WO2002064979A1 - Congelateur - Google Patents

Congelateur Download PDF

Info

Publication number
WO2002064979A1
WO2002064979A1 PCT/JP2002/001312 JP0201312W WO02064979A1 WO 2002064979 A1 WO2002064979 A1 WO 2002064979A1 JP 0201312 W JP0201312 W JP 0201312W WO 02064979 A1 WO02064979 A1 WO 02064979A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
temperature
lubricating oil
pipe
compressors
Prior art date
Application number
PCT/JP2002/001312
Other languages
English (en)
French (fr)
Inventor
Hitoshi Hattori
Original Assignee
Toshiba Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corporation filed Critical Toshiba Carrier Corporation
Priority to EP02712395A priority Critical patent/EP1367259A4/en
Priority to KR10-2003-7010660A priority patent/KR100516381B1/ko
Publication of WO2002064979A1 publication Critical patent/WO2002064979A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigerating apparatus including a high-pressure compressor that is covered with a sealed case containing lubricating oil and that sucks and discharges refrigerant.
  • a high-pressure compressor mounted on a refrigeration system such as an air conditioner is covered with a closed case, and lubricating oil is contained in the closed case. Some of this lubricating oil flows out into the refrigeration cycle together with the refrigerant as the compressor draws and discharges the refrigerant. As a result, the compressor may run out of lubricating oil. Insufficient lubricating oil may cause the sliding parts of the compressor to run out of oil, adversely affecting the life of the compressor.
  • a float switch type oil level controller as disclosed in Japanese Patent Application Laid-Open No. 7-130584 is used.
  • This oil level controller takes in the lubricating oil in the sealed case into the container through the oil flow pipe, and moves the oil level up and down by the float floating on the oil level in the container. (Oil volume) is detected.
  • an oil separator is provided in a refrigerant discharge side pipe of a plurality of compressors, and lubricating oil discharged together with the refrigerant is captured by an oil separator. Return the lubricating oil that has accumulated in the oil separator to return.
  • the above-mentioned float switch type oil level controller has disadvantages that it is expensive and is liable to break down. Moreover, multiple compressors If a compressor is installed, an oil level controller must be provided for each compressor, which leads to an increase in cost.
  • the refrigeration apparatus aims at accurately detecting the amount of lubricating oil in a sealed case of a compressor with high reliability without using a mechanical switch. Target.
  • the refrigeration apparatus includes:
  • a compressor that is covered with a sealed case filled with lubricating oil and sucks and discharges the refrigerant
  • a pressure reducer provided in the oil pipe
  • a first temperature sensor for detecting a temperature of the oil pipe at a position upstream of the pressure reducer
  • a second temperature sensor for detecting a temperature of the oil pipe at a position downstream of the pressure reducer
  • a detection section for detecting an amount of lubricating oil in a sealed case of the compressor based on a difference between a detected temperature of the first temperature sensor and a detected temperature of the second temperature sensor;
  • FIG. 1 is a diagram illustrating a configuration of a first embodiment.
  • FIG. 2 is a flowchart for explaining oil amount detection according to the first embodiment.
  • FIG. 3 is a diagram showing a change in each detected temperature in the first embodiment.
  • FIG. 4 is a diagram showing a difference between a detected temperature and a cooling time in the first embodiment.
  • FIG. 5 is a diagram showing a configuration of the second embodiment.
  • FIG. 6 is a diagram showing a configuration of a main part of the third embodiment.
  • FIG. 7 is a diagram showing a configuration of a main part of the fourth embodiment.
  • FIG. 8 is a diagram showing a configuration of a main part of the fifth embodiment.
  • FIG. 9 is a diagram showing a configuration of a main part of the sixth embodiment.
  • FIG. 10 is a diagram showing the overall configuration of the sixth embodiment.
  • FIG. 11 is a diagram showing a configuration of a main part of a seventh embodiment.
  • FIG. 12 is a diagram showing a configuration of a main part of the eighth embodiment.
  • FIG. 13 is a diagram showing a configuration of a main part of the ninth embodiment.
  • A is an outdoor unit of an air conditioner, which is equipped with a high-pressure compressor 1 covered with a sealed case lc.
  • a motor consisting of a stator 2 s and a rotor 2 r is housed in the closed case 1 c, and a compression section 3 driven by the motor is housed therein.
  • the compression section 3 is connected to a later-described suction-side refrigerant pipe 18 via a suction pipe 4 and an attached accumulator 5, and sucks refrigerant from the suction-side refrigerant pipe 18.
  • the drawn refrigerant is compressed and discharged into the closed case 1c.
  • the discharged refrigerant flows into the refrigeration cycle through the discharge side refrigerant pipe 11 connected to the upper part of the closed case 1c.
  • the sealed case 1c contains lubricating oil L for lubricating sliding parts including the compression section 3.
  • the discharge side refrigerant pipe 11 is connected to an oil separator (oil separator) 12, and a four-way valve 13 is connected to the oil separator (oil separator) 12.
  • An outdoor heat exchanger 14 is connected to the four-way valve 13, and an indoor heat exchanger 16 is connected to the outdoor heat exchanger 14 via the expansion valve 15 of the indoor unit B. I have.
  • the suction side refrigerant pipe 18 of the compressor 1 is connected to the indoor heat exchanger 16 via the four-way valve 13 and the accumulator 17, and the suction side refrigerant pipe 18 is connected to the ACC Connected to data 5.
  • the refrigerant (gas) discharged from the compressor 1 passes through the discharge-side refrigerant pipe 11, the oil separator 12, and the four-way valve 13. Then, it flows to the outdoor heat exchanger 14.
  • the refrigerant flowing into the outdoor heat exchanger 14 releases heat to the outdoor air and is liquefied.
  • the refrigerant (liquid refrigerant) that has passed through the outdoor heat exchanger 14 flows through the expansion valve 15 to the indoor heat exchanger 16.
  • the refrigerant flowing into the indoor heat exchanger 16 takes heat from indoor air and evaporates. Thereby, the room to be conditioned is cooled.
  • the refrigerant (gas) having passed through the indoor heat exchanger 16 is sucked into the compressor 1 via the four-way valve 13, the accumulator 17, and the suction-side refrigerant pipe 18.
  • the refrigerant (gas) discharged from the compressor 1 is supplied to the indoor heat exchanger 1 via the discharge-side refrigerant pipe 11, the oil separator 12, and the four-way valve 13. 6 flows. Indoor heat The refrigerant flowing into the exchanger 16 releases heat to indoor air and is liquefied. Thereby, the room to be air-conditioned is heated. The refrigerant (liquid refrigerant) having passed through the indoor heat exchanger 16 flows through the expansion valve 15 to the outdoor heat exchanger 14. The refrigerant flowing into the outdoor heat exchanger 14 is vaporized by pumping heat from outdoor air. The refrigerant (gas) having passed through the outdoor heat exchanger 14 is sucked into the compressor 1 via the four-way valve 13, the accumulator 17, and the suction-side refrigerant pipe 18.
  • an oil return pipe 21 is connected between the oil separator 12 and the suction side refrigerant pipe 18, and the oil return pipe 21 is connected to the oil return pipe 21.
  • the oil return pipe 21 is provided with a cable tubing 22 and an on-off valve 23. When the opening / closing valve 23 is opened, the lubricating oil L that accumulates in the oil separator 12 and flows through the oil return pipe 21, the calibrator tube 22, and the opening / closing valve 23 is the suction side refrigerant. Flows through tube 18.
  • An outdoor fan 25 and an outdoor temperature sensor 26 are provided near the outdoor heat exchanger 14.
  • An indoor fan 27 and an indoor temperature sensor 28 are provided near the indoor heat exchanger 16.
  • an oil pipe 31 is connected to the side surface of the sealed case 1 c of the compressor 1, and the other end of the oil pipe 31 is connected to a suction-side refrigerant pipe 18.
  • the connection position of the oil pipe 31 to the closed case 1c is the appropriate oil level of the lubricating oil L in the closed case 1c.
  • the oil pipe 31 is provided with an on-off valve 32 and a pressure reducer, for example, a cavity tube 33. Further, in the oil pipe 31, a first temperature sensor 34 and a second temperature sensor 35 are respectively located upstream and downstream of the capillary tube 33. It is attached.
  • the oil level of the lubricating oil L in the sealed case 1 c has reached the appropriate oil level, when the on-off valve 32 opens, the lubricating oil L in the sealed case 1 c flows into the oil pipe 31, The lubricating oil L flows through the on-off valve 32 and the capillary tube 33 to the suction-side refrigerant pipe 18. If the oil level of the lubricating oil L in the sealed case 1c has not reached the appropriate oil level, when the on-off valve 32 opens, the gas refrigerant in the sealed case 1c flows into the oil pipe 31. Then, the gas refrigerant flows to the suction-side refrigerant pipe 18 through the on-off valve 32 and the capillary tube 33.
  • the outdoor unit A has an outdoor control unit 40
  • the indoor unit B has an indoor control unit 44.
  • the outdoor control section 40 includes the four-way valve 13, the on-off valve 23, the outdoor fan 25, the outside air temperature sensor 26, the on-off valve 32, the temperature sensors 34, 35, and the inverter 41. Is connected.
  • the inverter 41 rectifies the voltage of the commercial AC power supply 42, converts the rectified voltage into a voltage having a frequency corresponding to a command from the outdoor control unit 40, and outputs the converted voltage.
  • the output terminal of the inverter 41 and the power terminal 7 on the upper part of the compressor 1 are connected by a cable.
  • the indoor fan 27, the indoor temperature sensor 28, and the light receiving unit 45 are connected to the indoor control unit 44.
  • the light receiving section 45 receives infrared light for setting operating conditions, which is emitted from a remote control type operation device 46, and inputs the received light data to the indoor control section 44.
  • the operation unit 46 is used to turn on and off the operation, the operation mode (cooling, dehumidification, heating, ventilation, etc.) and the room temperature set value. It emits infrared light for setting various operating conditions according to the user's operation.
  • the outdoor control unit 40 and the indoor control unit 44 are connected to each other by signal lines, and have the following means (1) as main functions.
  • the outdoor control section 40 has the following means (11) and (12) as functions relating to oil amount detection of the compressor 1.
  • the on-off valve 32 is opened for a predetermined time at regular intervals (for example, 5 minutes) based on the count of the internal timer, and the temperature T1 and the temperature detected by the temperature sensor 34 at that time are opened.
  • the function means of (11), the oil pipe 31, the on-off valve 32, the capillary tube 33, and the temperature sensors 34, 35 constitute an oil amount detecting device.
  • the lubricating oil L is detected at regular intervals based on the count of the internal timer of the outdoor control unit 40 (step 101 YES). At this detection timing, the on-off valve 32 is opened (step 102).
  • opening of the on-off valve 32 causes the lubricating oil L in the sealed case 1 c to flow into the oil pipe 31. .
  • a small amount of liquid refrigerant may flow into the oil pipe 31 in a state mixed with the lubricating oil L.
  • the liquid flowing into the oil pipe 31 flows through the on-off valve 32 and the capillary tube 33 and flows into the suction-side refrigerant pipe 18.
  • the gas refrigerant in the sealed case 1 c flows into the oil pipe 31 by opening the on-off valve 32.
  • the gas flowing into the oil pipe 31 passes through the on-off valve 32 and the cavity tube 33 and flows into the suction side refrigerant pipe 18.
  • the temperature T1 of the liquid or gas flowing into the oil pipe 31 is detected by the temperature sensor 34, and the temperature T2 of the liquid or gas passing through the capillary tube 33 is detected by the temperature sensor 35. (Step 103). Then, a difference T between the detected temperature T1 and the detected temperature T2 is obtained (step 104).
  • the set value Ts which is stored in the internal memory in advance, is read out (step 105). Then, the read set value ⁇ Ts is compared with the temperature difference ⁇ T (step 106)
  • the oil level of the lubricating oil L in the closed case 1 c reaches the proper oil level. Therefore, if the liquid flowing into the oil pipe 31 is a liquid, the change of the detected temperature T 2 with respect to the detected temperature T 1 is reduced only by a small amount of heat radiation in the capillary tube 33. Therefore, the temperature difference ⁇ is smaller than the set value ⁇ s (YES in step 106). In this case, the transition of the temperature difference ⁇ from the previous detection timing is detected (step 107), and the transition and the transition are stored in advance in the internal memory of the outdoor control unit 40. Based on the experimental data obtained, the remaining time t until the lubricating oil is insufficient (the oil level of the lubricating oil L in the closed case 1c is lower than the proper oil level) is predicted (step Step 108).
  • step 109 If the predicted remaining time t is longer than the set time t1 (NO in step 109), it is determined that the amount of lubricating oil in the closed case 1c is sufficient (step 1 1 0). Then, the on-off valve 3 2 is closed (step 1 1 1), and the oil amount detection ends.
  • step 112 If the predicted remaining time t is less than or equal to the set time t1 (YES in step 109), it is determined that the lubricating oil shortage is close in time (step 112). In this case, the on-off valve 32 is closed, and then the on-off valve 23 is opened for a predetermined time (step 113). By opening the on-off valve 23, the lubricating oil L that accumulates in the oil reservoir 12 and flows into the suction-side refrigerant pipe 18 through the capillary tube 22 and the opening / closing valve 23. . The lubricating oil L flowing through the suction-side refrigerant pipe 18 receives the suction pressure of the compressor 1 and is collected by the compressor 1. That is, lubricating oil L is replenished before lubricating oil shortage occurs.
  • the on-off valve 32 is closed, and then the on-off valve 23 is opened for a predetermined time (Step 113).
  • the lubricating oil L collected in the oil separator 12 flows through the cavity tube 22 and the on-off valve 23 to the suction-side refrigerant pipe 18.
  • the lubricating oil L flowing into the suction-side refrigerant pipe 18 receives the suction pressure of the compressor 1 and is collected by the compressor 1. As a result, the lubricating oil shortage is immediately eliminated.
  • the temperature difference ⁇ T when the gas flows into the oil pipe 31 is denoted as ⁇ T gas and is shown in Fig. 3.
  • the oil pipe 31, the on-off valve 32, the cable tubing 33, and the temperature sensors 34, 35 are provided, and the detected temperatures T 1, T 2 of the temperature sensors 34, 35 are provided.
  • a mechanical float switch such as a conventional float switch type oil level controller, is not used, so that It is possible to accurately and reliably detect the amount of lubricating oil in the sealed case 1c without worrying about failures and rising costs.
  • the time during which the on-off valve 32 is kept open is a short time of about 30 to 90 seconds. Therefore, oil level detection Can be completed quickly, and unnecessary reduction of the compression function can be avoided.
  • the lubricating oil L that flows out of the closed casing 1c and the oil pipe 31 and flows out to the oil pipe 31 returns to the compressor 1 through the suction-side refrigerant pipe 18 so that the oil amount detection is repeated several times. Even if it is detected, there is no problem that the detection itself causes a shortage of lubricating oil.
  • the temperature difference ⁇ 4 ( ⁇ T liq, ⁇ T gas) differs between heating and cooling, as shown in FIG. Focusing on this point, two types of values for heating and cooling are stored in the internal memory of the outdoor control unit 40 as set values ⁇ s for the temperature difference ⁇ ⁇ , and these set values ⁇ ⁇ s T s may be selectively read out according to the heating Z cooling operation mode, and the read set value ⁇ 3 may be compared with the temperature difference ⁇ . This makes it possible to appropriately detect the amount of lubricating oil in the sealed case 1c without being affected by the heating / cooling operation mode.
  • the lubricating oil L may flow into the oil pipe 31 with a small amount of liquid refrigerant mixed therein. Therefore, if the degree of dilution of the liquid refrigerant with respect to the lubricating oil L is known in advance, the set value ⁇ s may be corrected according to the degree of dilution. By this correction, the lubricating oil L is not affected by the mixture of the liquid refrigerant; it is possible to detect the oil amount more appropriately.
  • FIG. 5 A second embodiment will be described.
  • two compressors 1 and 51 are connected to a refrigerant pipe in parallel.
  • the refrigerant discharged from the compressors 1 and 51 flows to the common discharge side refrigerant pipe 11 via the individual discharge side refrigerant pipes 11a and 11b.
  • Non-return valves 19a, 19b for preventing backflow are provided on the individual discharge side refrigerant pipes 11a, 11b.
  • the refrigerant in the common suction side refrigerant pipe 18 flows through the individual suction side refrigerant pipes 18a, 18b to the accumulators 5, 55 attached to the compressors 1, 51.
  • Seno The configuration of the radiator 12 and the accumulator 17 is the same as in FIG. Fig. 1 shows a refrigerating cycle in which one indoor unit B is connected to one outdoor unit A, but multiple indoor units B are connected to one outdoor unit A.
  • a multi-type refrigeration cycle in which refrigerant pipes are connected in parallel may be employed.
  • the compressor 51 has a hermetically sealed case 51 c in which the motor and the compression section 3 are accommodated and the lubricating oil L is accommodated in the same manner as the compressor 1.
  • the refrigerant is sucked from the suction-side refrigerant pipe 18b through the pipe 54 and the attached accumulator 55, and the sucked refrigerant is compressed and discharged into the closed case 51c.
  • the refrigerant discharged into the closed case 51c flows into the refrigeration cycle through the discharge-side refrigerant pipe 11b connected to the upper part of the closed case 51c. '
  • another inverter 43 which is the same as the inverter 41, is connected to the outdoor control section 40 for driving the compressor 51.
  • the inverter 43 rectifies the voltage of the commercial AC power supply 42 and converts the rectified voltage to a frequency corresponding to a command from the outdoor control unit 40. Convert to voltage and output.
  • the power terminal 57 on the top of the compressor 51 is connected to the output terminal of the inverter 43 by a cable.
  • Oil pipes 31 and 61 are connected between the sealed cases 1 c and 51 c and the common suction side refrigerant pipe 18.
  • the connection positions of the oil pipes 31 and 61 to the sealed cases 1 c and 51 c are the appropriate oil level positions of the lubricating oil L in the sealed cases 1 c and 51 c.
  • the oil pipes 31 and 61 are provided with on-off valves 32 and 62 and a pressure reducer, for example, a capillary tube 33 and 63. Further, in the oil pipes 31 and 61, the first temperature sensors 34 and 64 and the second temperature sensors 35 and 65 are located upstream and downstream of the capillary tubes 33 and 63, respectively. Are installed respectively.
  • the on-off valves 32, 62, the first temperature sensors 34, 64, and the second temperature sensors 35, 65 are connected to the outdoor controller 40.
  • opening the on-off valve 32 causes the lubricating oil L in the sealed case 1 c to flow into the oil pipe 31. Then, the lubricating oil L flows through the on-off valve 32, and further flows through the cabillary tube 33 to the common suction side refrigerant pipe 18. If the oil level of the lubricating oil L in the sealed case 1c has not reached the proper oil level, the gas refrigerant in the sealed case 1c flows into the oil pipe 31 by opening the on-off valve 32. Then, the gas refrigerant flows through the on-off valve 32, further flows through the capillary tube 33, and flows to the common suction side refrigerant pipe 18.
  • the on-off valve 62 opens the sealed case 51c.
  • the lubricating oil L flows into the oil pipe 61, and the lubricating oil L flows through the on-off valve 62, further flows through the capillary tube 63, and flows to the common suction side refrigerant pipe 18.
  • the gas refrigerant in the sealed case 51c flows into the oil pipe 61 by opening the on-off valve 62. Then, the gas refrigerant flows through the on-off valve 62, further flows through the cavity tube 63, and flows to the common suction side refrigerant pipe 18.
  • the outdoor control unit 40 and the indoor control unit 44 are connected to each other by signal lines, and have the following means (1) as main functions.
  • the difference between the detected temperature of the indoor temperature sensor 28 and the indoor set temperature set by the actuator 46 is determined as the air conditioning load, and the cooling capacity or Control means for controlling the number of compressors 1 and 51 operating and their operating frequencies (output frequencies of inverters 41 and 43) so that the heating capacity can be obtained.
  • the outdoor control unit 40 includes the following means (11) to (15) as functions relating to oil amount detection of the compressors 1 and 51.
  • the on-off valve 32 is opened for a predetermined time every fixed time (for example, 5 minutes) based on the count of the internal timer, and the temperature sensor 34 is detected when the valve is opened.
  • First detection means for detecting the amount of lubricating oil in the closed case 1 c of the compressor 1 by comparing the temperature T 1 with the detection temperature T 2 of the temperature sensor 35.
  • the on-off valve 6 at a fixed time (for example, 5 minutes) based on the count of the upper timer and at a timing different from the detection timing of the first detection means. 2 for a predetermined time, and then By comparing the detected temperature T1 of the temperature sensor 64 at the time of discharge with the detected temperature T2 of the temperature sensor 65, the amount of lubricating oil in the sealed case 51c of the compressor 51 is detected. Second detection means.
  • Control means for opening the on-off valve 23 periodically for a predetermined time.
  • Control means for opening the on-off valve 62 of the compressor 51 for a predetermined time when the first detecting means detects insufficient lubricating oil (lubricating oil in the closed case 1c).
  • an oil amount detection device is configured.
  • the method of detecting the amount of lubricating oil based on the detection temperatures of the temperature sensors 34, 35, 64, 65 is the same as in the first embodiment.
  • on-off valve 62 of compressor 51 is opened for a predetermined time, and lubricating oil L in sealing case 51 c of compressor 51 is opened. Excess flows into the compressor 1 through the oil pipe 61 and the individual suction-side refrigerant pipe 18a.
  • the on-off valve 3 on the compressor 1 side is opened for a predetermined time, and the excess lubricating oil L in the sealed case 1c of the compressor 1 is removed from the oil pipe 3. It flows to compressor 51 through 1 and individual suction side refrigerant pipe 18 b.
  • the conventional float switch type oil level controller The use of a mechanical flat switch such as that described above does not require a fear of failure or cost rise, and the sealed case 1 c, 5 Lubricating oil in 1c can be accurately detected with high reliability.
  • the time during which the on-off valves 32 and 62 are kept open is a short time of about 30 to 90 seconds. Accordingly, the oil amount detection can be completed quickly, and unnecessary reduction of the compression function can be avoided. Furthermore, during detection, the lubricating oil L flowing out of the closed casings 1 c and 51 c and the oil pipes 31 and 61 and flowing out returns to the compressors 1 and 51 via the common suction side refrigerant pipe 18. Therefore, no matter how many times the oil level detection is repeated, there is no problem that the detection itself causes a shortage of lubricating oil.
  • the excess amount of the lubricating oil L of the other compressor is supplied to one of the oil pipes 31 and 61 with respect to the insufficient compressor. So-called oil-equalized operation, which quickly replenishes oil through the system, is possible.
  • one of the oil pipes 31 and 61 is also used as the oil equalizing pipe, so that the number of parts can be suppressed and the cost can be reduced.
  • the remaining time t until a shortage of lubricating oil occurs is predicted based on the transition of the temperature difference ⁇ T, as in the first embodiment.
  • the oil equalizing operation in which the surplus lubricating oil of the other compressor is quickly refilled through one of the oil pipes 31 and 61 is also possible. As a result, it is possible to prevent the situation of lubricating oil shortage as much as possible.
  • a third embodiment will be described. As shown in FIG. 6, the oil pipes 31 and 61 are combined into one pipe 70 with a power S, and the pipe 70 is connected to the common suction side refrigerant pipe 18. Other configurations and operations are the same as those of the second embodiment.
  • each of the oil pipes (first oil pipes) 31 and 61 is connected to the appropriate oil level of the sealed cases 1c and 51c.
  • These oil pipes 31 and 61 are provided with on-off valves 32 and 62, respectively.
  • the other ends of the oil pipes 31 and 61 are interconnected, and an oil pipe (second oil pipe) 80 is connected between the connection part and the common suction side refrigerant pipe 18.
  • the oil pipe 80 is provided with a pressure reducer, for example, a calibrator tube 81, and the first temperature sensor 82 and the second temperature sensor are located upstream and downstream of the capillar tube 81 in the oil pipe 80. And the second temperature sensor 83 are mounted respectively.
  • a pressure reducer for example, a calibrator tube 81
  • the first temperature sensor 82 and the second temperature sensor are located upstream and downstream of the capillar tube 81 in the oil pipe 80.
  • the second temperature sensor 83 are mounted respectively.
  • opening the on-off valve 32 causes the lubricating oil L in the sealed case 1 c to flow into the oil pipe 31. Then, the lubricating oil L flows through the on-off valve 32, and further flows through the oil pipe 80 and the capillary tube 81 to the common suction side refrigerant pipe 18. If the oil level of the lubricating oil L in the sealed case 1 c has not reached the appropriate oil level,
  • the oil level of the lubricating oil L in the sealed case 5 1 c reaches the appropriate oil level.
  • the on-off valve 62 is opened, the lubricating oil L in the sealed case 51c flows into the oil pipe 61, and the lubricating oil L passes through the on-off valve 62, and The refrigerant flows into the common suction-side refrigerant pipe 18 through 80 and the capillary tube 81.
  • the outdoor control unit 40 includes the following means (11) to (15) as functions relating to oil amount detection of the compressors 1 and 51.
  • the on-off valve 62 is specified at regular intervals (for example, 5 minutes) based on the count of the internal timer and at a timing different from the detection timing of the first detection means. Open for a time, and comparing the detected temperature T1 of the temperature sensor 82 at the time of release with the detected temperature T2 of the temperature sensor 83, the temperature in the sealed case 51c of the compressor 51 is determined. Second detection means for detecting the amount of lubricating oil.
  • Control means for opening the on-off valve 23 periodically for a predetermined time.
  • An oil amount detection device is configured.
  • the method of detecting the amount of lubricating oil based on the detected temperatures of the temperature sensors 82 and 83 is the same as in the first embodiment.
  • the on-off valve 62 of the compressor 51 is opened for a predetermined time, and the amount of lubricating oil L in the sealing case 51c of the compressor 51 is reduced.
  • the surplus flows into the compressor 1 through the oil pipes 61, 80 and the individual suction-side refrigerant pipe 18a.
  • the on-off valve 3 2 on the compressor 1 side is opened for a predetermined time, and the excess lubricating oil L in the sealed case 1 c of the compressor 1 is filled with the oil pipe 3 1 , 80 and the individual suction side refrigerant pipe 18 b to the compressor 51.
  • the time during which the on-off valves 32 and 62 are kept open is a short time of about 30 to 90 seconds. So oil The amount detection can be completed quickly, and unnecessary reduction of the compression function can be avoided. Moreover, during the detection, the lubricating oil L that once flows out of the closed casings 1c and 51c from the closed casings 1c and 51c to the oil pipes 31 and 61 returns to the compressors 1 and 51 through the common suction side refrigerant pipe 18. However, no matter how many times the oil amount detection is repeated, the detection itself will cause a shortage of lubricating oil.
  • the surplus of the lubricating oil L of the other compressor is supplied to one of the oil pipe oil pipes 31 and 61 to the insufficient compressor. So-called oil equalizing operation, in which the oil is quickly replenished through the oil pipe 80, is possible. In addition, in this oil equalizing operation, one of the oil pipes 31 and 61 and the oil pipe 80 are also used as the oil equalizing pipe, so that the number of parts can be suppressed and the cost can be reduced. Reduction can be achieved.
  • the remaining time t until a shortage of lubricating oil occurs is predicted based on the transition of the temperature difference ⁇ T, as in the first embodiment.
  • the oil equivalent operation in which the surplus oil of the other compressor is quickly replenished through one of the oil pipes 31 and 61 and oil pipe 80 is also possible. It is. As a result, a situation in which lubricating oil is insufficient can be prevented as much as possible.
  • oil pipes 31 and 61 are connected between the closed casings 1c and 51c and the individual suction side refrigerant pipes 18a and 18b, respectively. Oil pipes 3 1, 1.
  • the connection position of 61 is the appropriate oil level of the lubricating oil L in the sealed cases 1c and 51c.
  • the oil pipes 31 and 61 are provided with a pressure reducer, for example, a calibrator tube 33, 63, and an on-off valve (first on-off valve) is provided upstream of the calibrator tube 33, 63. ) 32, 62 are provided respectively, and on-off valves (second on-off valves) 36, 66 are provided downstream of the capillary tubes 33, 63, respectively. Further, an oil flow pipe 90 is connected between the oil pipes 31, 61 at a position between the capillary tubes 33, 63 and the on-off valves 36, 66. An on-off valve (third on-off valve) 91 is provided in the oil flow pipe 90 and is open.
  • a pressure reducer for example, a calibrator tube 33, 63
  • an on-off valve first on-off valve
  • 32, 62 are provided respectively
  • on-off valves (second on-off valves) 36, 66 are provided downstream of the capillary tubes 33, 63, respectively.
  • an oil flow pipe 90 is connected between the
  • first temperature sensors 34 and 64 are mounted between the on-off valves 32 and 62 and the capillary tubes 33 and 63, respectively.
  • Second temperature sensors 35, 65 are mounted between the tubes 33, 63 and the on-off valves 36, 66, respectively.
  • opening the on-off valves 32, 36 causes the lubricating oil L in the closed case 1 c to flow into the oil pipe 31.
  • the lubricating oil L flows into the individual suction side refrigerant pipe 18a through the on-off valves 32, 36 and the capillary tube 33.
  • the gas refrigerant in the sealed case 1 c ⁇ is turned off by opening the on-off valves 32 and 36.
  • the gas refrigerant flows into the individual suction-side refrigerant pipe 18a through the on-off valves 32 and 36 and the cavity tube 33.
  • the oil level of the lubricating oil L in the sealed case 5 1c has reached the appropriate oil level, opening the on-off valves 62 and 66 will cause the lubricating oil L in the sealed case 51c to be filled with the oil pipe.
  • the lubricating oil L flows into the individual suction-side refrigerant pipe 18b through the on-off valves 62, 66 and the capillary tube 63.
  • the outdoor control unit 40 includes the following means (11) to (15) as functions relating to oil amount detection of the compressors 1 and 51.
  • the on-off valve 62 of the compressor 51 and the on-off valve of the oil flow pipe 90 1 When the shortage of lubricating oil is detected by the first detection means (lubricating oil shortage in the closed case 1c), the on-off valve 62 of the compressor 51 and the on-off valve of the oil flow pipe 90 1, and control means for opening the on-off valve 36 of the compressor 1 for a predetermined time.
  • the oil amount detecting device is composed of 35, 64, and 65.
  • the method of detecting the amount of lubricating oil based on the detected temperatures of the temperature sensors 34, 35, 64, 65 is the same as in the first embodiment.
  • the time during which the on-off valves 32, 36, 62, 66 are kept open is a short time of about 30 to 90 seconds.
  • the oil amount detection can be completed quickly, and unnecessary reduction of the compression function can be avoided.
  • the lubricating oil L that once flows out of the closed casings 1 c and 51 c and the oil pipes 31 and 61 passes through the individual suction-side refrigerant pipes 18 a and 18 b and the compressor 1 , 51, so no matter how many times the oil level detection is repeated, the detection itself will not cause a shortage of lubricating oil.
  • the surplus of the lubricating oil L from the other compressor is supplied to the oil pipe oil pipes 31 and 61 and the oil flow to the insufficient compressor.
  • a so-called oil equalizing operation in which replenishment is carried out quickly through the pipe 90, is possible.
  • the oil pipes 31 and 61 are also used as oil equalizing pipes, so that the number of parts can be suppressed and the cost can be reduced.
  • the prediction of the remaining time t until a shortage of lubricating oil occurs based on the transition of the temperature difference ⁇ T is the same as in the first embodiment.
  • the oil equalizing operation in which the surplus oil of the other compressor is quickly replenished through the oil pipes 31 and 61 and the oil flow pipe 90 is also possible. is there.
  • Other configurations and operations are the same as those of the second embodiment.
  • a plurality of outdoor units A 1 and A 2 are connected in parallel with refrigerant pipes, and a plurality of indoor units are connected to the outdoor units A 1 and A 2.
  • B1, B2, ... are connected to the refrigerant pipe. This constitutes a multi-type refrigeration cycle.
  • the outdoor unit A1 is provided with compressors 1 and 51 connected to refrigerant pipes in parallel with each other.
  • the outdoor unit A2 is provided with the compressors 1 and 51 connected to the refrigerant pipes in parallel with each other.
  • Each of the outdoor units Al and A2 is provided with the oil amount detection device shown in FIG. 6 shown as the third embodiment.
  • the description of the oil amount detection device is omitted.
  • the on-off valves 71 are provided in the oil pipes 70 of the outdoor units A 1 and A 2, respectively.
  • the positions upstream of the on-off valves 71 in the respective oil pipes 70 are connected to each other by oil flow pipes 72.
  • An outdoor control unit 40 is provided in each of the outdoor units A 1 and A 2, and data can be transmitted and received between the outdoor control units 40.
  • Each outdoor control section 40 has the following means (11) to (15) as functions relating to oil amount detection of each compressor 1 and each compressor 51. (11) At regular intervals (for example, 5 minutes) based on the count of the internal timer, the on-off valves 32, 71 are opened for a predetermined time, and the temperature sensor at that time is opened. Detecting means for detecting the amount of lubricating oil in the sealed case 1 c of the compressor 1 by comparing the detected temperature T 1 of the compressor 1 with the detected temperature T 2 of the temperature sensor 35.
  • Control means for opening the on-off valve 23 periodically for a predetermined time.
  • the open / close valves 32 and 62 of the outdoor unit A1 are closed.
  • the open / close valve 71 of the outdoor unit A 1 is opened, and the open / close unit A 2 of the outdoor unit A 2 is opened / closed with the open / close valve 71 of the outdoor unit A 2 closed.
  • Valves 32 and 62 are opened.
  • the surplus of the lubricating oil L of the compressors 1 and 51 in the outdoor unit A2 passes through the oil pipes 31 and 61 and the oil pipe 70 of the outdoor unit A2. Then, it flows through the oil distribution pipe 72 to the outdoor unit A1.
  • the lubricating oil L flowing to the outdoor unit A1 is supplied to the compressors 1 and 5 via the open / close valve 71, the oil pipe 70 and the individual suction side refrigerant pipes 18a and 18b. 1 sucked.
  • the time during which the on-off valves 32 and 62 are kept open is as short as 30 to 90 seconds. Accordingly, the oil amount detection can be completed quickly, and unnecessary reduction of the compression function can be avoided.
  • the lubricating oil L that once flows out of the closed casings 1 c and 51 c and the oil pipes 31 and 61 returns to the compressors 1 and 51 through the common suction side refrigerant pipe 18. However, no matter how many times the oil level detection is repeated, the detection itself will not cause a shortage of lubricating oil.
  • the outdoor unit on the insufficient side is connected to the other outdoor unit.
  • the so-called oil equalizing operation is possible in which the surplus of the lubricating oil L of the compressors 1 and 51 is quickly replenished through the oil pipes 31, 61 and 70 and the oil flow pipe 72.
  • the oil pipes 31, 61, and 70 are also used as oil flow pipes, so that the number of parts can be suppressed and cost can be reduced.
  • a plurality of outdoor units A1 and A2 are connected to the refrigerant pipes in parallel.
  • a 1 As shown in FIG. 10, a plurality of indoor units Bl, B2,... are connected to a refrigerant pipe.
  • a multi-type refrigeration cycle is configured.
  • the outdoor unit A1 is provided with compressors 1 and 51 connected to the refrigerant pipes in parallel with each other.
  • the outdoor unit A2 is provided with the compressors 1 and 51 connected to the refrigerant pipes in parallel with each other.
  • Each of the outdoor units A1 and A2 is provided with the oil amount detection device shown in FIG. 7 shown as the fourth embodiment.
  • the description of the oil amount detection device is omitted.
  • oil pipes 80 of the outdoor units A 1 and A 2 are provided with on-off valves 71, respectively.
  • the upstream position of the on-off valve 71 in each oil pipe 80 is connected to each other by an oil flow pipe 72.
  • Each of the outdoor units A] _ and A2 is provided with an outdoor control unit 40, similarly to FIG. 10 shown as the sixth embodiment. Data can be transmitted and received between these outdoor control units 40.
  • Each outdoor control unit 40 has the following means (11) to (15) as functions relating to oil amount detection of each compressor 1 and each compressor 51.
  • the method of detecting the amount of lubricating oil based on the detection temperatures of the temperature sensors 82 and 83 is the same as in the first embodiment.
  • the open / close valves 32 and 62 of the outdoor unit A 1 are activated.
  • the open / close valve 71 of the outdoor unit A1 is opened in a closed state, and the open / close valve 71 of the outdoor unit A2 is closed in a closed state.
  • On-off valves 32 and 62 of unit A 2 are opened.
  • the surplus of the lubricating oil L of the compressors 1 and 51 in the outdoor unit A2 is passed through the oil pipes 31 and 61 and the oil pipe 70 of the outdoor unit A2. Then, it flows through the oil distribution pipe 72 to the outdoor unit A1.
  • the lubricating oil L flowing to the outdoor unit A 1 is supplied to the compressors 1 and 5 via the open / close valve 71, the oil pipe 70 and the individual suction side refrigerant pipes 18 a and 18 b. 1 sucked.
  • the amount of lubricating oil in the sealed cases 1c and 51c of the compressors 1 and 51 in the outdoor units A1 and A2 should be accurately detected with high reliability without fear of rise in the cost. Can be done.
  • the time to keep the on-off valves 32 and 62 open is a short time of about 30 to 90 seconds. Accordingly, the oil amount detection can be completed quickly, and unnecessary reduction of the compression function can be avoided.
  • the outdoor unit on the shortage side is connected to the other outdoor unit.
  • a so-called oil equalizing operation is possible in which the excess of the lubricating oil L of the compressors 1 and 51 in the pump is quickly replenished via the oil pipes 31, 61 and 80 and the oil flow pipe 72.
  • the oil pipes 31, 61, and 80 are also used as oil flow pipes, so that the number of parts can be reduced and cost can be reduced.
  • a plurality of outdoor units Al and A2 are connected in parallel to a refrigerant pipe.
  • a plurality of indoor units B 1, B 2,... are connected to the outdoor units Al and A 2 by refrigerant pipes.
  • a multi-type cooling cycle is formed.
  • the outdoor unit A1 has a refrigerant pipe connected in parallel to each other. Compactors 1 and 51 are provided. Similarly, the outdoor unit A2 is provided with the compressors 1 and 51 connected to the refrigerant pipes in parallel with each other.
  • first oil pipes 31 and 61 One end of oil pipes (first oil pipes) 31 and 61 is connected to the appropriate oil level of the sealed cases l c and 51 c of the compressors 1 and 51.
  • On-off valves (first on-off valves) 32 and 62 are provided on the oil pipes 31 and 61, respectively.
  • the other ends of the oil pipes 31 and 61 are interconnected, and one end of an oil pipe (second oil pipe) 80 is connected to the connection.
  • One end of each of the oil pipes (third oil pipe) 37 and 67 is connected to the other end of the oil pipe 80.
  • the other ends of the oil pipes 37, 67 are connected to the individual suction side refrigerant pipes 18a, 18b.
  • On-off valves (second on-off valves) 38, 68 are provided on the oil pipes 37, 67, respectively.
  • the oil pipe 80 is provided with a strainer 84 and a pressure reducer, for example, a capillary tube 81, and the first temperature sensor is provided at a position upstream and downstream of the capillary tube 81 in the oil pipe 80.
  • a strainer 84 and a pressure reducer for example, a capillary tube 81
  • the first temperature sensor is provided at a position upstream and downstream of the capillary tube 81 in the oil pipe 80.
  • 82 and the second temperature sensor 83 are mounted respectively.
  • the oil pipes 80 of the outdoor units Al and A 2 are connected to each other by oil flow pipes 85 at positions downstream of the cavity tube 81.
  • An on-off valve (third on-off valve) 86 is provided in the oil circulation pipe 85 in the outdoor unit A1.
  • An on-off valve (third on-off valve) 86 is also provided on the oil distribution pipe 85 in the outdoor unit A2.
  • Each of the outdoor units Al and A2 is provided with an outdoor control unit 40, similarly to FIG. 10 shown as the sixth embodiment. Data can be transmitted and received between these outdoor control units 40.
  • Each outdoor control unit 40 has the following means (11) to (15) as functions relating to oil amount detection of each compressor 1 and each compressor 51.
  • the on-off valves 32 and 38 are opened for a predetermined time, and the temperature sensor 8 2 Detecting means for detecting the amount of lubricating oil in the sealed case 1 c of the compressor 1 by comparing the detected temperature T 1 of the compressor 1 with the detected temperature T 2 of the temperature sensor 83.
  • the on-off valve 62, 6 8 is opened for a predetermined time, and by comparing the detected temperature T 1 of the temperature sensor 8 2 and the detected temperature T 2 of the temperature sensor 8 3 at the time of opening, the inside of the sealed case 5 1 c of the compressor 51 is Second detecting means for detecting the amount of lubricating oil.
  • Control means for opening the on-off valve 23 periodically for a predetermined time.
  • the method of detecting the amount of lubricating oil based on the detection temperatures of the temperature sensors 82 and 83 is the same as in the first embodiment.
  • the refrigerant is sucked into the compressors 1 and 51 via the refrigerant pipes 7 and 67 and the individual suction-side refrigerant pipes 18a and 18b.
  • the time during which the on-off valves 32, 62, 38, 68 are kept open is as short as about 30 to 90 seconds.
  • the oil amount detection can be completed quickly, and unnecessary reduction of the compression function can be avoided.
  • the lubricating oil L flowing out of the sealed case lc, 51c force to the oil pipes 31, 61 and through the individual suction side refrigerant pipes 18a, 18b, the compressor 1, 5
  • the detection itself will cause a shortage of lubricating oil.
  • the outdoor unit on the insufficient side is connected to the other outdoor unit.
  • the surplus of lubricating oil L from compressors 1 and 51 at the oil pipes 31, 61 and 80 and the oil flow pipe 85 The so-called oil equalizing operation, in which replenishment is performed quickly and quickly, is possible.
  • the oil pipes 31, 61, and 80 are also used as oil flow pipes, so that the number of parts can be reduced and cost can be reduced.
  • a plurality of outdoor units Al and A2 are connected in parallel to the refrigerant pipes.
  • a plurality of indoor units B 1, B 2,... are connected to the outdoor units Al and A 2 by refrigerant pipes. This constitutes a multi-type cooling cycle.
  • the outdoor unit A1 is provided with compressors 1 and 51 connected to the refrigerant pipes in parallel with each other.
  • the outdoor unit A2 is provided with the compressors 1 and 51 connected to the refrigerant pipes in parallel with each other.
  • first oil pipes 31 and 61 One end of oil pipes (first oil pipes) 31 and 61 is connected to the appropriate oil level of the sealed cases l c and 51 c of the compressors 1 and 51.
  • On-off valves (first on-off valves) 32 and 62 are installed on these oil pipes 31 and 61, respectively.
  • the other ends of the oil pipes 31 and 61 are interconnected, and one end of an oil pipe (second oil pipe) 80 is connected to the connection.
  • the other end of the oil pipe 80 is connected to the common suction refrigerant pipe 18.
  • One end of an oil pipe (third oil pipe) 31 a, 6 la is connected to a position upstream of the on-off valves 32, 62 in the oil pipes 31, 61, and the other end of the oil pipes 31 a , 61 a Are individual suction side refrigerant pipes 18 a, 18 Connected to b.
  • These oil pipes 3 la and 6 la are provided with decompressors 33 and 63 respectively.
  • the first temperature sensors 34, 64 and the second temperature sensors 35, 65 are mounted on the oil pipes 31a, 61a at positions upstream and downstream from the pressure reducers 33, 63, respectively. ing.
  • the oil tube 80 is provided with a capillary tube 81 and an on-off valve (second opening / closing valve) 71.
  • the positions upstream of the on-off valves 71 in the oil pipes 80 of the outdoor units A 1 and A 2 are connected to each other by oil flow pipes 72.
  • Each of the outdoor units A; [, A2 is provided with an outdoor control unit 40 as in the case of FIG. 10 shown as the sixth embodiment. Data can be transmitted and received between these outdoor control units 40.
  • Each outdoor control unit 40 has the following means (11) to (15) as functions relating to oil amount detection of each compressor 1 and each compressor 51.
  • the first detection that detects the amount of lubricating oil in the closed case 1c of the compressor 1 by comparing the detected temperature T1 of the temperature sensor 34 with the detected temperature T2 of the temperature sensor 35 means.
  • Control means for opening the on-off valve 23 periodically for a predetermined time.
  • Compressor 1 or compressor in outdoor unit A1 5 When the shortage of lubricating oil is detected, the open / close valve 31 of the outdoor unit A 1 is opened for a predetermined time with the open / close valves 32, 62 of the outdoor unit A 1 closed. Control means that opens only the opening / closing valves 31 and 62 of the outdoor unit A2 for a predetermined time while closing the opening / closing valve 71 of the outdoor unit A2.
  • the method of detecting the amount of lubricating oil based on the detection temperatures of the temperature sensors 34, 35, 64, and 65 is the same as in the first embodiment.
  • a mechanical float switch such as a conventional float switch type oil level controller is not used, and failure and cost G
  • the amount of lubricating oil in the sealed cases 1c and 51c of the compressors 1 and 51 in the outdoor units A1 and A2 can be accurately detected with high reliability without fear of rising. it can.
  • the lubricating oil L in the sealed cases 1c and 51c always flows out to the oil pipes 31 and 61, but this lubricating oil
  • the oil L returns to the compressors 1 and 51 immediately after passing through the oil pipes 31a and 61a, so that the oil amount detection itself does not cause a problem of insufficient lubricating oil.
  • the compression of the other outdoor unit against the insufficient outdoor unit is performed. It is possible to perform a so-called oil equalizing operation in which the surplus of the lubricating oil L of the machines 1 and 51 is quickly replenished via the oil pipes 31, 61 and 80 and the oil distribution pipe 72.
  • the oil pipes 31, 61, and 80 are also used as oil flow pipes, so that the number of parts can be reduced and cost can be reduced.
  • the driving means for the compressor 1 and the compressor 51 of each outdoor unit includes a combination of inverter driving (variable rotation speed operation) and inverter driving, and inverter driving and commercial power supply driving. (Constant rotation speed operation), or a combination of commercial power drive and commercial power drive can be selected as appropriate.
  • the oil amount is detected by opening the on-off valve provided in the oil pipe, but the lubricating oil and the refrigerant flowing into the oil pipe are directly sucked into the compressor.
  • the configuration may be such that the oil pipe is always in the conductive state and the oil amount is always detected as in the ninth embodiment.
  • the present invention is applicable to, for example, an air conditioner equipped with a refrigeration cycle.

Description

明 細 書
冷凍装置
技術分野
本発明は、 潤滑油が入っ た密閉ケース で覆われ、 冷媒を吸 込んで吐出する高圧型の圧縮機を備えた冷凍装置に関する。 背景技術
空気調和機等の冷凍装置に搭載される高圧型の圧縮機は密 閉ケース で被われ、 密閉ケース内には潤滑油が収容されてい る。 こ の潤滑油は、 圧縮機が冷媒を吸込んで吐出するのに伴 い、 一部が冷媒と 共に冷凍サイ ク ル中に流出する。 こ のた め 、 圧縮機において潤滑油不足を生 じる こ と がある。 潤滑油が不 足する と 、 圧縮機の摺動部が油切れの状態 と な り 、 圧縮機の 寿命に悪影響を与えて しま う 。
こ の よ う な不具合に対処する手段と して、 例えば特開平 7 — 1 0 3 5 8 4 号公報に示 される よ う なフ ロ ー ト ス ィ ッ チ方 式の油面調節器が知 られている。 こ の油面調節器は、 密閉ケ ース内の潤滑油を油流通管によ り 容器内に取 り 込み、 容器内 の油面に浮かぶフ ロ ー ト の上下動によ って油面 (油量) を検 出する構成と なっ ている。 また、 同公報では、 複数の圧縮機 の冷媒吐出側配管にオイ ルセパ レータ を設け、 冷媒と一緒に 吐出 される潤滑油をオイルセパ レータで捕捉 し、 潤滑油不足 が生 じた圧縮機に対 しオイ ルセパ レータ に溜ま った潤滑油を 戻すよ う に してレ、る。
上記のフ ロ ー ト ス ィ ッ チ方式の油面調節器は、 高価で、 し かも故障 し易いと い う欠点がある。 しかも、 複数台の圧縮機 が設置されている場合には、 その圧縮機ごと に油面調節器を 設けねばな らず、 コ ス ト の上昇を招いて しま う 。
発明の開示
本発明の第 1 の態様によ る冷凍装置は、 圧縮機の密閉ケー ス内の潤滑油量を機械的なスィ ツチを用いる こ と な く 高い信 頼性で的確に検出する こ と を 目 的 と する。
本発明の第 1 の態様によ る冷凍装置は、
潤滑油が入っ た密閉ケースで覆われ、 冷媒を吸込んで吐出 する圧縮機 ; と 、
前記圧縮機の密閉ケース内の潤滑油が流入する油管、 前記 圧縮機の密閉ケース と 前記圧縮機に吸込まれる冷媒が通る吸 込側冷媒管と の間に接続されている ; と 、
前記油管に設け られた減圧器 ; と 、
前記油管における前記減圧器よ り 上流側位置の温度を検知 する第 1 温度センサ ; と 、
前記油管における前記減圧器よ り 下流側位置の温度を検知 する第 2 温度セ ンサ ; と 、
前記第 1 温度センサの検知温度と前.記第 2温度センサの検 知温度と の差に基づいて、 前記圧縮機の密閉ケース内の潤滑 油量を検出する検出セク ショ ン ; と 、
を備えている。
図面の簡単な説明
図 1 は、 第 1 実施形態の構成を示す図。
図 2 は、 第 1 実施形態の油量検出を説明するためのフ ロ ー ャ ~- * ト。 図 3 は、 第 1 実施形態における各検知温度の変化を示す図 図 4 は、 第 1 実施形態における各検知温度の差の暖房時と 冷房時の違いを示す図。
図 5 は、 第 2 実施形態の構成を示す図。
図 6 は、 第 3 実施形態の要部の構成を示す図。
図 7 は、 第 4実施形態の要部の構成を示す図。
図 8 は、 第 5 実施形態の要部の構成を示す図。
図 9 は、 第 6 実施形態の要部の構成を示す図。
図 1 0 は、 第 6 実施形態の全体の構成を示す図。
図 1 1 は、 第 7 実施形態の要部の構成を示す図。
図 1 2 は、 第 8 実施形態の要部の構成を示す図。
図 1 3 は、 第 9 実施形態の要部の構成を示す図。
発明を実施するための最良の形態
[ 1 ] 以下、 本発明の第 1 実施形態について図面を参照 し て説明する。
図 1 において、 Aは空気調和機の室外ユニ ッ ト で、 密閉ケ ース l c で覆われた高圧型の圧縮機 1 を備えている。 密閉ケ ース 1 c 内には、 ステータ 2 s と ロータ 2 r 力 ら成るモータ が収容される と と も に、 そのモータ によ り 駆動 される圧縮セ ク シ ヨ ン 3 が収容されてレ、る。 圧縮セ ク シ ョ ン 3 は、 吸込管 4 および付属のアキューム レータ 5 を介 して後述の吸込側冷 媒管 1 8 に接続されてお り 、 その吸込側冷媒管 1 8 から冷媒 を吸込み、 吸込んだ冷媒を圧縮 して密閉ケース 1 c 内に吐出 する。 吐出 される冷媒は、 密閉ケース 1 c の上部に接続され ている吐出側冷媒管 1 1 を通 して冷凍サイ クルに流れる。 ま た、 密閉ケース 1 c には、 圧縮セ ク シ ョ ン 3 をは じめ とする 摺動部の潤滑用 と して潤滑油 L が収容 されている。
上記吐出側冷媒管 1 1 はオイルセパ レータ (オイ ルセパ レ 一タ) 1 2 に接続され、 そのオイ ノレセノ レータ (オイルセ パ レータ) 1 2 に四方弁 1 3 が接続されてレ、る。 四方弁 1 3 に は室外熱交換器 1 4 が接続され、 その室外熱交換器 1 4 に室 内ュニ ッ ト B の膨張弁 1 5 を介 して室内熱交換器 1 6 が接続 されている。 そ して、 室内熱交換器 1 6 に上記四方弁 1 3 お よびアキューム レータ 1 7 を介 して圧縮機 1 の吸込側冷媒管 1 8 が接続され、 その吸込側冷媒管 1 8 が上記アキユーム レ ータ 5 に接続されている。
四方弁 1 3 がオフ (図示の状態) の と き、 圧縮機 1 から吐 出 される冷媒 (ガス) が、 吐出側冷媒管 1 1 、 オイルセパ レ ータ 1 2 、 および四方弁 1 3 を介 して室外熱交換器 1 4 に流 れる。 室外熱交換器 1 4 に流入 した冷媒は、 室外空気に熱を 放出 して液化する。 室外熱交換器 1 4 を経た冷媒 (液冷媒) は、 膨張弁 1 5 を介 して室内熱交換器 1 6 に流れる。 室内熱 交換器 1 6 に流入 した冷媒は、 室内空気から熱を奪って気化 する。 これに よ り 、 被空調室内が冷房される。 室内熱交換器 1 6 を経た冷媒 (ガス) は、 四方弁 1 3 、 アキューム レータ 1 7 、 およぴ吸込側冷媒管 1 8 を介 して圧縮機 1 に吸込まれ る。
四方弁 1 3 がオンされる と 、 圧縮機 1 から吐出 される冷媒 (ガス) が、 吐出側冷媒管 1 1 、 オイ ルセパ レータ 1 2 、 お よび四方弁 1 3 を介して室内熱交換器 1 6 に流れる。 室内熱 交換器 1 6 に流入 した冷媒は、 室内空気に熱を放出 して液化 する。 これによ り 、 被空調室内が暖房される。 室内熱交換器 1 6 を経た冷媒 (液冷媒) は、 膨張弁 1 5 を介 して室外熱交 換器 1 4 に流れる。 室外熱交換器 1 4 に流入 した冷媒は、 室 外空気から熱を汲み上げて気化する。 室外熱交換器 1 4 を経 た冷媒 (ガス) は、 四方弁 1 3 、 アキューム レータ 1 7 、 お よび吸込側冷媒管 1 8 を介 して圧縮機 1 に吸込まれる。
こ の よ う な構成の ヒ ー ト ポンプ式冷凍サイ ク ルを備えた冷 凍装置において、 オイルセパ レータ 1 2 と 吸込側冷媒管 1 8 と の間に油戻 し管 2 1 が接続され、 その油戻 し管 2 1 にキヤ ビラ リ チューブ 2 2 および開閉弁 2 3 が設け られている。 開 閉弁 2 3 が開放する と 、 オイノレセパ レータ 1 2 に溜まっ てレヽ る潤滑油 Lが油戻 し管 2 1 、 キヤ ビラ リ チューブ 2 2 、 およ び開閉弁 2 3 を通って吸込側冷媒管 1 8 に流れる。
室外熱交換器 1 4 の近傍に、 室外フ ァ ン 2 5 お よび外気温 度セ ンサ 2 6 が設け られている。 室内熱交換器 1 6 の近傍に、 室内フ ァ ン 2 7 お よび室内温度セ ンサ 2 8 が設け られている。
また、 圧縮機 1 の密閉ケース 1 c の側面に油管 3 1 の一端 が接続され、 その油管 3 1 の他端が吸込側冷媒管 1 8 に接続 されている。 密閉ケース 1 c に対する油管 3 1 の接続位置は、 密閉ケース 1 c 内の潤滑油 L の適正油面位置であ る。 そ して、 油管 3 1 に、 開閉弁 3 2 および減圧器た と えばキヤ ビラ リ チ ユ ーブ 3 3 が設け られてレヽる。 さ ら に、 油管 3 1 において、 キヤ ビラ リ チューブ 3 3 よ り 上流側位置および下流側位置に 第 1 温度センサ 3 4 および第 2 温度センサ 3 5 がそれぞれ取 付け られている。
密閉ケース 1 c 内の潤滑油 L の油面が適正油面位置に達し ていれば、 開閉弁 3 2 が開放 した際に、 密閉ケース 1 c 内の 潤滑油 L が油管 3 1 に流入 し、 その潤滑油 L が開閉弁 3 2 お よびキヤ ビラ リ チューブ 3 3 を通って吸込側冷媒管 1 8 へと 流れる。 密閉ケース 1 c 内の潤滑油 L の油面が適正油面位置 に達していない場合は、 開閉弁 3 2 が開放 した際に、 密閉ケ ース 1 c 内のガス冷媒が油管 3 1 に流入し、 そのガス冷媒が 開閉弁 3 2 およびキヤ ビラ リ チューブ 3 3 を通って吸込側冷 媒管 1 8 へと流れる。
—方、 室外ユニ ッ ト Aは室外制御部 4 0 を備え、 室内ュニ ッ ト B は室内制御部 4 4 を備えている。
室外制御部 4 0 には、 上記四方弁 1 3 、 開閉弁 2 3 、 室外 フ ァ ン 2 5 、 外気温度センサ 2 6 、 開閉弁 3 2 、 温度センサ 3 4 , 3 5 、 およびイ ンバータ 4 1 が接続されてレ、る。 イ ン バータ 4 1 は、 商用交流電源 4 2 の電圧を整流 し、 その整流 後の電圧を室外制御部 4 0 の指令に応 じた周波数の電圧に変 換 して出力する。 このイ ンバータ 4 1 の出力端と圧縮機 1 の 上部の電源端子 7 と がケーブルで接続されている。
室内制御部 4 4 には、 上記室内フ ァ ン 2 7 、 室内温度セン サ 2 8 、 お よび受光部 4 5 が接続されている。 受光部 4 5 は、 リ モー ト コ ン ト ロール式の操作器 4 6 から発せ られる運転条 件設定用の赤外線光を受け、 その受光データ を室内制御部 4 4 に入力する。 操作器 4 6 は、 運転のオン ' オフ、 運転モー ド (冷房 · 除湿 · 暖房 , 送風等) お よび室内温度設定値な ど の各種運転条件を設定するための赤外線光を使用者の操作に 応 じて発する。
室外制御部 4 0 お よび室内制御部 4 4 は、 互いに信号線接 続されてお り 、 主要な機能と して次の ( 1 ) の手段を備え る。
( I ) 冷房および暖房運転時、 室内温度センサ 2 8 の検知 温度 と操作器 4 6 で設定される室内設定温度 と の差を空調負 荷と して求め、 その空調負荷に対応する冷房能力または暖房 能力が得られる よ う 、 圧縮機 1 の運転周波数 (イ ンバータ 4 1 の出力周波数) を制御する制御手段。
室外制御部 4 0 は、 圧縮機 1 の油量検出に関する機能と し て、 次の ( 1 1 ) ( 1 2 ) の手段を備えている。
( I I ) 内部タイ マのカ ウン ト に基づく 一定時間 (た と え ば 5 分 ) ごと に開閉弁 3 2 を所定時間だけ開放し、 その開放 時の温度センサ 3 4 の検知温度 T 1 と 温度セ ンサ 3 5 の検知 温度 T 2 と の比較に よ り 、 圧縮機 1 の密閉ケース 1 c 内の潤 滑油量を検出する検出手段。
( 1 2 ) 上記検出手段で潤滑油不足が検出 された と き、 開 閉弁 2 3 を所定時間だけ開放する制御手段。
上記 ( 1 1 ) の機能手段、 および上記油管 3 1 、 開閉弁 3 2 、 キヤ ビラ リ チューブ 3 3 、 温度セ ンサ 3 4 , 3 5 によ り 、 油量検出装置が構成されている。
以下、 図 2 のフ ロ ーチャー トおよび図 3 のタイ ムチャー ト を参照 しなが ら作用について説明する。
' 室外制御部 4 0 の内部タイマのカ ウ ン ト に基づ く 一定時間 ごと に、 潤滑油 L の検出タイ ミ ング と なる (ステ ップ 1 0 1 の Y E S ) 。 この検出タイ ミ ングにおいて、 開閉弁 3 2 が開 放 される (ステ ッ プ 1 0 2 ) 。
密閉ケース 1 c 内の潤滑油 L の油面が適正油面位置に達し ていれば、 開閉弁 3 2 の開放によ り 、 密閉ケース 1 c 内の潤 滑油 Lが油管 3 1 に流入する。 なお、 少量の液冷媒が潤滑油 L に混じった状態で油管 3 1 に流入する こ と も ある。 こ う し て油管 3 1 に流入する液体は、 開閉弁 3 2 およびキヤ ビラ リ チューブ 3 3 を通 り 、 吸込側冷媒管 1 8 へ流れる。
密閉ケース 1 c 内の潤滑油 Lの油面が適正油面位置に達し ていない場合は、 開閉弁 3 2 の開放によ り 、 密閉ケース 1 c 内のガス冷媒が油管 3 1 に流入する。 こ う して油管 3 1 に流 入する気体は、 開閉弁 3 2 およびキヤ ビラ リ チューブ 3 3 を 通 り 、 吸込側冷媒管 1 8 へ流れる。
油管 3 1 に流入 した液体または気体の温度 T 1 が温度セ ン サ 3 4 で検知 され、 キヤ ビラ リ チューブ 3 3 を経た液体また は気体の温度 T 2 が温度セ ンサ 3 5 で検知 される (ス テ ッ プ 1 0 3 ) 。 そ して、 検知温度 T 1 と検知温度 T 2 と の差厶 T が求め られる (ステ ップ 1 0 4 ) 。
温度差△ T に対する設定値 Δ T s (た と えば外気温 7 °Cで 暖房運転中の室温が 3 0 °Cの と き は Δ T s = 3 3 °C ) が室外 制御部 4 0 の内部メ モ リ に予め記憶されてお り 、 その設定値 厶 T s が読出 される (ス テ ッ プ 1 0 5 ) 。 そ して、 読出 され た設定値 Δ T s と 温度差 Δ T と が比較される (ステ ッ プ 1 0 6 )
密閉ケース 1 c 内の潤滑油 L の油面が適正油面位置に達し ていて、 油管 3 1 に流入したのが液体であれば、 検知温度 T 1 に対する検知温度 T 2 の変化はキヤ ビラ リ チューブ 3 3 に おける わずかな放熱分のみ低下する だけである。 よ って、 温 度差 Δ Τ は設定値 Δ Τ s 未満と な る (ステ ップ 1 0 6 の Y E S ) 。 こ の場合、 前回の検出タイ ミ ングか らの温度差 Δ Τ の 推移が捕 ら え られ (ステ ップ 1 0 7 ) 、 その推移と 室外制御 部 4 0 の内部メ モ リ に予め記憶されている実験データ と に基 づき、 潤滑油不足 (密閉ケース 1 c 内の潤滑油 L の油面が適 正油面位置を下回る状態) に至るまでの残 り 時間 t が予測 さ れる (ステ ッ プ 1 0 8 ) 。
予測 された残 り 時間 t が設定時間 t 1 よ り 長ければ (ス テ ップ 1 0 9 の N O ) 、 密閉ケース 1 c 内の潤滑油量が足 り て いる と判定される (ステ ップ 1 1 0 ) 。 そ して、 開閉弁 3 2 が閉成され (ステ ップ 1 1 1 ) 、 油量検出の終了 と なる。
予測 された残 り 時間 t が設定時間 t 1 以下であれば (ス テ ップ 1 0 9 の Y E S ) 、 潤滑油不足が時間的に近い と判定さ れる (ステ ッ プ 1 1 2 ) 。 こ の場合、 開閉弁 3 2 が閉成され 続いて開閉弁 2 3 が所定時間だけ開放される (ステ ップ 1 1 3 ) 。 こ の開閉弁 2 3 の開放に よ り 、 オイ ノレセノ レータ 1 2 に溜ま ってレヽる潤滑油 Lがキヤ ビラ リ チューブ 2 2 および開 閉弁 2 3 を通って吸込側冷媒管 1 8 に流れる。 吸込側冷媒管 1 8 に流れた潤滑油 L は圧縮機 1 の吸入圧力を受けて圧縮機 1 に回収される。 すなわち、 潤滑油不足に至る前に潤滑油 L が補充される。
液体が油管 3 1 に流入する と き の温度差 Δ T を Δ T lia と して図 3 に示 している。
一方、 密閉ケース 1 c 內の潤滑油 Lの油面が適正油面位置 に達してお らず、 油管 3 1 に流入 したのが気体であれば、 検 知温度 T 1 に対する検知温度 T 2 の低下幅は大き く な り 、 よ つて温度差 Δ Τが設定値 Δ Τ 3 以上と なる (ステ ッ プ 1 0 6 の N 〇) 。 こ の場合、 密閉ケース 1 c 内の潤滑油 L の量が不 足 している と判定される (ステ ップ 1 1 4 ) 。
こ の不足判定時、 開閉弁 3 2 が閉成され、 続いて開閉弁 2 3 が所定時間だけ開放される (ステ ップ 1 1 3 ) 。 この開閉 弁 2 3 の開放によ り 、 オイ ルセノ レータ 1 2 に溜ま ってレヽる 潤滑油 Lがキヤ ビラ リ チューブ 2 2 および開閉弁 2 3 を通つ て吸込側冷媒管 1 8 に流れる。 吸込側冷媒管 1 8 に流れた潤 滑油 L は圧縮機 1 の吸入圧力 を受けて圧縮機 1 に回収される。 これによ り 、 潤滑油不足が直ちに解消 される。
気体が油管 3 1 ίこ流入する と き の温度差 Δ T を Δ T gas と して図 3 に示 してレヽる。
以上の よ う に、 油管 3 1 、 開閉弁 3 2 、 キヤ ビラ リ チュー ブ 3 3 、 温度センサ 3 4 , 3 5 を設け、 その温度センサ 3 4 , 3 5 の検知温度 T 1 , T 2 を比較するだけの簡単な構成によ り 、 従来のフ ロー ト スィ ッチ方式の油面調節器の よ う な機械 的なフ ロー ト スィ ツチを用レ、る こ と な く 、 よ って故障ゃコス ト上昇の心配な く 、 密閉ケース 1 c 内の潤滑油量を高い信頼 性で的確に検出する こ と ができ る。
検出タイ ミ ングにおいて開閉弁 3 2 の開放を継続する時間 は、 3 0 秒〜 9 0 秒程度の短時間である。 よ って、 油量検出 を迅速に完了する こ と ができて、 圧縮機能力の不要な低下を 回避する こ と ができ る。 しかも、 検出中は密閉ケース 1 c 力、 ら油管 3 1 に一且は流出する潤滑油 L が吸込側冷媒管 1 8 を 通って圧縮機 1 に戻る ので、 油量検出が何度繰 り 返されても 、 検出そのも のが潤滑油不足を招いて しま う 不具合は生じない。
温度差 Δ Tの推移に基づき 、 潤滑油不足が生 じる までの残 り 時間 t を予測 し、 その残 り 時間 t が少な く なつ た時点で潤 滑油 L を補充する よ う に したので、 潤滑油不足に至る事態を 極力防ぐこ と ができ る。
なお、 温度差 Δ Τ ( Δ T l iq , Δ T gas ) は、 図 4 に示すよ う に、 暖房時と 冷房時と で異な る値 と なる。 こ の点に着 目 し、 温度差 Δ Τに対する設定値 Δ Τ s と して暖房用 と冷房用の 2 種類を室外制御部 4 0 の内部メ モ リ に記憶しておき 、 これら 設定値 Δ T s を暖房 Z冷房の運転モー ドに応 じて選択的に読 出 し、 読出 した設定値 Δ Τ 3 と 温度差 Δ Τ と を比較する よ う に して も よ い。 これによ り 、 暖房ノ冷房の運転モー ドに影響 を受ける こ と な く 、 密閉ケース 1 c 内の潤滑油量を適切に検 出する こ と が可能 と なる。
また、 上記 したよ う に、 潤滑油 L に少量の液冷媒が混 じつ た状態で油管 3 1 に流入する こ と も ある。 そ こで、 潤滑油 L に対する液冷媒の希釈度が予め判る場合には、 その希釈度に 応 じて設定値 Δ Τ s を補正する よ う に して も よい。 この補正 によ り 、 潤滑油 L に対する液冷媒の混入に影響を受ける こ と な く ; さ ら に適切な油量検出を行 う こ と が可能と なる。
[ 2 ] 第 2 実施形態について説明する。 図 5 に示すよ う に、 2 台の圧縮機 1 , 5 1 が並列に冷媒管 接続されている。 こ の圧縮機 1 , 5 1 から吐出 される冷媒が 個別吐出側冷媒管 1 1 a , 1 1 b を介 して共通吐出側冷媒管 1 1 に流れる。 個別吐出側冷媒管 1 1 a , 1 1 b に逆流防止 用の逆止弁 1 9 a , 1 9 b が設け られている。 共通吸込側冷 媒管 1 8 内の冷媒は、 個別吸込側冷媒管 1 8 a , 1 8 b を介 して圧縮機 1 , 5 1 に付属のアキューム レータ 5 , 5 5 に流 れる。 セノ、。 レータ 1 2 およびアキューム レータ 1 7 力 ら先の 構成は、 図 1 と 同 じである。 なお、 図 1 は 1 つの室外ュニ ッ ト Aに 1 つの室内ュニ ッ ト B が接続された形の冷凍サイ クル であるが、 1 つの室外ュニ ッ ト Aに複数の室内ュニッ ト B が 並列に冷媒管接続されたマルチタ イ プの冷凍サイ ク ルを採用 して も よい。
圧縮機 5 1 は、 圧縮機 1 と 同 じ く モータおよび圧縮セク シ ヨ ン 3 が収容され且つ潤滑油 Lが収容された密閉形の密閉ケ ース 5 1 c を有 してお り 、 吸込管 5 4 および付属のアキユ ー ム レータ 5 5 を通 して吸込側冷媒管 1 8 b から冷媒を吸込み、 吸込んだ冷媒を圧縮して密閉ケース 5 1 c 内に吐出する。 密 閉ケース 5 1 c 内に吐出 された冷媒は、 密閉ケース 5 1 c の 上部に接続されている 吐出側冷媒管 1 1 b を通っ て冷凍サイ ク ノレに流れる。 '
また、 圧縮機 5 1 の駆動用 と して、 イ ンバータ 4 1 と 同 じ も う 1 台のイ ンバータ 4 3 が室外制御部 4 0 に接続されてい る。 イ ンバ一タ 4 3 は、 商用交流電源 4 2 の電圧を整流 し、 そ の整流後の電圧を室外制御部 4 0 の指令に応 じた周波数の 電圧に変換して出力する。 こ のイ ンバータ 4 3 の出力端に圧 縮機 5 1 の上部の電源端子 5 7 がケーブルで接続されている。
そ して、 密閉ケース 1 c , 5 1 c と共通吸込側冷媒管 1 8 と の間に、 油管 3 1 , 6 1 が接続されている。 密閉ケース 1 c , 5 1 c に対する油管 3 1 , 6 1 の接続位置は、 密閉ケー ス 1 c , 5 1 c 内の潤滑油 Lの適正油面位置である。
油管 3 1 , 6 1 には、 開閉弁 3 2 , 6 2 および減圧器た と えばキヤ ビラ リ チューブ 3 3 , 6 3 が設け られている。 さ ら に、 油管 3 1 , 6 1 において、 キヤ ビラ リ チューブ 3 3 , 6 3 よ り 上流側位置および下流側位置に第 1 温度センサ 3 4 , 6 4 および第 2 温度センサ 3 5 , 6 5 がそれぞれ取付け られ ている。 これら開閉弁 3 2 , 6 2 、 第 1 温度センサ 3 4 , 6 4 、 第 2 温度セ ンサ 3 5 , 6 5 は、 室外制御部 4 0 に接続さ れている。
密閉ケース 1 c 内の潤滑油 L の油面が適正油面位置に達し ていれば、 開閉弁 3 2 の開放によ り 、 密閉ケース 1 c 内の潤 滑油 Lが油管 3 1 に流入 し、 その潤滑油 Lが開閉弁 3 2 を通 り 、 さ ら にキヤ ビラ リ チューブ 3 3 を通って共通吸込側冷媒 管 1 8 へ と 流れる。 密閉ケース 1 c 内の潤滑油 L の油面が適 正油面位置に達 していない場合は、 開閉弁 3 2 の開放によ り 、 密閉ケース 1 c 内のガス冷媒が油管 3 1 に流入 し、 そのガス 冷媒が開閉弁 3 2 を通 り 、 さ らにキヤ ビラ リ チューブ 3 3 を 通って共通吸込側冷媒管 1 8 へと 流れる。
密閉ケース 5 1 c 内の潤滑油 L の油面が適正油面位置に達 していれば、 開閉弁 6 2 の開放に よ り 、 密閉ケー ス 5 1 c 内 の潤滑油 Lが油管 6 1 に流入 し、 その潤滑油 L が開閉弁 6 2 を通 り 、 さ ら にキヤ ビラ リ チューブ 6 3 を通っ て共通吸込側 冷媒管 1 8 へ と 流れる。 密閉ケース 5 1 c 内の潤滑油 L の油 面が適正油面位置に達していない場合は、 開閉弁 6 2 の開放 によ り 、 密閉ケース 5 1 c 内のガス冷媒が油管 6 1 に流入 し、 そのガス冷媒が開閉弁 6 2 を通 り 、 さ ら にキヤ ビラ リ チュー ブ 6 3 を通っ て共通吸込側冷媒管 1 8 へと 流れる。
室外制御部 4 0 および室内制御部 4 4 は、 互いに信号線接 続されてお り 、 主要な機能 と して次の ( 1 ) の手段を備える。
( I ) 冷房および暖房運転時、 室内温度センサ 2 8 の検知 温度 と操作器 4 6 で設定される室内設定温度 と の差を空調負 荷と して求め、 その空調負荷に対応する冷房能力または暖房 能力が得られる よ う 、 圧縮機 1 , 5 1 の運転台数およびその 運転周波数 (イ ンバータ 4 1 , 4 3 の出力周波数) を制御す る制御手段。
室外制御部 4 0 は、 圧縮機 1 , 5 1 の油量検出に関する機 能 と して、 次の ( 1 1 ) 〜 ( 1 5 ) の手段を備える。
( I I ) 内部タイ マのカ ウ ン ト に基づ く 一定時間 (た と え ば 5 分) ご と に開閉弁 3 2 を所定時間だけ開放 し、 その開放 時の温度セ ンサ 3 4 の検知温度 T 1 と 温度セ ンサ 3 5 の検知 温度 T 2 と の比較に よ り 、 圧縮機 1 の密閉ケース 1 c 内の潤 滑油量を検出する第 1 検出手段。
( 1 2 ) 內部タイ マのカ ウ ン ト に基づ く 一定時間 (た と え ば 5 分) ごと に、 かつ第 1 検出手段の検出タイ ミ ングと異な る タイ ミ ングで、 開閉弁 6 2 を所定時間だけ開放 し、 その開 放時の温度セ ンサ 6 4 の検知温度 T 1 と 温度セ ンサ 6 5 の検 知温度 T 2 と の比較に よ り 、 圧縮機 5 1 の密閉ケース 5 1 c 内の潤滑油量を検出する第 2 検出手段。
( 1 3 ) 開閉弁 2 3 を定期的に所定時間だけ開放する制御 手段。
( 1 4 ) 第 1 検出手段で潤滑油不足が検出 された と き (密 閉ケース 1 c が潤滑油不足) 、 圧縮機 5 1 側の開閉弁 6 2 を 所定時間だけ開放する制御手段。
( 1 5 ) 第 2 検出手段で潤滑油不足が検出 された と き (密 閉ケース 5 1 c が潤滑油不足) 、 圧縮機 1 側の開閉弁 3 2 を 所定時間だけ開放する制御手段。
上記 ( 1 1 ) ( 1 2 ) の機能手段および油管 3 1 , 6 1 、 開閉弁 3 2, 6 2 、 キヤ ビラ リ チューブ 3 3, 6 3 、 温度セ ンサ 3 4 , 3 5 , 6 4 , 6 5 によ り 、 油量検出装置が構成さ れている。 温度センサ 3 4, 3 5 , 6 4 , 6 5 の検知温度に よ る潤滑油量検出の方法は、 第 1 実施形態と 同 じである。 圧縮機 1 の潤滑油不足が検出 された場合には、 圧縮機 5 1 側の開閉弁 6 2 が所定時間だけ開放 し、 圧縮機 5 1 の密閉ケ '—ス 5 1 c 内の潤滑油 L の余剰分が油管 6 1 および個別吸込 側冷媒管 1 8 a を通っ て圧縮機 1 に流れる。 圧縮機 5 1 の潤 滑油不足が検出 された場合には、 圧縮機 1 側の開閉弁 3 2 所定時間だけ開放 し、 圧縮機 1 の密閉ケース 1 c 内の余剰潤 滑油 Lが油管 3 1 および個別吸込側冷媒管 1 8 b を通って圧 縮機 5 1 に流れる。
以上の よ う に、 従来のフ ロー ト スィ ッチ方式の油面調節器 の よ う な機械的なフ ロ ー ト スィ ッ チを用レヽる こ と な く 、 よ つ て故障やコ ス ト上昇の心配な く 、 圧縮機 1 , 5 1 の密閉ケー ス 1 c , 5 1 c 内の潤滑油量を高い信頼性で的確に検出する こ と ができ る。
検出タイ ミ ングにおいて開閉弁 3 2 , 6 2 の開放を継続す る時間は、 3 0 秒〜 9 0秒程度の短時間である。 よ って、 油 量検出を迅速に完了する こ と ができて、 圧縮機能力の不要な 低下を回避する こ と ができ る。 しかも、 検出中は密閉ケース 1 c , 5 1 c 力、ら油管 3 1 , 6 1 にー且は流出する潤滑油 L が共通吸込側冷媒管 1 8 を通っ て圧縮機 1 , 5 1 に戻る ので、 油量検出が何度繰 り 返されても、 検出その も のが潤滑油不足 を招いて しま う 不具合は生 じない。
また、 一方の圧縮機に潤滑油不足が生 じた場合に、 その不 足側の圧縮機に対 し、 他方の圧縮機の潤滑油 L の余剰分を油 管 3 1 , 6 1 のいずれかを通 して迅速に補充するいわゆる油 均等運転が可能である。 しかも、 こ の油均等運転では、 油管 3 1 , 6 1 のいずれかを油均等用の管 と して兼用する こ と に なるので、 部品数を抑制できてコ ス ト の低減が図れる。
温度差 Δ T の推移に基づいて潤滑油不足が生 じる までの残 り 時間 t を予測する のは第 1 実施形態 と 同 じであ り 、 一方の 圧縮機が潤滑油不足に至るまでの残 り 時間 t が少な く なつた 時点で、 他方の圧縮機の潤滑油余剰分を油管 3 1 , 6 1 のい ずれかを通 して迅速に補充する油均等運転も可能である。 こ れによ り 、 潤滑油不足に至る事態を極力防ぐこ と ができ る。
[ 3 ] 第 3 実施形態について説明する。 図 6 に示すよ う に、 油管 3 1 , 6 1 力 S 1 本の配管 7 0 に集 合化 され、 その配管 7 0 が共通吸込側冷媒管 1 8 に接続され ている。 他の構成および作用は第 2 実施形態と 同 じである。
[ 4 ] 第 4 実施形態について説明する。
図 7 に示すよ う に、 密閉ケース 1 c , 5 1 c の適正油面位 置に、 油管 (第 1 油管) 3 1 , 6 1 の一端が接続されている。 こ の油管 3 1 , 6 1 に開閉弁 3 2 , 6 2 が設け られてレ、る。 油管 3 1 , 6 1 の他端は相互接続され、 その接続部 と共通吸 込側冷媒管 1 8 と の間に油管 (第 2 油管) 8 0 が接続されて いる。
油管 8 0 に減圧器た と えばキヤ ビラ リ チューブ 8 1 が設け られ、 その油管 8 0 における キヤ ビラ リ チューブ 8 1 よ り 上 流側位置おょぴ下流側位置に第 1 温度センサ 8 2 お よび第 2 温度センサ 8 3 がそれぞれ取付け られている。
密閉ケース 1 c 内の潤滑油 L の油面が適正油面位置に達し ていれば、 開閉弁 3 2 の開放によ り 、 密閉ケース 1 c 内の潤 滑油 Lが油管 3 1 に流入 し、 その潤滑油 L が開閉弁 3 2 を通 り 、 さ ら に油管 8 0 およびキヤ ビラ リ チューブ 8 1 を通って 共通吸込側冷媒管 1 8 へと 流れる。 密閉ケース 1 c 内の潤滑 油 L の油面が適正油面位置に達 していない場合は、 開閉弁 3
2 の開放によ り 、 密閉ケース 1 c 内のガス冷媒が油管 3 1 に 流入 し、 そのガス冷媒が開閉弁 3 2 を通 り 、 さ ら に油管 8 0 およびキヤ ビラ リ チューブ 8 1 を通って共通吸込側冷媒管 1
8 へと 流れる。
密閉ケース 5 1 c 内の潤滑油 L の油面が適正油面位置に達 していれば、 開閉弁 6 2 の開放によ り 、 密閉ケース 5 1 c 内 の潤滑油 L が油管 6 1 に流入 し、 その潤滑油 L が開閉弁 6 2 を通 り 、 さ ら に油管 8 0 およびキヤ ビラ リ チューブ 8 1 を通 つて共通吸込側冷媒管 1 8 へと流れる。 密閉ケース 5 1 c 内 の潤滑油 L の油面が適正油面位置に達していない場合は、 開 閉弁 6 2 の開放に よ り 、 密閉ケース 5 1 c 内のガス冷媒が油 管 6 1 に流入 し、 そのガス冷媒が開閉弁 6 2 を通 り 、 さ ら に 油管 8 0 およびキヤ ビラ リ チューブ 8 1 を通って共通吸込側 冷媒管 1 8 へと 流れる。
室外制御部 4 0 は、 圧縮機 1 , 5 1 の油量検出に関する機 能と して、 次の ( 1 1 ) 〜 ( 1 5 ) の手段を備える。
( 1 1 ) 内部タイ マのカ ウン ト に基づく 一定時間 (た と え ば 5 分) ごと に開閉弁 3 2 を所定時間だけ開放 し、 その開放 時の温度センサ 8 2 の検知温度 T 1 と 温度センサ 8 3 の検知 温度 T 2 と の比較に よ り 、 圧縮機 1 の密閉ケース 1 c 内の潤 滑油量を検出する第 1 検出手段。
( 1 2 ) 内部タイ マのカ ウン ト に基づく 一定時間 (た と え ば 5 分) ごと に、 かつ第 1 検出手段の検出タイ ミ ングと 異な る タイ ミ ングで、 開閉弁 6 2 を所定時間だけ開放し、 その開 放時の温度セ ンサ 8 2 の検知温度 T 1 と 温度センサ 8 3 の検 知温度 T 2 と の比較に よ り 、 圧縮機 5 1 の密閉ケース 5 1 c 内の潤滑油量を検出する第 2検出手段。
( 1 3 ) 開閉弁 2 3 を定期的に所定時間だけ開放する制御 手段。
( 1 4 ) 第 1 検出手段で潤滑油不足が検出 された と き (密 閉ケース 1 c が潤滑油不足) 、 圧縮機 5 1 側の開閉弁 6 2 を 所定時間だけ開放する制御手段。
( 1 5 ) 第 2 検出手段で潤滑油不足が検出 された と き (密 閉ケース 5 1 c が潤滑油不足) 、 圧縮機 1 側の開閉弁 3 2 を 所定時間だけ開放する制御手段。
上記 ( 1 1 ) ( 1 2 ) の機能手段および油管 3 1 , 6 1 , 8 0 、 開閉弁 3 2 , 6 2 、 キヤ ビラ リ チューブ 8 1 、 温度セ ンサ 8 2 , 8 3 によ り 、 油量検出装置が構成されている。 温 度セ ンサ 8 2 , 8 3 の検知温度に よ る潤滑油量検出の方法は、 第 1 実施形態 と 同 じである。
圧縮機 1 の潤滑油不足が検出 された場合には、 圧縮機 5 1 側の開閉弁 6 2 が所定時間だけ開放 し、 圧縮機 5 1 の密閉ケ ース 5 1 c 内の潤滑油 Lの余剰分が油管 6 1 , 8 0 および個 別吸込側冷媒管 1 8 a を通って圧縮機 1 に流れる。 圧縮機 5 1 の潤滑油不足が検出 された場合には、 圧縮機 1 側の開閉弁 3 2 が所定時間だけ開放し、 圧縮機 1 の密閉ケース 1 c 内の 余剰潤滑油 L が油管 3 1 , 8 0 および個別吸込側冷媒管 1 8 b を通って圧縮機 5 1 に流れる。
以上の よ う に、 従来のフ ロー ト スィ ッチ方式の油面調節器 の よ う な機械的なフ ロー ト スィ ツチを用レヽる こ と な く 、 よ つ て故障やコ ス ト上昇の心配な く 、 圧縮機 1 , 5 1 の密閉ケー ス 1 c , 5 1 c 内の潤滑油量を高い信頼性で的確に検出する こ と ができ る。
検出タイ ミ ングにおいて開閉弁 3 2 , 6 2 の開放を継続す る時間は、 3 0秒〜 9 0秒程度の短時間である。 よ って、 油 量検出を迅速に完了する こ と ができて、 圧縮機能力の不要な 低下を回避する こ と ができ る。 しかも 、 検出中は密閉ケー ス 1 c , 5 1 c 力 ら油管 3 1 , 6 1 に一旦は流出する潤滑油 L が共通吸込側冷媒管 1 8 を通っ て圧縮機 1 , 5 1 に戻る ので、 油量検出が何度繰 り 返されて も、 検出その ものが潤滑油不足 を招いて しま う 不具合は生じない。
また、 一方の圧縮機に潤滑油不足が生 じた場合に、 その不 足側の圧縮機に対し、 他方の圧縮機の潤滑油 L の余剰分を油 管油管 3 1 , 6 1 のいずれかおよび油管 8 0 を通 して迅速に 補充するいわゆる油均等運転が可能である。 しかも、 こ の油 均等運転では、 油管 3 1 , 6 1 のいずれかおよび油管 8 0 を 油均等用の管 と して兼用する こ と にな る ので、 部品数を抑制 でき て コ ス ト の低減が図れる。
温度差 Δ T の推移に基づいて潤滑油不足が生 じる までの残 り 時間 t を予測する のは第 1 実施形態 と 同 じであ り 、 一方の 圧縮機が潤滑油不足に至るまでの残 り 時間 t が少な く なつた 時点で、 他方の圧縮機の潤滑油余剰分を油管 3 1 , 6 1 のい ' ずれかおよび油管 8 0 を通 して迅速に補充する油均等運転も 可能である。 これに よ り 、 潤滑油不足に至る事態を極力防ぐ こ と ができ る。
他の構成および作用は第 2 実施形態 と 同 じである。
[ 5 ] 第 5 実施形態について説明する。
図 8 に示すよ う に、 密閉ケー ス 1 c , 5 1 c と個別吸込側 冷媒管 1 8 a , 1 8 b と の間に、 油管 3 1 , 6 1 がそれぞれ 接続されてい る。 密閉ケー ス 1 c , 5 1 c に対する油管 3 1 , 6 1 の接続位置は、 密閉ケース 1 c , 5 1 c 内の潤滑油 L の 適正油面位置である。
油管 3 1 , 6 1 には、 減圧器た と えばキヤ ビラ リ チューブ 3 3 , 6 3 が設け られ、 そのキヤ ビラ リ チューブ 3 3 , 6 3 よ り 上流側位置に開閉弁 (第 1 開閉弁) 3 2 , 6 2 がそれぞ れ設け られ、 キヤ ビラ リ チューブ 3 3 , 6 3 よ り 下流側位置 に開閉弁 (第 2 開閉弁) 3 6 , 6 6 がそれぞれ設け られてい る。 さ らに、 油管 3 1 , 6 1 における キヤ ビラ リ チューブ 3 3 , 6 3 と 開閉弁 3 6 , 6 6 と の間の位置、 の相互間に油流 通管 9 0 が接続されてい る 。 こ の油流通管 9 0 に開閉弁 (第 3 開閉弁) 9 1 が設け られてレヽる。
油管 3 1 , 6 1 において、 開閉弁 3 2 , 6 2 と キヤ ビラ リ チューブ 3 3 , 6 3 と の間に第 1 温度セ ンサ 3 4 , 6 4 がそ れぞれ取付け られ、 キヤ ビラ リ チューブ 3 3 , 6 3 と 開閉弁 3 6 , 6 6 と の間に第 2 温度センサ 3 5 , 6 5 がそれぞれ取 付け られてレ、 る。
密閉ケース 1 c 内の潤滑油 L の油面が適正油面位置に達し ていれば、 開閉弁 3 2 , 3 6 の開放によ り 、 密閉ケース 1 c 内の潤滑油 Lが油管 3 1 に流入し、 その潤滑油 L が開閉弁 3 2 , 3 6 およびキヤ ビラ リ チューブ 3 3 を通って個別吸込側 冷媒管 1 8 a へと 流れる。 密閉ケース 1 c 内の潤滑油 L の油 面が適正油面位置に達 していない場合は、 開閉弁 3 2 , 3 6 の開放によ り 、 密閉ケース 1 c ^のガス冷媒が油管 3 1 に流 入 し、 そのガス冷媒が開閉弁 3 2 , 3 6 お よびキヤ ビラ リ チ ユーブ 3 3 を通って個別吸込側冷媒管 1 8 a へと 流れる。 密閉ケース 5 1 c 内の潤滑油 L の油面が適正油面位置に達 していれば、 開閉弁 6 2 , 6 6 の開放によ り 、 密閉ケース 5 1 c 内の潤滑油 Lが油管 6 1 に流入 し、 その潤滑油 Lが開閉 弁 6 2 , 6 6 およびキヤ ビラ リ チューブ 6 3 を通っ て個別吸 込側冷媒管 1 8 b へと流れる。 密閉ケース 5 1 c 内の潤滑油 L の油面が適正油面位置に達していない場合は、 開閉弁 6 2 , 6 6 の開放に よ り 、 密閉ケース 5 1 c 内のガス冷媒が油管 6 1 に流入 し、 そのガス冷媒が開閉弁 6 2 , 6 6 およびキヤ ピ ラ リ チューブ 6 3 を通って個別吸込側冷媒管 1 8 b へと流れ る。
室外制御部 4 0 は、 圧縮機 1 , 5 1 の油量検出に関する機 能 と して、 次の ( 1 1 ) ~ ( 1 5 ) の手段を備える。
( 1 1 ) 内部タイ マのカ ウ ン ト に基づ く 一定時間 (た と え ば 5 分) ごと に開閉弁 3 2 , 3 6 を所定時間だけ開放し、 そ の開放時の温度センサ 3 4 の検知温度 T 1 と 温度セ ンサ 8 3 5 検知温度 T 2 と の比較に よ り 、 圧縮機 1 の密閉ケース 1 c 内の潤滑油量を検出する第 1 検出手段。
( 1 2 ) 内部タイ マのカ ウ ン ト に基づく 一定時間 (た と え ば 5 分) ごと に、 かつ第 1 検出手段の検出タイ ミ ングと 異な る タ イ ミ ングで、 開閉弁 6 2 , 6 6 を所定時間だけ開放し、 その開放時の温度センサ 6 4 の検知温度 T 1 と 温度センサ 6 5 の検知温度 T 2 と の比較によ り 、 圧縮機 5 1 の密閉ケース 5 1 c 内の潤滑油量を検出する第 2 検出手段。
( 1 3 ) 開閉弁 2 3 を定期的に所定時間だけ開放する制御 手段。 ( 1 4 ) 第 1 検出手段で潤滑油不足が検出 された と き (密 閉ケース 1 c が潤滑油不足) 、 圧縮機 5 1 側の開閉弁 6 2 、 油流通管 9 0 の開閉弁 9 1 、 および圧縮機 1 側の開閉弁 3 6 を所定時間だけ開放する制御手段。
( 1 5 ) 第 2 検出手段で潤滑油不足が検出 された と き (密 閉ケース 5 1 c が潤滑油不足) 、 圧縮機 1 側の開閉弁 3 2 、 油流通管 9 0 の開閉弁 9 1 、 および圧縮機 5 1 側の開閉弁 6 6 を所定時間だけ開放する制御手段。
上記 ( 1 1 ) ( 1 2 ) の機能手段および油管 3 1 , 6 1 、 開閉弁 3 2 , 3 6 , 6 2 , 6 6 、 キヤ ビラ リ チューブ 3 3 , 6 3 、 温度セ ンサ 3 4 , 3 5 , 6 4 , 6 5 に よ り 、 油量検出 装置が構成されている。 温度セ ンサ 3 4 , 3 5 , 6 4 , 6 5 の検知温度に よ る潤滑油量検出の方法は、 第 1 実施形態と 同 じである。
圧縮機 1 の潤滑油不足が検出 された場合には、 圧縮機 5 1 側の開閉弁 6 2 、 油流通管 9 0 の開閉弁 9 1 、 および圧縮機 1 側の開閉弁 3 6 が所定時間だけ開放 し、 圧縮機 5 1 の密閉 ケース 5 1 c 内の潤滑油 Lの余剰分が油管 6 1 、 油流通管 9 0 、 油管 3 1 、 お よび個別吸込側冷媒管 1 8 a を通って圧縮 機 1 に流れる。 圧縮機 5 1 の潤滑油不足が検出 された場合に は、 圧縮機 1 側の開閉弁 3 2 、 油流通管 9 0 の開閉弁 9 1 、 および圧縮機 5 1 側の開閉弁 6 6 が所定時間だけ開放し、 圧 縮機 1 の密閉ケース 1 c 内の余剰潤滑油 L が油管 3 1 、 油流 通管 9 0 、 油管 6 1 、 および個別吸込側冷媒管 1 8 b を通つ て圧縮機 5 1 に流れる。 以上の よ う に、 従来のフ ロー ト スィ ッチ方式の油面調節器 の よ う な機械的なフ ロ ー ト スィ ツチを用いる こ と な く 、 よ つ て故障ゃコ ス ト上昇の心配な く 、 圧縮機 1 , 5 1 の密閉ケー ス 1 c , 5 1 c 内の潤滑油量を高い信頼性で的確に検出する こ と ができ る。
検出タイ ミ ングにおいて開閉弁 3 2 , 3 6 , 6 2 , 6 6 の 開放を継続する時間は、 3 0 秒〜 9 0 秒程度の短時間である。 よ っ て、 油量検出を迅速に完了する こ と ができて、 圧縮機能 力の不要な低下を回避する こ と ができ る。 しかも、 検出中は 密閉ケース 1 c , 5 1 c 力、ら油管 3 1 , 6 1 に一旦は流出す る潤滑油 Lが個別吸込側冷媒管 1 8 a , 1 8 b を通って圧縮 機 1 , 5 1 に戻るので、 油量検出が何度繰 り 返されても 、 検 出そのものが潤滑油不足を招いて しま う 不具合は生 じない。
また、 一方の圧縮機に潤滑油不足が生 じた場合に、 その不 足側の圧縮機に対し、 他方の圧縮機の潤滑油 L の余剰分を油 管油管 3 1 , 6 1 および油流通管 9 0 を通 して迅速に補充す るいわゆる油均等運転が可能である。 しかも、 こ の油均等運 転では、 油管 3 1 , 6 1 を油均等用の管 と して兼用する こ と になる ので、 部品数を抑制でき て コ ス ト の低減が図れる。
温度差 Δ Tの推移に基づいて潤滑油不足が生 じる までの残 り 時間 t を予測するのは第 1 実施形態 と 同 じであ り 、 一方の 圧縮機が潤滑油不足に至る までの残 り 時間 t が少な く なつた 時点で、 他方の圧縮機の潤滑油余剰分を油管 3 1 , 6 1 およ び油流通管 9 0 を通 して迅速に補充する油均等運転も可能で ある。 これに よ り 、 潤滑油不足に至る事態を極力防 ぐこ と 力 S でき る。 . . 他の構成および作用は第 2 実施形態と 同 じである。
[ 6 ] 第 6 実施形態について説明する。
図 9 お よび図 1 0 に示すよ う に、 複数の室外ユニ ッ ト A 1 , A 2 が並列に冷媒管接続され、 そ の室外ユニ ッ ト A l , A 2 に複数の室内ユニ ッ ト B 1 , B 2 , …が冷媒管接続されてい る。 これによ り 、 マルチタイ プの冷凍サイ クルが構成されて いる。
室外ュニ ッ ト A 1 には、 互いに並列に冷媒管接続された圧 縮機 1 , 5 1 が設け られている。 室外ユニ ッ ト A 2 にも、 同 じく 、 互いに並列に冷媒管接続された圧縮機 1 , 5 1 が設け られてレ、る。
こ の室外ユニ ッ ト A l , A 2 ごと に、 第 3 実施形態と して 示 した図 6 の油量検出装置が設け られている。 こ の油量検出 装置の説明については省略する。
ただし、 室外ユニ ッ ト A 1 , A 2 の油管 7 0 には、 それぞ れ開閉弁 7 1 が設け られている。 そ して、 各油管 7 0 におけ る開閉弁 7 1 よ り 上流側位置が、 相互に、 油流通管 7 2 によ り 接続されている。
室外ュニ ッ ト A 1 , A 2 にはそれぞれ室外制御部 4 0 が設 け られてお り 、 その各室外制御部 4 0 の相互間でデータ の送 受信が可能 と なっ ている。
各室外制御部 4 0 は、 各圧縮機 1 および各圧縮機 5 1 の油 量検出に関する機能と して、 次の ( 1 1 ) 〜 ( 1 5 ) の手段 を備 る 。 ( 1 1 ) 内部タイ マのカ ウ ン ト に基づく 一定時間 (た と え ば 5 分) ごと に、 開閉弁 3 2 , 7 1 を所定時間だけ開放 し、 その開放時の温度セ ンサ 3 4 の検知温度 T 1 と 温度センサ 3 5 の検知温度 T 2 と の比較に よ り 、 圧縮機 1 の密閉ケース 1 c 内の潤滑油量を検出する第 1 検出手段。
( 1 2 ) 内部タイ マのカ ウ ン ト に基づく 一定時間 (た と え ば 5 分) ごと に、 かつ第 1 検出手段の検出タ イ ミ ング と 異な る タイ ミ ングで、 開閉弁 6 2 , 7 1 を所定時間だけ開放 し、 その開放時の温度セ ンサ 6 4 の検知温度 T 1 と 温度センサ 6 5 の検知温度 T 2 と の比較によ り 、 圧縮機 5 1 の密閉ケース 5 1 c 内の潤滑油量を検出する第 2検出手段。
( 1 3 ) 開閉弁 2 3 を定期的に所定時間だけ開放する制御 手段。
( 1 4 ) 室外ュニ ッ ト A 1 における圧縮機 1 または圧縮機 5 1 の潤滑油不足が検出 された と き、 室外ユニ ッ ト A 1 の開 閉弁 3 2 , 6 2 を閉成 した状態で同室外ュニ ッ ト A 1 の開閉 弁 7 1 を所定時間だけ開放する と と も に、 室外ユニ ッ ト A 2 の開閉弁 7 1 を閉成 した状態で同室外ュニ ッ ト A 2 の開閉弁 3 2 , 6 2 を所定時間だけ開放する制御手段。
( 1 5 ) 室外ユニ ッ ト A 2 における圧縮機 1 または圧縮機 5 1 の潤滑油不足が検出 された と き、 室外ュニ ッ ト A 2 の開 閉弁 3 2 , 6 2 を閉成 した状態で同室外ュ - ッ ト A 2 の開閉 弁 7 1 を所定時間だけ開放する と と も に、 室外ュニ ッ ト A 1 の開閉弁 7 1 を閉成 した状態で同室外ュ - ッ ト A 1 の開閉弁 3 2 , 6 2 を所定時間だけ開放する制御手段。 温度センサ 3 4 , 3 5 , 6 4 , 6 5 の検知温度によ る潤滑 油量検出の方法は、 第 1 実施形態と 同 じである。
室外ュニ ッ ト A 1 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される と 、 室外ユニ ッ ト A 1 の開閉弁 3 2 , 6 2 カ; 閉成された状態で同室外ュニ ッ ト A 1 の開閉弁 7 1 が開放さ れる と と も に、 室外ユニ ッ ト A 2 の開閉弁 7 1 が閉成された 状態で同室外ュニ ッ ト A 2 の開閉弁 3 2 , 6 2 が開放される。 これに よ り 、 室外ユニ ッ ト A 2 における圧縮機 1 , 5 1 の潤 滑油 L の余剰分が、 室外ュニ ッ ト A 2 の油管 3 1 , 6 1 およ び油管 7 0 を通 り 、 さ ら に油流通管 7 2 を通って、 室外ュニ ッ ト A 1 に流れる。 室外ュニ ッ ト A 1 に流れた潤滑油 L は、 開放している 開閉弁 7 1 、 油管 7 0 、 および個別吸込側冷媒 管 1 8 a , 1 8 b を介 して圧縮機 1 , 5 1 に吸込まれる。
室外ュニ ッ ト A 2 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される と 、 室外ユニ ッ ト A 2 の開閉弁 3 2 , 6 2 カ 閉成された状態で同室外ュニ ッ ト A 2 の開閉弁 7 1 が開放さ れる と と も に、 室外ユニ ッ ト A 1 の開閉弁 7 1 が閉成された 状態で同室外ュニ ッ ト A 1 の開閉弁 3 2 , 6 2 が開放される。 これに よ り 、 室外ユニ ッ ト A 1 における圧縮機 1 , 5 1 の潤 滑油 L の余剰分が、 室外ユニ ッ ト A 2 の油管 3 1 , 6 1 およ び油管 7 0 を通 り 、 さ らに油流通管 7 2 を通って、 室外ュニ ッ ト A 2 に流れる。 室外ュュ ッ ト A 2 に流れた潤滑油 L は、 開放している開閉弁 7 1 、 油管 7 0 、 および個別吸込側冷媒 管 1 8 a , 1 8 b を介 して圧縮機 1 , 5 1 に吸込まれる。
以上の よ う に、 従来のフ ロー ト スィ ツチ方式の油面調節器 の よ う な機械的なフ ロ ー ト スィ ツチを用いる こ と な く 、 よ つ て故障やコス ト上昇の心配な く 、 室外ユニ ッ ト A 1 , A 2 に おける圧縮機 1 , 5 1 の密閉ケース l c , 5 1 c 内の潤滑油 量を高い信頼性で的確に検出する こ と ができ る。
検出タ イ. ミ ングにおいて開閉弁 3 2 , 6 2 の開放を継続す る時間は、 3 0 秒〜 9 0 秒程度の短時間である。 よ って、 油 量検出を迅速に完了する こ と ができて、 圧縮機能力の不要な 低下を回避する こ と ができ る。 しかも、 検出中は密閉ケース 1 c , 5 1 c 力ゝら油管 3 1 , 6 1 に一旦は流出する潤滑油 L が共通吸込側冷媒管 1 8 を通っ て圧縮機 1 , 5 1 に戻る ので、 油量検出が何度繰 り 返されて も、 検出その も のが潤滑油不足 を招いて しま う 不具合は生 じない。
また、 一方の室外ユニ ッ ト における圧縮機 1 , 5 1 のいず れかに潤滑油不足が生 じた場合に、 その不足側の室外ュニ ッ ト に対し、 他方の室外ユニ ッ ト における圧縮機 1 , 5 1 の潤 滑油 L の余剰分を油管 3 1 , 6 1 , 7 0 およぴ油流通管 7 2 を介 して迅速に補充する いわゆる油均等運転が可能であ る。 し力 も、 こ の油均等運転では、 油管 3 1 , 6 1 , 7 0 を油流 通管と して兼用する こ と になるので、 部品数を抑制でき てコ ス ト の低減が図れる。
他の構成および作用については、 第 2 実施形態 と 同 じであ る。
[ 7 ] 第 7 実施形態について説明する。
図 1 1 に示すよ う に、 複数の室外ユニ ッ ト A l , A 2 が並 列に冷媒管接続されている。 こ の室外ユニ ッ ト A 1 , A 2 に は、 図 1 0 で示 したよ う に、 複数の室内ユニ ッ ト B l , B 2 , …が冷媒管接続されている。 これによ り 、 マルチタ イ プの冷 凍サイ ク ルが構成されている。
室外ユニ ッ ト A 1 には、 互いに並列に冷媒管接続 された圧 縮機 1 , 5 1 が設け られてレ、る。 室外ユニ ッ ト A 2 にも、 同 じ く 、 互いに並列に冷媒管接続された圧縮機 1 , 5 1 が設け られて レヽる。
こ の室外ユニ ッ ト A l , A 2 ご と に、 第 4 実施形態と して 示 した図 7 の油量検出装置が設け られている。 こ の油量検出 装置の説明については省略する。
ただ し、 室外ユニ ッ ト A 1 , A 2 の油管 8 0 には、 それぞ れ開閉弁 7 1 が設け られている。 そ して、 各油管 8 0 におけ る 開閉弁 7 1 よ り 上流側位置が、 相互に、 油流通管 7 2 に よ り 接続されている。
室外ユニ ッ ト A ]_ , A 2 には、 第 6 実施形態 と して示 した 図 1 0 と 同様に、 それぞれ室外制御部 4 0 が設け られている。 これら室外制御部 4 0 の相互間で、 データ の送受信が可能 と なってレヽる。
各室外制御部 4 0 は、 各圧縮機 1 および各圧縮機 5 1 の油 量検出に関する機能と して、 次の ( 1 1 ) 〜 ( 1 5 ) の手段 を備える。
( 1 1 ) 内部タイ マのカ ウ ン ト に基づ く 一定時間 (た と え ば 5分) ごと に、 開閉弁 3 2 , 7 1 を所定時間だけ開放し、 その開放時の温度センサ 8 2 の検知温度 T 1 と 温度センサ 8 3 の検知温度 T 2 と の比較によ り 、 圧縮機 1 の密閉ケース 1 c 内の潤滑油量を検出する第 1 検出手段。
( 1 2 ) 内部タ イ マのカ ウ ン ト に基づ く 一定時間 (た と え ば 5 分) ごと に、 かつ第 1 検出手段の検出タイ ミ ングと 異な る タイ ミ ングで、 開閉弁 6 2 , 7 1 を所定時間だけ開放し、 その開放時の温度セ ンサ 8 2 の検知温度 T 1 と 温度センサ 8 3 の検知温度 T 2 と の比較によ り 、 圧縮機 5 1 の密閉ケース 5 1 c 内の潤滑油量を検出する第 2 検出手段。
( 1 3 ) 開閉弁 2 3 を定期的に所定時間だけ開放する制御 手权 。
( 1 4 ) 室外ユニ ッ ト A 1 における圧縮機 1 または圧縮機 5 1 の潤滑油不足が検出 された と き 、 室外ュニ ッ ト A 1 の開 閉弁 3 2 , 6 2 を閉成した状態で同室外ユニ ッ ト A 1 の開閉 弁 7 1 を所定時間だけ開放する と と も に、 室外ユニ ッ ト A 2 の開閉弁 7 1 を閉成 した状態で同室外ュニ ッ ト A 2 の開閉弁 3 2 , 6 2 を所定時間だけ開放する制御手段。
( 1 5 ) 室外ュニ ッ ト A 2 におけ る圧縮機 1 または圧縮機 ' 5 1 の潤滑油不足が検出 された と き 、 室外ュニ ッ ト A 2 の開 閉弁 3 2 , 6 2 を閉成 した状態で同室外ユニ ッ ト A 2 の開閉 弁 7 1 を所定時間だけ開放する と と も に、 室外ユニ ッ ト A 1 の開閉弁 7 1 を閉成 した状態で同室外ュニ ッ ト A 1 の開閉弁 3 2 , 6 2 を所定時間だけ開放する制御手段。
温度センサ 8 2 , 8 3 の検知温度によ る潤滑油量検出の方 法は、 第 1 実施形態 と 同 じである。
室外ュュ ッ ト A 1 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される と 、 室外ユニ ッ ト A 1 の開閉弁 3 2 , 6 2 が 閉成された状態で同室外ュニ ッ ト A 1 の開閉弁 7 1 が開放さ れる と と も に、 室外ュニ ッ ト A 2 の開閉弁 7 1 が閉成された 状態で同室外ュニ ッ ト A 2 の開閉弁 3 2 , 6 2 が開放される。 これによ り 、 室外ユニ ッ ト A 2 における圧縮機 1 , 5 1 の潤 滑油 L の余剰分が、 室外ュニ ッ ト A 2 の油管 3 1 , 6 1 およ び油管 7 0 を通 り 、 さ ら に油流通管 7 2 を通って、 室外ュニ ッ ト A 1 に流れる。 室外ュエ ツ ト A 1 に流れた潤滑油 L は、 開放 している開閉弁 7 1 、 油管 7 0 、 および個別吸込側冷媒 管 1 8 a , 1 8 b を介 して圧縮機 1 , 5 1 に吸込まれる。
室外ュニ ッ ト A 2 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される と 、 室外ユニ ッ ト A 2 の開閉弁 3 2 , 6 2 カ 閉成された状態で同室外ユニ ッ ト A 2 の開閉弁 7 1 が開放さ れる と と も に、 室外ュニ ッ ト A 1 の開閉弁 7 1 が閉成された 状態で同室外ュニ ッ ト A 1 の開閉弁 3 2 , 6 2 が開放される。 これによ り 、 室外ユニ ッ ト A 1 における圧縮機 1 , 5 1 の潤 滑油 L の余剰分が、 室外ユニ ッ ト A 2 の油管 3 1 , 6 1 およ び油管 7 0 を通 り 、 さ ら に油流通管 7 2 を通っ て、 室外ュニ ッ ト A 2 に流れる。 室外ユニ ッ ト A 2 に流れた潤滑油 L は、 開放 している開閉弁 7 1 、 油管 7 0 、 および個別吸込側冷媒 管 1 8 a , 1 8 b を介 して圧縮機 :! , 5 1 に吸込まれる。
以上のよ う に、 従来のフ ロ ー ト スィ ツチ方式の油面調節器 の よ う な機械的なフ ロ ー ト ス ィ ッ チを用レヽる こ と な く 、 よ つ て故障やコ ス ト上昇の心配な く 、 室外ユニ ッ ト A 1 , A 2 に おける圧縮機 1 , 5 1 の密閉ケース 1 c , 5 1 c 内の潤滑油 量を高い信頼性で的確に検出する こ と ができ る。 検出タイ ミ ングにおいて開閉弁 3 2 , 6 2 の開放を継続す る時間は、 3 0 秒〜 9 0 秒程度の短時間である。 よ って、 油 量検出を迅速に完了する こ と ができ て、 圧縮機能力の不要な 低下を回避する こ と ができ る。 しかも、 検出中は密閉ケース 1 c , 5 1 c 力 ら油管 3 1 , 6 1 にー且は流出する潤滑油 L が共通吸込側冷媒管 1 8 を通っ て圧縮機 1 , 5 1 に戻る ので、 油量検出が何度繰 り 返されても、 検出その も のが潤滑油不足 を招いて しま う 不具合は生じない。
また、 一方の室外ユエ ッ ト におけ る圧縮機 1 , 5 1 のいず れかに潤滑油不足が生 じた場合に、 その不足側の室外ュニ ッ ト に対 し、 他方の室外ユニ ッ ト における圧縮機 1 , 5 1 の潤 滑油 L の余剰分を油管 3 1 , 6 1 , 8 0 および油流通管 7 2 を介 して迅速に補充するいわゆる油均等運転が可能である。 しかも、 こ の油均等運転では、 油管 3 1 , 6 1 , 8 0 を油流 通管 と して兼用する こ と になる ので、 部品数を抑制でき て コ ス ト の低減が図れる。
他の構成および作用については、 第 2 実施形態と 同 じであ る。 '
[ 8 ] 第 8 実施形態について説明する。
図 1 2 に示すよ う に、 複数の室外ュニ ッ ト A l , A 2 が並 列に冷媒管接続されている。 こ の室外ユニ ッ ト A l , A 2 に は、 図 1 0 で示 したよ う に、 複数の室内ユニ ッ ト B 1 , B 2 , …が冷媒管接続されている。 これに よ り 、 マルチタイプの冷 凍サイ クルが構成されている。
室外ユニ ッ ト A 1 には、 互いに並列に冷媒管接続された圧 縮機 1 , 5 1 が設け られてレ、る。 室外ユニ ッ ト A 2 にも、 同 じ く 、 互いに並列に冷媒管接続された圧縮機 1 , 5 1 が設け られてレヽる。
圧縮機 1 , 5 1 の密閉ケース l c , 5 1 c の適正油面位置 に、 油管 (第 1 油管) 3 1 , 6 1 の一端が接続されている。 この油管 3 1 , 6 1 に開閉弁 (第 1 開閉弁) 3 2 , 6 2 が設 け られている。 油管 3 1 , 6 1 の他端は相互接続され、 その 接続部に油管 (第 2 油管) 8 0 の一端が接続されている。 油 管 8 0 の他端に、 油管 (第 3 油管) 3 7 , 6 7 のそれぞれ一 端が接続されている。 油管 3 7 , 6 7 の他端は、 個別吸込側 冷媒管 1 8 a , 1 8 b に接続されてレ、る。 こ の油管 3 7 , 6 7 に開閉弁 (第 2 開閉弁) 3 8 , 6 8 が設け られている。
油管 8 0 にス ト レーナ 8 4 および減圧器た と えばキヤ ビラ リ チューブ 8 1 が設け られ、 その油管 8 0 における キヤ ビラ リ チューブ 8 1 よ り 上流側位置および下流側位置に第 1 温度 センサ 8 2 および第 2 温度セ ンサ 8 3 がそれぞれ取付け られ ている。
室外ュニ ッ ト A l , A 2 の油管 8 0 における キヤ ビラ リ チ ユ ーブ 8 1 よ り 下流側位置が、 油流通管 8 5 によ り 相互に接 続されている。 そ して、 室外ユニ ッ ト A 1 内の油流通管 8 5 に、 開閉弁 (第 3 開閉弁) 8 6 が設け られている。 室外ュニ ッ ト A 2 内の油流通管 8 5 にも、 開閉弁 (第 3 開閉弁) 8 6 が設け られている。
室外ユニ ッ ト A l , A 2 には、 第 6 実施形態 と して示 した 図 1 0 と 同様に、 それぞれ室外制御部 4 0 が設け られている。 これら室外制御部 4 0 の相互間で、 データ の送受信が可能 と なってレヽる。
各室外制御部 4 0 は、 各圧縮機 1 および各圧縮機 5 1 の油 量検出に関する機能と して、 次の ( 1 1 ) 〜 ( 1 5 ) の手段 を備える。
( 1 1 ) 内部タイ マのカ ウ ン ト に基づく 一定時間 (た と え ば 5 分) ご と に、 開閉弁 3 2, 3 8 を所定時間だけ開放 し、 その開放時の温度センサ 8 2 の検知温度 T 1 と 温度センサ 8 3 の検知温度 T 2 と の比較に よ り 、 圧縮機 1 の密閉ケース 1 c 内の潤滑油量を検出する第 1 検出手段。
( 1 2 ) 内部タイ マのカ ウ ン ト に基づく 一定時間 (た と え ば 5 分) ごと に、 かつ第 1 検出手段の検出タイ ミ ングと 異な る タイ ミ ングで、 開閉弁 6 2 , 6 8 を所定時間だけ開放 し、 その開放時の温度センサ 8 2 の検知温度 T 1 と 温度センサ 8 3 の検知温度 T 2 と の比較によ り 、 圧縮機 5 1 の密閉ケース 5 1 c 内の潤滑油量を検出する第 2 検出手段。
( 1 3 ) 開閉弁 2 3 を定期的に所定時間だけ開放する制御 手段。
( 1 4 ) 室外ュニ ッ ト A 1 におけ る圧縮機 1 または圧縮 5 1 の潤滑油不足が検出 された と き 、 室外ユニ ッ ト A 1 の開 閉弁 3 2 , 6 2 を閉成 した状態で同室外ュニ ッ ト A 1 の開閉 弁 3 8 , 6 8 , 8 6 を所定時間だけ開放する と と も に、 室外 ュ - ッ ト A 2 の開閉弁 3 8 , 6 8 を閉成 した状態で同室外ュ エ ツ ト A 2 の開閉弁 3 2 , 6 2, 8 6 を所定時間だけ開放す る制御手段。 ( 1 5 ) 室外ュニ ッ ト A 2 における圧縮機 1 または圧縮機 5 1 の潤滑油不足が検出 された と き、 室外ュニ ッ ト A 2 の開 閉弁 3 2 , 6 2 を閉成 した状態で同室外ュニ ッ ト A 2 の開閉 弁 3 8 , 6 8 , 8 6 を所定時間だけ開放する と と も に、 室外 ュニ ッ ト A 1 の開閉弁 3 8 , 6 8 を閉成 した状態で同室外ュ ニ ッ ト A 1 の開閉弁 3 2 , 6 2 , 8 6 を所定時間だけ開放す る制御手段。
温度センサ 8 2 , 8 3 の検知温度に よ る潤滑油量検出の方 法は、 第 1 実施形態と 同 じである。
室外ュニ ッ ト A 1 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される'と 、 室外ユニ ッ ト A 1 の開閉弁 3 2 , 6 2 カ 閉成された状態で同室外ュエ ツ ト A 1 の開閉弁 3 8 , 6 8 , 8 6 が開放される と と も に、 室外ュニ ッ ト A 2 の開閉弁 3 8 , 6 8 が閉成された状態で同室外ュュ ッ ト A 2 の開閉弁 3 2 ,
6 2 , 8 6 が開放される。 これによ り 、 室外ユニ ッ ト A 2 に おける圧縮機.1 , 5 1 の潤滑油 Lの余剰分が、 室外ユニ ッ ト A 2 の油管 3 1 , 6 1 および油管 8 0 を通 り 、 さ ら に油流通 管 8 5 を通っ て、 室外ユニ ッ ト A 1 に流れ,る。 室外ユニ ッ ト A 1 に流れた潤滑油 Lは、 開放している 開閉弁 8 6 、 油管 3
7 , 6 7 、 および個別吸込側冷媒管 1 8 a , 1 8 b を介 して 圧縮機 1 , 5 1 に吸込まれる。
室外ュニ ッ ト A 2 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される と 、 室外ユニ ッ ト A 2 の開閉弁 3 2 , 6 2 カ 閉成された状態で同室外ュニ ッ ト A 2 の開閉弁 3 8 , 6 8 ,
8 6 が開放される と と も に、 室外ュ - ッ ト A 1 の開閉弁 3 8 , 6 8 が閉成された状態で同室外ュニ ッ ト A 2 の開閉弁 3 2 ,
6 2 , 8 6 が開放される。 これによ り 、 室外ユエ ッ ト A 1 に おける圧縮機 1 , 5 1 の潤滑油 L の余剰分が、 室外ユニ ッ ト A 1 の油管 3 1 , 6 1 および油管 8 0 を通 り 、 さ ら に油流通 管 8 5 を通って、 室外ユニ ッ ト A 2 に流れる。 室外ユニ ッ ト A 2 に流れた潤滑油 L は、 開放している開閉弁 8 6 、 油管 3
7 , 6 7 、 および個別吸込側冷媒管 1 8 a , 1 8 b を介 して 圧縮機 1 , 5 1 に吸込まれる。
以上の よ う に、 従来のフ ロー ト スィ ツチ方式の油面調節器 の よ う な機械的なフ ロー ト ス ィ ッ チを用レヽる こ と な く 、 よ つ て故障やコス ト上昇の心配な く 、 室外ユニ ッ ト A 1 , A 2 に おけ る圧縮機 1 , 5 1 の密閉ケース 1 c , 5 1 c 内の潤滑油 量を高い信頼性で的確に検出する こ と ができ る。
検出タ イ ミ ングにおいて開閉弁 3 2 , 6 2 , 3 8 , 6 8 の 開放を継続する時間は、 3 0 秒〜 9 0 秒程度の短時間であ る。 よ っ て、 油量検出を迅速に完了する こ と ができて、 圧縮機能 力の不要な低下を回避する こ と ができ る。 しかも、 検出中は 密閉ケース l c , 5 1 c 力 ら油管 3 1 , 6 1 にー且は流出す る潤滑油 Lが個別吸込側冷媒管 1 8 a , 1 8 b を通って圧縮 機 1 , 5 1 に戻る ので、 油量検出が何度繰 り 返されても、 検 出その も のが潤滑油不足を招いて しま う 不具合は生 じない。
また、 一方の室外ユエ ッ ト における圧縮機 1 , 5 1 のいず れかに潤滑油不足が生 じた場合に、 その不足側の室外ュニ ッ ト に対 し、 他方の室外ユニ ッ ト における圧縮機 1 , 5 1 の潤 滑油 L の余剰分を油管 3 1 , 6 1 , 8 0 および油流通管 8 5 を介 して迅速,に補充するいわゆる油均等運転が可能である。 しかも、 こ の油均等運転では、 油管 3 1 , 6 1 , 8 0 を油流 通管と して兼用する こ と になるので、 部品数を抑制できてコ ス ト の低減が図れる。
他の構成および作用については、 第 2 実施形態と 同 じであ る。
[ 9 ] 第 9 実施形態について説明する。
図 1 3 に示すよ う に、 複数の室外ユニ ッ ト A l , A 2 が並 列に冷媒管接続されている。 この室外ユニ ッ ト A l , A 2 に は、 図 1 0 で示 した よ う に、 複数の室内ユニ ッ ト B 1 , B 2 , …が冷媒管接続されている。 これに よ り 、 マルチタ イ プの冷 凍サイ クルが構成されている。
室外ユニ ッ ト A 1 には、 互いに並列に冷媒管接続された圧 縮機 1 , 5 1 が設け られている。 室外ユニ ッ ト A 2 にも、 同 じ く 、 互いに並列に冷媒管接続された圧縮機 1 , 5 1 が設け られてレ、る。
圧縮機 1 , 5 1 の密閉ケース l c , 5 1 c の適正油面位置 に、 油管 (第 1 油管) 3 1 , 6 1 の一端が接続されている。 こ の油管 3 1 , 6 1 に開閉弁 (第 1 開閉弁) 3 2 , 6 2 が設 け られている。 油管 3 1 , 6 1 の他端は相互接続され、 その 接続部に油管 (第 2 油管) 8 0 の一端が接続されている。 油 管 8 0 の他端は、 共通吸 側冷媒管 1 8 に接続されている。
油管 3 1 , 6 1 における開閉弁 3 2 , 6 2 よ り 上流側位置 に油管 (第 3 油管) 3 1 a , 6 l a の一端が接続され、 その 油管 3 1 a , 6 1 a の他端が個別吸込側冷媒管 1 8 a , 1 8 b に接続されている。 こ の油管 3 l a , 6 l a に減圧器 3 3 , 6 3 が設け られてレ、る。
油管 3 1 a , 6 1 a における減圧器 3 3 , 6 3 よ り 上流側 位置および下流側位置に第 1 温度センサ 3 4 , 6 4 および第 2 温度セ ンサ 3 5 , 6 5 がそれぞれ取付け られている。
油管 8 0 にキヤ ビラ リ チューブ 8 1 および開閉弁 (第 2 開 閉弁) 7 1 が設け られている。 そ して、 室外ユニ ッ ト A 1 , A 2 の油管 8 0 におけ る開閉弁 7 1 よ り 上流側位置が、 油流 通管 7 2 によ り 相互に接続されている。
室外ユニ ッ ト A ;[ , A 2 には、 第 6 実施形態 と して示 した 図 1 0 と 同様に、 それぞれ室外制御部 4 0 が設け られている。 これ ら室外制御部 4 0 の相互間で、 データ の送受信が可能と なっ ている。
各室外制御部 4 0 は、 各圧縮機 1 および各圧縮機 5 1 の油 量検出に関する機能と して、 次の ( 1 1 ) 〜 ( 1 5 ) の手段 を備える。
( 1 1 ) 温度センサ 3 4 の検知温度 T 1 と温度セ ンサ 3 5 の検知温度 T 2 と の比較に よ り 、 圧縮機 1 の密閉ケース 1 c 内の潤滑油量を検出する第 1 検出手段。
( 1 2 ) 温度センサ 6 4 の検知温度 T 1 と 温度セ ンサ 6 5 の検知温度 T 2 と の比較によ り 、 圧縮機 5 1 の密閉ケー ス 5 1 c 内の潤滑油量を検出する第 2 検出手段。
( 1 3 ) 開閉弁 2 3 を定期的に所定時間だけ開放する制御 手段。
( 1 4 ) 室外ュニ ッ ト A 1 における圧縮機 1 または圧縮機 5 1 の潤滑油不足が検出 された と き 、 室外ユエ ッ ト A 1 の開 閉弁 3 2 , 6 2 を閉成 した状態で同室外ュニ ッ ト A 1 の開閉 弁 7 1 を所定時間だけ開放する と と も に、 室外ユニ ッ ト A 2 の開閉弁 7 1 を閉成した状態で同室外ュニ ッ ト A 2 の開閉弁 3 2 , 6 2 を所定時間だけ開放する制御手段。
( 1 5 ) 室外ユニ ッ ト A 2 における圧縮機 1 または圧縮機 5 1 の潤滑油不足が検出 された と き 、 室外ュニ ッ ト A 2 の開 閉弁 3 2 , 6 2 を閉成 した状態で同室外ュニ ッ ト A 2 の開閉 弁 7 1 を所定時間だけ開放する と と も に、 室外ユニ ッ ト A 1 の開閉弁 7 1 を閉成 した状態で同室外ュニ ッ ト A 1 の開閉弁 3 2 , 6 2 を所定時間だけ開放する制御手段。
温度センサ 3 4 , 3 5 , 6 4 , 6 5 の検知温度によ る潤滑 油量検出の方法は、 第 1 実施形態 と 同 じである。
室外ュニ ッ ト A 1 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される と 、 室外ユニ ッ ト A 1 の開閉弁 3 2 , 6 2 カ 閉成された状態で同室外ュニ ッ ト A 1 の開閉弁 7 1 が開放さ れる と と も に、 室外ュニ ッ ト A 2 の開閉弁 7 1 が閉成された 状態で同室外ュニ ッ ト A 2 の開閉弁 3 2 , 6 2 が開放される。 これに よ り 、 室外ユニ ッ ト A 2 における圧縮機 1 , 5 1 の潤 滑油 L の余剰分が、 室外ユニ ッ ト A 2 の油管 3 1 , 6 1 およ び油管 8 0 を通 り 、 さ ら に油流通管 7 2 を通っ て、 室外ュニ ッ ト A 1 に流れる。 室外ュニ ッ ト A 1 に流れた潤滑油 L は、 開放 している 開閉弁 7 1 、 油管 8 0 、 お よび共通吸込側冷媒 管 1 8 を介 して圧縮機 1 , 5 1 に吸込まれる。
室外ュニ ッ ト A 2 の圧縮機 1 , 5 1 のいずれかの潤滑油不 足が検出 される と 、 室外ユニ ッ ト A 2 の開閉弁 3 2 , 6 2 カ 閉成された状態で同室外ュニ ッ ト A 2 の開閉弁 7 1 が開放さ れる と と もに、 室外ユニ ッ ト A 1 の開閉弁 7 1 が閉成された 状態で同室外ュニ ッ ト A 1 の開閉弁 3 2 , 6 2 が開放される。 これによ り 、 室外ユニ ッ ト A 1 における圧縮機 1 , 5 1 の潤 滑油 L の余剰分が、 室外ュニ ッ ト A 1 の油管 3 1 , 6 1 およ び油管 8 0 を通 り 、 さ らに油流通管 7 2 を通っ て、 室外ュニ ッ ト A 2 に流れる。 室外ュニ ッ ト A 2 に流れた潤滑油 L は、 開放 している 開閉弁 7 1 、 油管 8 0 、 および共通吸込側冷媒 管 1 8 を介 して圧縮機 1 , 5 1 に吸込まれる。
以上の よ う に、 従来のフ ロー ト スィ ッチ方式の油面調節器 の よ う な機械的なフ ロ ー ト スィ ツ チを用 レ、 る こ と な く 、 よ つ て故障やコス ト 上昇の心配な く 、 室外ユニ ッ ト A 1 , A 2 に おける圧縮機 1 , 5 1 の密閉ケース 1 c , 5 1 c 内の潤滑油 量を高い信頼性で的確に検出する こ と ができ る。
圧縮機 1 , 5 1 の潤滑油量が十分な場合、 密閉ケース 1 c 、 5 1 c 内の潤滑油 Lが油管 3 1 , 6 1 に常に潤滑油 Lが流出 するが、 こ の流出する潤滑油 L は油管 3 1 a , 6 1 a を通つ てすぐに圧縮機 1 , 5 1 に戻る ので、 油量検出その ものが潤 滑油不足を招いて しま う 不具合は生じない。
また、 一方の室外ユニ ッ ト における圧縮機 1 , 5 1 のいず れかに潤滑油不足が生 じた場合に、 その不足側の室外ュニッ ト に対 し、 他方の室外ユニ ッ ト における圧縮機 1 , 5 1 の潤 滑油 Lの余剰分を油管 3 1 , 6 1 , 8 0 および油流通管 7 2 を介 して迅速に補充するいわゆる油均等運転が可能である。 しかも 、 この油均等運転では、 油管 3 1 , 6 1 , 8 0 を油流 通管 と して兼用する こ と になるので、 部品数を抑制できて コ ス ト の低減が図れる。
他の構成および作用 については、 第 2 実施形態 と 同 じであ る。
なお、 上記各実施形態では、 空気調和機への適用 について 説明 したが、 他の冷凍装置にも 同様に適用可能であ る。
各実施形態において、 各室外ユニ ッ ト の圧縮機 1 および圧 縮機 5 1 に対する駆動手段については、 イ ンバータ駆動 (回 転数可変運転) と イ ンバータ駆動の組合せ、 イ ンバータ駆動 と 商用電源駆動 (回転数一定運転) の組合せ、 商用電源駆動 と 商用電源駆動の組合せな ど、 適宜に選定可能であ る。
第 1 ない し第 8 実施形態では、 油管に設けた開閉弁を開放 する こ と で油量検出を行 う よ う 構成と したが、 油管に流入す る潤滑油や冷媒はそのまま圧縮機の吸込側に戻る ので、 第 9 実施形態と 同様に、 油管を常に導通状態と して常に油量検出 を行 う 構成と して も よい。
その他、 この発明は上記各実施形態に限定される ものでは な く 、 要旨を変えない範囲で種々変形実施可能である。
産業上の利用可能性
本発明は、 冷凍サイ クルが搭載される例えば空気調和機な どに、 利用が可能である。

Claims

請 求 の 範 囲
1 . 冷凍装置であって、
潤滑油が入っ た密閉ケース で覆われ、 冷媒を吸込んで吐出 する圧縮機 ; と 、
前記圧縮機の密閉ケース内の潤滑油が流入する油管、 前記 圧縮機の密閉ケース と前記圧縮機に吸込まれる冷媒が通る吸 込側冷媒管 と の間に接続されている ; と 、
前記油管に設け られた減圧器 ; と 、
前記油管における前記減圧器よ り 上流側位置の温度を検知 する第 1 温度センサ ; と 、
前記油管における前記減圧器よ り 下流側位置の温度を検知 する第 2 温度セ ンサ ; と 、
前記第 1 温度センサの検知温度と前記第 2温度センサの検 知温度と の差に基づいて、 前記圧縮機の密閉ケース内の潤滑 油量を検出する検出セク ショ ン ; と、
を備えている。
2 . 請求項 1 の冷凍装置において、
前記検出セ ク シ ョ ンは、 前記第 1 温度セ ンサの検知温度 と 前記第 2 温度セ ンサの検知温度 と の差を求め、 その温度差と 予め定め られている設定値と の比較に よ り 、 前記圧縮機の密 閉ケース内の潤滑油量を検出する。
3 . 請求項 1 の冷凍装置において、
前記検出セ ク シ ョ ンは、 前記第 1 温度セ ンサの検知温度 T 1 と 前記第 2 温度センサの検知温度 T 2 と の差 Δ Τ を求め、 その温度差 Δ Tが予め.定め られている設定値 Δ T s 以上の と き、 前記圧縮機の密閉ケース内の潤滑油量が不足 している と 判定する。
4 . 請求項 1 の冷凍装置において、 '
前記検出セ ク シ ョ ンは、 前記第 1 温度セ ンサの検知温度 T 1 と前記第 2 温度センサの検知温度 T 2 と の差 Δ Τ を求め、 その温度差 Δ Tが予め定め られている設定値 Δ T s 以上の と き 、 前記圧縮機の潤滑油量が不足 している と判定する機能 と 、 前記温度差 Δ Tが前記設定値 Δ T s 未満の と き 、 それまでの 前記温度差 Δ Tの推移に基づいて前記圧縮機の密閉ケース内 の潤滑油量が不足状態に至るまでの残 り 時間 t を予測する機 能 と 、 を有 している。
5 . 請求項 1 の冷凍装置において、
前記検出セ ク シ ョ ンは、 前記第 1 温度セ ンサの検知温度 T 1 と前記第 2 温度セ ンサの検知温度 T 2 と の差 Δ Τ を求め、 その温度差 Δ Tが予め定め られている設定値 Δ T s 以上の と き 、 潤滑油量が不足 している と判定する機能 と 、 前記温度差 厶 Tが前記設定値 Δ Τ s 未満の と き、 それまでの前記温度差 厶 Tの推移に基づいて前記圧縮機の密閉ケース 内の潤滑油量 が不足状態に至る までの残 り 時間 t を予測する機能 と 、 この 予測された残 り 時間 t が予め定め られた設定時間 t 1 よ り 長 ければ前記圧縮機の密閉ケース内の潤滑油量が充分である と 判定する機能と 、 を有 している。
6 . 請求項 1 の冷凍装置は、 さ らに、
前記油管に設け られた開閉弁、 を備えている。
7 . 請求項 6 の冷凍装置において、 前記検出セ ク シ ョ ンは、 前記開閉弁を定期的に開放し、 そ の開放時の前記第 1 温度セ ンサの検知温度 と前記第 2 温度セ ンサの検知温度 と の差に基づいて、 前記圧縮機の密閉ケース 内の潤滑油量を検出する。
8 . 請求項 1 の冷凍装置において、 さ ら に、
前記圧縮機から吐出 される冷媒が通る吐出側冷媒管に設け られ、 前記圧縮機から吐出 される冷媒に含まれている潤滑油 を分離 して溜めるオイルセパ レ一タ ; と 、
前記オイルセパ レータ 内の潤滑油を前記吸込側冷媒管に戻 す油戻 し管 ; と 、
前記油戻 し管に設け られた開閉弁 ; と 、
前記圧縮機に潤滑油不足が生じたこ と が前記検出セク シ ョ ンで検出 された場合に、 前記開閉弁を開 く 制御セ ク シ ョ ン ; と
を備えてレヽる。
9 . 冷凍装置であって、
潤滑油が入った密閉ケース で覆われ、 冷媒を吸込んで吐出 する複数の圧縮機、 互いに並列に冷媒管接続されている ; と 、 前記各圧縮機の密閉ケース内の潤滑油がそれぞれ流入する 油管、 前記各圧縮機の密閉ケース と 前記各圧縮機に吸込まれ る冷媒が通る 1 つまたは複数の吸込側冷媒管と の間に接続さ れている ; と 、
前記各油管に設け られた減圧器 ; と 、
前記各油管における前記減圧器よ り 上流側位置の温度をそ れぞれ検知する第 1 温度セ ンサ ; と 、 前記各油管における前記減圧器よ り 下流側位置の温度をそ れぞれ検知する第 2 温度センサ ; と 、
前記各第 1 温度センサの検知温度と前記各第 2温度センサ の検知温度と の差に基づいて、 前記各圧縮機の密閉ケース内 の潤滑油量をそれぞれ検出する検出セク シ ョ ン ; と 、
を備えている。
1 0 . 請求項 9 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各第 1 温度セ ンサの検知温度 と前記各第 2 温度センサの検知温度 と の差を求め、 その各温 度差と 予め定め られている設定値と の比較に よ り 、 前記各圧 縮機の密閉ケー ス内の潤滑油量をそれぞれ検出する。
1 1 . 請求項 9 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各第 1 温度センサの検知温度 T 1 と 前記各第 2 温度セ ンサの検知温度 T 2 と の差 Δ Τ を求 め、 その各温度差 Δ Tのいずれかが予め定め られている設定 値 Δ Τ s 以上の と き 、 その設定値 Δ Τ s 以上の温度差 Δ Τが 生 じた油管に対応する圧縮機の密閉ケー ス 内の潤滑油量が不 足 している と判定する。
1 2 . 請求項 9 の冷凍装置は、 さ ら に、
前記各油管に設け られた複数の開閉弁、 を備えている。
1 3 . 請求項 1 2 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各開閉弁を定期的に開放 し、 その開放時の前記各第 1 温度セ ンサの検知温度 と 前記各第 2 温度センサの検知温度と の差に基づいて、 前記各圧縮機の密 閉ケース内の潤滑油量を検出する。
1 4 . 請求項 1 3 の冷凍装置において、 さ ら に、 前記各圧縮機のいずれかに潤滑油不足が生じたこ と が前記 検出セ ク シ ョ ンで検出 さ れた場合に、 その潤滑油不足が生じ た圧縮機に対 し、 他の圧縮機の潤滑油の余剰分が、 その他の 圧縮機に接続されている前記油管を介 して、 かつ前記吸込側 冷媒管を介 して流れる よ う 、 前記各開閉弁を制御する制御セ ク シ ョ ン ; を備えてレヽる。
1 5 . 請求項 1 2 の冷凍装置において、
前記検出セ ク シ ョ ンは、 前記各開閉弁を互いに異なる タイ ミ ングで定期的に開放 し、 その開放時の前記各第 1 温度セ ン サの検知温度と 前記各第 2 温度セ ンサの検知温度 と の差に基 づいて、 前記各圧縮機の密閉ケース内の潤滑油量を検出する。
1 6 . 請求項 1 5 の冷凍装置において、 さ ら に、
前記各圧縮機のいずれかに潤滑油不足が生じたこ と が前記 検出セ ク シ ョ ンで検出 された場合に、 その潤滑油不足が生 じ た圧縮機に対 し、 他の圧縮機の潤滑油の余剰分が、 その他の 圧縮機に接続されている前記油管を介 して、 かつ前記吸込側 冷媒管を介 して流れる よ う 、 前記各開閉弁を制御する制御セ ク シ ョ ン ; を備えている。
1 7 . 冷凍装置であっ て、
潤滑油が入った密閉ケース で覆われ、 冷媒を吸込んで吐出 する複数の圧縮機、 互いに並列に冷媒管接続さ れている ; と 、 前記各圧縮機の密閉ケース内の潤滑油が流入する第 1 油管、 前記各圧縮機の密閉ケース にそれぞれ接続されている ; と 、 前記各第 1 油管に流入 した潤滑油を、 前記各圧縮機に吸込 まれる冷媒が共通に通る 1 つの吸込側冷媒管に流す 1 つの第 2 油管 ; と 、
前記第 2 油管に設け られた減圧器 ; と 、
前記第 2 油管における前記減圧器よ り 上流側位置の温度を 検知する第 1 温度セ ンサ ; と 、
前記第 2 油管におけ る前記減圧器よ り 下流側位置の温度を 検知する第 2 温度セ ンサ ; と 、
前記第 1 温度センサの検知温度と前記第 2 温度センサの検 知温度と の差を求め、 その温度差に基づいて、 前記各圧縮機 の密閉ケース内の潤滑油量を検出する検出セク ショ ン ; と 、
を備えている。
1 8 . 請求項 1 7 の冷凍装置において、
前記検出セク シ ョ ンは、 前記第 1 温度セ ンサの検知温度 と 前記第 2 温度セ ンサの検知温度 と の差を求め、 その温度差と 予め定め られている設定値と の比較によ り 、 前記各圧縮機の 密閉ケー ス内の潤滑油量を検出する。
1 9 . 請求項 1 7 の冷凍装置は、 さ ら に、
前記各第 1 油管に設け られた複数の開閉弁、 を備えている。
2 0 . 請求項 1 9 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各開閉弁を定期的に開放し、 その開放時の前記第 1 温度センサの検知温度 と 前記第 2 温度 セ ンサの検知温度 と の差に基づいて、 前記各圧縮機の密閉ケ ース内の潤滑油量をそれぞれ検出する。
2 1 . 請求項 2 0 の冷凍装置において、 さ ら に、
前記各圧縮機のいずれかに潤滑油不足が生 じた こ と が前記 検出セ ク シ ョ ンで検出 された場合に、 その潤滑油不足が生じ た圧縮機に対し、 他の圧縮機の潤滑油の余剰分が、 その他の 圧縮機に接続されている前記第 1 油管を介 して、 かつ前記第 2 油管および前記吸込側冷媒管を介 して流れる よ う 、 前記各 開閉弁を制御する制御セク シ ョ ン ; を備えている。
2 2 . 請求項 1 9 の冷凍装置において、
前記検出セ ク シ ョ ンは、 前記各開閉弁を互いに異なる タイ ミ ングで定期的に開放 し、 その開放時の前記第 1 温度センサ の検知温度と前記第 2 温度センサの検知温度と の差に基づい て、 前記各圧縮機の密閉ケー ス内の潤滑油量をそれぞれ検出 する。
2 3 . 請求項 2 2 の冷凍装置において、 さ ら に、
前記各圧縮機のいずれかに潤滑油不足が生 じたこ と が前記 検出セク ショ ンで検出 された場合に、 その潤滑油不足が生 じ た圧縮機に対し、 他の圧縮機の潤滑油の余剰分が、 その他の 圧縮機に接続されている前記第 1 油管を介 して、 かつ前記第 2 油管お よび前記吸込側冷媒管を介 して流れる よ う 、 前記各 開閉弁を制御する制御セク シ ョ ン ; を備えている。
2 4 . 冷凍装置であって、
潤滑油が入った密閉ケー ス で覆われ、 冷媒を吸込んで吐出 する複数の圧縮機、 互いに並列に冷媒管接続されている ; と 、 前記各圧縮機の密閉ケー ス内の潤滑油が流入する油管、 前 記各圧縮機の密閉ケー ス と 前記各圧縮機に吸込まれる冷媒が 通る 1 つまたは複数の吸込側冷媒管 と の間に接続されてい る ; と 、 前記各油管に設け られた減圧器 ; と 、
前記各油管における前記減圧器よ り 上流側位置の温度をそ れぞれ検知する第 1 温度センサ ; と 、
前記各油管における前記減圧器よ り 下流側位置の温度をそ れぞれ検知する第 2 温度セ ンサ ; と 、
前記各油管における前記減圧器よ り 上流側位置にそれぞれ 設け られた第 1 開閉弁 ; と 、
前記各油管における前記減圧器よ り 下流側位置にそれぞれ 設け られた第 2 開閉弁 ; と 、
前記各油管における前記減圧器と前記第 2 開閉弁 と の間の 位置、 の相互間に接続された 1 つまたは複数の油流通管 ; と 、 前記油流通管に設け られた第 3 開閉弁 ; と 、
前記各第 1 開閉弁および前記各第 2 開閉弁を開放し、 その と き の前記各第 1 温度センサの検知温度と前記各第 2温度セ ンサの検知温度と の差に基づき、 前記各圧縮機の密閉ケース 内の潤滑油量をそれぞれ検出する検出セク ショ ン ; と 、
前記各圧縮機のいずれかに潤滑油不足が生じた場合に、 そ の潤滑油不足が生じた圧縮機に対し、 他の圧縮機の潤滑油の 余剰分が、 その他の圧縮機に接続されている前記油管を介 し て、 かつ前記油流通管おょぴ前記吸込側冷媒管を介 して流れ る よ う 、 前記各開閉弁を制御する制御セク ショ ン ; と 、
を備えている。
2 5 . 請求項 2 4 の冷凍装置において、
前記検出セ ク シ ョ ンは、 前記各第 1 温度センサの検知温度 と 前記各第 2 温度セ ンサの検知温度 と の差を求め、 その温度 差と予め定め られている設定値と の比較によ り 、 前記各圧縮 機の密閉ケース内の潤滑油量を検出する。
2 6 . 請求項 2 4 の冷凍装置において、
前記検出セク ショ ンは、 前記各第 1 開閉弁および前記各第 2 開閉弁を定期的に開放し、 その開放時の前記各第 1 温度セ ンサの検知温度 と前記各第 2 温度セ ンサの検知温度 と の差に 基づいて、 前記各圧縮機の密閉ケース内の潤滑油量をそれぞ れ検出する。
2 7 . 請求項 2 4 の冷凍装置において、
前記検出セ ク シ ョ ンは、 前記各第 1 開閉弁および前記各第 2 開閉弁を前記圧縮機ごと に異なる タイ ミ ングで定期的に開 放し、 その開放時の前記各第 1 温度センサの検知温度と前記 各第 2 温度センサの検知温度と の差に基づいて、 前記各圧縮 機の密閉ケース内の潤滑油量をそれぞれ検出する。
2 8 . 冷凍装置であっ て、
互いに並列に冷媒管接続された複数の室外ュニ ッ ト ; と 、 潤滑油が入った密閉ケースで覆われ、 冷媒を吸込んで吐出 する複数台の圧縮機、 前記各室外ュニ ッ ト に所定台数ずっ設 け られ、 その所定台数ずつが互いに並列に冷媒管接続されて いる ; と 、
前記各圧縮機の密閉ケース内の潤滑油が流入する第 1 油管、 前記各圧縮機の密閉ケース に接続されている ; と 、
前記各第 1 油管に流入 した潤滑油を、 前記各圧縮機に吸込 まれる冷媒が共通に通る 1 つの吸込側冷媒管に流す 1 つの第 2 油管、 前記室外ユニ ッ ト ごと に設け られている ; と、 前記各第 1 油管に設け られた減圧器 ; と 、
前記各第 1 油管における前記減圧器よ り 上流側位置の温度 をそれぞれ検知する第 1 温度センサ ; と 、
前記各第 1 油管における前記減圧器よ り 下流側位置の温度 をそれぞれ検知する第 2 温度センサ ; と 、
前記各第 1 油管に設け られた第 1 開閉弁 ; と 、
前記各第 2 油管に設け られた第 2 開閉弁 ; と 、
前記各第 2 油管における前記第 2 開閉弁よ り 上流側位置、 の相互間に接続された 1 つまたは複数の油流通管 ; と 、 前記各開閉弁を開放し、 その と きの前記各第 1 温度センサ の検知温度と前記各第 2温度センサの検知温度と の差に基づ き、 前記各圧縮機の密閉ケース内の潤滑油量をそれぞれ検出 する検出セク ショ ン ; と、 '
前記各圧縮機のいずれかに潤滑油不足が生じた場合に、 そ の潤滑油不足が生じた圧縮機に対し、 他の圧縮機の潤滑油の 余剰分が、 その他の圧縮機に接続されている前記第 1 油管、 前記第 2 油管、 前記油流通管、 および前記吸込側冷媒管を介 して流れる よ う 、 前記各開閉弁を制御する制御セク ショ ン ; と 、
を備えている。
2 9 . 請求項 2 8 の冷凍装置において、
前記検出セク ショ ンは、 前記各開閉弁を開放し、 その と き の前記各第 1 温度センサの検知温度と前記各第 2 温度センサ の検知温度 と の差を求め、 その各温度差と 予め定め られてい る設定値と の比較によ り 、 前記各圧縮機の密閉ケース内の潤 滑油量をそれぞれ検出する。
3 0 . 請求項 2 8 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各開閉弁を開放し、 その と き の前記各第 1 温度センサの検知温度 T 1 と 前記各第 2 温度セ ンサの検知温度 T 2 と の差 Δ T を求め、 その各温度差 Δ 丁 の いずれかが予め定め られている設定値 Δ Τ 3 以上の と き 、 そ の設定値 Δ T s 以上の温度差 Δ Tが生 じた油管に対応する圧 縮機の密閉ケース内の潤滑油量が不足 している と判定する。
3 1 . 冷凍装置であって、
互いに並列に冷媒管接続された複数の室外ュニ ッ ト ; と 、 潤滑油が入った密閉ケースで覆われ、 冷媒を吸込んで吐出 する複数台の圧縮機、 前記各室外ュニ ッ ト に所定台数ずっ設 け られ、 その所定台数ずつが互いに並列に冷媒管接続されて いる ; と 、
前記各圧縮機の密閉ケース 内の潤滑油が流入する第 1 油管、 前記各圧縮機の密閉ケース に接続されている ; と 、
前記各第 1 油管に流入 した潤滑油を、 前記各圧縮機に吸込 まれる冷媒が共通に通る 1 つの吸込側冷媒管に流す 1 つの第 2 油管、 前記室外ユニ ッ ト ご と に設け られている ; と 、
前記各第 2 油管に設け られた減圧器 ; と 、
前記各第 2 油管における前記減圧器よ り 上流側位置の温度 をそれぞれ検知する第 1 温度センサ ; と 、
前記各第 2 油管における前記減圧器よ り 下流側位置の温度 をそれぞれ検知する第 2 温度センサ ; と 、
前記各第 1 油管に設け られた第 1 開閉弁 ; と 、 前記各第 2 油管に設け られた第 2 開閉弁 ; と 、 前記各第 2 油管における前記第 2 開閉弁よ り 上流側位置、 の相互間に接続された 1 つまたは複数の油流通管 ; と 、 前記各開閉弁を開放し、 そのと きの前記各第 1 温度センサ の検知温度と前記各第 2温度センサの検知温度と の差に基づ き、 前記各圧縮機の密閉ケース内の潤滑油量をそれぞれ検出 する検出セク ショ ン ; と、
前記各圧縮機のいずれかに潤滑油不足が生じた場合に、 そ の潤滑油不足が生じた圧縮機に対し、 他の圧縮機の潤滑油の 余剰分が、 その他の圧縮機に接続されている前記第 1 油管、 前記第 2 油管、 前記油流通管、 および前記吸込側冷媒管を介 して流れる よ う 、 前記各開閉弁を制御する制御セク ショ ン ; と、
を備えている。
3 2 . 請求項 3 1 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各開閉弁を開放し、 その と き の前記各第 1 温度センサの検知温度 と 前記各第 2 温度セ ンサ の検知温度 と の差を求め、 その各温度差と 予め定め られてい る設定値と の比較によ り 、 前記各圧縮機の密閉ケース内の潤 滑油量をそれぞれ検出する。
3 3 . 請求項 3 1 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各開閉弁を開放し、 その と き の前記各第 1 温度センサの検知温度 T 1 と前記各第 2 温度セ ンサの検知温度 T 2 と の差 Δ T を求め、 その各温度差 Δ 丁の いずれかが予め定め られている設定値 Δ Τ s 以上の と き 、 そ の設定値 Δ T s 以上の温度差 Δ Τ が生 じた油管に対応する圧 縮機の密閉ケース 内の潤滑油量が不足 している と判定する。
3 4 . 冷凍装置であって、
互いに並列に冷媒管接続された複数の室外ュニ ッ ト ; と 、 潤滑油が入った密閉ケース で覆われ、 冷媒を吸込んで吐出 する複数台の圧縮機、 前記各室外ュニ ッ ト に所定台数ずっ設 け られ、 そ の所定台数ずつが互いに並列に冷媒管接続されて いる ; と 、
前記各圧縮機の密閉ケース 内の潤滑油が流入する第 1 油管、 前記各圧縮機の密閉ケース に接続されている ; と 、
前記各第 1 油管に接続された第 2 油管、 前記室外ユニ ッ ト ごと に設け られてレ、る ; と 、
前記各第 2 油管の潤滑油を、 前記各圧縮機に吸込まれる冷 媒が通る 吸込側冷媒管に流す第 3 油管、 前記室外ユニッ ト ご と に設け られてレヽる ; と 、
前記各第 2 油管に設け られた減圧器 ; と 、
前記各第 2 油管における前記減圧器よ り 上流側位置の温度 をそれぞれ検知する第 1 温度センサ ; と 、
前記各第 2 油管における前記減圧器よ り 下流側位置の温度 をそれぞれ検知する第 2 温度センサ ; と 、
前記各第 1 油 '管に設け られた第 1 開閉弁 ; と 、
前記各第 3 油管に設け られた第 2 開閉弁 ; と 、
前記各第 2 油管における前記減圧器よ り 下流側位置、 の相 互間に接続された 1 つまたは複数の油流通管 ; と 、
前記油流通管に設け られた第 3 開閉弁 ; と 、 前記各第 1 開閉弁および前記各第 2 開閉弁を開放し、 その と きの前記各第 1 温度センサの検知温度と 前記各第 2温度セ ンサの検知温度と の差に基づき、 前記各圧縮機の密閉ケース 内の潤滑油量をそれぞれ検出する検出セク ショ ン ; と、
前記各圧縮機のいずれかに潤滑油不足が生じた場合に、 そ の潤滑油不足が生じた圧縮機に対し、 他の圧縮機の潤滑油の 余剰分が、' その他の圧縮機に接続されている前記第 1 油管、 前記第 2 油管、 前記油流通管、 前記第 3 油管、 および前記吸 込側冷媒管を介 して流れる よ う 、 前記各開閉弁を制御する制 御セク ショ ン ; と 、
を備えている。
3 5 . 請求項 3 4 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各第 1 開閉弁および前記各第 2 開閉弁を開放 し、 その と きの前記各第 1 温度センサの検知 温度と 前記各第 2 温度センサの検知温度 と の差を求め、 その 各温度差と 予め定め られている設定値と の比較によ り 、 前記 各圧縮機の密閉ケース内の潤滑油量をそれぞれ検出する。
3 6 . 請求項 3 4 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各第 1 開閉弁および前記各第 2 開閉弁を開放 し、 その と きの前記各第 1 温度センサの検知 温度 T 1 と 前記各第 2 温度センサの検知温度 T 2 と の差厶 T を求め、 その各温度差 Δ Tのいずれかが予め定め られている 設定値 Δ Τ s 以上の と き、 その設定値 Δ Τ s 以上の温度差 Δ Tが生 じた油管に対応する圧縮機の密閉ケース内の潤滑油量 が不足 している と判定する。
3 7 . 冷凍装置であって、
互いに並列に冷媒管接続された複数の室外ュニ ッ ト ; と 、 潤滑油が入った密閉ケース で覆われ、 冷媒を吸込んで吐出 する複数台の圧縮機、 前記各室外ュニ ッ ト に所定台数ずっ設 け られ、 その所定台数ずつが互いに並列に冷媒管接続されて いる ; と,、
前記各圧縮機の密閉ケース内の潤滑油が流入する第 1 油管、 前記各圧縮機の密閉ケース に接続されている ; と 、
前記各第 1 油管に流入 した潤滑油を、 前記各圧縮機に吸込 まれる冷媒が共通に通る 1 つの共通吸込側冷媒管に流す 1 つ の第 2 油管、 前記室外ユニ ッ ト ごと に設け られている ; と 、 前記各第 1 油管に流入 した潤滑油を、 前記各圧縮機に吸込 まれる冷媒が個別に通る複数の個別吸込側冷媒管に流す複数 の第 3 油管、 前記室外ユニ ッ ト ごと に設け られている ; と 、 前記各第 3 油管に設け られた減圧器 ; と 、
前記各第 3 油管における前記減圧器よ り 上流側位置の温度 をそれぞれ検知する第 1 温度センサ ; と 、
前記各第 3 油管におけ る前記減圧器よ り 下流側位置の温度 をそれぞれ検知する第 2 温度センサ ; と 、
前記各第 1 油管に設け られた第 1 開閉弁 ; と 、
前記各第 2 油管に設け られた第 2 開閉弁 ; と 、
前記各第 2 油管における前記第 2 開閉弁よ り 上流側位置、 の相互間に接続された 1 つまたは複数の油流通管 ; と 、
前記各第 1 温度セ ンサの検知温度と前記各第 2温度センサ の検知温度と の差に基づき、 前記各圧縮機の密閉ケース内の 潤滑油量をそれぞれ検出する検出セク ショ ン ; と、 前記各圧縮機のいずれかに潤滑油不足が生 じた場合に、 そ の潤滑油不足が生 じた圧縮機に対し、 他の圧縮機の潤滑油の 余剰分が、 その他の圧縮機に接続されている前記第 1 油管、 前記第 2油管、 前記油流通管、 前記共通吸込側冷媒管、 およ ぴ前記個別吸込側冷媒管を介して流れる よ う 、 前記各開閉弁 を制御する制御セク ショ ン ; と、
を備えている。
3 8 . 請求項 3 7 の冷凍装置において、
前記検出セク シ ョ ンは、 前記各第 1 温度セ ンサの検知温度 と前記各第 2 温度セ ンサの検知温度 と の差を求め、 その各温 度差と 予め定め られている設定値と の比較に よ り 、 前記各圧 縮機の密閉ケース内の潤滑油量をそれぞれ検出する。
3 9 . 請求項 3 7 の冷凍装置において、
前記検出セク ショ ンは、 前記各第 1 温度セ ンサの検知温度 T 1 と前記各第 2 温度センサの検知温度 T 2 と の差 Δ Τ を求 め、 その各温度差 Δ Tのいずれかが予め定め られている設定 値 A T s 以上の と き 、 その設定値 A T s 以上の温度差 Δ Τが 生 じた油管に対応する圧縮機の密閉ケース内の潤滑油量が不 足 している と判定する。
PCT/JP2002/001312 2001-02-15 2002-02-15 Congelateur WO2002064979A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02712395A EP1367259A4 (en) 2001-02-15 2002-02-15 FREEZER
KR10-2003-7010660A KR100516381B1 (ko) 2001-02-15 2002-02-15 냉동장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-38616 2001-02-15
JP2001038616A JP2002242833A (ja) 2001-02-15 2001-02-15 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2002064979A1 true WO2002064979A1 (fr) 2002-08-22

Family

ID=18901556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001312 WO2002064979A1 (fr) 2001-02-15 2002-02-15 Congelateur

Country Status (5)

Country Link
EP (1) EP1367259A4 (ja)
JP (1) JP2002242833A (ja)
KR (1) KR100516381B1 (ja)
CN (1) CN1330878C (ja)
WO (1) WO2002064979A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530012A2 (en) * 2003-11-05 2005-05-11 LG Electronics Inc. System and method for recycling oil in air conditioner
JP2011237127A (ja) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp 冷凍装置
WO2015045854A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694915B1 (ko) 2003-02-27 2007-03-14 도시바 캐리어 가부시키 가이샤 냉동 사이클 장치
JP3946191B2 (ja) * 2003-12-24 2007-07-18 三星電子株式会社 冷凍装置及び冷凍装置の制御方法
KR100775821B1 (ko) * 2004-12-15 2007-11-13 엘지전자 주식회사 공기조화기 및 그 제어 방법
JP2008249231A (ja) * 2007-03-30 2008-10-16 Yanmar Co Ltd 空調装置
KR20090041846A (ko) * 2007-10-25 2009-04-29 엘지전자 주식회사 공기 조화기
JP5329078B2 (ja) * 2007-12-22 2013-10-30 三星電子株式会社 空気調和装置に用いられる高圧シェル圧縮機の均油システム
ITFI20080045A1 (it) * 2008-03-10 2009-09-11 Dorin Mario Spa "impianto di compressione per un fluido refrigerante di una centrale frigorifera o simili"
KR101588204B1 (ko) * 2009-02-16 2016-01-25 엘지전자 주식회사 공기 조화기 및 공기 조화기 제어방법
JP2011012895A (ja) * 2009-07-02 2011-01-20 Panasonic Corp ヒートポンプ装置
KR101166621B1 (ko) 2009-12-24 2012-07-18 엘지전자 주식회사 공기 조화기 및 그의 제어방법
KR200452318Y1 (ko) * 2010-06-19 2011-02-22 조광희 동파방지용 상수도 계량기함
CN103574958A (zh) * 2012-08-02 2014-02-12 珠海格力电器股份有限公司 多联机模块化系统
CN103673398B (zh) * 2012-09-07 2015-12-16 珠海格力电器股份有限公司 压缩机回油系统及压缩机的回油状态检测方法
JP2014089021A (ja) * 2012-10-31 2014-05-15 Panasonic Corp 冷凍装置
CN102980327B (zh) * 2012-12-14 2015-09-23 四川长虹空调有限公司 空调系统中润滑油油位检测装置及方法
CN103512280B (zh) * 2013-04-17 2016-04-06 广东美芝制冷设备有限公司 空调器的油平衡方法
KR102198326B1 (ko) * 2013-12-26 2021-01-05 엘지전자 주식회사 공기 조화기
JP6273573B2 (ja) * 2014-02-06 2018-02-07 パナソニックIpマネジメント株式会社 冷凍回路
CN104764253A (zh) * 2015-03-31 2015-07-08 广东美的暖通设备有限公司 制冷系统
US10641268B2 (en) * 2015-08-11 2020-05-05 Emerson Climate Technologies, Inc. Multiple compressor configuration with oil-balancing system
CN107178943A (zh) * 2017-06-21 2017-09-19 广东美的暖通设备有限公司 空调系统及其的回油控制方法和装置
US11796227B2 (en) * 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
EP3891396B1 (en) * 2018-12-04 2023-06-07 Carel Industries S.p.A. Apparatus and process for controlling a compressor assembly lubrication status and refrigerating machine comprising said apparatus
CN113939700A (zh) * 2019-05-31 2022-01-14 大金工业株式会社 制冷装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106393A (ja) * 1986-10-23 1988-05-11 Matsushita Electric Ind Co Ltd スクロ−ル気体圧縮機
JPH07103584A (ja) * 1993-10-01 1995-04-18 Sanyo Electric Co Ltd 空気調和装置
US5634345A (en) * 1995-06-06 1997-06-03 Alsenz; Richard H. Oil monitoring system
JP2001012351A (ja) * 1999-06-24 2001-01-16 Daikin Ind Ltd 密閉型圧縮機及びこれを備える冷凍装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229499A (ja) * 1996-02-19 1997-09-05 Matsushita Refrig Co Ltd 冷却装置
US5884494A (en) * 1997-09-05 1999-03-23 American Standard Inc. Oil flow protection scheme
JPH11107966A (ja) * 1997-10-06 1999-04-20 Mitsubishi Electric Corp 空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106393A (ja) * 1986-10-23 1988-05-11 Matsushita Electric Ind Co Ltd スクロ−ル気体圧縮機
JPH07103584A (ja) * 1993-10-01 1995-04-18 Sanyo Electric Co Ltd 空気調和装置
US5634345A (en) * 1995-06-06 1997-06-03 Alsenz; Richard H. Oil monitoring system
JP2001012351A (ja) * 1999-06-24 2001-01-16 Daikin Ind Ltd 密閉型圧縮機及びこれを備える冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1367259A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530012A2 (en) * 2003-11-05 2005-05-11 LG Electronics Inc. System and method for recycling oil in air conditioner
EP1530012A3 (en) * 2003-11-05 2006-05-10 LG Electronics Inc. System and method for recycling oil in air conditioner
EP1826512A2 (en) * 2003-11-05 2007-08-29 LG Electronics Inc. System and method for recycling oil in air conditioner
EP1826512A3 (en) * 2003-11-05 2008-06-04 LG Electronics Inc. System and method for recycling oil in air conditioner
JP2011237127A (ja) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp 冷凍装置
WO2015045854A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
WO2015045129A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
JPWO2015045854A1 (ja) * 2013-09-27 2017-03-09 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
US9920969B2 (en) 2013-09-27 2018-03-20 Mitsubishi Electric Corporation Oil level detection device, and refrigerating and air-conditioning apparatus having mounted thereon the oil level detection device

Also Published As

Publication number Publication date
CN1491321A (zh) 2004-04-21
JP2002242833A (ja) 2002-08-28
KR20030075194A (ko) 2003-09-22
KR100516381B1 (ko) 2005-09-27
CN1330878C (zh) 2007-08-08
EP1367259A4 (en) 2009-10-28
EP1367259A1 (en) 2003-12-03

Similar Documents

Publication Publication Date Title
WO2002064979A1 (fr) Congelateur
EP2320151B1 (en) Air-conditioning device
EP2041501B1 (en) Protection and diagnostic module for a refrigeration system
US9429343B2 (en) Heat pump system
EP2314958A1 (en) Method for judging amount of refrigerant of air conditioner and air conditioner
WO2010103734A1 (ja) 空気調和装置
JP5802840B2 (ja) マルチ型空気調和装置の室外ユニット
US20080053120A1 (en) Air Conditioner
EP1953477A1 (en) Refrigerator compressor operating method and refrigerator
JP5475874B2 (ja) ヒートポンプシステム
KR20110129418A (ko) 히트 펌프 시스템
JP5327351B2 (ja) 空気調和装置
WO2004088212A1 (ja) 空気調和機
JP6351409B2 (ja) 空気調和機
JP4402234B2 (ja) 油量検出装置および冷凍装置
JP7067864B2 (ja) 空気調和機
JP3290251B2 (ja) 空気調和機
JP4499863B2 (ja) マルチ形空気調和機
WO2021085330A1 (ja) 冷凍装置
JP6359181B2 (ja) 冷凍サイクル装置
KR100792458B1 (ko) 압축기의 오일분리장치
JP5463660B2 (ja) 冷凍装置
JP4489890B2 (ja) マルチ形空気調和機
JP4910577B2 (ja) 逆相検知装置、それを備えた空気調和装置、及び、逆相検知方法
JP4522202B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028048296

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037010660

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002712395

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037010660

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002712395

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020037010660

Country of ref document: KR