。2つの波形の変化量はほぼ等しく、0.2mΦの差しかなかった。レファレンス試料のばらつきが1mΦ以上あったため、このデータでは100pgのIgEを検出することは困難であった。
図10に、補償コイル16に電流を流して測定した場合のレファレンス試料の磁気信号波形を示す。補償コイル16の電流の増加に伴い、徐々に波形が左右対称に近づく。コイルに200μAの電流を流した時に、左右対称な波形が得られた。さらに補償コイル16の電流を増加させると、レファレンス試料の磁気信号波形の左右対称からのずれは軸を中心に反転したものとなった。
補償コイル16の電流が200μAのときの磁気信号波形は図4に示す(a)の磁気信号波形であることから、補償コイル16によりz方向の磁場がキャンセルされたことがわかる。この時、補償コイルにより試料近傍に印加された磁場は約50nTであった。
本発明の補償コイル16により印加する磁界は地磁気よりも弱い。このため、補償コイル16の磁場により固定された磁気マーカの磁気微粒子内部の磁化の方向は変化しない。一方、溶液中の磁気マーカの磁気微粒子内部の磁化の方向はやはり変化しないが、溶液中の磁気マーカは磁気マーカ全体が磁場に合わせて回転するため、本発明の効果が得られる。
図11(a)、(b)に、補償コイル16に200μAの電流を流した状態で測定した(a)IgEを100pg含む試料から得られた磁気信号波形と(b)IgEを含まないレファレンス試料から得られた磁気信号波形を示す。この状態では、0.9mΦの差が得られた。次に、補償コイル16の効果により溶液中の磁気マーカの磁気信号波形が左右対称であるため、対称な信号成分を除去し非対称成分たけを抽出することを試みた。
図11(a)、(b)の波形から反応容器中心位置に対して左右対称な成分を除去した波形を図12(a)、(b)に示す。この処理は、先に、図3、図4に関して説明した減算処理によって実施できる。図12(a)から分るように、IgEを100pg含む試料では振幅5mΦの明瞭な信号が得られているのに対して、図12(b)のように、レファレンス試料では最大振幅が1.3mΦの不明瞭な波形となっており、溶液中の未結合磁気マーカの影響をほぼ除去できている。このように、実施例1では、補正コイル16の効果を事前に評価して、適切な電流で使用することで、溶液中の未結合磁気マーカに含まれる微少量の固定された磁気マーカを測定することができた。
(実施例2)
実施例2では、残留磁気信号を有する磁気微粒子で標識された抗体を使用し、1次微分の平面型SQUIDグラジオメータで検査試薬と反応した試料からの磁気信号を検出する磁気的免疫検査装置を例に説明する。
図13は実施例2の免疫検査装置の構成を示す断面図である。図5に示した実施例1で使用した装置の補正用コイル16の代わりに、永久磁石18と磁石の位置調整機構20を取り付けた。この永久磁石18により測定位置に固定された磁気マーカの磁化方向(z方向)と垂直方向の磁界を印加できる。その他の構成は、実施例1と同じである。
この装置を使用し、実施例1と同じ試料を測定した。試料の作製方法は実施例1と同じである。なお、試料測定位置に印加される磁場としては、1nTから100μT程度であり、最適な磁場は磁気マーカの特性や残留している磁界の大きさに依存する。したがって、実施例1と同様に、磁場の強度を異にする永久磁石によって磁気信号波形を評価し、最適な磁場強度を持つ永久磁石とすることが必要である。なお、ここでは、永久磁石の中では比較的弱いゴム磁石を使用したが、もちろん電磁石を使用することも可能である。
実施例2で印加する磁界は地磁気よりも弱い。このため、永久磁石18の磁場により固定された磁気マーカの磁気微粒子内部の磁化の方向は変化しない。一方、溶液中の磁気マーカの磁気微粒子内部の磁化の方向はやはり変化しないが、溶液中の磁気マーカは磁気マーカ全体が回転するため、印加磁界の方向に配向し、本発明の効果が得られる。
図14(a)に、IgEを100pg含む試料から得られた磁気信号波形を、(b)にIgEを含まないレファレンス試料から得られた磁気信号波形を示す。レファレンス試料の磁気信号の変化量は、図9(b)のレファレンス試料の波形に比べ、1/10となっている。これは、永久磁石18によるy方向の磁界により、溶液中の磁気マーカがy方向に配向したため、SQUID28の検出コイルに検出される磁気信号であるxおよびz方向に配向した磁気マーカが減少したためと考えられる。その結果、図14(a)、(b)に示すようにIgEを100pg含む試料とレファレンス試料を明瞭に区別できており、本発明の効果を確認できた。
(実施例3)
実施例3では、残留磁気信号を有する磁気微粒子で標識された抗体を使用し、1次微分の平面型SQUIDグラジオメータで検査試薬と反応した試料からの磁気信号を検出する磁気的免疫検査装置を説明する。
図15に使用した装置の模式図を示す。長さ1m、内径40cmの円筒型磁気シールド43と、長さ90cm,内径30cmの円筒型磁気シールド44からなる2重の円筒磁気シールドを使用した。シールド材43,44には厚さ2mmのパーマロイを使用した。試料容器45は8×12配列の96穴非磁性反応容器を使用した。測定位置が磁気シールドの中心となるように、試料容器45は試料容器ホルダー47に支持されており、試料容器45は3軸移動機構48により任意の試料が測定位置に移動可能である。SQUID41は、図7で示した構造のグラジオメータを使用した。
SQUID41はパルス菅冷凍機49により、サファイアロッド50を介して冷却されている。低温部分は真空断熱容器42の中に納められ、SQUIDは65−80Kの範囲で±0.1Kの変動幅で温度制御可能な構造となっている。グラジオメータの検出コイルの長手方向と試料容器ホルダー47のx軸方向が一致するように配置した。試料容器45には、抗体を固定し、試料46は、目的の物質と結合した磁気マーカと未結合の磁気マーカなどを含む溶液試料であり、あらかじめ磁化した後に試料容器45に封入した。
試料容器45全体を移動させることで、96穴の各試料をSQUID上の測定位置に対してx方向に移動させ、その時の磁気信号変化を測定した。1列(12試料)の測定時間は0.1秒から数秒であるが、試料をSQUID上で往復させることで複数回の測定を行い、加算平均を求めた。列の1つ(12試料)の測定がおわると、試料容器45全体をy方向に列の1つの幅だけ移動させ、移動後の列について同様に測定することができる。
図16にIgEを100pg含む試料から得られた磁気信号波形(実線)とIgEを含まないリファレンス試料から得られた磁気信号波形(点線)を示す。IgEを100pg含む試料は約6mΦ0の磁気信号の変動を検出できている。レファレンス試料に比べ約4倍の変動幅が得られた。これは、円筒型磁気シールド内に残留するy方向の磁界により、溶液中の磁気マーカがy方向に配向したため、SQUIDに検出される磁気信号である、xおよびz方向に配向した磁気マーカが減少したためと考えられる。
説明した各実施例では、アレルギーに関連した抗体の一種であるIgEの検出に付いて述べたが、本発明はIgEだけでなく、一般の免疫検査装置が対象とする物質、例えば各種のホルモン、サイトカイン、腫瘍マーカなどの生体物質の検査やダイオキシンなど環境有害物質などの検査にも適用できることはいうまでもない。また、ここで説明した実施例では、固定抗体を使用したサンドイッチ法を例に説明したが、一般的な免疫検査において用いられている、競合法、ブリッジ法などにも適用できる。また、磁気マーカの種類に関してもマグネタイト以外の磁性体を使用した場合でも本発明の効果は有効である。また、磁気センサとしては、高温超伝導SQUID以外に、低温超伝導体(例えばNbやMgBなど)のSQUIDや光ポンピング磁束計、誘導コイル、フラックスゲート磁束計、プロトン磁束計などの高感度な磁気センサを使用した場合でも、本発明の効果は有効である。
従来技術の磁気的免疫検査方法の手順例を示す図である。 完全に磁場が遮蔽された場合と残留磁場がある場合の磁気マーカの状態を説明する図である。 マグネトメータを使用した場合の試料の磁化方向と検出される磁気信号波形の関係を説明する図である。 1次微分平面型グラジオメータを使用した場合の試料の磁化方向と検出される磁気信号波形の関係を説明する図である。 実施例1で使用した本発明の補正用コイルを有する免疫検査装置の構成例を示す図である。 実施例1で使用した試料容器の模式図を示す図である。 本発明の実施例で使用した高温超電導SQUIDグラジオメータの構造を説明する図である。 実施例で使用した検査プロトコルを示す図である。 補正用コイルに電流を流さずに測定した、(a)IgEを100pg含む試料および(b)IgEを含まないリファレンス試料から得られた磁気信号波形を示す図である。 リファレンス試料の磁気信号波形の補正用コイル電流依存性を示す図である。 補正用コイルに200μAの電流を流して測定した、(a)IgEを100pg含む試料および(b)IgEを含まないリファレンス試料から得られた磁気信号波形を示す図である。 補正用コイルに200μAの電流を流して測定した磁気信号波形から左右対称な成分を除去した(a)はIgEを100pg含む試料、(b)はIgEを含まないレファレンス試料の波形を示す図である。 実施例2で使用した免疫検査装置の構成例を示す図である。 実施例2で得られた(a)IgEを100pg含む試料から得られた磁気信号波形と(b)IgEを含まないレファレンス試料から得られた磁気信号波形を示す図である。 実施例3で使用した免疫検査装置の構成例を示す図である。 実施例3で得られたIgEを100pg含む試料(実線)とIgEを含まないレファレンス試料(波線)の磁気信号波形を示す図である。
符号の説明
1…試料容器、1a…試料容器の底面、2…固定抗体、3…ブロッキング剤、5…試料、6…抗原、6a…固定抗体に結合している抗原、7…磁気マーカ、7a…固定抗体に結合している抗原に結合した磁気マーカ、7b…固定抗体と結合していない溶液中の抗原と結合した磁気マーカ、7c…未結合の磁気マーカ、10…磁気マーカ、11…磁気マーカの磁化方向を示す矢印、13…サファイアロッド、14…試料、16…補正用コイル、17…円筒部品、18…永久磁石、19…電磁シールド、20…磁石の位置調整機構、21…外槽、22…断熱真空層、23…内槽、24…液体窒素、25…銅の丸棒、26…銅ロッド、28…SQUID、30…磁気シールド、31…磁気シールド、32…試料台、33…固定ネジ、34…回転機構、35…回転軸、36…移動ステージ(垂直方向)、37…移動ステージ(水平方向)、38…切欠き穴、41…SQUID、42…真空断熱容器、43…円筒型磁気シールド、44…円筒型磁気シールド、45…試料容器、46…試料、47…試料容器ホルダー、48…3軸移動機構、49…パルス管冷凍機、50…サファイアロッド、60…バイクリスタル基板、61…バイクリスタル接合面、62…検出コイル、63…配線パッド、64…SQUIDリング、65…粒界ジョセフソン結合、66…検出コイルの中央部分、67…フィードバックコイル、68…配線パッド(フィードバックコイル用)、70…窪み部分、71…試料容器、72…固定するための穴。

Claims (20)

  1. 検出すべき抗原と結合する抗体が一面に固定された非磁性の反応容器と、
    該反応容器を移動させる機構と、
    前記反応容器内に、前記検出すべき抗原に結合する磁気微粒子で標識された抗体が含まれた溶液状態の試料を注入したときの前記試料からの磁気信号を測定するための磁気センサと、
    該磁気センサの周辺に作用する磁気雑音を遮蔽するための磁気シールドと、
    前記非磁性の反応容器に固定された抗体と結合した前記試料の抗原に結合している前記試料の抗体を標識している磁気微粒子による第1の磁化の総和の磁化方向と、前記非磁性の反応容器に固定された抗体と結合していない前記試料の抗原に結合している前記試料の抗体を標識している磁気微粒子および前記試料の抗体を標識しているのみの磁気微粒子による第2の磁化の総和の磁化方向を直交させる機構と、
    前記磁気センサの信号を処理する手段と、
    を有することを特徴とする磁気的免疫検査装置。
  2. 前記磁気センサが超伝導量子干渉素子によるものである請求項1に記載の磁気的免疫検査装置。
  3. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を作用させるものである請求項1に記載の磁気的免疫検査装置。
  4. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を作用させるものである請求項2に記載の磁気的免疫検査装置。
  5. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に平行方向の磁場を作用させるものである請求項1に記載の磁気的免疫検査装置。
  6. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に平行方向の磁場を作用させるものである請求項2に記載の磁気的免疫検査装置。
  7. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を遮るための磁気シールドである請求項1に記載の磁気的免疫検査装置。
  8. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を遮るための磁気シールドである請求項2に記載の磁気的免疫検査装置。
  9. 前記磁気シールドが両側面が開口した筒型の磁性材で構成されている請求項7に記載の磁気的免疫検査装置。
  10. 前記磁気シールドが両側面が開口した筒型の磁性材で構成されている請求項8に記載の磁気的免疫検査装置。
  11. 検出すべき抗原と結合する抗体が一面に固定された非磁性の反応容器と、
    該反応容器を移動させる機構と、
    前記反応容器内に、前記検出すべき抗原に結合する磁気微粒子で標識された抗体が含まれた溶液状態の試料を注入したときの前記試料からの磁気信号を測定するための磁気センサと、
    該磁気センサの周辺に作用する磁気雑音を遮蔽するための磁気シールドと、
    前記非磁性の反応容器に固定された抗体と結合した前記試料の抗原に結合している前記試料の抗体を標識している磁気微粒子による第1の磁化の総和の磁化方向と、前記非磁性の反応容器に固定された抗体と結合していない前記試料の抗原に結合している前記試料の抗体を標識している磁気微粒子および前記試料の抗体を標識しているのみの磁気微粒子による第2の磁化の総和の磁化方向を直交させる機構と、
    前記磁気センサの信号を処理する手段と、
    を有する磁気的免疫検査装置において、
    前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構は、第2の磁化の総和の磁化の強度を計測の事前に評価して設定されるものであることを特徴とする磁気的免疫検査装置。
  12. 前記磁気センサが超伝導量子干渉素子によるものである請求項11に記載の磁気的免疫検査装置。
  13. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を作用させるものである請求項11に記載の磁気的免疫検査装置。
  14. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を作用させるものである請求項12に記載の磁気的免疫検査装置。
  15. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に平行方向の磁場を作用させるものである請求項11に記載の磁気的免疫検査装置。
  16. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に平行方向の磁場を作用させるものである請求項12に記載の磁気的免疫検査装置。
  17. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を遮るための磁気シールドである請求項11に記載の磁気的免疫検査装置。
  18. 前記第1の磁化の総和の磁化方向と、第2の磁化の総和の磁化方向を直交させる機構が、前記磁気センサの磁気を検出するためのコイルの面に垂直方向の磁場を遮るための磁気シールドである請求項12に記載の磁気的免疫検査装置。
  19. 前記磁気シールドが両側面が開口した筒型の磁性材で構成されている請求項17に記載の磁気的免疫検査装置。
  20. 前記磁気シールドが両側面が開口した筒型の磁性材で構成されている請求項18に記載の磁気的免疫検査装置。
JP2006063776A 2006-03-09 2006-03-09 磁気的免疫検査装置 Expired - Fee Related JP4676361B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006063776A JP4676361B2 (ja) 2006-03-09 2006-03-09 磁気的免疫検査装置
US11/699,375 US20070212794A1 (en) 2006-03-09 2007-01-30 Magnetic immunoassay system
US11/715,916 US8945469B2 (en) 2006-03-09 2007-03-09 Magnetic immunoassay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063776A JP4676361B2 (ja) 2006-03-09 2006-03-09 磁気的免疫検査装置

Publications (2)

Publication Number Publication Date
JP2007240349A JP2007240349A (ja) 2007-09-20
JP4676361B2 true JP4676361B2 (ja) 2011-04-27

Family

ID=38479433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063776A Expired - Fee Related JP4676361B2 (ja) 2006-03-09 2006-03-09 磁気的免疫検査装置

Country Status (2)

Country Link
US (2) US20070212794A1 (ja)
JP (1) JP4676361B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007881A (ja) * 2008-06-24 2010-01-14 Fuji Electric Systems Co Ltd 冷凍装置及び荷電粒子線装置
WO2010098884A1 (en) 2009-02-26 2010-09-02 Jian-Ping Wang High magnetic moment particle detection
JP4883424B2 (ja) * 2009-12-17 2012-02-22 学校法人金沢工業大学 微小磁気二次元分布検出装置
WO2012012596A2 (en) * 2010-07-22 2012-01-26 University Of Houston System Force-induced magnetization contrast for diagnosis and imaging
KR101157997B1 (ko) * 2010-08-19 2012-06-25 주식회사 엘지생명과학 자기저항센서를 이용한 검출시스템
US10060915B2 (en) 2012-03-31 2018-08-28 Nvigen, Inc. Multifunctional nanoparticles for molecular and cellular separation, detection and quantification
US20140322137A1 (en) * 2013-04-25 2014-10-30 Edward R. Flynn Detection Of Targeted Biological Substances Using Magnetic Relaxation Of Individual Nanoparticles
TWM474138U (zh) * 2013-06-18 2014-03-11 磁量生技股份有限公司 一種檢測阿茲海默症的系統
JP6258076B2 (ja) 2014-02-28 2018-01-10 株式会社日立製作所 磁気信号測定装置及び磁気信号測定方法
DE102015225849A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Verfahren zum Nachweis von Partikeln in einer Probe, Nachweisvorrichtung und mikrofluidisches System zum Untersuchen einer Probe
US20200003772A1 (en) 2017-02-21 2020-01-02 Medicortex Finland Oy Non-invasive brain injury diagnostic device
JP7079408B2 (ja) * 2018-02-28 2022-06-02 株式会社Jvcケンウッド 分析ユニット及び分析方法
SE1950159A1 (en) * 2019-02-11 2020-08-12 Alexei Kalaboukhov Measurement system for magnetic samples
JP7312352B2 (ja) * 2019-03-27 2023-07-21 学校法人東北学院 磁界測定装置及び磁界測定方法
WO2023079962A1 (ja) * 2021-11-04 2023-05-11 株式会社日立ハイテク 免疫分析方法および免疫分析装置
WO2023204135A1 (ja) * 2022-04-19 2023-10-26 Tdk株式会社 磁気検出システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033455A (ja) * 1999-07-21 2001-02-09 Sumitomo Electric Ind Ltd 磁性体標識による免疫検査方法とその装置
JP2001515585A (ja) * 1996-04-18 2001-09-18 インスティトゥート ヒュアー ダイアグノスティックフォルシュング ゲーエムベーハー アン ディア フライエン ウニフェルズィテート ベルリン 分析物の最高感度磁気検出装置
JP2001524675A (ja) * 1997-11-21 2001-12-04 クォンタム デザイン,インク. 磁気粒子の局部的蓄積を定量的に測定する方法及び装置
JP2004337478A (ja) * 2003-05-19 2004-12-02 Hitachi Ltd 磁場計測装置
JP2005257425A (ja) * 2004-03-11 2005-09-22 Hitachi Ltd 免疫検査装置及び免疫検査方法
JP2005283156A (ja) * 2004-03-26 2005-10-13 Kyushu Inoac:Kk 磁気的免疫反応測定のための試験容器およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145784A (en) * 1988-05-04 1992-09-08 Cambridge Biotech Corporation Double capture assay method employing a capillary flow device
US5311125A (en) * 1992-03-18 1994-05-10 Lake Shore Cryotronics, Inc. Magnetic property characterization system employing a single sensing coil arrangement to measure AC susceptibility and DC moment of a sample
US6437563B1 (en) * 1997-11-21 2002-08-20 Quantum Design, Inc. Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes
US6518747B2 (en) * 2001-02-16 2003-02-11 Quantum Design, Inc. Method and apparatus for quantitative determination of accumulations of magnetic particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515585A (ja) * 1996-04-18 2001-09-18 インスティトゥート ヒュアー ダイアグノスティックフォルシュング ゲーエムベーハー アン ディア フライエン ウニフェルズィテート ベルリン 分析物の最高感度磁気検出装置
JP2001524675A (ja) * 1997-11-21 2001-12-04 クォンタム デザイン,インク. 磁気粒子の局部的蓄積を定量的に測定する方法及び装置
JP2001033455A (ja) * 1999-07-21 2001-02-09 Sumitomo Electric Ind Ltd 磁性体標識による免疫検査方法とその装置
JP2004337478A (ja) * 2003-05-19 2004-12-02 Hitachi Ltd 磁場計測装置
JP2005257425A (ja) * 2004-03-11 2005-09-22 Hitachi Ltd 免疫検査装置及び免疫検査方法
JP2005283156A (ja) * 2004-03-26 2005-10-13 Kyushu Inoac:Kk 磁気的免疫反応測定のための試験容器およびその製造方法

Also Published As

Publication number Publication date
JP2007240349A (ja) 2007-09-20
US20070254375A1 (en) 2007-11-01
US20070212794A1 (en) 2007-09-13
US8945469B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
JP4676361B2 (ja) 磁気的免疫検査装置
KR100305102B1 (ko) 물질의고감도자기감지를위한기기장치
Ripka Magnetic sensors and magnetometers
JP5205807B2 (ja) 磁気信号計測装置
JP4171139B2 (ja) 磁性体標識による免疫検査方法とその装置
US9964501B2 (en) Nuclear magnetic resonance apparatus and methods
US10197564B2 (en) Nuclear magnetic resonance apparatus and methods
CN102428381A (zh) 使用磁阻传感器对样品进行信号检测的系统及其检测方法
JP5279340B2 (ja) 標的物質検出キットおよび標的物質検出方法
Chiu et al. Multi-channel SQUID-based ultra-high-sensitivity in-vitro detections for bio-markers of Alzheimer's disease via immunomagnetic reduction
Tsukamoto et al. Development of multisample biological immunoassay system using HTSSQUID and magnetic nanoparticles
US9817094B2 (en) Nuclear magnetic resonance apparatus and methods
JP5189825B2 (ja) 磁気信号計測装置および磁気信号計測方法
US10094897B2 (en) Nuclear magnetic resonance apparatus and methods
JP5159193B2 (ja) 磁気検出素子及び検出方法
US20160025825A1 (en) Nuclear magnetic resonance apparatus and methods
KR20110021429A (ko) 자기저항센서를 이용한 검체의 신호검출 시스템 및 이를 이용한 검출방법
Sakai et al. Compact rotating-sample magnetometer for relaxation phenomenon measurement using HTS-SQUID
Li et al. Magnetism of iron oxide nanoparticles and magnetic biodetection
JP2003207511A (ja) 磁性体微粒子標識検体の検出方法及びその装置
Saari Development of A Highly Sensitive AC/DC Magnetometer utilizing High-Tc SQUID for Characterization of Magnetic Mixture Materials
Balakrishnan Structural and magnetic properties of polymer coated iron based nanoparticles for biomedical applications
JP2012211813A (ja) 超低磁場におけるsquid検出核磁気共鳴装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees