WO2002065628A1 - Dispositif de production de puissance et dispositif d'entrainement, vehicule sur lequel lesdits dispositifs sont montes, et procedes de commande, supports de stockage et programmes desdits dispositifs - Google Patents

Dispositif de production de puissance et dispositif d'entrainement, vehicule sur lequel lesdits dispositifs sont montes, et procedes de commande, supports de stockage et programmes desdits dispositifs Download PDF

Info

Publication number
WO2002065628A1
WO2002065628A1 PCT/JP2001/008751 JP0108751W WO02065628A1 WO 2002065628 A1 WO2002065628 A1 WO 2002065628A1 JP 0108751 W JP0108751 W JP 0108751W WO 02065628 A1 WO02065628 A1 WO 02065628A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power
power supply
switching
motor
Prior art date
Application number
PCT/JP2001/008751
Other languages
English (en)
French (fr)
Inventor
Makoto Nakamura
Eiji Sato
Ryoji Oki
Masayuki Komatsu
Sumikazu Shamoto
Kazunari Moriya
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Kabushiki Kaisha Toyota Chuo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP01974686A priority Critical patent/EP1286459B1/en
Priority to DE60113832T priority patent/DE60113832T2/de
Priority to JP2002564826A priority patent/JP3732828B2/ja
Priority to US10/239,889 priority patent/US7120037B2/en
Priority to KR10-2002-7013657A priority patent/KR100486321B1/ko
Publication of WO2002065628A1 publication Critical patent/WO2002065628A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power output device, a vehicle equipped with the same, a method of controlling the power output device, and a storage medium, and a program.
  • the present invention relates to a power output device capable of outputting power by rotating a motor, a vehicle equipped with the power output device, a control method and a storage medium for a power output device, a program, a drive device capable of driving a load, and a drive device capable of driving a load.
  • the present invention relates to a vehicle to be mounted, a control method of a drive device, a storage medium, and a program. Background art
  • Conventional power output devices include a capacitor connected to the positive and negative buses of the inverter circuit that supplies three-phase AC power to the motor, a positive or negative bus of the inverter circuit, and the neutral of the motor.
  • a device having a DC power supply connected to a point has been proposed (for example, Japanese Patent Application Laid-Open No. H10-337704 / Japanese Patent Application Laid-Open No. H11-178114).
  • the circuit consisting of the coils of each phase of the motor and the switching elements of each phase of the inverter circuit functions as a step-up chopper circuit that boosts the voltage of the DC power supply and stores the charge in the capacitor, and also stores the stored capacitor.
  • the drive control of the motor and the power storage control of the capacitor are simultaneously performed by the switching operation of the switching element of the inverter circuit performed when applying the three-phase alternating current to the motor.
  • such a power output device may not be able to drive a motor with a desired output. This is because when the temperature of the DC power supply is at room temperature, its performance can be fully exhibited.However, when the temperature of the DC power supply is low, such as when starting the motor, the chemical reaction speed inside the DC power supply is slow. This is based on the fact that the internal resistance of the DC power supply increases, and battery performance may not be fully exhibited. In addition, since the output of the DC power supply decreases even when the temperature is high, it is preferable to control the temperature of the DC power supply to be within an appropriate range in order to sufficiently exhibit its performance. In order to stably perform the step-up operation of the power conversion section functioning as a step-up chopper circuit, it is preferable to control the temperature of the section to an appropriate state.
  • a device in which the step-up operation of the circuit consisting of the coils of each phase of the motor and the switching element of the inverter circuit is replaced with the DC / DC converter that is, the DC voltage from the DC power supply is converted to the DC / DC converter.
  • 'A power output device that converts the DC power from DC to DC and stores it in the capacitor, converts the DC power from the stored capacitor into three-phase AC power by switching the switching element of the inverter circuit, and supplies it to the motor.
  • the temperature of the DC power supply in the drive unit which converts the DC voltage from the DC power supply into a DC / DC converter and converts it to DC / DC and stores it in a capacitor, and supplies DC power from the stored capacitor to electrical equipment (load). The same applies to the temperature of the D CZD C Compa 'overnight.
  • Another object of the power output device of the present invention is to quickly heat a power supply at a low temperature to sufficiently exhibit the performance of the device. Further, it is an object of the power output device of the present invention to suppress the temperature rise of the power conversion unit and sufficiently exhibit its performance. It is another object of the present invention to provide a vehicle equipped with the power output device of the present invention, in which the temperature inside the power output device is controlled to a more appropriate state and the performance of the vehicle is fully exhibited.
  • the storage medium and the program of the present invention are intended to cause a computer to function as a control device that manages the temperature of a power supply and a power conversion unit in a more appropriate state.
  • the storage medium and the program of the present invention are intended to allow a computer to function as a control device that manages a power supply and a temperature of a DC / DC comparator in a more appropriate state. Disclosure of the invention
  • a first power output device includes: a motor that is driven to rotate by polyphase alternating current; an inverter circuit that can supply polyphase alternating current power to the motor by switching a plurality of switching elements; and an inverter circuit.
  • a first power supply connected to the positive bus and the negative bus of the motor; and a second power source connected to one of the positive bus and the negative bus of the inverter circuit and a neutral point of the motor.
  • a temperature of a power conversion unit that includes a coil of the electric motor and the switching element, and that can convert power from the second power supply and supply the power to the first power supply, or a power supply of the second power supply.
  • the present invention further comprises a temperature adjusting means for switching-controlling the switching element of the inverter circuit to adjust the temperature based on the temperature.
  • the temperature adjusting means performs switching control of the switching element of the inverter circuit to adjust the temperature based on the temperature of the power converter or the temperature of the second power supply.
  • the temperature of the power conversion unit and the temperature of the second power supply can be managed in a more appropriate state with a simple configuration, and the performance of the device can be sufficiently exhibited.
  • the “first power source” and the “second power source” include those that can be charged and discharged, and the “motor” also includes those that function as generator motors that can generate power.
  • the “second power source” is a power source having a larger capacity than the “first power source”.
  • the “first power source”, “second power source”, and “motor” include the above contents unless otherwise specified.
  • a second power output device includes: a motor rotatably driven by a polyphase AC; an inverter circuit capable of supplying polyphase AC power to the motor by switching a plurality of switching elements; and the inverter circuit.
  • a first power supply connected to one of the positive and negative buses and a neutral point of the electric motor, and the other bus different from the one bus of the inverter circuit.
  • the neutral point of the motor A second power supply connected to the motor, a coil of the electric motor, and the switching element.
  • the power supply converts the power from the second power supply and supplies the power to the first power supply.
  • the present invention further comprises a temperature adjusting means for controlling the switching element of the circuit circuit for controlling the temperature based on the temperature of the second power supply.
  • the same effect as the first power output device can be obtained.
  • the first power supply is a power storage device that can be charged by using power from the second power supply
  • the temperature adjustment means includes: It may be a means for adjusting the storage voltage of the power storage device by the switching control based on the temperature of the conversion unit or the temperature of the second power supply.
  • the temperature adjusting means may be configured to control a storage voltage of the power storage device normally.
  • the storage voltage of the power storage device is normally set. It may be a means for controlling the switching so as to lower the pressure. Further, in the first or second power output device according to the aspect of the present invention having a power storage device, when the temperature of the power conversion unit is equal to or higher than a third threshold, the temperature of the power storage device is increased. It may be a means for controlling the switching 1 by limiting the voltage. As described above, by adjusting the storage voltage of the power storage device based on the temperature of the power conversion unit and the temperature of the second power supply, the temperature of the power conversion unit and the temperature of the second power supply are managed in a more appropriate state. be able to.
  • the temperature adjusting means includes a switching frequency of a switching element of the inverter circuit based on a temperature of the power conversion means or a temperature of the second power supply. And means for performing switching control at the set switching frequency.
  • the temperature adjustment means may switch the switch of the inverter circuit.
  • the switching frequency of the switching element may be set lower than normal to perform switching control, and the temperature adjusting unit may be configured to perform the switching when the temperature of the second power supply is equal to or higher than a fifth threshold value.
  • the switching means may be a means for setting a switching frequency of a switching element of the above-mentioned overnight circuit higher than usual and performing switching control.
  • the temperature adjusting means includes a coil of the electric motor included in the power conversion unit.
  • the switching frequency of the switching element of the inverter circuit may be set higher than usual to perform switching control.
  • the switching frequency of the switching element of the inverter circuit is set lower than normal to perform switching control. It can also be.
  • the temperature of the power converter and the temperature of the second power supply are changed. Can be managed in a more appropriate state.
  • a third power output device includes: a motor that is driven to rotate by polyphase alternating current; an inverter circuit that can supply polyphase AC power to the motor by switching a plurality of switching elements; A first power supply connected to the positive and negative buses of the motor; and a second power supply connected to one of the positive and negative buses of the inverter circuit and the neutral point of the motor.
  • Temperature detecting means for detecting the temperature of the second power supply; and heating means for heating the second power supply when the detected temperature of the second power supply is equal to or lower than a predetermined threshold. That is the gist.
  • the heating means heats the second power supply when the temperature of the second power supply is equal to or lower than the predetermined threshold value. It can be heated up to its full capacity.
  • a fourth power output device includes: a motor that is driven to rotate by polyphase AC; an inverter circuit that can supply polyphase AC power to the motor by switching a plurality of switching elements; and an inverter circuit that Either the positive bus or the negative bus
  • a first power supply connected to one bus and a neutral point of the motor; a first power supply connected to another bus different from the one bus of the inverter circuit and a neutral point of the motor;
  • the gist is to provide
  • the same effects as those of the third power output device can be obtained.
  • the gist of the first vehicle of the present invention is to mount the first, second, third, and fourth power output devices of the present invention in each of the above aspects. Thereby, the temperature in the device can be more appropriately managed, and a vehicle exhibiting sufficient performance can be provided.
  • a first method of controlling a power output device includes: a motor that is rotationally driven by a polyphase AC; an inverter circuit that can supply polyphase AC power to the motor by switching a plurality of switching elements; A first power supply connected to the positive bus and the negative bus of the inverter circuit; and a bus connected to one of the positive bus and the negative bus of the inverter circuit and a neutral point of the motor.
  • a power output device comprising: a second power supply, comprising: a coil of the electric motor and the switching element; converting the power from the second power supply to the first power supply;
  • the switching control of the switching element of the inverter circuit is performed so as to adjust the temperature based on the temperature of the power supply unit that can be supplied or the temperature of the second power supply.
  • the switching element of the inverter circuit is switched to control the temperature based on the temperature of the power conversion unit or the temperature of the second power supply.
  • the temperature of the power conversion unit and the temperature of the second power supply can be managed in a more appropriate state, and the performance of the device can be sufficiently exhibited.
  • a second method of controlling a power output device includes: a motor that is driven to rotate by polyphase alternating current; an inverter circuit that can supply multiphase AC power to the motor by switching a plurality of switching elements; A first power supply connected to one of the positive bus and the negative bus of the inverter circuit and a neutral point of the electric motor; and the other of the one bus different from the one bus of the inverter circuit. Bus and neutral of the motor And a second power supply connected to a power supply, the power supply including: a coil of the electric motor and the switching element; converting the power from the second power supply to the second power supply.
  • the switching control of the switching element of the inverter circuit is performed so as to adjust the temperature based on the temperature of the power converter that can be supplied to the first power supply or the temperature of the second power supply.
  • control method of the second power output device of the present invention the same effect as the control method of the first power output device can be obtained.
  • the control method of the first or second power output device of the present invention it is possible to charge using the power from the second power supply based on the temperature of the second power supply or the temperature of the power conversion unit.
  • the storage voltage of the first power supply as a power storage device may be adjusted by the switching control. In this way, by adjusting the storage voltage of the power storage device, the temperature of the power conversion unit and the temperature of the second power supply can be managed in a more appropriate state.
  • the switching frequency of the switching element of the inverter circuit is determined based on a temperature of the power converter or a temperature of the second power supply. It is also possible to set and perform switching control at the set switching frequency. With this configuration, by changing the setting of the switching frequency in the switching element of the inverter circuit, the temperature of the power conversion unit and the temperature of the second power supply can be managed in a more appropriate state.
  • a first storage medium includes: a motor that rotationally drives a computer with a polyphase alternating current; an inverter circuit that can supply polyphase alternating current power to the motor by switching a plurality of switching elements; A first power supply connected to the positive bus and the negative bus of the inverter circuit; and a bus connected to one of the positive bus and the negative bus of the inverter circuit and a neutral point of the motor.
  • a power output unit that includes a coil of the electric motor and the switching element, and that can convert power from the second power supply and supply the power to the first power supply.
  • a computer functioning as temperature adjusting means for performing switching control of a switching element of the inverter circuit so as to adjust the temperature based on the temperature of the second power supply or the temperature of the second power supply.
  • the computer is caused to function as temperature adjusting means for performing switching control of the switching element of the inverter circuit to adjust the temperature based on the temperature of the power converter or the temperature of the second power supply. Since the computer-readable program is stored, when installed in a power output device and executed, the temperature of the power converter and the temperature of the second power supply can be controlled to a more appropriate state with a simple configuration. And the performance of the device can be fully exhibited.
  • a second storage medium includes: a motor that rotationally drives a computer with a polyphase alternating current; an inverter circuit that can supply polyphase alternating current power to the motor by switching a plurality of switching elements; A first power supply connected to one of the positive bus and the negative bus of the inverter circuit and a neutral point of the electric motor; and the other of the one bus different from the one bus of the inverter circuit. And a second power supply connected to a neutral point of the motor and a second power supply connected to a neutral point of the motor.
  • the power output device includes a coil of the motor and the switching element, and converts power from the second power supply.
  • gist that stores a computer readable program to function as a node device.
  • the same effects as those of the first storage medium can be obtained.
  • an electric motor that rotationally drives a computer with a multi-phase alternating current, an inverter circuit that can supply multi-phase AC power to the electric motor by switching a plurality of switching elements, and A first power supply connected to the positive bus and the negative bus of the evening circuit; and a bus connected to one of the positive bus and the negative bus of the inverter overnight circuit and a neutral point of the motor.
  • a power conversion unit including a coil of the electric motor and the switching element, configured to convert power from the second power supply and supply the power to the first power supply in a power output device including a second power supply.
  • a computer which functions as temperature control means for controlling switching of the switching element of the inverter circuit based on the temperature or the temperature of the second power supply. And summarized in that a readable program.
  • the temperature control means for performing switching control of the switching element of the inverter circuit to adjust the temperature of the convenience store based on the temperature of the power conversion unit or the temperature of the second power supply.
  • an electric motor that rotationally drives a computer with a multi-phase alternating current
  • an inverter circuit that can supply multi-phase alternating current power to the electric motor by switching a plurality of switching elements
  • a first power supply connected to one of the positive bus and the negative bus of the evening circuit and the neutral point of the electric motor
  • a first power source connected to the other bus different from the one bus of the inverter overnight circuit.
  • the power output device includes a coil of the motor and the switching element, and converts power from the second power supply to the second power supply.
  • the driving device has an energy storage means capable of temporarily storing DC current as energy, and uses the energy stored in the energy storage means to switch an input DC voltage to a switching element.
  • a DC / C converter capable of DC / DC conversion and supply to a load by a DC / DC converter, a power supply capable of supplying DC power to the DC / DC converter, and a temperature of the power supply or the temperature of the DC / DC converter.
  • a temperature control means for controlling the switching of the switching element to adjust the temperature is provided.
  • the temperature control means controls the switching of the switching element to adjust the temperature of the corresponding member based on the temperature of the power supply or the temperature of the DC / DC converter.
  • the temperature of the power supply and the temperature of the DC / DC converter can be managed in a more appropriate state, and the performance of the equipment can be fully demonstrated. Wear.
  • the “power source” includes those that can be charged and discharged.
  • “power supply” includes the above contents unless otherwise specified.
  • the driving device further includes a power storage device capable of charging the power output from the DC / DC converter
  • the temperature control unit includes a temperature of the power supply or a temperature of the DC / DC converter. It may be a means for adjusting the storage voltage of the power storage device based on the switching control by switching control.
  • the temperature adjustment means switches the storage voltage of the power storage device to be higher than normal when the temperature of the power supply is equal to or lower than a first threshold value.
  • the temperature control unit may be a unit that performs switching control such that the storage voltage of the power storage device becomes lower than normal when the temperature of the power supply is equal to or higher than a second threshold value. Can also be used.
  • the temperature control unit restricts the storage voltage of the power storage device and performs switching. It may be a means for controlling. In this way, by adjusting the storage voltage of the power storage device, the temperature of the power supply and the temperature of the DC / DC converter can be managed in a more appropriate state.
  • the temperature adjusting means sets a switching frequency of the switching element based on a temperature of the power supply or a temperature of the DC / DC converter, and the set switching frequency. It is also possible to use a means for performing switching control in. In the driving device according to the aspect of the present invention, when the temperature of the power supply is equal to or lower than a fourth threshold value, the temperature adjusting means sets the switching frequency lower than normal and performs switching control.
  • the temperature adjusting means may be means for setting the switching frequency higher than usual and performing switching control when the temperature of the power supply is equal to or higher than a fifth threshold value.
  • the temperature adjustment unit is configured such that the temperature of the switching element is equal to or higher than a sixth threshold value.
  • the switching frequency may be set lower than usual to perform switching control, and the temperature adjustment unit may be used.
  • the temperature of the energy storage means is equal to or higher than a seventh threshold value
  • the switching frequency of the switching element may be set higher than usual to perform switching control.
  • the load is a motor that is rotationally driven by a polyphase AC, and converts the DC power converted by the DC / DC converter into polyphase AC power and supplies the converted power to the motor. It may be equipped with a possible circuit for overnight.
  • the second vehicle of the present invention is characterized in that a driving device in which a load is an electric motor that rotates and drives a load by a polyphase alternating current and the electric motor are mounted.
  • a driving device in which a load is an electric motor that rotates and drives a load by a polyphase alternating current and the electric motor are mounted.
  • a control method of a drive device includes an energy storage means capable of temporarily storing DC current as energy, and utilizes the energy storage means to convert an input DC voltage into a DC / DC voltage by switching a switching element.
  • a method for controlling a drive device comprising: a DCZC converter capable of DC conversion and supplying a DC power to a load; and a power supply capable of supplying DC power to the DCCZC converter at a time. The switching control of the switching element is performed to adjust the temperature based on the temperature of the DC / DC converter.
  • the switching element is switched to adjust the temperature of the corresponding member based on the temperature of the power supply or the temperature of the DC / DC converter.
  • the temperature of the power supply and the temperature of the DC ZDC converter can be managed in a more appropriate state, and the performance of the equipment can be fully exhibited.
  • the drive device includes a power storage device capable of charging the power output from the DC / DC converter based on the temperature of the power supply or the temperature of the switching element.
  • the storage voltage of the power storage device may be adjusted by switching control. By adjusting the storage voltage of the power storage device in this way, the temperature of the power supply and the DC / DC The temperature of the evening can be managed in a more appropriate state.
  • the switching frequency of the switching element is set based on the temperature of the power supply or the temperature of the DC / DC converter, and the switching control is performed at the set switching frequency. It can also be characterized. As described above, by adjusting the setting of the switching frequency in the switching element of the DC / DC converter, the temperature of the power supply and the temperature of the DC / DC converter can be managed in a more appropriate state.
  • a third storage medium according to the present invention includes a computer which has an energy storage means capable of temporarily storing DC current as energy, and which stores a DC voltage input using energy stored in the energy storage means.
  • a DC / DC converter capable of DC / DC conversion by switching of a switching element and supplying the DC / DC to a load; and a DC power supply capable of supplying DC power to the DC / DC converter at a time.
  • a computer-readable program that functions as temperature adjusting means for performing switching control of the switching element to adjust the temperature based on the temperature of the DC / DC converter is stored.
  • the computer-readable recording medium causes the computer to function as temperature control means for controlling the switching element of the inverter circuit to control the temperature based on the temperature of the power supply or the temperature of the DCZ DC converter. Since the available programs are stored, the power supply temperature and the DC / DC converter temperature can be managed in a more appropriate state with a simple configuration when installed and executed in the drive device, and the performance of the device is sufficient. Can be demonstrated.
  • a computer is provided with an energy storage means capable of temporarily storing DC current as energy, and having a DC voltage inputted by utilizing the energy stored in the energy storage means.
  • a DC / DC converter capable of DC / DC conversion by switching of a switching element and supplying the DC / DC to a load; and a power supply capable of supplying DC power to the DC / DC converter.
  • the gist of the present invention is a computer-readable program that functions as temperature control means for performing switching control of the switching element in order to control the temperature based on the temperature or the temperature of the DC / DC converter.
  • the third program of the present invention allows the convenience store to function as temperature control means for performing switching control of the switching element of the inverter circuit in order to control the temperature based on the temperature of the power supply or the temperature of the DC / DC converter.
  • the temperature of the power supply and the temperature of the DCZD C converter can be managed in a more appropriate state with a simple configuration, and the performance of the device can be fully demonstrated.
  • FIG. 1 is a configuration diagram schematically showing a configuration of a power output device 20 according to a first embodiment of the present invention.
  • Fig. 2 is a circuit diagram of the power output device 20 focusing on the u-phase of the three-phase coil of the motor 22.
  • FIG. 3 is a flowchart showing an example of a power supply temperature rise processing routine executed by the electronic control unit 40 of the power output device 20.
  • FIG. 4 is an explanatory diagram illustrating a waveform of the neutral point current during the heating operation.
  • FIG. 5 is a configuration diagram schematically showing the configuration of a power output device 20B according to a modification.
  • Fig. 6 shows the power output device 20 of the modified example focusing on the u-phase of the three-phase coil
  • FIG. 4 is a circuit diagram of B.
  • FIG. 7 is a flowchart showing an example of a circuit temperature adjustment processing routine executed by the electronic control unit 40.
  • FIG. 8 is a diagram showing a relationship between the reactor temperature T1 and the voltage upper limit Vlmax and a relationship between the transistor evening temperature Tt and the voltage upper limit Vtmax.
  • FIG. 9 is a flowchart illustrating an example of a circuit temperature adjustment processing routine executed by the electric control unit 40.
  • FIG. 10 is a diagram showing a relationship between the heat generation amount of the transistors T1 to T6, the heat generation amount of the coil of the motor 22 and the switching frequency.
  • FIG. 11 is a configuration diagram schematically showing the configuration of a power output device 120 of the second embodiment.
  • FIG. 12 is a flowchart illustrating an example of a power supply temperature increase processing routine executed by the electronic control unit 140 of the power output device 120 according to the second embodiment.
  • FIG. 13 is a flowchart showing an example of a routine executed by the electric control unit 140: a DC / DC converter overnight temperature adjustment processing routine.
  • FIG. 14 is a diagram showing the relationship between the reactor temperature T 12 and the voltage upper limit Vlmax 2 and the relationship between the transistor temperature T t 2 and the voltage upper limit V t max 2.
  • FIG. 15 is a flowchart showing an example of a DC / DC converter overnight temperature adjustment processing routine executed by the electronic control unit 140.
  • FIG. 16 is a diagram illustrating a relationship between the heat generation amount of the transistors T 7 and T 8, the heat generation amount of the reactor L, and the switching frequency.
  • FIG. 1 is a configuration diagram schematically showing the configuration of a power output device 20 according to a first embodiment of the present invention.
  • the power output device 20 according to the first embodiment includes a motor 22 that is driven to rotate by a three-phase AC, and a member circuit 2 that can convert DC power into three-phase AC power and supply the three-phase AC power to the motor 22. 4, the capacitor 30 connected to the positive bus 26 and the negative bus 28 of the inverter circuit 24, and the neutral point of the motor 22 and the negative bus 28 of the inverter circuit 24. It is provided with a connected DC power supply 32, a temperature sensor 50 for detecting the temperature of the DC power supply 32, and an electronic control unit 40 for controlling the entire apparatus.
  • the motor 22 is configured as, for example, a synchronous generator motor capable of generating electricity, comprising a rotor having a permanent magnet attached to its outer surface and a stay having a three-phase coil wound thereon.
  • the rotation shaft of the motor 22 is the output shaft of the power output device 20 of the first embodiment, and power is output from this rotation shaft. Further, since the motor 22 of the first embodiment is configured as a generator motor, power can be generated by the motor 22 by inputting power to the rotating shaft of the motor 22.
  • the rotating shaft of the motor 22 is directly or indirectly connected to the wheel axle. .
  • the inverter circuit 24 includes six transistors T1 to T6 and six diodes D1 to D6. Six transistors T 1 to T 6 Two pairs are arranged so that they are the source side and the sink side with respect to the positive bus 26 and the negative bus 28, respectively, and each of the three-phase coils (uvw) is connected to its connection point. Have been.
  • the capacitor 30 is configured to function as a DC power supply for rotating the motor 22. This function will be described in detail later.
  • the DC power source 32 is configured as, for example, a nickel-metal hydride or lithium ion secondary battery.
  • the DC power supply 32 is formed to have a larger storage capacity than the capacity of the capacitor 30 when the voltage is the same, for example.
  • the electronic control unit 40 is configured as a microprocessor centered on the CPU 42.
  • the ROM 44 stores processing programs, the RAM 46 temporarily stores data, and the input / output. Port (not shown).
  • the power supply temperature Tb from the temperature sensor 50 that detects the temperature of the DC power supply 32 and command values related to the operation of the motor 22 are input to the electronic control unit 40 via input ports. From the electronic control unit 40, a control signal for performing switching control of the transistors T1 to T6 of the inverter circuit 24 is output via an output port.
  • FIG. 2 is a circuit diagram of the power output device 20 focusing on the u-phase of the three-phase coil of the motor 22.
  • the u-phase transistor ⁇ 2 of the inverter circuit 24 is turned on. In this state, a short circuit indicated by a dashed arrow in the figure is formed, and the u-phase of the three-phase coil of the motor 22 is formed. Functions as a reactor.
  • the transistor # 2 is turned off from this state, the energy stored in the u-phase of the three-phase coil functioning as a reactor is stored in the capacitor 30 by the circuit indicated by the solid arrow in the figure. The voltage at this time can be higher than the supply voltage of the DC power supply 32.
  • the DC power supply 32 can be charged using the potential of the capacitor 30 in this circuit. Therefore, this circuit boosts and lowers the energy of the DC power supply 32 and stores the energy in the capacitor 30 while charging the DC power supply 32 using the potential of the capacitor 30. It can be regarded as a power circuit. Since the vw phase of the three-phase coil of the motor 22 can be regarded as a buck-boost chopper circuit like the u phase, the capacitor 30 is charged by turning on and off the transistors T2, T4, and T6, The DC power supply 32 can be charged using the stored charge.
  • the switching control of the transistors ⁇ 2, T4, and T6 of the inverter circuit 24 is performed.
  • the voltage between the terminals of the capacitor 30 can be adjusted by adjusting the current flowing through the reactor by performing the above operation.
  • pseudo three-phase alternating current may be supplied to the three-phase coil of the motor 22 by switching control of the transistors T1 to T6 of the inverter circuit 24. .
  • the motor 22 is driven to rotate by the AC component, and
  • the DC component can be stored in the capacitor 30. Therefore, the motor 22 can be driven while adjusting the voltage between the terminals of the capacitor 30 by the switching control of the transistors # 1 to # 6 of the inverter circuit 24.
  • the voltage between the terminals of the capacitor 30 is adjusted, for example, to be approximately twice the voltage between the terminals of the DC power supply 32.
  • FIG. 3 is a flowchart showing an example of a power supply temperature increase processing routine executed by the electronic control unit 40 of the power output device 20. This routine is repeatedly executed at predetermined time intervals.
  • the CPU 42 of the electronic control unit 40 first reads the power supply temperature Tb of the DC power supply 32 from the temperature sensor 50 (Step S100), and reads the read power supply temperature. It is determined whether or not Tb exceeds a predetermined threshold value Tblow (step S102).
  • the threshold value Tblow is a threshold value for determining whether or not the DC power supply 32 can output the rated output or the electric power necessary for driving the motor 22, and is determined by the specification of the power supply.
  • the determination as to whether or not required power can be output based on the power supply temperature Tb is based on the fact that when the power supply temperature Tb of the DC power supply 32 decreases, the internal resistance increases accordingly and the output can be output to the module 22.
  • Step S104 when it is determined that the power supply temperature Tb exceeds the threshold value Tblow, it is determined that the necessary power can be supplied to the motor 22 and the normal drive control of the motor 22 (normal Operation) (Step S104). Specifically, a torque command value is set based on the required output of the motor 22 and, based on this setting, switching control of the transistors T1 to T6 of the inverter circuit 24 is performed to perform the motor control. Drive 2 2 At this time, the switching frequency of the transistors 1 to 6, that is, the frequency of the carrier, is such that the torque ripple of the motor 22 is small and the loss due to the switching of the transistors T 1 to T 6 of the inverter circuit 24 is reduced. It is set to a frequency suitable for.
  • step S106 the neutral point current ripple flowing to the neutral point of the motor 22 is converted to the neutral point current ripple generated by the normal motor 22 drive control.
  • the increased neutral point current flows through the DC power supply 32, so that the DC power supply 32 can be heated quickly, and its performance can be fully exhibited. You can.
  • the voltage between the terminals of the capacitor 30 is set to the voltage between the terminals of the capacitor 30 during normal motor 22 drive control, for example, the voltage between the terminals that is approximately twice the voltage between the terminals of the DC power supply 32.
  • the carrier frequency is set low, and the switching control of the transistors T1 to T6 is performed based on these settings.
  • the neutral point current flowing in the neutral point of the motor 22 oscillates at the same frequency as the carrier wave, so that the carrier frequency is set lower and the transistors 1 to 6 are switched.
  • the latter causes the potential of the neutral point of the motor 22 to instantaneously increase the voltage between the terminals of the capacitor 30.
  • the DC power supply 32 can be quickly heated to a temperature at which sufficient power can be supplied while driving the motor 22.
  • the temperature of the DC power When the frequency is low, the frequency of the carrier is set low and the voltage between the terminals of the capacitor 30 is set high, and the switching control of the transistors T1 to T6 is performed based on these settings. A large amount of ripple current can flow, and the low-temperature DC power supply 32 can be quickly heated. As a result, the performance of the DC power supply 32 can be sufficiently exhibited.
  • the capacitor 30 is attached so as to connect the positive bus 26 and the negative bus 28 of the inverter circuit 24. As shown in the output device 20 #, a capacitor 30 # may be attached to connect the positive bus 26 of the inverter circuit 24 to the neutral point of the module 22.
  • a DC power supply having a voltage equal to the sum of the voltage between the terminals by the capacitor 30 ⁇ and the voltage between the terminals by the DC power supply 32 is connected to the positive electrode of the inverter circuit 24.
  • FIG. 6 is a circuit diagram of a power output device 20 # of a modified example focusing on the u-phase of the three-phase coil of the motor 22.
  • the transistor # 2 is turned on, a short circuit is formed as indicated by a broken arrow in the figure, and the XI phase of the three-phase coil of the motor 22 functions as a reactor.
  • the transistor # 2 is turned off from this state, the energy stored in the U-phase of the three-phase coil functioning as a reactor is stored in the capacitor 30 # by the circuit indicated by the solid line arrow in the figure.
  • the DC power supply 32 can be similarly charged using the electric charge of the capacitor 30.
  • this circuit can be regarded as a chopper circuit capable of storing the energy of DC power supply 32 in capacitor 30 # and charging DC power supply 32 using the potential of capacitor 30 #. Since the vw phase of the motor 22 can be regarded as a chopper circuit like the u phase, the capacitor 30 is charged by turning on and off the transistors 1 to 6 and the capacitor 30 is turned on and off. The DC power source 32 can be charged using the electric charge stored in the DC power supply. Since the potential difference caused by charging the capacitor 3OB varies depending on the amount of charge stored in the capacitor 30B, that is, the current flowing through the reactor, the switching control of the transistors T1 to T6 of the inverter circuit 24 is performed.
  • the voltage between the terminals of the capacitor 30 # can be adjusted.
  • a pseudo three-phase AC is supplied to the three-phase coil of the motor 22 by switching control of the transistors # 1 to # 6 of the inverter circuit 24. do it.
  • a DC component is added to the three-phase AC, that is, the potential of the negative-phase AC is offset to the positive side or the negative side and supplied to the motor 22, the motor 22 is driven to rotate by the AC component At the same time, DC power can be stored in capacitor 30 3.
  • the motor 22 can be driven while adjusting the voltage between the terminals of the capacitor 30 by the switching control of the transistors 6 to 6 of the inverter circuit 24.
  • the terminal voltage of the capacitor 30 # can be set in the power output device 20 # of the modification in the same manner as in the power output device 20 of the first embodiment, and is illustrated in FIG.
  • the temperature rise control processing routine can be performed. Note that the voltage between the terminals of the capacitor 30 ⁇ ⁇ is adjusted to be approximately the same as the voltage between the terminals of the DC power supply 32 during normal operation of the motor 22, and the DC power supply It will be set higher than the terminal voltage of 32.
  • the DC power supply 32 is attached so as to connect the negative bus 28 of the inverter circuit 24 to the neutral point of the motor 22.
  • the DC power supply 32 may be attached so that the positive bus 26 of the inverter circuit 24 and the neutral point of the motor 22 are connected.
  • a DC power supply 32 is attached so that the negative bus 28 of the inverter circuit 24 is connected to the neutral point of the motor 22, and the inverter circuit is connected.
  • a capacitor 30 mm was installed to connect the positive bus 26 of 24 and the neutral point of the motor 22, but the negative bus 28 of the circuit 24 and the motor 22 were connected.
  • a DC power supply 32 to connect the positive bus 26 of the circuit 24 and the neutral point of the module 22 to the neutral point. It does not matter.
  • the frequency of the carrier is set low and the voltage between the terminals of the capacitor 30 is increased.
  • the switching control of the transistors T1 to T6 is performed by setting, but it is also possible to perform only one of them. If the setting to increase the voltage between the terminals of the capacitors 30 and 30 ⁇ ⁇ is not performed, charging of nickel-metal hydride or lithium ion type secondary batteries instead of the capacitors 30 and 30 ⁇ is required.
  • a possible DC power supply may be attached.
  • the DC power supply 32 is heated by switching control of the transistors 1 to 6.
  • the DC power supply may be directly heated using any method, for example, heating.
  • the DC power supply 32 when the power supply temperature Tb of the DC power supply 32 is equal to or lower than the threshold Tblow, the DC power supply 32 is heated.
  • the temperature rise suppression operation for suppressing the temperature rise of the DC power supply 32 is performed. No problem.
  • the process of the temperature rise suppression operation is the reverse of the process of the heating operation in step S106 of the routine in FIG. 3, that is, the ripple of the neutral point current is shown in FIG.
  • the neutral point current with reduced ripple flows through the DC power source 32 to reduce the amount of heat generated by the internal resistance of the DC power source 32. Therefore, the temperature rise can be suppressed, and the performance of the DC power supply 32 can be sufficiently exhibited.
  • the terminal voltage of the capacitor 30 is set to be lower than the terminal voltage required during normal operation (for example, the voltage is lower than twice the terminal voltage of the DC power supply 32).
  • the carrier frequency is set higher than in normal operation, and the switching control of the transistors T1 to T6 is performed based on these settings.
  • the process of the temperature rise suppression operation may be performed by executing either one of the setting of the voltage between the terminals of the capacitor 30 and the setting of the frequency of the carrier wave.
  • the power output device 20 of the first embodiment and the power output device 20 In these modified examples, the process of heating the DC power supply 32 and the process of suppressing the temperature rise are performed in accordance with the power supply temperature Tb of the DC power supply 32, but the motor functioning as a buck-boost reactor is performed.
  • the temperature of a step-up / step-down circuit composed of 22 phase coils and an inverter circuit 24 functioning as a switch for step-up / step-down driving, and transistors T1 to T6 of the inverter circuit 24, for example, each phase coil and transistor of the motor 22
  • the switching control of the transistors # 1 to # 6 of the inverter circuit 24 may be performed according to the temperatures of # 6 to # 6.
  • FIG. 7 is a flowchart showing an example of a circuit temperature adjustment processing routine executed by the electronic control unit 40. This routine is repeatedly executed at predetermined time intervals.
  • the CPU 42 of the electronic control unit 40 first detects the temperature of each phase coil of the motor 22 detected by the temperature sensor 52 (reactor temperature ⁇ 1) and the temperature sensor 54.
  • the temperature (transistor temperature T t) of the detected transistors ⁇ 1 to ⁇ 6 of the inverter circuit 24 is read (step S 110), and the capacitor 30 based on the read reactor temperature T 1 and transistor temperature T t is read.
  • the upper limit value Vmax of the terminal voltage is set (step S112), and the transistors T1 to T6 of the inverter circuit 24 are switched within a range where the terminal voltage of the capacitor 30 does not exceed the set upper limit value Vmax. Control (step S114) and end this routine.
  • the upper limit value Vmax of the voltage between the terminals of the capacitor 30 is set according to the relationship between the reactor temperature T1 and the upper limit value Vlmax of the voltage between the terminals of the capacitor 30 and the relationship between the transistor temperature Tt and the voltage between the terminals of the capacitor 30.
  • the relationship with the upper limit value Vt max is obtained in advance by experiments or the like and stored in the ROM 44 as a map.
  • the upper limit value VI max, Vt max is derived, and the smaller of these values is derived as the upper limit value Vmax of the voltage between terminals of the capacitor 30.
  • Figure 8 shows the relationship between the reactor temperature ⁇ 1 and the upper limit value Vlmax of the terminal voltage of the capacitor 30 and the transistor temperature T t and the upper limit value Vt max of the terminal voltage of the capacitor 30. 4 shows a map showing the relationship with the map.
  • the motor 22 By limiting the voltage between the terminals of the capacitor 30 according to the temperature of each phase coil of the motor 22 and the transistors T1 to T6 of the inverter circuit 24, the motor 22 Each phase coil and transistors ⁇ ⁇ ⁇ ⁇ ⁇ 1 to ⁇ 6 can be protected from overheating, and their stable operation can be ensured.
  • the upper limit value of the voltage between the terminals of the capacitor 30 is determined based on the reactor temperature ⁇ 1 of each phase coil of the motor 22 and the transistor temperature T t of the transistor ⁇ :! To ⁇ 6.
  • Vmax is set, the upper limit value Vmax of the voltage between the terminals of the capacitor 30 may be set based on one of the reactor temperature T1 and the transistor temperature Tt.
  • the voltage between the terminals of the capacitor 30 is limited to protect the coils of each phase of the motor 22 and the transistors T1 to T6 from overheating, but the transistors ⁇ 1 to ⁇ By adjusting the switching frequency of 6, it is also possible to protect each phase coil and transistors ⁇ 1 to ⁇ 6 of motor 22 from overheating.
  • Fig. 9 shows the circuit temperature executed by the electronic control unit 40. It is a flowchart which shows an example of an adjustment processing routine.
  • the CPU 42 of the electronic control unit 40 first reads the reactor temperature ⁇ 1 and the transistor temperature Tt detected by the temperature sensors 52, 54 (step S 12 0), based on the read reactor temperature T 1 and the transistor temperature T t, set the switching frequency (carrier frequency) of the transistors T 1 to T 6 (step S 122) and set Switching control is performed on the transistors # 1 to # 6 at the changed switching frequency (step S124), and this routine ends.
  • the setting of the switching frequency of the transistors 1 to 6 is performed in this modified example.
  • the switching frequency is set to be higher than the switching frequency set in the normal operation, and the switching frequency is set lower than the switching frequency set in the normal operation when the transistor temperature T t exceeds the threshold value T t hi.
  • FIG. 10 shows the relationship between the switching frequency, the heat value of each phase coil of the motor 22 and the heat value of the transistors T1 to T6. As shown in Fig. 10, the higher the switching frequency, the lower the heat generation of each phase coil, and the lower the switching frequency.
  • the switching frequency is increased, and the transistors ⁇ 1 to ⁇
  • the part that functions as a buck-boost chopper circuit can be protected from overheating and its stable operation can be ensured.
  • the temperature adjustment process of the DC power source 32 and the temperature adjustment process of each phase coil and the transistors # 1 to # 6 of the motor 22 are performed.
  • Various forms of storage media such as a storage medium storing a computer-readable program for causing a computer to function as a control system, for example, a CD-R II or a DVD-ROMs flexible disk are also possible.
  • the program according to the embodiment of the present invention is installed in the electronic control system and the program is executed, thereby achieving the effects of the present invention.
  • FIG. 11 is a configuration diagram schematically showing the configuration of a power output device 120 of the second embodiment.
  • the power output device 120 of the second embodiment includes a coil driver circuit 24 of each phase of the motor 22 in the power output device 20 of the first embodiment.
  • a DC / DC converter 148 that performs buck-boost operation is provided. It has the same configuration as the power output device 20 of the first embodiment.
  • the power output device 12 ⁇ of the second embodiment is capable of rotating the motor 122 by three-phase AC and converting the DC power into three-phase AC power and supplying it to the motor 122.
  • a capacitor 130 connected to the positive bus, 1 26 and negative bus 1 28 of the inverter circuit 1 2 4 and the inverter circuit 1 2 4 and a chargeable / dischargeable DC power supply 1 32
  • a DC / DC converter 148 that can boost the DC voltage from the DC power supply 132 and supply it to the capacitor 130; a temperature sensor 150 that detects the temperature of the DC power supply 132;
  • An electronic control unit 140 for controlling the entire apparatus is provided.
  • the configuration of the power output device 120 of the second embodiment corresponds to the power output device 20 of the first embodiment. The configuration is denoted by a reference numeral with 100 added, and the detailed description thereof is omitted.
  • the DC / DC converter 148 is composed of two transistors T7 and T8 arranged so as to be on the source side and the sink side with respect to the positive bus 126 and the negative bus 128 of the inverter circuit 124, respectively. It includes two diodes D7, D8 connected in anti-parallel to the transistors T7, T8, respectively, and a reactor L connected to a connection point M between the transistors T7, T8.
  • the electronic control unit 140 outputs a control signal for performing switching control on the transistors T 7 and T 8 of the DC / DC converter 148.
  • FIG. 12 is a flowchart illustrating an example of a power supply temperature increase processing routine executed by the electronic control unit 140 of the power output device 120 according to the second embodiment. This routine is repeatedly executed at predetermined time intervals.
  • the CPU 12 of the electronic control unit 140 first reads the battery temperature Tb2 of the DC power supply 132 (step S200), and sets the read power supply temperature Tb2 to the threshold Tblow2. Is determined (step S202). If the power supply temperature Tb exceeds the threshold value Tblow2 as a result of the determination, the DC power supply 132 determines that sufficient power can be supplied to the motor 122, and the setting is performed when the normal motor 122 is driven.
  • the DC / DC converter 148 is drive-controlled (normal operation processing) using the voltage between the terminals of the capacitor 130 and the switching frequency of the transistors T7 and T8 (step S204), and the power supply temperature Tb becomes a threshold.
  • step S206 End this routine.
  • This heating operation is a process of making the ripple of the current flowing through the reactor L larger than the ripple generated by the normal operation in step S204, and this increased current ripple flows to the DC power supply 132. As a result, heat generation in the internal resistance of the DC power supply 132 is promoted, and the DC power supply 132 can be quickly heated, and its performance can be fully exhibited.
  • capacitor 1 The voltage between the terminals of 30 is set higher than the voltage between the terminals of the capacitor 130 required for normal operation of the motor 1 2 2 and the transistor T 7 of the DC / DC converter 1 48
  • the switching frequency (carrier frequency) of T8 is set lower than usual, and the drive of DC / DC converter 148 is controlled based on these settings. This is because the potential at the connection point M between the transistors T7 and T8 fluctuates within the range of the voltage between the terminals of the capacitor 130 and at the same frequency as the switching frequency of the transistors T7 and T8. This is based on the fact that the higher the voltage between the terminals of 130 and the lower the switching frequency of the transistors T7 and T8, the larger the current ripple flowing through the DC power supply 132.
  • the terminal voltage of the capacitor 130 is set to be higher than that during normal operation.
  • the switching frequency (carrier frequency) of the transistors T7 and T8 is set low, and the drive control of the DC / DC converter 148 is performed based on these settings.
  • a relatively large ripple current can flow, and the DC power supply 132 can be quickly heated. Therefore, the same effect as that of the power output device 20 of the first embodiment can be obtained.
  • the heating operation for heating the DC power supply 1 32 is performed.
  • the power supply temperature Tb of the DC power supply 132 is equal to or higher than the threshold Tbhi2
  • the DC power supply 1 32 It is also possible to perform a temperature rise suppression operation for suppressing the temperature rise.
  • the process of the temperature rise suppression operation is the reverse of the process of the heating operation in step S206 of the routine of FIG. 12, that is, the ripple of the current flowing through the DC power supply 132 is shown in FIG. This is a process to reduce the current ripple that occurs in the normal operation process in step S204 of the DC power supply.
  • the amount of heat generated can be suppressed, and the rise in temperature can be suppressed.
  • the switching frequency of the transistors T7 and T8 Carrier frequency
  • the switching control of the transistors T7 and ⁇ 8 of the DC / DC converter 148 is performed based on these settings. It should be noted that the process of the temperature rise suppression operation may be performed by executing one of the setting of the voltage between terminals of the capacitor 130 and the setting of the frequency of the carrier wave.
  • FIG. 13 is a flowchart showing an example of a DC / DC converter temperature adjustment processing routine executed by the electronic control unit 140. This routine is repeatedly executed at predetermined time intervals.
  • the CPU 142 of the electronic control unit 140 first detects the temperature of the reactor L (reactor temperature T 12) detected by the temperature sensor 152 and the temperature detected by the temperature sensor 154.
  • the temperature of the transistors T 7 and T 8 (transistor temperature T t 2) is read (step S 210), and the upper limit of the voltage between the terminals of the capacitor 130 is determined based on the read reactor temperature T 12 and the transistor temperature Tt 2.
  • a value Vmax2 is set (step S212), and switching control is performed on the transistors T7 and T8 of the DC / DC converter 148 within a range where the voltage between the terminals of the capacitor 130 does not exceed the set upper limit value Vmax2. (Step S214) This routine ends.
  • the upper limit value Vmax2 of the voltage between the terminals of the capacitor 130 is set according to the relationship between the reactor temperature T12 and the upper limit value V1max2 of the voltage between the terminals of the capacitor 130, and the transistor temperature Tt2 and the upper limit value of the capacitor 130.
  • the relationship between the upper limit value Vt max of the inter-terminal voltage is obtained in advance through experiments and the like, and stored in the ROM 144 as a map.
  • the map corresponds to the map.
  • the upper limits V lmax2 and Vtmax2 are derived, and the smaller one of them is derived as the upper limit Vmax2 of the voltage between terminals of the capacitor 130.
  • Limiting the voltage between the terminals of capacitor 130 is to reduce the current ripple flowing through reactor L to a low level. This is to suppress the heat generated by the switching of the transistors T7 and ⁇ 8 of the DC / DC converter 148.
  • Fig. 14 shows a map showing the relationship between the reactor temperature ⁇ 12 and the upper limit value Vlmax2 of the voltage between terminals of the capacitor 130, and the relationship between the transistor temperature Tt2 and the upper limit value Vtmax2 of the voltage between the terminals of the capacitor 130. . In this way, by limiting the voltage between the terminals of the capacitor 130 in accordance with the temperature of the reactor L and the temperature of the transistors T7 and T8 of the DC / DC converter 148, the DC / DC converter 148 is protected from overheating.
  • the upper limit value VmaX2 of the voltage between the terminals of the capacitor 130 is set based on the reactor temperature T12 and the transistor temperature Tt2.
  • the reactor temperature T12 and the transistor temperature Tt2 are set.
  • the upper limit value Vmax2 of the voltage between the terminals of the capacitor 130 may be set based on one of the two.
  • the upper limit value Vmax2 of the voltage between the terminals of the capacitor 130 may be set based on the internal temperature of the reactor L and transistors T7, T8 and other components;
  • the DC / DC converter 148 is protected from overheating by limiting the voltage between the terminals of the capacitor 130.However, by adjusting the switching frequency of the transistors 7 and T8, the DC / DC / DC Compa overnight 1
  • FIG. 15 is a flowchart showing an example of a D CZD C converter temperature adjustment processing routine executed by the electronic control unit 140.
  • this DC / DC controller overnight temperature adjustment processing routine is executed, the CPU 142 of the electronic control unit 140 first sends the temperature sensors 152, 1
  • the reactor temperature T12 and the transistor temperature Tt2 detected by 54 are read (step S220), and the switching frequency of the transistors T7 and T8 (based on the read reactor temperature T12 and the transistor temperature Tt2).
  • the frequency of the carrier is set (step S222), and the transistors T7 and T8 of the DCZ DC converter 148 are switched at the set switching frequency (step S224), and this routine ends.
  • the switching frequency is set, for example, during the normal operation in step S204 of the routine in FIG.
  • the switching frequency is set to be higher than the switching frequency set in the normal operation, and the switching frequency is set to be lower than the switching frequency set in the normal operation when the transistor temperature T t2 becomes equal to or higher than the threshold T t hi 2.
  • Figure 16 shows the relationship between the switching frequency, the heat value of the reactor L, and the heat value of the transistors T7 and T8. As shown in Fig. 16, the higher the switching frequency, the lower the heat value of the reactor L, and the lower the switching frequency, the lower the heat value of the transistors # 7, # 8.
  • the switching frequency is increased, and when the transistors ⁇ 7 and, 8 are overheated, the switching frequency is lowered to protect the DC / DC converter 148 from overheating.
  • the stable operation can be ensured.
  • the temperature of the DC power supply 132 as a power source for driving the motor 122 is adjusted, but power is consumed. It may be applied to a device that adjusts the temperature of a DC power supply as a power source for driving a general load.
  • a computer functioning as a control system for controlling the temperature of the DC power supply 13 2 D D CZD C converter 14 8 (reactor L and transistors ⁇ 7, ⁇ 8)
  • storage media such as a storage medium storing the program, for example, a CD-R0 or a DVD-ROM Ms flexible disk are also possible. By using such a storage medium, the program according to the embodiment of the present invention is installed in the control system and the program is executed, thereby achieving the effects of the present invention.
  • synchronous generator motors driven by three-phase AC are used as the motors 22 and 122. Any type of electric motor driven by phase alternating current may be used.
  • the power output device according to the present invention the vehicle equipped with the same, the control method and storage medium of the power output device and the program, the drive device according to the present invention, the vehicle equipped with the same, the control method of the drive device,
  • the storage medium and the program are used to manage the temperature of a power supply as a power source of a motor or other electric equipment mounted as a drive source of a vehicle such as an automobile, and to be interposed between the power supply and the electric equipment. It is suitable for use in controlling the temperature of the power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Description

明細書 動力出力装置およびこれを搭載する車輛、 動力出力装置の制御方法および記憶媒 体並びにプログラム、 駆動装置およびこれを搭載する車輛、 駆動装置の制御方法 および記憶媒体並びにプログラム 技術分野
この発明は、 電動機を回転駆動させることにより動力を出力可能な動力出力装 置およびこれを搭載する車輛、 動力出力装置の制御方法および記憶媒体並びにプ ログラム、 負荷を駆動可能な駆動装置およびこれを搭載する車輛、 駆動装置の制 御方法および記憶媒体並びにプログラムに関する。 背景技術
従来の動力出力装置としては、 電動機に三相交流電力を供給するィンバ一夕回 路の正極母線と負極母線とに接続されたコンデンサとィンバ一夕回路の正極母線 または負極母線と電動機の中性点とに接続された直流電源とを備えるものが提案 されている (例えば、 特開平 1 0— 3 3 7 0 4 7号公報ゃ特開平 1 1— 1 7 8 1 1 4号公報など) 。 この装置では、 電動機の各相のコイルとインバ一夕回路の各 相のスィツチング素子からなる回路を、 直流電源の電圧を昇圧してコンデンサに 電荷を蓄える昇圧チヨッパ回路として機能させると共に蓄電されたコンデンサを 直流電源とみなして電動機を駆動する。 この電動機の駆動制御とコンデンサへの 蓄電制御は、 電動機に三相交流を印加する際になされるインバー夕回路のスィヅ チング素子のスィツチング動作によって同時に行なっている。
しかしながら、 こうした動力出力装置では、 所望の出力で電動機を駆動するこ とができない場合がある。 これは、 直流電源の温度が常温にあるときには、 その 性能を十分に発揮させることができるが、 電動機の始動時など直流電源の温度が 低い場合には、 直流電源内部での化学反応速度が遅くなり直流電源の内部抵抗が 増加するため、 電池性能を十分に発揮することができない場合があることに基づ いている。 また、 直流電源の出力は高温のときにも低下するから、 その性能を十分に発揮 するには直流電源の温度を適切な範囲となるように管理することが好ましく、 更 に、 上記動力出力装置において昇圧チヨッパ回路として機能する電力変換部分の 昇圧動作を安定して行なうためにその部位の温度を適正な状態に管理することが 好ましい。
こうした事情は、 電動機の各相コィルとィンバ一夕回路のスィヅチング素子か らなる回路の昇圧動作を D C/D Cコンパ一夕に ¾き換えた装置、 即ち直流電源 からの直流電圧を D C/D Cコンパ'一夕により D CZD C変換してコンデンサに 蓄えると共に蓄電されたコンデンサからの直流電力をィンバ一夕回路のスィツチ ング素子のスイッチングにより三相交流電力に変換して電動機に供給する動力出 力装置や、 直流電源からの直流電圧を D C/D Cコンパ一夕により D C/D C変 換してコンデンサに蓄えると共に蓄電されたコンデンサから直流電力を電気機器 (負荷) に供給する駆動装置における直流電源の温度や D CZD Cコンパ'一夕の 温度についても同様である。
本発明の動力出力装置およびその制御方法は、 こうした問題を解決し、 電源や 電力変換部の温度をより適正な状態に管理してその性能を十分に発揮させること を目的とする。 また、 本発明の動力出力装置は、 低温時の電源を迅速に加温して 装置の性能を十分に発揮させることを目的とする。 更に、 本発明の動力出力装置 は、 電力変換部の温度上昇を抑制してその性能を十分に発揮させることを目的と する。 また、 本発明の動力出力装置を搭載する車輛は、 動力出力装置内の温度を より適正な状態に管理してその性能を十分に発揮させる車輛を提供することを目 的とする。 本発明の記憶媒体およびプログラムは、 コンピュータを電源や電力変 換部の温度をより適正な状態に管理する制御装置として機能させることを目的と する。
また、 本発明の駆動装置は、 電源や D C/D Cコンバータの温度をより適正な 状態に管理してその性能を十分に発揮させることを目的とする。 また、 本発明の 駆動装置は、 低温時の電源を迅速に加温してその性能を十分に発揮させることを 目的とする。 更に、 本発明の駆動装置は、 D C/D Cコンバータの温度上昇を抑 制してその性能を十分に発揮させることを目的とする。 また、 本発明の駆動装置 を搭載する車輛は、 駆動装置内の温度をより適正な状態に管理してその性能を十 分に発揮させる車輛を提供することを目的とする。 本発明の記憶媒体およびプロ グラムは、 コンピュータを電源や D C/D Cコンパ一夕の温度をより適正な状態 に管理する制御装置として機能させることを目的とする。 発明の開示
本発明の第 1の動力出力装置は、 多相交流により回転駆動する電動機と、 複数 のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供給可能- なィンバ一夕回路と、 前記インバー夕回路の正極母線と負極母線とに接続された 第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のうちのいずれか 一方の母線と前記電動機の中性点とに接続された第 2の電源と、 前記電動機のコ ィルと前記スイツチング素子とを含み前記第 2の電源からの電力を変換して前記 第 1の電源に供給可能な電力変換部の温度または前記第 2の電源の温度に基づい て前記温度を調節すべく前記インバー夕回路のスィッチング素子をスイッチング 制御する温度調節手段とを備えることを要旨とする。
この本発明の第 1の動力出力装置では、 温度調節手段が、 電力変換部の温度ま たは第 2の電源の温度に基づいて温度調節すべくインバ一夕回路のスィツチング 素子をスィツチング制御するから、 簡素な構成で電力変換部の温度や第 2の電源 の温度をより適切な状態に管理でき、 装置の性能を十分に発揮させることができ る。 ここで、 「第 1の電源」 および「第 2の電源」 は充放電可能なものも含まれ、 「電動機」 には、 発電可能な発電電動機として機能するものも含まれる。 また、 「第 2の電源」 は、 「第 1の電源」 よりも大きい容量をもつ電源とすることが好 ましい。 以下、 「第 1の電源」 と 「第 2の電源」 と 「電動機」 は、 特に説明しな い限り上記内容も含まれるものとする。
本発明の第 2の動力出力装置は、 多相交流により回転駆動する電動機と、 複数 のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供給可能 なィンバ一夕回路と、 前記ィンバ一夕回路の正極母線および負極母線のうちのい ずれか一方の母線と前記電動機の中性点とに接続された第 1の電源と、 前記ィン バー夕回路の前記一方の母線とは異なる他方の母線と前記電動機の中性点とに接 続された第 2の電源と、 前記電動機のコイルと前記スィツチング素子とを含み前 記第 2の電源からの電力を変換して前記第 1の電源に供給可能な電力変換部の温 度または前記第 2の電源の温度に基づいて前記温度を調節すベく前記ィンバ一夕 回路のスィッチング素子をスイツチング制御する温度調節手段とを備えることを 要旨とする。
この本発明の第 2の動力出力装置では、 上記第 1の動力出力装置と同様の効果 を奏することができる。
こうした本発明の第 1または第 2の動力出力装置において、 前記第 1の電源は、 前記第 2の電源からの電力を用いて充電可能な蓄電装置であり、 前記温度調節手 段は、 前記電力変換部の温度または前記第 2の電源の温度に基づいて前記蓄電装 置の蓄電電圧を前記スイツチング制御により調節する手段であるものとすること もできる。 この態様の本発明の第 1または第 2の動力出力装置において、 前記温 度調節手段は、 前記第 2の電源の温度が第 1の閾値以下であるとき、 前記蓄電装 置の蓄電電圧を通常よりも高くするようスィツチング制御する手段であるものと することもできるし、 前記温度調節手段は、 前記第 2の電源の温度が第 2の閾値 以上であるとき、 前記蓄電装置の蓄電電圧を通常よりも低くするようスィッチン グ制御する手段であるものとすることもできる。 また、 蓄電装置を備える態様の 本発明の第 1または第 2の動力出力装置において、 前記温度調節手段は、 前記電 力変換部の温度が第 3の閾値以上であるとき、 前記蓄電装置の蓄電電圧に制限を 加えてスィツチング 1御する手段であるものとすることもできる。 このように、 電力変換部の温度や第 2の電源の温度に基づいて蓄電装置の蓄電電圧を調節する ことで、 電力変換部の温度や第 2の電源の温度をより適切な状態に管理すること ができる。
また、 本発明の第 1または第 2の動力出力装置において、 前記温度調節手段は、 前記電力変換手段の温度または前記第 2の電源の温度に基づいて前記ィンバ一夕 回路のスィツチング素子のスィツチング周波数を設定し、 該設定されたスィツチ ング周波数にてスィツチング制御する手段であるものとすることもできる。 この 態様の本発明の第 1または第 2の動力出力装置において、 前記温度調節手段は、 前記第 2の電源の温度が第 4の閾値以下であるとき、 前記ィンバ一夕回路のスィ ツチング素子のスィツチング周波数を通常よりも低く設定してスィツチング制御 する手段であるものとすることもできるし、 前記温度調節手段は、 前記第 2の電 源の温度が第 5の閾値以上であるとき、 前記ィンバ一夕回路のスイツチング素子 のスィツチング周波数を通常よりも高く設定してスィツチング制御する手段であ るものとすることもできる。 また、 インバ一夕回路のスイッチング素子のスィヅ チング周波数を設定する態様の本発明の第 1または第 2の動力出力装置において、 前記温度調節手段は、 前記電力変換部に含まれる前記電動機のコィルの温度が第 6の閾値以上であるとき、 前記ィンバ一夕回路のスィヅチング素子のスィッチン グ周波数を通常よりも高く設定してスィツチング制御する手段であるものとする こともできるし、 前記温度調節手段は、 前記電力変換部に含まれる前記スィッチ ング素子の温度が第 7の閾値以上であるとき、 前記インバー夕回路のスィッチン グ素子のスィツチング周波数を通常よりも低く設定してスィツチング制御する手 段であるものとすることもできる。 このように、 電力変換部の温度や第 2の電源 の温度に基づいてィンバ一夕回路のスィツチング素子のスィツチング周波数の設 定を変更することで、 電力変換部の温度や第 2の電源の温度をより適切な状態に 管理することができる。
本発明の第 3の動力出力装置は、 多相交流により回転駆動する電動機と、 複数 のスィッチング素子のスイッチングにより多相交流電力を前記電動機に供給可能 なィンバ一夕回路と、 前記ィンバ一夕回路の正極母線と負極母線とに接続された 第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のいずれか一方の 母線と前記電動機の中性点とに接続された第 2の電源と、 前記第 2の電源の温度 を検出する温度検出手段と、 該検出された第 2の電源の温度が所定の閾値以下の とき、 該第 2の電源を加温する加温手段とを備えることを要旨とする。
この本発明の第 3の動力出力装置では、 加温手段が、 第 2の電源の温度が所定 の閾値以下のときに第 2の電源を加温するから、 低温時の第 2の電源を迅速に加 温でき、 その性能を十分に発揮させることができる。
本発明の第 4の動力出力装置は、 多相交流により回転駆動する電動機と、 複数 のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供給可能 なィンバ一夕回路と、 前記ィンバ一夕回路の正極母線および負極母線のいずれか 一方の母線と前記電動機の中性点とに接続された第 1の電源と、 前記インバ一夕 回路の前記一方の母線とは異なる他方の母線と前記電動機の中性点とに接続され た第 2の電源と、 前記第 2の電源の温度を検出する温度検出手段と、 該検出され た第 2の電源の温度が所定の閾値以下のとき、 該第 2の電源を加温する加温手段 とを備えることを要旨とする。
この本発明の第 4の動力出力装置では、 上記第 3の動力出力装置と同様の効果 を奏することができる。
本発明の第 1の車輛は、 上記各態様の本発明の第 1や第 2、 第 3、 第 4の動力 出力装置を搭載することを要旨とする。 これにより、 装置内の温度をより適正に 管理することができ、 十分な性能を発揮する車輛を提供することができる。
本発明の第 1の動力出力装置の制御方法は、 多相交流により回転駆動する電動 機と、 複数のスィッチング素子のスイッチングにより多相交流電力を前記電動機 に供給可能なィンバ一夕回路と、 前記ィンバ一夕回路の正極母線と負極母線とに 接続された第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のうち のいずれか一方の母線と前記電動機の中性点とに接続された第 2の電源と、 を備 える動力出力装置の制御方法であって、 前記電動機のコイルと前記スィツチング 素子とを含み前記第 2の電源からの電力を変換して前記第 1の電源に供給可能な 電力変換部の温度または前記第 2の電源の温度に基づいて前記温度を調整すべく 前記ィンバ一夕回路のスィツチング素子をスィツチング制御することを特徴とす る。
この本発明の第 1の動力出力装置の制御方法では、 電力変換部の温度または第 2の電源の温度に基づいて温度調節すべくィンバ一夕回路のスィツチング素子を スィツチング制御するから、 簡素な構成で電力変換部の温度や第 2の電源の温度 をより適切な状態に管理でき、 装置の性能を十分に発揮させることができる。 本発明の第 2の動力出力装置の制御方法は、 多相交流により回転駆動する電動 機と、 複数のスィツチング素子のスィツチングにより多相交流電力を前記電動機 に供給可能なィンバ一夕回路と、 前記ィンバ一夕回路の正極母線および負極母線 のうちのいずれか一方の母線と前記電動機の中性点とに接続された第 1の電源と、 前記ィンバ一夕回路の前記一方の母線とは異なる他方の母線と前記電動機の中性 点とに接続された第 2の電源と、 を備える動力出力装置の制御方法であって、 前 記電動機のコィルと前記スイツチング素子とを含み前記第 2の電源からの電力を 変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電源の 温度に基づいて前記温度を調整すべく前記ィンバ一夕回路のスィツチング素子を スィツチング制御することを特徴とする。
この本発明の第 2の動力出力装置の制御方法では、 上記第 1の動力出力装置の 制御方法と同様の効果を奏することができる。
こうした本発明の第 1または第 2の動力出力装置の制御方法において、 前記第 2の電源の温度または前記電力変換部の温度に基づいて、 前記第 2の電源からの 電力を用いて充電可能な蓄電装置としての前記第 1の電源の蓄電電圧を前記スィ ツチング制御により調節するものとすることもできる。 こうすれば、 蓄電装置の 蓄電電圧の調節により、 電力変換部の温度や第 2の電源の温度をより適切な状態 に管理することができる。
また、 本発明の第 1または第 2の動力出力装置の制御方法において、 前記電力 変換部の温度または前記第 2の電源の温度に基づいて、 前記ィンバ一夕回路のス ィツチング素子のスィヅチング周波数を設定し、 該設定されたスィヅチング周波 数にてスイッチング制御するものとすることもできる。 こうすれば、 インバ一夕 回路のスィツチング素子におけるスィツチング周波数の設定の変更により、 電力 変換部の温度や第 2の電源の温度をより適切な状態に管理することができる。 本発明の第 1の記憶媒体は、 コンピュータを、 多相交流により回転駆動する電 動機と、 複数のスィツチング素子のスィツチングにより多相交流電力を前記電動 機に供給可能なィンバ一夕回路と、 該ィンバ一夕回路の正極母線と負極母線とに 接続された第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のうち のいずれか一方の母線と前記電動機の中性点とに接続された第 2の電源とを備え る動力出力装置における、 前記電動機のコイルと前記スィツチング素子とを含み 前記第 2の電源からの電力を変換して前記第 1の電源に供給可能な電力変換部の 温度または前記第 2の電源の温度に基づいて前記温度を調節すべく前記ィンバー 夕回路のスィツチング素子をスィツチング制御する温度調節手段として機能させ るコンピュータ読み取り可能なプログラムを記憶したことを要旨とする。 この本発明の第 1の記憶媒体では、 コンピュータを、 電力変換部の温度または 第 2の電源の温度に基づいて温度調節すべくインバ一夕回路のスィツチング素子 をスィツチング制御する温度調節手段として機能させるコンピュータ読み取り可 能なプログラムが記憶されているから、 動力出力装置に組み込んで実行させた際 には、 簡素な構成で電力変換部の温度や第 2の電源の温度をより適切な状態に管 理でき、 装置の性能を十分に発揮させることができる。
本発明の第 2の記憶媒体は、 コンピュータを、 多相交流により回転駆動する電 動機と、 複数のスイッチング素子のスイッチングにより多相交流電力を前記電動 機に供給可能なィンバ一夕回路と、 該ィンバ一夕回路の正極母線および負極母線 のうちのいずれか一方の母線と前記電動機の中性点とに接続された第 1の電源と、 前記ィンバ一夕回路の前記一方の母線とは異なる他方の母線と前記電動機の中性 点とに接続された第 2の電源とを備える動力出力装置における、 前記電動機のコ ィルと前記スイツチング素子とを含み前記第 2の電源からの電力を変換して前記 第 1の電源に供給可能な電力変換部の温度または前記第 2の電源の温度に基づい て前記温度を調節すべく前記ィンバ一夕回路のスィツチング素子をスィツチング 制御する温度調節手段として機能させるコンピュータ読み取り可能なプログラム を記憶したことを要旨とする。
この本発明の第 2の記憶媒体では、 上記第 1の記憶媒体と同様の効果を奏する ことができる。
本発明の第 1のプログラムは、 コンピュータを、 多相交流により回転駆動する 電動機と、 複数のスィツチング素子のスィツチングにより多相交流電力を前記電 動機に供給可能なィンバ一夕回路と、 該ィンバ一夕回路の正極母線と負極母線と に接続された第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のう ちのいずれか一方の母線と前記電動機の中性点とに接続された第 2の電源とを備 える動力出力装置における、 前記電動機のコイルと前記スィツチング素子とを含 み前記第 2の電源からの電力を変換して前記第 1の電源に供給可能な電力変換部 の温度または前記第 2の電源の温度に基づいて前記温度を調節すベく前記ィンバ 一夕回路のスィツチング素子をスィツチング制御する温度調節手段として機能さ せるコンピュータ読み取り可能プログラムであることを要旨とする。 この本発明の第 1のプログラムでは、 コンビュ一夕を、 電力変換部の温度また は第 2の電源の温度に基づいて温度調節すべくインバ一夕回路のスィツチング素 子をスィツチング制御する温度調節手段として機能させるから、 動力出力装置に 組み込んで実行させた際には、 簡素な構成で電力変換部の温度や第 2の電源の温 度をより適切な状態に管理でき、 装置の性能を十分に発揮させることができる。 本発明の第 2のプログラムは、 コンピュータを、 多相交流により回転駆動する 電動機と、 複数のスィツチング素子のスィツチングにより多相交流電力を前記電 動機に供給可能なィンバ一夕回路と、 該ィンバ一夕回路の正極母線および負極母 線のうちのいずれか一方の母線と前記電動機の中性点とに接続された第 1の電源 と、 前記ィンバ一夕回路の前記一方の母線とは異なる他方の母線と前記電動機の 中性点とに接続された第 2の電源とを備える動力出力装置における、 前記電動機 のコイルと前記スイツチング素子とを含み前記第 2の電源からの電力を変換して 前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電源の温度に基 づいて前記温度を調節すべく前記インバ一夕回路のスィツチング素子をスィツチ ング制御する温度調節手段として機能させるコンピュータ読みとり可能なプログ ラムであることを要旨とする。
この本発明の第 2のプログラムでは、 上記第 1のプログラムと同様の効果を奏 することができる。
本発明の駆動装置は、 直流電流をエネルギとして一時的に蓄積可能なエネルギ 蓄積手段を有し、 該エネルギ蓄積手段に蓄積されたエネルギを利用して、 入力さ れた直流電圧をスィヅチング素子のスィツチングにより D C/D C変換して負荷 に供給可能な D C/ Cコンパ一夕と、 該 D CZD Cコンバータに直流電力を供 給可能な電源と、 前記電源の温度または前記 D C/D Cコンバータの温度に基づ いて前記温度を調節すべく前記スィツチング素子をスィツチング制御する温度調 節手段とを備えることを要旨とする。
この本発明の駆動装置では、 温度調節手段が、 電源の温度または D C/D Cコ ンバ一夕の温度に基づいて対応する部材の温度を調節すべく前記スィツチング素 子をスィツチング制御するから、 簡素な構成で電源の温度や D C/D Cコンパ一 夕の温度をより適切な状態に管理でき、 装置の性能を十分に発揮させることがで きる。 ここで、 「電源」 は充放電可能なものも含まれる。 以下、 「電源」 は、 特 に説明しない限り上記内容も含まれるものとする。
こうした本発明の駆動装置において、 前記 D C/D Cコンパ一夕から出力され た電力を充電可能な蓄電装置を備え、 前記温度調節手段は、 前記電源の温度また は前記 D C/D Cコンパ一夕の温度に基づいて前記蓄電装置の蓄電電圧をスィッ チング制御により調節する手段であるものとすることもできる。 この態様の本発 明の第 1の駆動装置において、 前記温度調節手段は、 前記電源の温度が第 1の閾 値以下であるとき、 前記蓄電装置の蓄電電圧が通常よりも高くなるようスィッチ ング制御する手段であるものとすることもできるし、 前記温度調節手段は、 前記 電源の温度が第 2の閾値以上であるとき、 前記蓄電装置の蓄電電圧が通常よりも 低くなるようスィツチング制御する手段であるものとすることもできる。 また、 蓄電装置を備える態様の本発明の駆動装置において、 前記温度調節手段は、 前記 D C/D Cコンバータの温度が第 3の閾値以上であるとき、 前記蓄電装置の蓄電 電圧に制限を加えてスィツチング制御する手段であるものとすることもできる。 このように、 蓄電装置の蓄電電圧を調節することにより、 電源の温度や D C/D Cコンバ一夕の温度をより適切な状態に管理することができる。
また、 本発明の駆動装置において、 前記温度調節手段は、 前記電源の温度また は前記 D C/D Cコンパ一夕の温度に基づいて前記スィヅチング素子のスィヅチ ング周波数を設定し、 該設定されたスィツチング周波数にてスィツチング制御す る手段であるものとすることもできる。 この態様の本発明の駆動装置において、 前記温度調節手段は、 前記電源の温度が第 4の閾値以下であるとき、 前記スイツ チング周波数を通常よりも低く設定してスィツチング制御する手段であるものと することもできるし、 前記温度調節手段は、 前記電源の温度が第 5の閾値以上で あるとき、 前記スイッチング周波数を通常よりも高く設定してスィッチング制御 する手段であるものとすることもできる。 また、 D C/D Cコンパ'一夕のスィヅ チング素子におけるスィツチング素子のスィツチング周波数を設定する態様の本 発明の駆動装置において、 前記温度調節手段は、 前記スイッチング素子の温度が 第 6の閾値以上であるとき、 前記スイッチング周波数を通常よりも低く設定して スィッチング制御する手段であるものとすることもできるし、 前記温度調節手段 は、 前記エネルギ蓄積手段の温度が第 7の閾値以上であるとき、 前記スィッチン グ素子のスィツチング周波数を通常よりも高く設定してスィツチング制御する手 段であるものとすることもできる。 このように、 D C/D Cコンバータのスィ ヅ チング素子におけるスィッチング周波数の設定を調節することにより、 電源の温 度や D C/D Cコンパ一夕の温度をより適切な状態に管理することができる。 更に、 本発明の駆動装置において、 前記負荷は、 多相交流により回転駆動する 電動機であり、 前記 D C/D Cコンパ一夕により変換された直流電力を多相交流 電力に変換して前記電動機に供給可能なィンバ一夕回路を備えるものとすること もできる。
本発明の第 2の車輛は、 負荷を多相交流により回転駆動する電動機とする態様 の駆動装置とその電動機とを搭載することを要旨とする。 これにより、 装置内の 温度をより適正に管理することができ、 十分な性能を発揮する車輛を提供するこ とができる。
本発明の駆動装置の制御方法は、 直流電流をエネルギとして一時的に蓄積可能 なエネルギ蓄積手段を有し、 該エネルギ蓄積手段を利用して、 入力された直流電 圧をスィヅチング素子のスィヅチングにより D C/D C変換して負荷に供給可能 な D CZD Cコンバータと、 該 D CZD Cコンパ'一夕に直流電力を供給可能な電 源とを備える駆動装置の制御方法であって、 前記電源の温度または前記 D C/D Cコンバータの温度に基づいて前記温度を調節すべく前記スイッチング素子をス ィ ヅチング制御することを特徴とする。
この本発明の駆動装置の制御方法では、 電源の温度または D C/D Cコンパ一 夕の温度に基づいて対応する部材の温度を調節すべく前記スィツチング素子をス ィ ヅチング制御するから、 簡素な構成で電源の温度や D C ZD Cコンパ一夕の温 度をより適切な状態に管理でき、 装置の性能を十分に発揮させることができる。 こうした本発明の駆動装置の制御方法において、 前記電源の温度または前記ス イツチング素子の温度に基づいて、 前記 D C/D Cコンバ一夕から出力された電 力を充電可能な蓄電装置を含む駆動装置における該蓄電装置の蓄電電圧をスィッ チング制御により調節することを特徴とするものとすることもできる。 このよう に、 蓄電装置の蓄電電圧を調節することにより、 電源の温度や D C/D Cコンパ 一夕の温度をより適切な状態に管理することができる。
また、 本発明の駆動装置の制御方法において、 前記電源の温度または前記 D C /D Cコンパ一夕の温度に基づいて前記スィヅチング素子のスィツチング周波数 を設定し、 該設定されたスィツチング周波数にてスィツチング制御することを特 徴とするものとすることもできる。 このように、 D C/D Cコンパ一夕のスィヅ チング素子におけるスィッチング周波数の設定を調節することにより、 電源の温 度や D C/D Cコンパ一夕の温度をより適切な状態に管理することができる。 本発明の第 3の記憶媒体は、 コンピュータを、 直流電流をエネルギとして一時 的に蓄積可能なエネルギ蓄積手段を有し該ェネルギ蓄積手段に蓄積されたェネル ギを利用して入力された直流電圧をスィツチング素子のスィツチングにより D C /D C変換して負荷に供給可能な D C/D Cコンパ一夕と、 該 D CZD Cコンノ ' 一夕に直流電力を供給可能な電源とを備える駆動装置における、 前記直流電源の 温度または前記 D C /D Cコンバータの温度に基づいて前記温度を調節すべく前 記スィッチング素子をスイッチング制御する温度調節手段として機能させるコン ピュー夕読み取り可能なプログラムを記憶したことを要旨とする。
この本発明の第 3の記憶媒体では、 コンピュータを、 電源の温度または D CZ D Cコンバータの温度に基づいて温度調節すべくインバー夕回路のスィヅチング 素子をスィッチング制御する温度調節手段として機能させるコンピュータ読み取 り可能なプログラムが記憶されているから、 駆動装置に組み込んで実行させた際 には、 簡素な構成で電源の温度や D C/D Cコンバータの温度をより適切な状態 に管理でき、 装置の性能を十分に発揮させることができる。
本発明の第 3のプログラムは、 コンピュータを、 直流電流をエネルギとして一 時的に蓄積可能なエネルギ蓄積手段を有し該ェネルギ蓄積手段に蓄積されたエネ ルギを利用して入力された直流電圧をスィッチング素子のスイッチングにより D C/D C変換して負荷に供給可能な D C/D Cコンパ一夕と、 該 D C/D Cコン バー夕に直流電力を供給可能な電源とを備える駆動装置における、 前記直流電源 の温度または前記 D C/D Cコンパ '一夕の温度に基づいて前記温度を調節すべく 前記スイッチング素子をスイッチング制御する温度調節手段として機能させるコ ンピュー夕読み取り可能なプログラムであることを要旨とする。 この本発明の第 3のプログラムは、 コンビュ一夕を、 電源の温度または D CZ D Cコンバータの温度に基づいて温度調節すべくィンバ一夕回路のスィツチング 素子をスィツチング制御する温度調節手段として機能させるから、 駆動装置に組 み込んで実行させた際には、 簡素な構成で電源の温度や D CZD Cコンバータの 温度をより適切な状態に管理でき、 装置の性能を十分に発揮させることができる 図面の簡単な説明
図 1は、 本発明の第 1の実施形態の動力出力装置 2 0の構成の概略を示す構成 図である。
図 2は、 モー夕 2 2の三相コイルの u相に着目した動力出力装置 2 0の回路図
1- である。 3
図 3は、 動力出力装置 2 0の電子制御ュニット 4 0により実行される電源温度 上昇処理ルーチンの一例を示すフローチヤ一トである。
図 4は、 加温運転時の中性点電流の波形を例示する説明図である。
図 5は、 変形例の動力出力装置 2 0 Bの構成の概略を示す構成図である。 図 6は、 モ一夕 2 2の三相コイルの u相に着目した変形例の動力出力装置 2 0
Bの回路図である。
図 7は、 電子制御ュニット 4 0により実行される回路温度調節処理ルーチンの 一例を示すフローチャートである。
図 8は、 リアクトル温度 T 1と電圧上限値 V l maxとの関係およびトランジス 夕温度 T tと電圧上限値 V t maxとの関係を示す図である。
図 9は、 電制御ュニット 4 0により実行される回路温度調節処理ルーチンの一 例を示すフローチャートである。
図 1 0は、 トランジスタ T 1〜T 6の発熱量とモ一夕 2 2のコイルの発熱量と スィツチング周波数との関係を示す図である。
図 1 1は、 第 2の実施形態の動力出力装置 1 2 0の構成の概略を示す構成図で める。
図 1 2は、 第 2の実施形態の動力出力装置 1 2 0の電子制御ュニット 1 4 0に より実行される電源温度上昇処理ル一チンの一例を示すフローチャートである。 図 1 3は、 電制御ュニヅト 1 4 0により実行される: D C/D Cコンパ一夕温度 調節処理ル一チンの一例を示すフローチャートである。
図 1 4は、 リアクトル温度 T 1 2と電圧上限値 V lmax 2との関係およびトラ ンジス夕温度 T t 2と電圧上限値 V t max 2との関係を示す図である。
図 1 5は、 電子制御ュニヅト 1 4 0により実行される D C/D Cコンパ'一夕温 度調節処理ルーチンの一例を示すフローチャートである。
図 1 6は、 トランジスタ T 7 , T 8の発熱量とリアクトル Lの発熱量とスィヅ チング周波数との関係を示す図である。 発明を実施するための最良の形態
本発明をより詳細に説明するために、 添付の図面に従ってこれを説明する。
[第 1の実施形態]
図 1は、 本発明の第 1の実施形態である動力出力装置 2 0の構成の概略を示す 構成図である。 第 1の実施形態の動力出力装置 2 0は、 三相交流により回転駆動 するモー夕 2 2と、 直流電力を三相交流電力に変換してモー夕 2 2に供給可能な ィンバ一夕回路 2 4と、 ィンバ一夕回路 2 4の正極母線 2 6と負極母線 2 8とに 接続されたコンデンサ 3 0と、 モータ 2 2の中性点とィンバ一夕回路 2 4の負極 母線 2 8とに接続された直流電源 3 2と、 直流電源 3 2の温度を検出する温度セ ンサ 5 0と、 装置全体をコントロールする電子制御ュニット 4 0とを備える。 モー夕 2 2は、 例えば、 その外表面に永久磁石が貼り付けられたロータと、 三 相コイルが巻回されたステ一夕とからなる発電可能な同期発電電動機として構成 されている。 モー夕 2 2の回転軸は、 第 1の実施形態の動力出力装置 2 0の出力 軸となっており、 この回転軸から動力が出力される。 また、 第 1の実施形態のモ —夕 2 2は発電電動機として構成されているから、 モー夕 2 2の回転軸に動力を 入力すれば、 モー夕 2 2により発電することができる。 なお、 この第 1の実施形 態の動力出力装置 2 0が車輛に搭載される場合には、 モ一夕 2 2の回転軸は車輪 の車軸に直接的あるいは間接的に接続されることになる。
インバ一夕回路 2 4は、 6個のトランジスタ T 1〜T 6と 6個のダイオード D 1〜D 6とにより構成されている。 6個のトランジスタ T 1〜T 6は、 それそれ 正極母線 2 6と負極母線 2 8とに対してソース側とシンク側となるよう 2個ずつ ペアで配置され、 その接続点にモ一夕 2 2の三相コイル (u vw) の各々が接続 されている。
コンデンサ 3 0は、 モ一夕 2 2を回転駆動させるための直流電源として機能す るように構成されている。 この機能については後に詳しく述べる。 また、 直流電 源 3 2は、 例えば、 ニッケル水素系やリチウムイオン系の二次電池として構成さ れている。 この直流電源 3 2は、 例えば、 電圧を同一とした場合のコンデンサ 3 0の容量よりも大きい蓄電容量をもつものとして形成されている。
電子制御ュニヅト 4 0は、 C P U 4 2を中心としたマイクロプロセッサとして 構成されており、 処理プログラムを記憶した R O M 4 4と、 一時的にデ一夕を記 憶する R AM 4 6と、 入出力ポート (図示せず) とを備える。 この電子制御ュニ ット 4 0には、 直流電源 3 2の温度を検出する温度センサ 5 0からの電源温度 T bや、 モータ 2 2の動作に関する指令値などが入力ポートを介して入力されてお り、 電子制御ユニット 4 0からは、 インバ一夕回路 2 4のトランジスタ T 1〜T 6のスィッチング制御を行なうための制御信号などが出力ポートを介 ύて出力さ れている。
こうして構成された第 1の実施形態の動力出力装置 2 0の動作について説明す る。 まず、 コンデンサ 3 0をモ一夕 2 2に電力供給する直流電源として機能させ る際の動作について説明する。
図 2は、 モー夕 2 2の三相コイルの u相に着目した動力出力装置 2 0の回路図 である。 いま、 インバー夕回路 2 4の u相のトランジスタ Τ 2をオンした状態を 考えると、 この状態では、 図中破線矢印で示す短絡回路が形成され、 モ一夕 2 2 の三相コイルの u相はリアクトルとして機能する。 この状態からトランジスタ Τ 2をオフすると、 リアクトルとして機能している三相コイルの u相に蓄えられた エネルギは、 図中実線矢印で示す回路によりコンデンサ 3 0に蓄えられる。 この 際の電圧は直流電源 3 2の供給電圧よりも高くすることができる。 一方、 この回 路でコンデンサ 3 0の電位を用いて直流電源 3 2を充電することもできる。 した がって、 この回路は、 直流電源 3 2のエネルギを昇圧してコンデンサ 3 0に蓄え ると共にコンデンサ 3 0の電位を用いて直流電源 3 2を充電可能な昇降圧チヨッ パ回路とみなすことができる。 モー夕 22の三相コイルの vw相も u相と同様に 昇降圧チヨヅパ回路とみなすことができるから、 トランジスタ T 2, T4, T 6 をオンオフすることによりコンデンサ 30を充電したり、 コンデンサ 30に蓄え られた電荷を用いて直流電源 32を充電することができる。 このコンデンサ 30 への充電により生じる電位差は、 コンデンサ 30に蓄えられる電荷の量、 即ちリ ァクトルに流す電流に応じて変動するから、 ィンバ一夕回路 24のトランジスタ Ύ 2, T4, T 6のスイッチング制御を行なってリアクトルに流す電流を調節す ることによりコンデンサ 30の端子間電圧を調節することができる。 こうした回 路によりモー夕 22を駆動するには、 モ一夕 22の三相コイルにインバ一夕回路 24のトランジスタ T 1〜T 6のスイッチング制御により擬似的な三相交流を供 給すればよい。 その際、 この三相交流に直流成分を加えて、 即ち、 三相交流の電 位をプラス側またはマイナス側にオフセヅトしてモータ 22に供給すれば、 交流 成分でモー夕 22を回転駆動すると共に直流成分でコンデンサ 30に蓄電するこ とができる。 したがって、 インバー夕回路 24のトランジスタ Τ 1〜Τ 6のスィ ツチング制御によりコンデンサ 30の端子間電圧を調節しつつモー夕 22を駆動 することができるのである。 このコンデンサ 30の端子間電圧は、 例えば、 直流 電源 32の端子間電圧の約 2倍となるように調節されている。
次に、 直流電源 32が低温の状態にあるときに直流電源 32を加温するための 動作について説明する。 図 3は、 動力出力装置 20の電子制御ュニット 40によ り実行される電源温度上昇処理ルーチンの一例を示すフローチャートである。 こ のルーチンは、 所定時間ごとに繰り返し実行される。
電源温度上昇処理ルーチンが実行されると、 電子制御ュニヅ ト 40の CPU4 2は、 まず、 温度センサ 50からの直流電源 32の電源温度 Tbを読み込み (ス テツプ S 100) 、 この読み込まれた電源温度 Tbが所定の閾値 Tblowを超え ているか否かを判定する (ステップ S 102) 。 ここで閾値 Tblowは、 直流電 源 32が定格出力あるいはモー夕 22の駆動に必要な電力を出力可能か否かを判 断するための閾値であり、 電源の仕様などにより決定される。 電源温度 Tbに基 づいて必要電力等を出力可能か否かを判断するのは、 直流電源 32の電源温度 T bが低くなると、 これに応じて内部抵抗が増してモ一夕 22に出力可能な電力が 低下するためである。 判定の結果、 電源温度 T bが閾値 T b lowを超えていると 判定されたときには、 必要電力をモー夕 2 2に供給可能であると判断して通常の モー夕 2 2の駆動制御 (通常運転) を行なう (ステップ S 1 0 4 ) 。 具体的には、 モー夕 2 2の要求出力に基づいてトルク指令値を設定し、 この設定に基づいてィ ンバ一夕回路 2 4のトランジスタ T 1〜T 6のスィヅチング制御を行なってモ一 夕 2 2を駆動する。 このときのトランジスタ Τ 1〜Τ 6のスィヅチング周波数、 即ち、 搬送波の周波数は、 モー夕 2 2のトルクリヅプルが少なくかつィンバ一夕 回路 2 4のトランジスタ T 1 - T 6のスィヅチングによる損失を少なくするのに 適した周波数に設定されている。
一方、 電源温度 T bが閾値 T b low以下であると判定されたときには、 低温の ため直流電源 3 2が十分な電力を供給できないと判断して、 直流電源 3 2の内部 温度を上昇させる加温運転の処理を行なう (ステップ S 1 0 6 ) 。 この加温運転 の処理は、 図 4に示すようにモ一夕 2 2の中性点に流れる中性点電流のリップル を、 通常のモー夕 2 2の駆動制御により生じる中性点電流のリップルよりも大き くする処理であり、 この大きくした中性点電流が直流電源 3 2に流れることによ り直流電源 3 2を迅速に加温することができ、 その性能を十分に発揮させること ができるのである。 具体的には、 コンデンサ 3 0の端子間電圧を、 通常のモー夕 2 2駆動制御時のコンデンサ 3 0の端子間電圧、 例えば直流電源 3 2の端子間電 圧の約 2倍の端子間電圧よりも大きくなるように設定すると共に搬送波の周波数 を低く設定してこれらの設定に基づいてトランジスタ T 1 ~ T 6のスイッチング 制御を行なう。 このうち、 前者は、 モー夕 2 2の中性点に流れる中性点電流が搬 送波と同一の周波数で振動するから、 搬送波の周波数を低く設定してトランジス 夕 Τ 1〜Τ 6のスィッチング周波数を低くすることにより中性点電流が大きく振 動、 即ち電流リップルが大きくなることに基づき、 後者は、 モー夕 2 2の中性点 の電位が瞬時的にコンデンサ 3 0の端子間電圧の範囲で変動するから、 コンデン サ 3 0の端子間電圧を大きく設定することにより中性点電流のリップルが大きく なることに基づいている。 これにより、 モー夕 2 2を駆動しつつ直流電源 3 2を 十分な電力を供給することができる温度にまで迅速に加温することができる。 以上説明した第 1の実施形態の動力出力装置 2 0によれば、 直流電源 3 2の温 度が低いときには搬送波の周波数を低く設定すると共にコンデンサ 3 0の端子間 電圧を高く設定し、 これらの設定に基づいてトランジスタ T 1〜T 6のスィツチ ング制御を行なうから、 直流電源 3 2に比較的大きなリップルの電流を流すこと ができ、 低温の直流電源 3 2を迅速に加温することができる。 この結果、 直流電 源 3 2のの性能を十分に発揮させることができる。
第 1の実施形態の動力出力装置 2 0では、 インバー夕回路 2 4の正極母線 2 6 と負極母線 2 8とを接続するようコンデンサ 3 0を取り付けるものとしたが、 図 5の変形例の動力出力装置 2 0 Βに示すようにィンバ一夕回路 2 4の正極母線 2 6とモ一夕 2 2の中性点とを接続するようコンデンサ 3 0 Βを取り付けるものと してもよい。 この変形例の動力出力装置 2 0 Βにおいては、 コンデンサ 3 0 Βに よる端子間電圧と直流電源 3 2による端子間電圧との和の電圧の直流電源を、 ィ ンバ一夕回路 2 4の正極母線 2 6と負極母線 2 8とを接続するように取り付けた 構成、 即ち、 第 1の実施形態の動力出力装置 2 0のコンデンサ 3 0をインバー夕 回路 2 4の正極母線 2 6と負極母線 2 8とを接続するように取り付けた構成と同 一の構成とみなすことができる。 以下、 コンデンサ 3 0 Βの端子間電圧の設定に 関する動作について説明する。
図 6は、 モー夕 2 2の三相コイルの u相に着目した変形例の動力出力装置 2 0 Βの回路図である。 いま、 トランジスタ Τ 2をオンとした状態を考えると、 図中 破線矢印で示す短絡回路が形成され、 モー夕 2 2の三相コイルの XI相はリアクト ルとして機能する。 この状態からトランジスタ Τ 2をオフすると、 リアクトルと して機能している三相コイルの U相に蓄えられているエネルギは、 図中実線矢印 で示す回路によりコンデンサ 3 0 Βに蓄えられる。 一方、 この回路でトランジス 夕 Τ 1をオンした状態からオフとすることにより同様にコンデンサ 3 0 Βの電荷 を用いて直流電源 3 2を充電することもできる。 したがって、 この回路は直流電 源 3 2のエネルギをコンデンサ 3 0 Βに蓄えると共にコンデンサ 3 0 Βの電位を 用いて直流電源 3 2に充電可能なチヨッパ回路とみなすことができる。 モー夕 2 2の vw相も、 u相と同様にチヨヅパ回路とみなすことができるから、 トランジ ス夕 Τ 1〜Τ 6をオンオフすることによりコンデンサ 3 0 Βを充電したり、 コン デンサ 3 0 Βに蓄えられた電荷を用いて直流電源 3 2を充電することができる。 このコンデンサ 3 O Bへの充電により生じる電位差は、 コンデンサ 3 0 Bに蓄え られる電荷の量、 即ち、 リアク トルに流す電流により変動するから、 インバー夕 回路 2 4のトランジスタ T 1〜T 6のスィツチング制御を行なってリアクトルに 流す電流を調節することによりコンデンサ 3 0 Βの端子間電圧を調節することが できる。 こうした回路によりモ一夕 2 2を駆動するには、 モー夕 2 2の三相コィ ルにインバ一夕回路 2 4のトランジスタ Τ 1〜 Τ 6のスィヅチング制御により擬 似的な三相交流を供給すればよい。 その際、 この三相交流に直流成分を加えて、 即ち、 Ξ相交流の電位をプラス側またはマイナス側にオフセヅトしてモー夕 2 2 に供給すれば、 交流成分でモー夕 2 2を回転駆動すると共に直流成分でコンデン サ 3 0 Βに蓄電することができる。 したがって、 インバ一夕回路 2 4のトランジ ス夕 Τ 〜Τ 6のスィヅチング制御によりコンデンサ 3 0の端子間電圧を調節し つつモ一夕 2 2を駆動することができるのである。 このように、 変形例の動力出 力装置 2 0 Βでも、 第 1の実施形態の動力出力装置 2 0と同様にコンデンサ 3 0 Βの端子間電圧を設定することができ、 図 3に例示する温度上昇制御処理ル一チ ンを実施することができる。 なお、 コンデンサ 3 0 Βの端子間電圧は、 通常のモ 一夕 2 2の駆動では、 例えば直流電源 3 2の端子間電圧とほぼ同じに調節し、 直 流電源 3 2の低温時には、 直流電源 3 2の端子間電圧よりも高く設定することに なる。
第 1の実施形態の動力出力装置 2 0では、 インバー夕回路 2 4の負極母線 2 8 とモ一夕 2 2の中性点とを接続するように直流電源 3 2を取り付けるものとした が、 インバー夕回路 2 4の正極母線 2 6とモー夕 2 2の中性点とを接続するよう に直流電源 3 2を取り付けるものとしてもよい。 また、 変形例の動力出力装置 2 0 Βでは、 インバー夕回路 2 4の負極母線 2 8とモー夕 2 2の中性点とを接続す るように直流電源 3 2を取り付けると共にインバ一タ回路 2 4の正極母線 2 6と モー夕 2 2の中性点とを接続するようにコンデンサ 3 0 Βを取り付けるものとし たが、 ィンバ一夕回路 2 4の負極母線 2 8とモ一夕 2 2の中性点とを接続するよ うコンデンサ 3 0 Βを取り付けると共にィンバ一夕回路 2 4の正極母線 2 6とモ 一夕 2 2の中性点とを接続するよう直流電源 3 2を取り付けるものとしても構わ ない。 第 1の実施形態の動力出力装置 2 0や変形例の動力出力装置 2 0 Bでは、 直流 電源 3 2を加温するのに搬送波の周波数を低く設定すると共にコンデンサ 3 0の 端子間電圧を高く設定してトランジスタ T 1〜T 6のスィヅチング制御を行なう ものとしたが、 いずれか一方のみを行なうものとしても構わない。 なお、 コンデ ンサ 3 0, 3 0 Βの端子間電圧を高くする設定を行なわない場合には、 コンデン サ 3 0, 3 0 Βの代わりにニッケル水素系やリチウムイオン系の二次電池などの 充電可能な直流電源を取り付けるものとしても構わない。
第 1の実施形態の動力出力装置 2 0や変形例の動力出力装置 2 0 Βでは、 トラ ンジス夕 Τ 1〜Τ 6のスィツチング制御により直流電源 3 2を加温するものとし たが、 その他の如何なる方法、 例えば、 ヒー夕などを用いて直接直流電源を加温 するものとしても構わない。
第 1の実施形態の動力出力装置 2 0や変形例の動力出力装置 2 0 Βでは、 直流 電源 3 2の電源温度 T bが閾値 T b low以下であるときに、 直流電源 3 2を加温 する加温運転を行なうものとしたが、 直流電源 3 2の電源温度 T bが閾値 T bhi 以上であるときに、 直流電源 3 2の温度上昇を抑制する温度上昇抑制運転を行な うものとしても構わない。 温度上昇抑制運転の処理は、 図 3のルーチンのステツ プ S 1 0 6における加温運転の処理と逆の処理、 即ち中性点電流のリップルを図. 3のルーチンのステップ S 1 0 4における通常運転の処理により生じる中性点電 流のリップルよりも小さくする処理であり、 リップルを小さくした中性点電流が 直流電源 3 2に流れることにより直流電源 3 2の内部抵抗での発熱量を抑えるこ とができ、 その温度上昇を抑制して直流電源 3 2の性能を十分に発揮させること ができるのである。 具体的には、 コンデンサ 3 0の端子間電圧を通常運転時に要 求される端子間電圧よりも低くなるように設定 (例えば、 直流電源 3 2の端子間 電圧の 2倍の電圧よりも低くなるように設定) すると共に搬送波の周波数を通常 運転時よりも高く設定してこれらの設定に基づいてトランジスタ T 1〜T 6のス イッチング制御を行なう。 なお、 温度上昇抑制運転の処理は、 コンデンサ 3 0の 端子間電圧の設定と搬送波の周波数の設定のいずれか一方を実行するものとして も差し支えないことは勿論である。
第 1の実施形態の動力出力装置 2 0および変形例の動力出力装置 2 0 Βやこれ らの変形例では、 直流電源 32の電源温度 Tbに応じて直流電源 32の加温する 処理やその温度上昇を抑制する処理を行なうものとしたが、 昇降圧リアクトルと して機能するモ一夕 22の各相コイルと昇降圧チヨヅビング用のスィツチとして 機能するインバー夕回路 24のトランジスタ T 1〜T 6とからなる昇降圧チヨヅ パ回路の温度、 例えばモ一夕 22の各相コイルやトランジスタ Τ 1〜Τ6の温度 に応じてィンバ一夕回路 24のトランジスタ Τ 1〜Τ 6のスィツチング制御を行 なうものとしてもよい。 図 7は、 電子制御ユニット 40により実行される回路温 度調節処理ルーチンの一例を示すフローチャートである。 このルーチンは、 所定 時間毎に繰り返し実行される。
回路温度調節処理ルーチンが実行されると、 電子制御ュニット 40の CPU4 2は、 まず、 温度センサ 52により検出されたモ一夕 22の各相コイルの温度 (リアクトル温度 Τ 1) や温度センサ 54により検出されたインバー夕回路 24 のトランジスタ Τ 1〜Τ 6の温度 (トランジスタ温度 T t) を読み込み (ステツ プ S 110)、 読み込んだリアクトル温度 T 1とトランジスタ温度 T tとに基づ いてコンデンサ 30の端子間電圧の上限値 Vmaxを設定し (ステップ S 112) 、 コンデンサ 30の端子間電圧が設定された上限値 Vmaxを超えない範囲内でィン バー夕回路 24のトランジスタ T 1~T 6をスイッチング制御して (ステップ S 114) 本ルーチンを終了する。 コンデンサ 30の端子間電圧の上限値 Vmaxの 設定は、 実施例では、 リアクトル温度 T 1とコンデンサ 30の端子間電圧の上限 値 V lmaxとの関係およびトランジスタ温度 T tとコンデンサ 30の端子間電圧 の上限値 Vt maxとの関係を各々予め実験などにより求めてマップとして ROM 44に記憶しておき、 リアクトル温度 T 1とトランジスタ温度 Ttとが与えられ ると、 各々マップに対応する上限値 VI max, Vt maxが導出され、 これらのうち 小さい方の値をコンデンサ 30の端子間電圧の上限値 Vmaxとして導出するもの とした。 コンデンサ 30の端子間電圧を通常よりも低く設定するのは、 モー夕 2 2の各相コイルに印加される電流リップルを抑えると共にィンバ一夕回路 24の トランジスタ T 1〜T 6.のスィヅチングによる発熱量を抑えるためである。 図 8 に、 リアクトル温度 Τ 1とコンデンサ 30の端子間電圧の上限値 Vlmaxとの関 係およびトランジスタ温度 T tとコンデンサ 30の端子間電圧の上限値 V t max との関係を示すマップを示す。 このように、 モー夕 2 2の各相コイルやインバ一 夕回路 2 4のトランジスタ T 1〜T 6の温度に応じてコンデンサ 3 0の端子間電 圧に制限を加えることにより、 モー夕 2 2の各相コイルやトランジスタ Τ 1〜Τ 6を過熱から保護でき、 これらの安定した動作を確保できるのである。 なお、 こ の変形例では、 モ一夕 2 2の各相コイルのリアクトル温度 Τ 1とトランジスタ Τ :!〜 Τ 6のトランジスタ温度 T tとに基づいてコンデンサ 3 0の端子間電圧の上 限値 Vmaxを設定するものとしたが、 リアクトル温度 T 1とトランジスタ温度 T tのいずれか一方に基づいてコンデンサ 3 0の端子間電圧の上限値 Vmaxを設定 するものとしても構わない。
上記変形例では、 コンデンサ 3 0の端子間電圧に制限を加えることにより、 モ —夕 2 2の各相コイルやトランジスタ T 1〜T 6を過熱から保護するものとした が、 トランジスタ Τ 1〜Τ 6のスイッチング周波数を調節することにより、 モー 夕 2 2の各相コイルやトランジスタ Τ 1〜Τ 6を過熱から保護することもできる c 図.9は、 電子制御ュニット 4 0により実行される回路温度調節処理ルーチンの一 例を示すフローチャートである。 この回路温度調節処理ルーチンが実行されると、 電子制御ユニット 4 0の C P U 4 2は、 まず、 温度センサ 5 2 , 5 4により検出 されたリアクトル温度 Τ 1やトランジスタ温度 T tを読み込み (ステップ S 1 2 0 )、 読み込んだリアクトル温度 T 1とトランジスタ温度 T tとに基づいてトラ ンジス夕 T 1〜T 6のスイッチング周波数 (搬送波の周波数) を設定し (ステツ プ S 1 2 2 ) 、 設定されたスィヅチング周波数でトランジスタ Τ 1〜Τ 6をスィ ツチング制御して (ステップ S 1 2 4 ) 、 本ルーチンを終了する。 ここで、 トラ ンジス夕 Τ 1〜Τ 6のスイッチング周波数の設定は、 この変形例では、 リアクト ル温度 Τ 1が閾値 T l hi以上になるとスィツチング周波数を例えば図 3のルーチ ンのステップ S 1 0 4の通常運転時に設定されるスィツチング周波数よりも高く 設定し、 トランジスタ温度 T tが閾値 T t hi以上になるとスイッチング周波数を 通常運転時に設定されるスィツチング周波数よりも低く設定する処理である。 図 1 0に、 スィヅチング周波数とモー夕 2 2の各相コイルの発熱量とトランジスタ T 1〜T 6の発熱量との関係を示す。 図 1 0に示すように、 スイッチング周波数 が高くなるほど各相コィルの発熱量は減少し、 スィッチング周波数が低くなるほ どトランジスタ T 1〜T 6の発熱量は減少するから、 例えば冷却装置の故障など により、 リアクトルとして機能するモー夕 2 2の各相コイルが過熱したときには スィツチング周波数を高くし、 トランジスタ Τ 1〜Τ 6が過熱したときにはスィ ッチング周波数を低くすることで昇降圧チョッパ回路として機能する部位を過熱 から保護し、 その安定した動作を確保することができるのである。
こうした第 1の実施形態の動力出力装置 2 0やその変形例において、 直流電源 3 2の温度調節処理や、 モー夕 2 2の各相コイルやトランジスタ Τ 1〜Τ 6の温 度調節処理を行なう制御システムとしてコンピュータを機能させるコンピュータ 読み取り可能なプログラムを記憶した記憶媒体、 例えば C D— R ΟΜや D VD— R O Ms フレキシブルディスクなどの種々の記憶媒体とする態様も可能である。 こうした記憶媒体を用いて、 本発明の実施の形態に関わるプログラムを電子制御 システムにィンストールしてこのプログラムを実行することにより、 本発明の効 果を奏することができる。
[第 2の実施形態]
次に、 本発明の第 2の実施形態の動力出力装置 1 2 0について説明する。 図 1 1は第 2の実施形態の動力出力装置 1 2 0の構成の概略を示す構成図である。 第 2の実施形態の動力出力装置 1 2 0は、 図 1 1に示すように、 第 1の実施形態の 動力出力装置 2 0におけるモ一夕 2 2の各相コイルゃィンバ一夕回路 2 4の各相 のトランジスタ T 1〜T 6、 ダイオード D 1〜D 6を昇降圧チヨヅパ回路として 機能させる代わりに、 昇降圧動作を行なう D C/D Cコンパ一夕 1 4 8を備えた 点を除いて第 1の実施形態の動力出力装置 2 0と同様の構成をしている。 即ち、 第 2の実施形態の動力出力装置 1 2◦は、 三相交流により回転駆動するモー夕 1 2 2と、 直流電力を三相交流電力に変換してモー夕 1 2 2に供給可能なィンバ一 夕回路 1 2 4と、 ィンバ一夕回路 1 2 4の正極母線、 1 2 6と負極母線 1 2 8とに 接続されたコンデンサ 1 3 0と、 充放電可能な直流電源 1 3 2と、 直流電源 1 3 2からの直流電圧を昇圧してコンデンサ 1 3 0に供給可能な D C/D Cコンパ一 夕 1 4 8と、 直流電源 1 3 2の温度を検出する温度センサ 1 5 0と、 装置全体を コントロールする電子制御ュニヅ ト 1 4 0とを備える。 なお、 第 2の実施形態の 動力出力装置 1 2 0の構成のうち第 1の実施形態の動力出力装置 2 0に対応する 構成については 100を加えて符号を付しその詳細な説明は省略する。
D C/D Cコンパ一夕 148は、 ィンバ一夕回路 124の正極母線 126と負 極母線 128に対してソース側とシンク側となるように配置された 2個のトラン ジス夕 T7, T8と、 このトランジスタ T 7, T 8に各々逆並列接続された 2個 のダイオード D 7, D8と、 トランジスタ T 7, T 8同士の接続点 Mに接続され たリアクトル Lとを備える。 また、 電子制御ュニヅト 140は、 DC/D Cコン バー夕 148のトランジスタ T 7 , T 8をスィツチング制御を行なうための制御 信号が出力されている。
こうして構成された第 2の実施形態の動力出力装置 120の動作、 特に直流電 源 132が低温の状態にあるときに直流電源 132を加温する動作について説明 する。 図 12は、 第 2の実施形態の動力出力装置 120の電子制御ュニット 14 0により実行される電源温度上昇処理ル一チンの一例を示すフローチャートであ る。 このル一チンは、 所定時間毎に繰り返し実行される。
電源温度上昇処理ルーチンが実行されると、 電子制御ュニット 140の CPU 1 2は、 まず、 直流電源 132の電池温度 T b 2を読み込み (ステップ S 20 0) 、 読み込んだ電源温度 Tb 2が閾値 Tblow2を超えるか否かを判定する (ステヅプ S 202 ) 。 判定の結果、 電源温度 Tbが閾値 Tblow2を超えると きには、 直流電源 132は十分な電力をモ一夕 122に供給可能であると判断し て、 通常のモー夕 122の駆動の際に設定されるコンデンサ 130の端子間電圧 とトランジスタ T 7, T 8のスィツチング周波数とを用いて DC/D Cコンパ一 夕 148を駆動制御 (通常運転の処理) し (ステップ S 204) 、 電源温度 Tb が閾値 T blow2以下のときには、 低温のため直流電源 132がモー夕 122に 十分な電力供給を行なうことができないと判断して、 直流電源 132を加温する 加温運転の処理を行なって (ステップ S 206)本ルーチンを終了する。 この加 温運転の処理は、 リァクトル Lを流れる電流のリップルをステツプ S 204にお ける通常運転の処理により生じるリップルよりも大きくする処理であり、 この大 きくした電流リップルが直流電源 132に流れることにより直流電源 132の内 部抵抗における発熱を促進させて直流電源 132を迅速に加温することができ、 その性能を十分に発揮させることができるのである。 具体的には、 コンデンサ 1 3 0の端子間電圧を通常のモー夕 1 2 2の駆動の際に要求されるコンデンサ 1 3 0の端子間電圧よりも高く設定すると共に D C/D Cコンバータ 1 4 8のトラン ジス夕 T 7 , T 8のスイッチング周波数 (搬送波の周波数) を通常よりも低く設 定し、 これらの設定に基づいて D C/D Cコンバータ 1 4 8を駆動制御すること により行なう。 これは、 トランジスタ T 7 , T 8同士の接続点 Mの電位がコンデ ンサ 1 3 0の端子間電圧の範囲でかつトランジスタ T 7 , T 8のスィヅチング周 波数と同一の周波数で変動するところ、 コンデンサ 1 3 0の端子間電圧を高くす るほど、 またトランジスタ T 7, T 8のスイッチング周波数を低くするほど、 直 流電源 1 3 2を流れる電流リップルが大きくなることに基づいている。
以上説明した第 2の実施形態の動力出力装置 1 2 0によれば、 直流電源 1 3 2 が低温の状態にあるときには、 コンデンサ 1 3 0の端子間電圧を通常運転時より も高く設定する共にトランジスタ T 7, T 8のスィツチング周波数 (搬送波の周 波数) を低く設定し、 これらの設定に基づいて D C/D Cコンパ'一夕 1 4 8の駆 動制御を行なうから、 直流電源 1 3 2に比較的大きなリツプルの電流を流すこと ができ、 直流電源 1 3 2を迅速に加温できる。 したがって、 第 1の実施形態の動 力出力装置 2 0と同様の効果を奏することができる。
第 2の実施形態の動力出力装置 1 2 0では、 直流電源 1 3 2の電源温度 T b 2 が閾値 T b low 2以下であるときに、 直流電源 1 3 2を加温する加温運転を行な うものとしたが、 直流電源 1 3 2の電源温度 T bが閾値 T b hi 2以上であるとき に、 直流電源 1 3 2の高温時の性能低下を防止するため直流電源 1 3 2の温度上 昇を抑制する温度上昇抑制運転を行なうものとしても構わない。 この温度上昇抑 制運転の処理は、 図 1 2のルーチンのステヅプ S 2 0 6における加温運転の処理 と逆の処理、 即ち直流電源 1 3 2を流れる電流のリップルを図 1 2のル一チンの ステップ S 2 0 4における通常運転の処理より生じる電流リップルよりも小さく する処理であり、 リヅプルを小さくした電流が直流電源 1 3 2に流れることによ り直流電源 1 3 2の内部抵抗での発熱量を抑えることができ、 その温度上昇を抑 制することができるのである。 具体的には、 通常のモー夕 1 2 2駆動制御時 (通 常運転時) に要求されるコンデンサ 1 3 0の端子間電圧よりも低く設定すると共 にトランジスタ T 7 , T 8のスイッチング周波数 (搬送波の周波数) を高く設定 してこれらの設定に基づいて D C/D Cコンパ一夕 148のトランジスタ T7, Τ 8のスイッチング制御を行なう。 なお、 温度上昇抑制運転の処理は、 コンデン サ 130の端子間電圧の設定と搬送波の周波数の設定のいずれか一方を実行する ものとしても差し支えないことは勿論である。
第 2の実施形態の動力出力装置 120やその変形例では、 直流電源 132の電 源温度 Tb 2に応じて直流電源 132を加温する処理やその温度上昇を抑制する 処理を行なうものとしたが、 D C/D Cコンバータ 148の温度、 例えば、 リア クトル Lやトランジスタ T 7, T 8の温度に応じてトランジスタ T 7, T8をス ィヅチング制御することにより、 DC/DCコンパ一夕 148の温度管理を行な うものとしても構わない。 図 13は、 電子制御ュニット 140により実行される D C/D Cコンバータ温度調節処理ルーチンの一例を示すフローチャートである c このルーチンは所定時間毎に繰り返し実行される。
D CZD Cコンバータ温度調節処理ルーチンが実行されるど、 電子制御ュニヅ ト 140の CPU142は、 まず、 温度センサ 152により検出されたリアクト ル Lの温度 (リアクトル温度 T 12) や温度センサ 154により検出されたトラ ンジス夕 T 7 , T 8の温度 (トランジスタ温度 T t 2) を読み込み (ステップ S 210) 、 読み込んだリアクトル温度 T 12とトランジスタ温度 Tt 2とに基づ いてコンデンサ 130の端子間電圧の上限値 Vmax2を設定し (ステップ S 21 2)、 コンデンサ 130の端子間電圧が設定された上限値 Vmax2を超えない範 囲内で D C/D Cコンパ一夕 148のトランジスタ T 7, T 8をスィヅチング制 御して (ステップ S 214) 本ルーチンを終了する。 コンデンサ 130の端子間 電圧の上限値 Vmax2の設定は、 実施例では、 リアクトル温度 T 12とコンデン サ 130の端子間電圧の上限値 V 1 max 2との関係およびトランジスタ温度 T t 2とコンデンサ 130の端子間電圧の上限値 Vt maxとの関係を各々予め実験な どにより求めてマップとして ROM144に記憶しておき、 リアクトル温度 T 1 2とトランジスタ温度 T t 2とが与えられると、 マップに対応する上限値 V lma x2 , Vtmax2が導出され、 これらのうちの小さい方の値をコンデンサ 130の 端子間電圧の上限値 Vmax2として導出するものとした。 コンデンサ 130の端 子間電圧に制限を加えるのは、 リアクトル Lに流れる電流リップルを低レベルに 抑えると共に D C/D Cコンパ一夕 148のトランジスタ T 7 , Τ 8のスィツチ ングによる発熱を抑えるためである。 図 14に、 リアクトル温度 Τ 12とコンデ ンサ 130の端子間電圧の上限値 Vlmax2との関係およびトランジスタ温度 T t 2とコンデンサ 130の端子間電圧の上限値 Vt max 2との関係を示すマップ を示す。 このように、 リアクトル Lの温度や DC/DCコンバータ 148のトラ ンジス夕 T 7, Τ 8の温度に応じてコンデンサ 130の端子間電圧に制限を加え ることにより、 DC/DCコンバータ 148を過熱から保護でき、 その安定した 動作を確保できるのである。 なお、 この変形例では、 リアクトル温度 T 12とト ランジス夕温度 Tt 2とに基づいてコンデンサ 130の端子間電圧の上限値 Vma X 2を設定するものとしたが、 リアクトル温度 T 12とトランジスタ温度 Tt 2 のいずれか一方に基づいてコンデンサ 130の端子間電圧の上限値 Vmax2を設 定するものとしても構わない。 また、 リアクトル Lやトランジスタ T 7, T 8以 外の; D CZD Cコンパ一夕 148の内部温度に基づいてコンデンサ 130の端子 間電圧の上限値 Vmax2を設定するものとしても構わない。
上記変形例では、 コンデンサ 130の端子間電圧に制限を加えることにより、 DC/DCコンパ一夕 148を過熱から保護するものとしたが、 トランジスタ 7, T 8のスイッチング周波数を調節することにより、 DC/DCコンパ一夕 1
48を過熱から保護することもできる。 図 15は、 電子制御ュニット 140によ り実行される D CZD Cコンバータ温度調節処理ルーチンの一例を示すフローチ ャ一トである。 このこの D C/D Cコンパ一夕温度調節処理ルーチンが実行され ると、 電子制御ュニヅ ト 140の C P U 142は、 まず、 温度センサ 152 , 1
54により検出されたリアクトル温度 T 12やトランジスタ温度 Tt 2を読み込 み (ステップ S 220) 、 読み込んだリアクトル温度 T 12とトランジスタ温度 T t 2とに基づいてトランジスタ T 7, T 8のスィツチング周波数 (搬送波の周 波数) を設定し (ステップ S 222 ) 、 設定されたスイッチング周波数で DCZ D Cコンバータ 148のトランジスタ T 7 , T 8をスィツチング制御して (ステ ヅプ S 224) 本ルーチンを終了する。 ここで、 スイッチング周波数の設定は、 この変形例では、 リアクトル温度 T 12が閾値 T lhi 2以上になるとスィヅチン グ周波数を例えば図 12のルーチンのステップ S 204の通常運転時に設定され るスィツチング周波数よりも高く設定し、 トランジスタ温度 T t 2が閾値 T t hi 2以上になるとスィッチング周波数を通常運転時に設定されるスィッチング周波 数よりも低く設定する処理である。 図 1 6に、 スイッチング周波数とリアクトル Lの発熱量とトランジスタ T 7, Τ 8の発熱量との関係を示す。 図 1 6に示すよ うに、 スイッチング周波数が高くなるほどリアクトル Lの発熱量は減少し、 スィ ヅチング周波数が低くなるほどトランジスタ Τ 7, Τ 8の発熱量は減少するから、 例えば D C/D Cコンパ一夕 1 4 8の冷却装置の故障等により、 リアクトル が 過熱したときにはスイッチング周波数を高くし、 トランジスタ Τ 7 , Τ 8が過熱 したときにはスィツチング周波数を低くすることで D C/D Cコンバータ 1 4 8 を過熱から保護し、 その安定した動作を確保することができるのである。
第 2の実施形態の動力出力装置 1 2 0やその変形例では、 モータ 1 2 2を駆動 するための電力源としての直流電源 1 3 2の温度を調節するものとしたが、 電力 を消費する一般的な負荷を駆動するための電力源としての直流電源の温度を調節 するものに適用するものとしても構わない。 また、 直流電源 1 3 2の温度調節処 理ゃ D CZD Cコンバータ 1 4 8 (リアクトル Lやトランジスタ Τ 7 , Τ 8 ) の 温度調節処理を行なう制御システムとしてコンビユー夕を機能させるコンピュー 夕読み取り可能なプログラムを記憶した記憶媒体、 例えば C D— R 0 Μや D V D - R O Ms フレキシブルディスクなどの種々の記憶媒体とする態様も可能である。 こうした記憶媒体を用いて、 本発明の実施の形態に関わるプログラムを制御シス テムにィンストールしてこのプログラムを実行することにより、 本発明の効果を 奏することができる。
第 1, 第 2の実施形態の動力出力装置 2 0 , 1 2 0やこれらの変形例では、 モ —夕 2 2 , 1 2 2として三相交流により駆動する同期発電電動機を用いたが、 多 相交流により駆動する如何なるタイプの電動機を用いるものとしてもよい。
以上、 本発明の実施の形態について実施例を用いて説明したが、 本発明はこう した実施例に何ら限定されるものではなく、 本発明の要旨を逸脱しない範囲内に おいて、 種々なる形態で実施し得ることは勿論である。 産業上の利用可能性 以上のように、 本発明にかかる動力出力装置やこれを搭載する車輛、 動力出力 装置の制御方法や記憶媒体並びにプログラム、 本発明にかかる駆動装置やこれを 搭載する車輛、 駆動装置の制御方法や記憶媒体並びにプログラムは、 自動車等の 車輛の駆動源として搭載されるモー夕やその他の電気機器の電力源としての電源 の温度を管理するものとして、 また、 電源と電気機器との間に介在する電力変換 器の温度を管理するものとして用いるのに適している。

Claims

請求の範囲
1 . 多相交流により回転駆動する電動機と、
複数のスィッチング素子のスイッチングにより多相交流電力を前記電動機に供 給可能なインバー夕回路と、
前記ィンバ一夕回路の正極母線と負極母線とに接続された第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のうちのいずれか一方の母線と 前記電動機の中性点とに接続された第 2の電源と、
前記電動機のコイルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調節すべく前記インバ一夕回路のスィツチング素 子をスィツチング制御する温度調節手段と
を備える動力出力装置。
2 . 多相交流により回転駆動する電動機と、
複数のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供 給可能なィンバ一夕回路と、
前記ィンバ一夕回路の正極母線および負極母線のうちのいずれか一方の母線と 前記電動機の中性点とに接続された第 1の電源と、
前記ィンバ一夕回路の前記一方の母線とは異なる他方の母線と前記電動機の中 性点とに接続された第 2の電源と、
前記電動機のコイルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調節すべく前記ィンバ一夕回路のスィツチング素 子をスィッチング制御する温度調節手段と
を備える動力出力装置。
3 . 請求の範囲第 1項または第 2項記載の動力出力装置であって、 前記第 1の電源は、 前記第 2の電源からの電力を用いて充電可能な蓄電装置で あり、
前記温度調節手段は、 前記電力変換部の温度または前記第 2の電源の温度に基 づいて前記蓄電装置の蓄電電圧を前記スィツチング制御により調節する手段であ る動力出力装置。
4 . 請求の範囲第 3項記載の動力出力装置であって、
前記温度調節手段は、 前記第 2の電源の温度が第 1の閾値以下であるとき、 前 記蓄電装置の蓄電電圧を通常よりも高くするようスィッチング制御する手段であ る動力出力装置。
5 . 請求の範囲第 3項または第 4項記載の動力出力装置であつて、
前記温度調節手段は、 前記第 2の電源の温度が第 2の閾値以上であるとき、 前 記蓄電装置の蓄電電圧を通常よりも低くするようスィッチング制御する手段であ る動力出力装置。
6 . 請求の範囲第 3項ないし第 5項いずれか記載の動力出力装置であつて、 前記温度調節手段は、 前記電力変換部の温度が第 3の閾値以上であるとき、 前 記蓄電装置の蓄電電圧に制限を加えてスィツチング制御する手段である動力出力
7 . 請求の範囲第 1項ないし第 6項いずれか記載の動力出力装置であって、 前記温度調節手段は、 前記電力変換部の温度または前記第 2の電源の 度に基 づいて前記ィンバ一夕回路のスィヅチング素子のスィヅチング周波数を設定し、 該設定されたスィツチング周波数にてスィツチング制御する手段である動力出力
8 . 請求の範囲第 7項記載の動力出力装置であって、
前記温度調節手段は、 前記第 2の電源の温度が第 4の閾値以下であるとき、 前 記ィンバ一夕回路のスィツチング素子のスィツチング周波数を通常よりも低く設 定してスィツチング制御する手段である動力出力装置。
9 . 請求の範囲第 7項または第 8項記載の動力出力装置であって、
前記温度調節手段は、 前記第 2の電源の温度が第 5の閾値以上であるとき、 前 記ィンバ一夕回路のスィツチング素子のスィツチング周波数を通常よりも高く設 定してスィツチング制御する手段である動力出力装置。
1 0 . 請求の範囲第 7項ないし第 9項いずれか記載の動力出力装置であって、 前記温度調節手段は、 前記電力変換部に含まれる前記電動機のコイルの温度が 第 6の閾値以上であるとき、 前記ィンバ一夕回路のスィヅチング素子のスィヅチ ング周波数を通常よりも高く設定してスィツチング制御する手段である動力出力
1 1 . 請求の範囲第 7項ないし第 1 0項いずれか記載の動力出力装置であって、 前記温度調節手段は、 前記電力変換部に含まれる前記スィツチング素子の温度 が第 7の閾値以上であるとき、 前記ィンバ一夕回路のスィツチング素子のスィヅ チング周波数を通常よりも低く設定してスィツチング制御する手段である動力出 力装置。
1 2 . 多相交流により回転駆動する電動機と、
複数のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供 給可能なィンバ一夕回路と、
前記ィンバ一夕回路の正極母線と負極母線とに接続された第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のいずれか一方の母線と前記電 動機の中性点とに接続された第 2の電源と、
前記第 2の電源の温度を検出する温度検出手段と、
該検出された第 2の電源の温度が所定の閾値以下のとき、 該第 2の電源を加温 する加温手段と
を備える動力出力装置。
1 3 . 多相交流により回転駆動する電動機と、
複数のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供 給可能なィンバ一夕回路と、
前記ィンバ一夕回路の正極母線および負極母線のいずれか一方の母線と前記電 動機の中性点とに接続された第 1の電源と、
前記ィンバ一夕回路の前記一方の母線とは異なる他方の母線と前記電動機の中 性点とに接続された第 2の電源と、
前記第 2の電源の温度を検出する温度検出手段と、
該検出された第 2の電源の温度が所定の閾値以下のとき、 該第 2の電源を加温 する加温手段と
を備える動力出力装置。
1 4 . 請求の範囲第 1項ないし第 1 3項いずれか記載の動力出力装置を搭載する 車輛。
1 5 . 多相交流により回転駆動する電動機と、
複数のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供 給可能なインバータ回路と、
前記ィンバ一夕回路の正極母線と負極母線とに接続された第 1の電源と、 前記ィンバ一夕回路の正極母線および負極母線のうちのいずれか一方の母線と 前記電動機の中性点とに接続された第 2の電源と、
を備える動力出力装置の制御方法であって、
前記電動機のコィルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調整すべく前記インバ一夕回路のスィツチング素 子をスィヅチング制御することを特徴とする動力出力装置の制御方法。
1 6 . 多相交流により回転駆動する電動機と、
複数のスィツチング素子のスィツチングにより多相交流電力を前記電動機に供 給可能なィンバ一夕回路と、
前記ィンバ一夕回路の正極母線および負極母線のうちのいずれか一方の母線と 前記電動機の中性点とに接続された第 1の電源と、
前記ィンバ一夕回路の前記一方の母線とは異なる他方の母線と前記電動機の中 性点とに接続された第 2の電源と、
を備える動力出力装置の制御方法であつて、
前記電動機のコィルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調整すべく前記インバー夕回路のスィツチング素 子をスィツチング制御することを特徴とする動力出力装置の制御方法。
1 7 . 請求の範囲第 1 5項または第 1 6項記載の動力出力装置の制御方法であつ て、
前記第 2の電源の温度または前記電力変換部の温度に基づいて、 前記第 2の電 源からの電力を用いて充電可能な蓄電装置としての前記第 1の電源の蓄電電圧を 前記スイツチング制御により調節することを特徴とする動力出力装置の制御方法
1 8 . 請求の範囲第 1 5項ないし第 1 7項いずれか記載の動力出力装置の制御方 法であって、
前記電力変換部の温度または前記第 2の電源の温度に基づいて、 前記ィンバー 夕回路のスィツチング素子のスィツチング周波数を設定し、 該設定されたスィッ チング周波数にてスィツチング制御することを特徴とする動力出力装置の制御方 法。
1 9 . コンピュータを、
多相交流により回転駆動する電動機と、 複数のスィツチング素子のスィッチン グにより多相交流電力を前記電動機に供給可能なィンバ一夕回路と、 該ィンバー 夕回路の正極母線と負極母線とに接続された第 1の電源と、 前記ィンバ一夕回路 の正極母線および負極母線のうちのいずれか一方の母線と前記電動機の中性点と に接続された第 2の電源とを備える動力出力装置における、
前記電動機のコイルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調節すべく前記ィンバ一夕回路のスィツチング素 子をスィツチング制御する温度調節手段として機能させるコンピュータ読み取り 可能なプログラムを記憶した記憶媒体。
2 0 . コンピュータを、
多相交流により回転駆動する電動機と、 複数のスィツチング素子のスィッチン グにより多相交流電力を前記電動機に供給可能なィンバ一夕回路と、 該ィンバー 夕回路の正極母線および負極母線のうちのいずれか一方の母線と前記電動機の中 性点とに接続された第 1の電源と、 前記ィンバ一夕回路の前記一方の母線とは異 なる他方の母線と前記電動機の中性点とに接続された第 2の電源とを備える動力 出力装置における、
前記電動機のコイルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調節すべく前記ィンバ一夕回路のスィツチング素 子をスィツチング制御する温度調節手段として機能させるコンピュータ読み取り 可能なプログラムを記憶した記憶媒体。
2 1 . コンピュータを、
多相交流により回転駆動する電動機と、 複数のスィヅチング素子のスィッチン グにより多相交流電力を前記電動機に供給可能なィンバ一夕回路と、 該ィンバ一 夕回路の正極母線と負極母線とに接続された第 1の電源と、 前記ィンバ一夕回路 の正極母線および負極母線のうちのいずれか一方の母線と前記電動機の中性点と に接続された第 2の電源とを備える動力出力装置における、
前記電動機のコイルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調節すべく前記ィンバ一夕回路のスィツチング素 子をスイッチング制御する温度調節手段として機能させるプログラム。
2 2 . コンピュータを、
多相交流により回転駆動する電動機と、 複数のスィッチング素子のスィッチン グにより多相交流電力を前記電動機に供給可能なィンバ一夕回路と、 該ィンバー 夕回路の正極母線および負極母線のうちのいずれか一方の母線と前記電動機の中 性点とに接続された第 1の電源と、 前記ィンバ一夕回路の前記一方の母線とは異 なる他方の母線と前記電動機の中性点とに接続された第 2の電源とを備える動力 出力装置における、
前記電動機のコイルと前記スイツチング素子とを含み前記第 2の電源からの電 力を変換して前記第 1の電源に供給可能な電力変換部の温度または前記第 2の電 源の温度に基づいて前記温度を調節すべく前記インバ一夕回路のスィツチング素 子をスィツチング制御する温度調節手段として機能させるプログラム。
2 3 . 直流電流をエネルギとして一時的に蓄積可能なエネルギ蓄積手段を有し、 該ェネルギ蓄積手段に蓄積されたエネルギを利用して、 入力された直流電圧をス ィヅチング素子のスィヅチングにより D CZD C変換して負荷に供給可能な D C /D Cコンバータと、
該 D C/D Cコンバータに直流電力を供給可能な電源と、
前記電源の温度または前記 D C/D Cコンバータの温度に基づいて前記温度を 調節すべく前記スィツチング素子をスィツチング制御する温度調節手段と を備える駆動装置。
2 4 . 請求の範囲第 2 3項記載の駆動装置であって、
前記 D CZD Cコンバ一夕から出力された電力を充電可能な蓄電装置を備え、 前記温度調節手段は、 前記電源の温度または前記 D C/D Cコンバータの温度 に基づいて前記蓄電装置の蓄電電圧をスィツチング制御により調節する手段であ る駆動装置。
2 5 . 請求の範囲第 2 4項記載の駆動装置であって、
前記温度調節手段は、 前記電源の温度が第 1の閾値以下であるとき、 前記蓄電 装置の蓄電電圧が通常よりも高くなるようスィッチング制御する手段である駆動
2 6 . 請求の範囲第 2 4項または第 2 5項記載の駆動装置であって、
前記温度調節手段は、 前記電源の温度が第 2の閾値以上であるとき、 前記蓄電 装置の蓄電電圧が通常よりも低くなるようスィッチング制御する手段である駆動
2 7 . 請求の範囲第 2 4項ないし第 2 6項いずれか記載の駆動装置であって、 前記温度調節手段は、 前記 D C/D Cコンバ一夕の温度が第 3の閾値以上であ るとき、 前記蓄電装置の蓄電電圧に制限を加えてスィツチング制御する手段であ
2 8 . 請求の範囲第 2 3項ないし第 2 7項いずれか記載の駆動装置であって、 前記温度調節手段は、 前記電源の温度または前記 D C/D Cコンバータの温度 に基づいて前記スィツチング素子のスィツチング周波数を設定し、 該設定された スィツチング周波数にてスィツチング制御する手段である駆動装置。
2 9 . 請求の範囲第 2 8項記載の駆動装置であって、
前記温度調節手段は、 前記電源の温度が第 4の閾値以下であるとき、 前記スィ ツチング周波数を通常よりも低く設定してスィツチング制御する手段である駆動
3 0 . 請求の範囲第 2 8項または第 2 9項記載の駆動装置であって、
前記温度調節手段は、 前記電源の温度が第 5の閾値以上であるとき、 前記スィ ッチング周波数を通常よりも高く設定してスィッチング制御する手段である駆動
3 1 . 請求の範囲第 2 8項ないし第 3 0項いずれか記載の駆動装置であって、 前記温度調節手段は、 前記スィツチング素子の温度が第 6の閾値以上であると き、 前記スィツチング周波数を通常よりも低く設定してスィツチング制御する手 段である駆動装置。
3 2 . 請求の範囲第 3 1項記載の駆動装置であって、
前記温度調節手段は、 前記エネルギ蓄積手段の温度が第 7の閾値以上であると き、 前記スィツチング素子のスィツチング周波数を通常よりも高く設定してスィ ッチング制御する手段である駆動装置。
3 3 . 請求の範囲第 2 3項ないし第 3 2項いずれか記載の駆動装置であって、 前記負荷は、 多相交流により回転駆動する電動機であり、
前記 D C/D Cコンバータにより変換された直流電力を多相交流電力に変換し て前記電動機に供給可能なィンバ一夕回路を備える駆動装置。
3 4 . 請求の範囲第 3 3項記載の駆動装置と電動機とを搭載する車輛。
3 5 . 直流電流をエネルギとして一時的に蓄積可能なエネルギ蓄積手段を有し、 該エネルギ蓄積手段を利用して、 入力された直流電圧をスィツチング素子のスィ ヅチングにより D C/D C変換して負荷に供給可能な D CZD Cコンパ'一夕と、 該 D Cコンバータに直流電力を供給可能な電源と
を備える駆動装置の制御方法であって、
前記電源の温度または前記 D C/D Cコンパ一夕の温度に基づいて前記温度を 調節すべく前記スィツチング素子をスィツチング制御する駆動装置の制御方法。
3 6 . 請求の範囲第 3 5項記載の駆動装置の制御方法であって、 前記電源の温度または前記スィツチング素子の温度に基づいて、 前記 D C/D Cコンバータから出力された電力を充電可能な蓄電装置を含む駆動装置における 該蓄電装置の蓄電電圧をスィッチング制御により調節することを特徴とする駆動 装置の制御方法。
3 7 . 請求の範囲第 3 5項または第 3 6項記載の駆動装置の制御方法であって、 前記電源の温度または前記 D C/D Cコンパ'一夕の温度に基づいて前記スィヅ チング素子のスィツチング周波数を設定し、 該設定されたスィツチング周波数に てスィッチング制御することを特徴とする駆動装置の制御方法。
3 8 . コンピュータを、
直流電流をエネルギとして一時的に蓄積可能なエネルギ蓄積手段を有し該エネ ルギ蓄積手段に蓄積されたエネルギを利用して入力された直流電圧をスィッチン グ素子のスィツチングにより D C/D C変換して負荷に供給可能な D C/D Cコ ンバ一夕と、 該 D C/D Cコンバータに直流電力を供給可能な電源とを備える駆 動装置における、
前記直流電源の温度または前記 D C/D Cコンバータの温度に基づいて前記温 度を調節すべく前記スィツチング素子をスィツチング制御する温度調節手段とし て機能させるコンビュ一夕読み取り可能なプログラムを記憶した記憶媒体。
3 9 . コンピュータを、
直流電流をエネルギとして一時的に蓄積可能なエネルギ蓄積手段を有し該エネ ルギ蓄積手段に蓄積されたエネルギを利用して入力された直流電圧をスィッチン グ素子のスィツチングにより D C/D C変換して負荷に供給可能な D C/D Cコ ンバ一夕と、 該 D C/D Cコンバータに直流電力を供給可能な電源とを備える駆 動装置における、
前記直流電源の温度または前記 D C/D Cコンバータの温度に基づいて前記温 度を調節すべく前記スィツチング素子をスィツチング制御する温度調節手段とし て機能させるプログラム。
PCT/JP2001/008751 2001-02-14 2001-10-04 Dispositif de production de puissance et dispositif d'entrainement, vehicule sur lequel lesdits dispositifs sont montes, et procedes de commande, supports de stockage et programmes desdits dispositifs WO2002065628A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01974686A EP1286459B1 (en) 2001-02-14 2001-10-04 Drive device and control method, storing medium and program for the drive device
DE60113832T DE60113832T2 (de) 2001-02-14 2001-10-04 Antriebsvorrichtung und regelverfahren, speichermedium und programm für die antriebsvorrichtung
JP2002564826A JP3732828B2 (ja) 2001-02-14 2001-10-04 動力出力装置およびこれを搭載する車輌、動力出力装置の制御方法および記憶媒体並びにプログラム、駆動装置およびこれを搭載する車輌、駆動装置の制御方法および記憶媒体並びにプログラム
US10/239,889 US7120037B2 (en) 2001-02-14 2001-10-04 Power outputting device and vehicle mounting it, control method, storing medium and program for the power outputting device, drive device and vehicle mounting it, and, control method, storing medium and program for the drive device
KR10-2002-7013657A KR100486321B1 (ko) 2001-02-14 2001-10-04 동력 출력장치 및 이것을 탑재하는 차량, 동력 출력장치의 제어방법 및 기억매체, 구동장치 및 이것을 탑재하는 차량, 구동장치의 제어방법 및 기억매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-037007 2001-02-14
JP2001037007 2001-02-14

Publications (1)

Publication Number Publication Date
WO2002065628A1 true WO2002065628A1 (fr) 2002-08-22

Family

ID=18900195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008751 WO2002065628A1 (fr) 2001-02-14 2001-10-04 Dispositif de production de puissance et dispositif d'entrainement, vehicule sur lequel lesdits dispositifs sont montes, et procedes de commande, supports de stockage et programmes desdits dispositifs

Country Status (7)

Country Link
US (1) US7120037B2 (ja)
EP (1) EP1286459B1 (ja)
JP (1) JP3732828B2 (ja)
KR (1) KR100486321B1 (ja)
CN (1) CN1211908C (ja)
DE (1) DE60113832T2 (ja)
WO (1) WO2002065628A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007900A1 (ja) * 2005-07-12 2007-01-18 Toyota Jidosha Kabushiki Kaisha 二次電池の制御装置および制御方法
JP2010263719A (ja) * 2009-05-08 2010-11-18 Toyota Motor Corp 動力出力システムおよびその制御方法、動力出力システムを搭載する車両
JP2011217467A (ja) * 2010-03-31 2011-10-27 Toyota Industries Corp 中性点昇圧方式の直流−三相変換装置
JP2011229247A (ja) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Dc/dc電圧変換装置
CN103078590A (zh) * 2011-10-25 2013-05-01 株式会社电装 用于马达-发电机的控制装置
US8644045B2 (en) 2007-07-26 2014-02-04 Toyota Jidosha Kabushiki Kaisha Temperature controlled voltage conversion device
US8750008B2 (en) 2010-02-17 2014-06-10 Toyota Jidoha Kabushiki Multi-phase converter for DC power supply with two choppers having magnetically coupled reactors
CN111376795A (zh) * 2018-12-29 2020-07-07 比亚迪汽车工业有限公司 用于加热电动汽车的电池的控制方法、系统及电动汽车
WO2020246038A1 (ja) * 2019-06-07 2020-12-10 三菱電機株式会社 モータ駆動装置、送風機、圧縮機及び空気調和機
US11881804B2 (en) * 2018-11-29 2024-01-23 Mitsubishi Electric Corporation Rotating electric machine drive device

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692993B2 (ja) * 2001-10-04 2005-09-07 トヨタ自動車株式会社 駆動装置および動力出力装置
US6917179B2 (en) * 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP3661689B2 (ja) * 2003-03-11 2005-06-15 トヨタ自動車株式会社 モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
US7737658B2 (en) * 2003-10-27 2010-06-15 Sony Corporation Battery packs having a charging mode and a discharging mode
JP4461824B2 (ja) * 2004-02-13 2010-05-12 トヨタ自動車株式会社 自動車、自動車の制御方法、制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
FI119579B (fi) * 2004-08-13 2008-12-31 Abb Oy Menetelmä jännitevälipiirillisessä taajuusmuuttajassa ja taajuusmuuttaja
JP4113527B2 (ja) * 2004-11-25 2008-07-09 トヨタ自動車株式会社 動力出力装置およびそれを備えた車両
JP4839780B2 (ja) * 2004-12-28 2011-12-21 トヨタ自動車株式会社 モータ制御装置および車両
US7792860B2 (en) * 2005-03-25 2010-09-07 Oracle International Corporation System for change notification and persistent caching of dynamically computed membership of rules-based lists in LDAP
DE102005042324A1 (de) * 2005-09-06 2007-03-15 Siemens Ag Weitspannungs-Umrichter
KR100659313B1 (ko) * 2005-12-06 2006-12-19 삼성전자주식회사 비엘디시 모터의 구동장치
DE602006010156D1 (de) * 2005-12-07 2009-12-17 Denso Corp Steuergerät für ein Elektrofahrzeug
JP2007166874A (ja) * 2005-12-16 2007-06-28 Toyota Motor Corp 電圧変換装置
JP4640200B2 (ja) * 2006-02-10 2011-03-02 トヨタ自動車株式会社 電圧変換装置および電圧変換器の制御方法
JP4479919B2 (ja) * 2006-03-29 2010-06-09 株式会社デンソー 電気自動車の制御装置
JP4544273B2 (ja) * 2007-06-20 2010-09-15 トヨタ自動車株式会社 車両用電源装置および車両用電源装置における蓄電装置の充電状態推定方法
JP5986353B2 (ja) * 2007-09-24 2016-09-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 電動機の操作方法および装置
JP4380755B2 (ja) * 2007-10-10 2009-12-09 株式会社デンソー 回転電機装置
US8556011B2 (en) * 2007-11-01 2013-10-15 GM Global Technology Operations LLC Prediction strategy for thermal management and protection of power electronic hardware
JP5221119B2 (ja) * 2007-12-14 2013-06-26 株式会社東芝 インバータ装置
JP4957538B2 (ja) * 2007-12-27 2012-06-20 アイシン・エィ・ダブリュ株式会社 コンバータ装置,回転電機制御装置および駆動装置
JP4708483B2 (ja) * 2008-03-18 2011-06-22 株式会社デンソー 同期電動機の駆動装置
US8625315B2 (en) * 2008-05-09 2014-01-07 Etm Electromatic Inc Inverter modulator with variable switching frequency
JP5412974B2 (ja) * 2009-03-13 2014-02-12 株式会社デンソー 三相交流同期電動機の駆動装置
KR101358367B1 (ko) 2009-07-08 2014-02-05 도요타 지도샤(주) 2차 전지의 승온 장치 및 그것을 구비하는 차량
JP4811503B2 (ja) 2009-07-08 2011-11-09 トヨタ自動車株式会社 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP4840481B2 (ja) * 2009-07-08 2011-12-21 トヨタ自動車株式会社 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
DE102009045147A1 (de) * 2009-09-30 2011-04-07 Robert Bosch Gmbh Verfahren zum Schutz eines Kraftfahrzeuggenerators vor einer Überhitzung
US8749090B2 (en) * 2010-02-03 2014-06-10 GM Global Technology Operations LLC Dual source automotive propulsion system and method of operation
JP5502603B2 (ja) * 2010-06-04 2014-05-28 本田技研工業株式会社 車両の電池加温装置
JP5294335B2 (ja) * 2010-06-18 2013-09-18 三菱電機株式会社 半導体装置
DE102010042328A1 (de) * 2010-10-12 2012-04-12 Robert Bosch Gmbh Verfahren zum Überwachen des Ladebetriebs eines Energiespeichers in einem Fahrzeug und Ladesystem zum Laden eines Energiespeichers in einem Fahrzeug
CN102479983B (zh) * 2010-11-30 2016-03-02 比亚迪股份有限公司 用于电动汽车动力电池的充电控制方法及装置
WO2012093493A1 (ja) * 2011-01-07 2012-07-12 三菱電機株式会社 充放電装置
WO2012114902A1 (ja) * 2011-02-25 2012-08-30 Ntn株式会社 電気自動車
JP5925425B2 (ja) * 2011-04-07 2016-05-25 サンデンホールディングス株式会社 インバータ装置
DE102011088974A1 (de) * 2011-12-19 2013-06-20 Continental Automotive Gmbh Verfahren zur Anlaufsteuerung einer elektrischen Unterdruckpumpe
JP5973173B2 (ja) * 2012-01-23 2016-08-23 東京エレクトロン株式会社 熱処理装置及び熱処理装置の制御方法
KR101323921B1 (ko) * 2012-04-24 2013-10-31 엘에스산전 주식회사 전력 변환 장치 및 이의 동작 방법
US9352656B2 (en) * 2012-08-31 2016-05-31 Ford Global Technologies, Llc Temperature based electric machine control
CA2884597C (en) * 2012-09-13 2022-04-05 Moog Inc. Methods and apparatae for controlling and providing a voltage converter with a pulse-width-modulated switch
DE102012216659A1 (de) * 2012-09-18 2014-03-20 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Schienenfahrzeugs
DE102013200674A1 (de) * 2013-01-17 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer elektrischen Maschine und zwei Teilbordnetzen
DE102013205870A1 (de) * 2013-04-03 2014-10-09 Bayerische Motoren Werke Aktiengesellschaft Ansteuerverfahren für elektrische Maschine
CN103332192B (zh) * 2013-06-28 2016-08-10 广东戈兰玛汽车系统有限公司 Amt动力链控制器
JP2015080343A (ja) * 2013-10-17 2015-04-23 トヨタ自動車株式会社 電力制御装置
US9625921B2 (en) * 2015-04-03 2017-04-18 Ge Energy Power Conversion Technology Ltd Life of a semiconductor by reducing temperature changes therein via switching frequency
AT517459B1 (de) 2015-07-31 2017-02-15 Avl List Gmbh Verfahren und eine Vorrichtung zum Ansteuern eines DC/DC-Wandlers mittels einer PWM-Steuerung
US10097130B2 (en) * 2015-12-02 2018-10-09 Aisin Seiki Kabushiki Kaisha Energization control system and sensor unit
JP6269647B2 (ja) * 2015-12-14 2018-01-31 トヨタ自動車株式会社 電源システム
CN105489964B (zh) * 2015-12-22 2018-04-06 重庆科鑫三佳车辆技术有限公司 一种动力电池动态温升控制方法和装置
JP6835043B2 (ja) * 2018-06-26 2021-02-24 トヨタ自動車株式会社 モータ駆動システム
CN111354998B (zh) * 2018-12-21 2022-03-18 比亚迪股份有限公司 车辆及其温度控制装置
CN112133987A (zh) * 2019-06-25 2020-12-25 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置
CN112644339B (zh) * 2019-09-25 2022-01-07 比亚迪股份有限公司 能量转换装置的协同控制方法、装置、存储介质及车辆
EP3799296A1 (de) * 2019-09-27 2021-03-31 Siemens Aktiengesellschaft Elektrischer antrieb mit schaltfrequenzgeregelter motortemperatur
CN111884531B (zh) * 2020-06-24 2022-07-19 华为数字能源技术有限公司 逆变器开关频率调节方法、动力总成系统及电动车辆
EP4096086A1 (en) * 2021-05-28 2022-11-30 Thermo King Corporation A power converter
CN114537226B (zh) * 2022-03-07 2023-11-07 臻驱科技(上海)有限公司 电动汽车的动力总成电路及动力电池加热方法
DE102022112903B4 (de) 2022-05-23 2023-12-21 Sma Solar Technology Ag Verfahren zur erhöhung der lebensdauer von wandlerschaltern sowie system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568898A (en) * 1978-11-16 1980-05-23 Japanese National Railways<Jnr> Inverter for synchronous motor
JPH01107621A (ja) * 1987-10-19 1989-04-25 Mitsubishi Electric Corp 漏れ電流低減回路
US6137704A (en) * 1997-06-03 2000-10-24 Fuji Electric Co., Ltd. Power conversion apparatus utilizing zero-phase power supply device that provides zero-phase sequence components
JP2001298990A (ja) * 2000-04-07 2001-10-26 Toyota Central Res & Dev Lab Inc インバータモータシステム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972991A (ja) * 1982-10-19 1984-04-25 Fanuc Ltd モ−タの制御装置
NL8702363A (nl) 1987-10-05 1989-05-01 Philips Nv Elektrisch scheerapparaat.
JPH04168973A (ja) * 1990-10-31 1992-06-17 Toshiba Corp 電源回路及びこれを用いた駆動回路
AU661564B2 (en) 1992-03-06 1995-07-27 Hino Jidosha Kogyo Kabushiki Kaisha Braking and auxiliary power apparatus of internal combustion engine
US5420777A (en) 1993-06-07 1995-05-30 Nec Corporation Switching type DC-DC converter having increasing conversion efficiency at light load
FR2714233B1 (fr) * 1993-12-16 1996-01-12 Telemecanique Système de contrôle d'alimentation d'un moteur asynchrone.
JPH09247992A (ja) 1996-03-13 1997-09-19 Toshiba Corp 制御装置付きモータ
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
JPH1094182A (ja) * 1996-09-13 1998-04-10 Honda Motor Co Ltd 電源装置および電気自動車
JP3365254B2 (ja) 1997-06-03 2003-01-08 富士電機株式会社 単相−多相電力変換回路
JP3223842B2 (ja) 1997-06-03 2001-10-29 富士電機株式会社 多相出力電力変換回路
JP3454691B2 (ja) 1997-09-26 2003-10-06 三洋電機株式会社 直流ブラシレスモータの駆動回路
JP3219039B2 (ja) 1997-12-15 2001-10-15 富士電機株式会社 電気自動車の電気システム
JPH11280512A (ja) * 1998-03-30 1999-10-12 Nissan Motor Co Ltd ハイブリッド車両
JP3410022B2 (ja) 1998-05-20 2003-05-26 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3496532B2 (ja) * 1998-08-18 2004-02-16 日立工機株式会社 遠心機用モータの制御装置
JP4078754B2 (ja) 1999-05-20 2008-04-23 株式会社デンソー パワースイッチング装置
JP3566151B2 (ja) * 1999-10-04 2004-09-15 本田技研工業株式会社 ハイブリッド自動車のモータ制御装置
JP3552614B2 (ja) * 1999-11-11 2004-08-11 トヨタ自動車株式会社 電源回路
US6700802B2 (en) * 2000-02-14 2004-03-02 Aura Systems, Inc. Bi-directional power supply circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568898A (en) * 1978-11-16 1980-05-23 Japanese National Railways<Jnr> Inverter for synchronous motor
JPH01107621A (ja) * 1987-10-19 1989-04-25 Mitsubishi Electric Corp 漏れ電流低減回路
US6137704A (en) * 1997-06-03 2000-10-24 Fuji Electric Co., Ltd. Power conversion apparatus utilizing zero-phase power supply device that provides zero-phase sequence components
JP2001298990A (ja) * 2000-04-07 2001-10-26 Toyota Central Res & Dev Lab Inc インバータモータシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1286459A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026700A (ja) * 2005-07-12 2007-02-01 Toyota Motor Corp 二次電池の制御装置
US7629755B2 (en) 2005-07-12 2009-12-08 Toyota Jidosha Kabushiki Kaisha Secondary battery control apparatus and secondary battery control method
WO2007007900A1 (ja) * 2005-07-12 2007-01-18 Toyota Jidosha Kabushiki Kaisha 二次電池の制御装置および制御方法
US8644045B2 (en) 2007-07-26 2014-02-04 Toyota Jidosha Kabushiki Kaisha Temperature controlled voltage conversion device
JP2010263719A (ja) * 2009-05-08 2010-11-18 Toyota Motor Corp 動力出力システムおよびその制御方法、動力出力システムを搭載する車両
US8750008B2 (en) 2010-02-17 2014-06-10 Toyota Jidoha Kabushiki Multi-phase converter for DC power supply with two choppers having magnetically coupled reactors
JP2011217467A (ja) * 2010-03-31 2011-10-27 Toyota Industries Corp 中性点昇圧方式の直流−三相変換装置
JP2011229247A (ja) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Dc/dc電圧変換装置
CN103078590A (zh) * 2011-10-25 2013-05-01 株式会社电装 用于马达-发电机的控制装置
CN103078590B (zh) * 2011-10-25 2016-06-15 株式会社电装 用于马达-发电机的控制装置
US11881804B2 (en) * 2018-11-29 2024-01-23 Mitsubishi Electric Corporation Rotating electric machine drive device
CN111376795A (zh) * 2018-12-29 2020-07-07 比亚迪汽车工业有限公司 用于加热电动汽车的电池的控制方法、系统及电动汽车
WO2020246038A1 (ja) * 2019-06-07 2020-12-10 三菱電機株式会社 モータ駆動装置、送風機、圧縮機及び空気調和機

Also Published As

Publication number Publication date
KR100486321B1 (ko) 2005-04-29
EP1286459A4 (en) 2003-05-14
US7120037B2 (en) 2006-10-10
US20030057914A1 (en) 2003-03-27
CN1211908C (zh) 2005-07-20
DE60113832D1 (de) 2006-02-16
EP1286459A1 (en) 2003-02-26
KR20030020270A (ko) 2003-03-08
JPWO2002065628A1 (ja) 2004-06-17
JP3732828B2 (ja) 2006-01-11
DE60113832T2 (de) 2006-07-06
CN1436395A (zh) 2003-08-13
EP1286459B1 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
WO2002065628A1 (fr) Dispositif de production de puissance et dispositif d&#39;entrainement, vehicule sur lequel lesdits dispositifs sont montes, et procedes de commande, supports de stockage et programmes desdits dispositifs
JP3692993B2 (ja) 駆動装置および動力出力装置
JP5050324B2 (ja) 二次電池の制御装置
EP2062801B1 (en) Power supply system with multiphase motor and multiphase inverter
JP4840481B2 (ja) 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP4811503B2 (ja) 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP6645407B2 (ja) 駆動システム
JP6426426B2 (ja) 電動機駆動装置
JP2011254673A (ja) 車両の電池加温装置
WO2008007723A1 (fr) Dispositif de commande de charge et véhicule utilisant celui-ci
WO2008081722A1 (ja) 負荷装置の制御装置、および車両
JP2013037859A (ja) 蓄電池装置
JP2014226000A (ja) 電力変換装置
US7675192B2 (en) Active DC bus filter for fuel cell applications
JP6636905B2 (ja) 電力変換装置
CN108482102B (zh) 混合动力驱动系统
JP2009038958A (ja) 車両の制御装置および制御方法
JP2020005389A (ja) 電源システム
JP2008306822A (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
WO2024207830A1 (zh) 电池加热系统和电动卡车
CN116587869A (zh) 利用电机驱动系统的车辆电池充电系统
JP2008029075A (ja) インバータ装置
JP6671402B2 (ja) 車両用電源装置
JP2002291256A (ja) 動力出力装置
JP5694046B2 (ja) 制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2001974686

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10239889

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 564826

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027013657

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 018111963

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001974686

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027013657

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027013657

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001974686

Country of ref document: EP