WO2002059174A1 - Copolymere sequence en etoile et son procede de preparation - Google Patents

Copolymere sequence en etoile et son procede de preparation Download PDF

Info

Publication number
WO2002059174A1
WO2002059174A1 PCT/CN2001/001489 CN0101489W WO02059174A1 WO 2002059174 A1 WO2002059174 A1 WO 2002059174A1 CN 0101489 W CN0101489 W CN 0101489W WO 02059174 A1 WO02059174 A1 WO 02059174A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
butadiene
monomer
conjugated diene
weight
Prior art date
Application number
PCT/CN2001/001489
Other languages
English (en)
French (fr)
Inventor
Yang Li
Hongde Xu
Yurong Wang
Dingyi Hong
Mingchu Gu
Mei Wang
Zhanxia LÜ
Aili Xu
Original Assignee
China Petroleum & Chemical Corporation
Research Institute Of Beijing Yanshan Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 00130185 external-priority patent/CN1118498C/zh
Priority claimed from CNB001301829A external-priority patent/CN1133672C/zh
Priority claimed from CNB001301845A external-priority patent/CN1133674C/zh
Priority claimed from CN 00130181 external-priority patent/CN1118497C/zh
Priority claimed from CNB001301837A external-priority patent/CN1133673C/zh
Application filed by China Petroleum & Chemical Corporation, Research Institute Of Beijing Yanshan Petrochemical Co., Ltd. filed Critical China Petroleum & Chemical Corporation
Priority to JP2002559472A priority Critical patent/JP4213468B2/ja
Priority to EP01273428A priority patent/EP1333042B1/en
Priority to KR1020037005519A priority patent/KR100806402B1/ko
Publication of WO2002059174A1 publication Critical patent/WO2002059174A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/042Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a polyfunctional initiator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/901Radial block

Definitions

  • the invention relates to a star-shaped block copolymer of a conjugated diene monomer and a monovinylarene monomer, and a preparation method thereof. More specifically, the present invention relates to a star block copolymer having the following structure and a preparation method thereof:
  • X is a random copolymer block of a conjugated diene monomer and a monovinylarene monomer
  • Y is a polyconjugated diene block
  • C is a polyfunctional lithium initiator residue
  • block copolymers based on the three monomers of butadiene, isoprene, and styrene are SBS and SIS, where SBS is a triblock copolymer of butadiene and styrene (where: B is polybutadiene Ene block, S is a polystyrene block), and SIS is a triblock copolymer of isoprene and styrene (where: I is a polyisoprene block and S is a polystyrene block).
  • SBS is a triblock copolymer of butadiene and styrene
  • SIS is a triblock copolymer of isoprene and styrene (where: I is a polyisoprene block and S is a polystyrene block).
  • Such block copolymers include the following symmetrical structures: (1) SIBIS (Butadiene, isoprene, styrene are added sequentially); (2) SBIBS (isoprene, butadiene, styrene are added sequentially); (3) SI-BI-B-BI-IS (butadiene Diene and isoprene are added at the same time, and styrene is added at the same time); (4) S-BS-BIB-BS-S (isoprene singly is added, butadiene and styrene are added at the same time); (5) S -IS-1-Bi-IS-S (butadiene single addition, isoprene and styrene added simultaneously); (6) S-IS-I-BI-B-BI-I-IS-S (butadiene Diene, isoprene and styrene are added at the same time); In the above formula: S is a polystyrene block
  • the present invention is based on the above-mentioned polymer design.
  • One or more conjugated diene monomers are added to the reactor. 9 Using a polyfunctional lithium initiator, firstly selected from a conjugated diene homopolymer block, Polymerization of conjugated diene ladder copolymer blocks, conjugated diene random copolymer blocks, and rubber blocks thereof, and then polymerization of conjugated diene monomer / monovinylarene monomer random copolymer blocks A star-shaped block copolymer having both the random copolymer block and the rubber block in the same molecule was prepared, and a conjugated diene monomer / monovinylarene monomer was realized in a true sense.
  • the object of the present invention is to provide a novel star block copolymer of a conjugated diene monomer and a monovinylarene monomer, which has both a conjugated diene and a monovinylarene monomer in the same molecule.
  • a rubber block selected from conjugated diene homopolymer blocks, conjugated diene ladder copolymer blocks, conjugated diene random copolymer blocks, and combinations thereof.
  • This type of block copolymer has the excellent properties of the two rubbers, and can be used as a wide range of elastomer materials. For example, it can be used to make tires, especially as a tread with excellent performance (such as "low rolling and high draw"). gum.
  • the star block copolymer of the present invention can also be further functionalized, such as hydrogenation, epoxidation, hydroxylation, carboxylation, etc., and can also be used for rubber-blend modification.
  • Another object of the present invention is to provide a method for preparing the above-mentioned star block copolymer, which can realize chemical compounding in situ in a single reactor, rather than a method of physical blending.
  • one aspect of the present invention relates to a star block copolymer having the following structure:
  • X is a random copolymer block of a conjugated diene monomer and a monovinylarene monomer
  • Y is a polyconjugated diene block
  • C is a polyfunctional lithium initiator residue
  • n is the initiator functionality and its value is 3 or more.
  • the present invention relates to a method for preparing the above-mentioned star block copolymer using anionic polymerization.
  • the present invention relates to the use of the aforementioned star block copolymer as an elastomer. Detailed description of the invention
  • conjugated diene monomer used in the present invention means any monomer having a conjugated double bond in its molecule, such as a C 4 -C 6 conjugated diene monomer, and specific examples thereof include butadiene , Isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene and mixtures thereof, more preferably butadiene and isoprene.
  • monovinylarene monomer used in the present invention means an aromatic hydrocarbon monomer having a vinyl substituent on its aromatic ring, and specific examples thereof include styrene or an alkyl-substituted styrene such as vinyl Toluene (all isomers), ⁇ -methylstyrene, 4-tert-butylstyrene, 4-methylstyrene, 3,5-diethylstyrene, 3,5-di-n-butylstyrene , 4-n-propylstyrene, 4-dodecylstyrene, etc., and mixtures thereof, more preferred monovinyl aromatic hydrocarbon monomers include styrene, vinyltoluene, c-fluorenylstyrene, and mixtures thereof, Most preferred is styrene.
  • the block X is a random copolymer block of a conjugated diene monomer and a monovinyl aromatic hydrocarbon monomer; preferably, the conjugated diene monomer in the block X is Butadiene, isoprene or a mixture thereof is more preferably butadiene; preferably, the monovinyl aromatic hydrocarbon monomer in block X is styrene or an alkyl-substituted styrene, and more preferably styrene.
  • the content of the 1,2- or 3,4-addition polymerization structure of the conjugated diene monomer is preferably 6-based on the total weight of the units derived from the conjugated diene monomer in the block X. 80% by weight, more preferably 10-50% by weight.
  • block X based on the total weight of block X, the content of monovinylarene monomer is 10-50% by weight, preferably 15-35% by weight; the content of conjugated diene monomer is 50 -90% by weight, preferably 65-85% by weight.
  • the block Y is selected from the group consisting of a conjugated diene homopolymer block, a conjugated diene ladder copolymer block, a conjugated diene random copolymer block, and the like A combined polyconjugated diene block; preferably, the block Y is a block having a structure represented by the following formula:
  • B is a homopolymer block of butadiene
  • is a homopolymer block of isoprene
  • IB is a ladder copolymer block of butadiene and isoprene
  • IBR is butadiene Random copolymer block of olefin and isoprene.
  • the star block copolymer of the present invention is preferably a star block copolymer having a structure represented by the following formula:
  • the content of the 1,2- or 3,4-addition polymerization structure of the conjugated diene monomer is preferably 6 based on the total weight of the units derived from the corresponding conjugated diene monomer in the block fluorene. -80% by weight, more preferably 6-55% by weight, and most preferably 6-20% by weight.
  • block fluorene contains two different conjugated diene monomer units, such as when block fluorene contains homopolymer blocks of both butadiene and isoprene
  • the weight ratio of butadiene to isoprene units in the block is 10/90 to 90 / 10, more preferably 30/70 to 70/1
  • the weight ratio of the block X to the block Y is preferably 10/90 to 90/10, and more preferably 30/70 to 70/30.
  • n is 3 or more, preferably 3-150, more preferably 3-50, and most preferably 3-10.
  • the number average molecular weight (Mn) of the star block copolymer of the present invention is preferably 5 X 10 4 -50 x 10 4 , and more preferably 10 x 10 4 -30 x 10 4 .
  • the star block copolymer of the present invention can be prepared by an anionic polymerization method.
  • the preparation method includes:
  • step b) adding a mixture of a conjugated diene monomer and a monovinylarene monomer to the reaction mixture obtained in the above step a), so as to continue anionic polymerization in the presence of a polar additive until the polymerization is completed to form a block X.
  • step a) of the method of the present invention may specifically be:
  • step a (1) when block Y is B, polymerize butadiene in step a); (2) when block Y When it is I, isoprene is polymerized in step a); (3) When block Y is B, butadiene is completely polymerized in step a), and then isoprene is added and made Polymerization is complete; (4) When block Y is B 1, in step a), isoprene is polymerized first, and then butadiene is added to complete polymerization; (5) When block Y is 1 - ⁇ - ⁇ , in step a), a mixture of butadiene and isoprene is added to the non-polar hydrocarbon solvent, and they are completely polymerized in the absence of a polar additive; and (6) When the block Y is IBR, in step a), a mixture of butadiene and isoprene is added to the non-polar hydrocarbon solvent, and they are completely polymerized in the presence of a polar additive.
  • the method for preparing the star block copolymer (XB) n -C of the present invention is as follows:
  • butadiene monomer In a non-polar hydrocarbon solvent, add butadiene monomer to the reactor according to the monomer ratio. Depending on the microstructural requirements of polybutadiene, determine whether to use a polar additive, and the type and amount of polar additive depends on the polymer. The design value of the 1,2-polybutadiene content in the butadiene block is determined. The total concentration of the various monomers added in each step is 10-20% by weight. Turn on the stirring and after the initiation temperature is reached (the initiation temperature is usually 30-80 ° C), add a polyfunctional lithium initiator. The amount of the polyfunctional lithium initiator depends on the number average molecular weight of the copolymer.
  • the polyfunctional lithium initiator may be a polyfunctional lithium initiator or a mixture of several polyfunctional lithium initiators.
  • the monomer ratio of the conjugated diene monomer and the monovinylarene monomer random copolymer block is used to mix the conjugated diene monomer and monovinyl with polar additives.
  • Aromatic monomers were added to the reactor at one time, and preparation of the X block was started.
  • the purpose of adding polar additives is to change the polymerization ratio of conjugated diene monomer and monovinylarene monomer, to achieve random copolymerization of conjugated diene monomer and monovinylarene monomer, to obtain random copolymer Block X.
  • the amount of the polar additive is based on the random copolymerization of the conjugated diene monomer and the monovinylarene monomer, and it depends on the type of the polar additive. After all the conjugated diene monomer and monovinylarene monomer are reacted, the polymerization reaction is terminated in a conventional manner, and a polymer product is recovered. More specifically, the method for preparing the star block copolymer (XI) u- c of the present invention is as follows:
  • Isoprene monomer is added to the reactor in a non-polar hydrocarbon solvent according to the monomer ratio. Depending on the microstructure of the polyisoprene, it is determined whether to use a polar additive, and the type and amount of the polar additive It depends on the design value of the 3, 4-polyisoprene content in the polyisoprene block. The total concentration of the various monomers added in each step is 10-20% by weight. Turn on stirring, and after reaching the initiation temperature (initiation temperature is usually 30-80 ° C), add a polyfunctional lithium initiator. The amount of the polyfunctional lithium initiator depends on the number average molecular weight of the copolymer.
  • the polyfunctional lithium initiator may be a polyfunctional lithium initiator or a mixture of several polyfunctional lithium initiators. After all the isoprene is reacted, the conjugated diene monomer and monoethylene containing polar additives are mixed according to the monomer ratio of the conjugated diene monomer and the monovinylarene monomer random copolymer block. Aromatic monomers were added to the reactor at one time, and preparation was started
  • the purpose of adding polar additives is to change the polymerization ratio of conjugated diene monomer and monovinylarene monomer, to achieve random copolymerization of conjugated diene monomer and monovinylarene monomer, to obtain random copolymer Block X.
  • the amount of the polar additive is based on the random copolymerization of the conjugated diene monomer and the monovinyl aromatic hydrocarbon monomer, and it depends on the type of the polar additive. After all the conjugated diene monomer and monovinylarene monomer are reacted, the polymerization reaction is terminated in a conventional manner, and a polymer product is recovered.
  • star block copolymer (XIB) n- C of the present invention is prepared as follows:
  • butadiene monomer is added to the reactor according to the monomer ratio.
  • a polar additive depending on the polymer.
  • the design value of the 1,2-polybutadiene content in the butadiene block is determined.
  • the total concentration of various monomers added in each step is 10-20% by weight.
  • the amount of the polyfunctional lithium initiator depends on the number average molecular weight of the copolymer.
  • the polyfunctional lithium initiator can be a polyfunctional lithium initiator, A mixture of multiple polyfunctional lithium initiators.
  • isoprene and optional polar additives are added according to the monomer ratio to start the preparation of the I block. Whether to use a polar additive depends on the microstructure requirements of the polyisoprene, and the type and amount of the polar additive depend on the design value of the 3,4-polyisoprene content in the polyisoprene block.
  • the conjugated diene monomer and monoethylene containing polar additives are mixed according to the monomer ratio of the conjugated diene monomer and the monovinylarene monomer random copolymer block.
  • the aromatic hydrocarbon monomer was added to the reactor at one time, and preparation of the X block was started.
  • the purpose of adding polar additives is to change the polymerization ratio of conjugated diene monomer and monovinylarene monomer, to achieve random copolymerization of conjugated diene monomer and monovinylarene monomer, to obtain random copolymer Block X.
  • the amount of the polar additive is based on the random copolymerization of the conjugated diene monomer and the monovinylarene monomer, and it depends on the type of the polar additive. After all the conjugated diene monomer and monovinylarene monomer are reacted, the polymerization reaction is terminated in a conventional manner, and a polymer product is recovered.
  • the method for preparing the star block copolymer (-BI) n- C of the present invention is as follows:
  • Isoprene monomer is added to the reactor in a non-polar hydrocarbon solvent according to the monomer ratio.
  • a polar additive Depending on the microstructure of the polyisoprene, it is determined whether to use a polar additive, and the type and amount of the polar additive. It depends on the design value of the 3,4-polyisoprene content in the polyisoprene block.
  • the total degree of addition of the various monomers in each step is 10-20% by weight.
  • Turn on the stirring and after the initiation temperature is reached (the initiation temperature is usually 30-80 ° C) add a polyfunctional lithium initiator and start preparing the I block.
  • the amount of the polyfunctional lithium initiator depends on the number average molecular weight of the copolymer.
  • the polyfunctional lithium initiator may be a polyfunctional lithium initiator or a mixture of several polyfunctional lithium initiators.
  • butadiene and optional polar additives are added according to the monomer ratio to start the preparation of the B block. Whether to use a polar additive depends on the microstructure requirements of the polybutadiene, and the type and amount of the polar additive depend on the design value of the 1,2-polybutadiene content in the polybutadiene block. After the whole reaction of butadiene, the conjugated diene monomer and the monovinylarene monomer are randomly selected.
  • Monomer ratio of the copolymer block The conjugated diene monomer and the monovinylarene monomer containing polar additives were added to the reactor at one time, and the X block was prepared.
  • the purpose of adding polar additives is to change the polymerization ratio of conjugated diene monomer and monovinylarene monomer, to achieve random copolymerization of conjugated diene monomer and monovinylarene monomer, to obtain random copolymer Block X.
  • the amount of the polar additive is based on the random copolymerization of the conjugated diene monomer and the monovinylarene monomer, and it depends on the type of the polar additive. After all the conjugated diene monomer and monovinylarene monomer are reacted, the polymerization reaction is terminated in a conventional manner, and a polymer product is recovered. .
  • the method for preparing the star block copolymer (X-IBR) n-C of the present invention is as follows:
  • the addition of polar additives should ensure that the IBR block Butadiene and isoprene undergo copolymerization in a random manner, the type and amount of which depend on the 1,2-polybutadiene content or 3,4-polyisoprene in the polyconjugated diene block The content depends on the design value.
  • the total concentration of the various monomers added in each step is 10-20% by weight.
  • a polyfunctional lithium initiator is added to start the preparation of the butadiene / isoprene random copolymer block IBR.
  • the amount of polyfunctional lithium initiator depends on the number average molecular weight of the copolymer.
  • the polyfunctional lithium initiator may be a polyfunctional lithium initiator or a mixture of several polyfunctional lithium initiators.
  • the conjugated diene monomer and monovinylarene monomer of the additive were added to the reactor at one time, and the preparation of the X block was started.
  • the purpose of adding polar additives is to change the polymerization ratio of conjugated diene monomer and monovinylarene monomer, to achieve random copolymerization of conjugated diene monomer and monovinylarene monomer, to obtain random copolymer Block X.
  • the amount of the second batch of polar additives is related to the amount of the first batch of polar additives. If the amount of the second batch of polar additives is sufficient, the conjugated diene monomers and monovinylarene monomers can be added later.
  • the second batch of polar additives may not be added when conjugated diene monomers and monovinylarene monomers are added; otherwise, polar additives may be added to achieve conjugated diene monomers and monoethylene Random copolymerization of aromatic hydrocarbon monomers, and the amount thereof depends on the type of polar additives.
  • the second batch of added polar additives may be the same or different from the first batch of polar additives.
  • the method for preparing the star block copolymer (-B-B) n- C of the present invention is as follows:
  • Isoprene monomer and butadiene monomer are added to the reactor in a non-polar hydrocarbon solvent according to the monomer ratio, depending on the polyconjugated diene (isoprene and butadiene) ⁇ ⁇ Observation of structural requirements determines whether polar additives are used, and the types and amounts of polar additives depend on the design value of the 1,2-polybutadiene content or 3,4-polyisoprene content in the polyconjugated diene block. It depends. The total concentration of the various monomers added in each step is 10-20% by weight.
  • the polyfunctional lithium initiator adds the polyfunctional lithium initiator to start the preparation of the polyconjugated diene block I- ⁇ - ⁇ .
  • the amount of the polyfunctional lithium initiator depends on the number average molecular weight of the copolymer.
  • the polyfunctional lithium initiator may be a polyfunctional lithium initiator or a mixture of several polyfunctional lithium initiators.
  • the conjugated diene monomer containing the polar additive is mixed according to the monomer ratio of the conjugated diene monomer and the monovinyl aromatic hydrocarbon monomer random copolymer block
  • the monomer and the monovinylarene monomer were added to the reactor at one time, and the preparation of the X block was started.
  • the purpose of adding polar additives is to change the polymerization ratio of conjugated diene monomer and monovinylarene monomer, to achieve random copolymerization of conjugated diene monomer and monovinylarene monomer, to obtain random copolymer Block X.
  • the amount of the polar additive is based on the random copolymerization of the conjugated diene monomer and the monovinylarene monomer, and it depends on the type of the polar additive. After the conjugated diene monomer and the monovinyl aromatic hydrocarbon monomer are all reacted, the polymerization reaction is terminated in a conventional manner, and a polymer product is recovered.
  • the polar additive used in the present invention is selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus
  • a compound or a mixture of several compounds among polar compounds and metal oxymetal compounds for example: (1) oxygen-containing compounds, generally selected from ether, tetrahydrofuran, 3 ⁇ 4003 ⁇ 4 € 3 ⁇ 403 ⁇ 4 (where 3 ⁇ 4 and 1 are carbon atoms of 1 -6 alkyl, 3 ⁇ 4 and ⁇ may be the same or different, preferably different from 3 ⁇ 4, such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether), 3 ⁇ 4OCH 2 C 3 ⁇ 4OCH 2 CH 2 OR 2 (where 3 ⁇ 4 and ⁇ are The alkyl group of 1-6 may be the same or different, and is preferably different from 3 ⁇ 4, such as diethylene glycol dimethyl ether, diethylene glycol dibutyl ether), crown ether; (2) nitrogen-containing compound, Generally selected from triethylamine, tetramethylethylenediamine (TMEDA
  • the non-polar hydrocarbon solvent used in the present invention is a hydrocarbon solvent or a mixture of several hydrocarbon solvents selected from non-polar aromatic hydrocarbons and non-polar aliphatic hydrocarbons, and is generally selected from benzene, toluene, and ethylbenzene. , Xylene, pentane, hexane, heptane, octane, cyclohexane, mixed aromatic hydrocarbons (such as mixed xylene), mixed aliphatic hydrocarbons (such as raffinate), preferably hexane, cyclohexane, extraction oil.
  • the initiator used in the present invention is any polyfunctional lithium initiator disclosed in the prior art, and may be a polyfunctional lithium initiator or a mixture of several polyfunctional lithium initiators, such as the general formula! ? ! ⁇ Or T (RLi) n , where R is a hydrocarbon group having 4 to 20 carbon atoms, such as an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and T is a metal atom, generally tin Sn, silicon Si, lead Pb, Metal elements such as titanium Ti and germanium Ge, II is the initiator functionality and its value is 3 or more, preferably 3-150, more preferably 3-50, and most preferably 3-10.
  • the polyfunctional lithium initiator RLi n may be a polychelate organolithium initiator, such as various polychelates obtained by reacting divinylbenzene (DVB) mentioned in patents such as GB2124228A, US3280084, EP0573893A2, CN1197806A and alkyl lithium.
  • the polyfunctional lithium initiator may be a metal-containing polyfunctional lithium initiator T (RLi) n . It is generally selected from tin-containing Sii-type polyfunctional lithium initiator (RLi) n , such as the tin-containing Sn-type polyfunctional lithium initiator Sn (RLi) 4 mentioned in patent CN1148053A.
  • the polyfunctional lithium initiator can also be other polyfunctional lithium initiators that can be used to initiate the polymerization of conjugated diene monomers such as butadiene, isoprene, and styrenic monomers with a functionality of not less than 3, such as patents Various polyfunctional lithium initiators mentioned in USS262213 US5595951.
  • the amount of initiator depends on the molecular weight of the star block copolymer.
  • the amount of the polyfunctional lithium initiator in the present invention is such that the number average molecular weight of the star block copolymer is 5 ⁇ 10 4 to 50 ⁇ 10 4 , and more preferably 10 ⁇ 10 4 to 30 ⁇ 10 4 .
  • Termination of the polymerization reaction is usually performed using a terminator.
  • the terminator used in the present invention is any terminator disclosed in the prior art that can be used in anionic polymerization, such as water, methanol, ethanol or isopropanol.
  • antioxidants can be optionally added to the star block copolymer of the present invention.
  • specific examples are Irganox 1010 (trade name, purchased from Ciba-Geigy, Switzerland) and Antigene BHT or 2.6.4. (Trade name: 2,6-di-tert-butyl-4-methylphenol, purchased from Sumitomo Chemical Co., Ltd., Japan). Best Mode for Carrying Out the Invention
  • This reference example illustrates the synthesis of a polyfunctional lithium initiator-a polychelate organolithium initiator-used in the following examples of the present invention.
  • the polymerization method and process conditions were the same as in Example 1, except that the ratio of butadiene and styrene monomers was different, and a (X-B) n- C star block copolymer was prepared, where X is butadiene and styrene Random copolymer block SBR.
  • the test results of polymerization process parts, product structure and physical properties are shown in Table 1.
  • S is the amount of styrene, the amount of butadiene (for the preparation of B block), B2 is the amount of butadiene (for the preparation of SBR block), and S / B2 is the SBR block.
  • the proportion (weight ratio) of middle styrene and butadiene monomers, SBR / B is the weight ratio of SBR blocks to B blocks, 1, 2-B ° /. It is a 1,2-polybutadiene content, and HI is a molecular weight distribution index (a ratio of a weight average molecular weight to a number average molecular weight, Mw / Mn) measured by gel permeation chromatography (GPC).
  • Mw number average molecular weight
  • a 5 liter stirred stainless steel reactor was charged with 3.5 liters of cyclohexane and 140 g of isoprene, and the temperature was raised to 50.
  • C. Add the polychelate organolithium initiator synthesized in the reference example in an amount such that the molecular weight of the copolymer is 15 x 10 4 .
  • the isoprene polymerization reaction is all completed.
  • 175 g of butadiene and 35 g of styrene containing polar additive THF are added, and the THF / Li (molar ratio) is 35. The reaction is continued for 60 minutes.
  • the polymerization method and process conditions were the same as those in Example 8, except that the ratios of butadiene, isoprene and styrene monomers were different, and a (XI) n- C star block copolymer was prepared, where X is an SBR block .
  • the test results of polymerization process conditions, product structure and physical properties are shown in Table 2.
  • Table 2 Polymerization process conditions and product physical properties
  • S is the amount of styrene
  • B is the amount of butadiene
  • I is the amount of isoprene
  • S / B is the proportion of styrene and butadiene monomer (weight ratio) in the SBR block
  • SBR / I is The weight ratio of SBR block to I block
  • 1, 2-B% + 3, 4-1% is the sum of 1,2-polybutadiene content and 3,4-polyisoprene content
  • HI is Molecular weight distribution index (ratio of weight average molecular weight to number average molecular weight, Mw / Mn) measured by gel permeation chromatography (GPC).
  • Example 1S The polymerization method and process conditions were the same as those in Example 1S, except that the ratios of butadiene, isoprene and styrene monomers were different, but the order of addition of butadiene and isoprene was different.
  • S is the amount of styrene
  • Al and A2 are the amounts of butadiene (B) and isoprene (I)
  • B2 is the amount of butadiene in the SBR block
  • S / B2 is the benzene amount in the SBR block.
  • SBR / (A1 + A2) is the weight ratio of SBR block to polyconjugated diene block
  • A1 / A2 is two kinds of conjugated diene polymer.
  • the weight ratio of the segments, 1, 2-B% + 3, 4-1% is the sum of the content of 1,2-polybutadiene and 3,4-polyisoprene, and HI is the gel permeation chromatography method.
  • GPC measured molecular weight distribution index (ratio of weight average molecular weight to number average molecular weight, Mw / Mn).
  • the polymerization method and process conditions were the same as those in Example 22, except that the ratios of butadiene, isoprene and styrene monomers were different, and a (X-IBR) n : C star block copolymer was prepared, where X is SBR Block.
  • the test results of polymerization process conditions, product structure and physical properties are shown in Table 4.
  • S is the amount of styrene
  • Bl is the amount of butadiene in the IBR block
  • B2 is the amount of butadiene in the SBR block
  • I is the amount of isoprene in the IBR block
  • S / B2 is the amount of SBR in the SBR block
  • I B1 is the ratio of isoprene to butadiene monomer (weight ratio) in the IBR block
  • SBR / IBR is the SBR block and IBR block Segment weight ratio
  • 1, 2-B% + 3 4-1% is the sum of 1,2-polybutadiene content and 3,4-polyisoprene content
  • HI is the gel permeation chromatography (GPC) measured molecular weight distribution index (weight average, ratio of molecular weight to number average molecular weight, Mw / Mn).
  • GPC gel permeation chromatography
  • the polymerization method and process conditions were the same as those in Example 29, except that the ratio of butadiene, isoprene and styrene monomers was different, and a (XI-IB-B) n- C star block copolymer was prepared, where X SBR block.
  • the test results of polymerization process components, product structure and physical properties are shown in Table 5.
  • Table 5 Polymerization process conditions and product physical properties
  • S is the amount of styrene
  • I is the amount of isoprene
  • Bl is the amount of the first batch of butadiene (for the preparation of I + IB + B blocks)
  • B2 is the amount of the second batch of butadiene (for the Preparation of SBR blocks)
  • S / B2 is the ratio of styrene and butadiene monomers (weight ratio) in the SBR block
  • I / B1 is isoprene and butadiene monomer in the I + IB + B block Body ratio (Weight ratio)
  • SBR / I + IB + B is the weight ratio of SBR block to polyconjugated diene block, 1, 2-B% -i-3
  • 4-1% is 1, 2-polybutylene
  • HI is a molecular weight distribution index (ratio of weight average molecular weight to number average molecular weight, Mw / Mn) measured by gel permeation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Description

Figure imgf000002_0001
技术领域
本发明涉及一类共轭二烯单体与单乙烯基芳烃单体的星型嵌段 共聚物及其制备方法。 更具体地说, 本发明涉及具有如下结构的星 型嵌段共聚物及其制备方法:
( X-Y ) „~c
其中 X为共轭二烯单体与单乙烯基芳烃单体的无规共聚物嵌段;
Y为聚共轭二烯嵌段;
C为多官能锂引发剂残基; 和
II为引发剂官能度且其值大于等于 3。 背景技术
通常基于丁二烯、 异戊二烯、 苯乙烯三种单体的嵌段共聚物有 SBS和 SIS, 其中 SBS为丁二烯与苯乙烯的三嵌段共聚物(其中: B为聚丁二烯嵌段, S为聚苯乙烯嵌段), SIS为异戊二烯^苯乙烯 的三嵌段共聚物(其中: I为聚异戊二烯嵌段, S为聚苯乙烯嵌段)。 使用双官能锂引发剂, 改变丁二烯、 异戊二烯、 苯乙烯单体的加料 顺序, 可以得到不同结构的嵌段共聚物, 这类嵌段共聚物包括下列 对称结构: (1 ) S-I-B-I-S (丁二烯、 异戊二烯、 苯乙烯顺序加入); ( 2 ) S-B-I-B-S (异戊二烯、 丁二烯、 苯乙烯顺序加入); (3 ) S-I-BI-B-BI-I-S (丁二烯和异戊二烯同时加入、 苯乙烯单加); (4 ) S-BS-B-I-B-BS-S (异戊二埽单加、 丁二烯和苯乙烯同时加入); ( 5 ) S-IS-1-B-i-IS-S (丁二烯单加、 异戊二烯和苯乙烯同时加入); ( 6 ) S-IS-I-BI-B-BI-I-IS-S (丁二烯、 异戊二烯和苯乙烯同时加入); 上 述式中: S为聚苯乙烯嵌段, B为聚丁二烯嵌段, I为聚异戊二烯嵌 段, BI为丁二烯和异戊二烯的梯形共聚物嵌段, BS为丁二烯和苯 乙烯的梯形共聚物嵌段,IS为异戊二烯和苯乙烯的梯形共聚物嵌段。 当丁二烯和苯乙烯同时加入时, 由于丁二烯和苯乙烯的竟聚率 不同, 只能得到含有丁二烯 /苯乙烯梯形共聚物嵌段的五嵌段共聚物 S-BS-B-BS-S。 如果在丁二烯和苯乙烯进料的同时加入极性添加剂, 则可以改变丁二烯和苯乙烯的竟聚率, 从而使丁二烯和苯乙烯的聚 合按照无规的方式进行, 最终得到无规丁苯'共聚物嵌段 SBR。 发明概述
本发明正是从上述高分子设计出发, 将一种或多种共轭二烯单 体加入反应器中9 采用多官能锂引发剂, 首先合成选自共轭二烯均 聚物嵌段、 共轭二烯梯形共聚物嵌段、 共轭二烯无规共聚物嵌段及 其组合的橡胶嵌段, 然后进行共轭二烯单体 /单乙烯基芳烃单体无规 共聚物嵌段的聚合, 制备了在同一分子中同时具有所述无规共聚物 嵌段和所述橡胶嵌段的星型嵌段共聚物, 从真正意义上实现了共轭 二烯单体 /单乙烯基芳烃单体无规共聚物橡胶和共轭二烯橡胶的化 学复配, 而实现橡胶复配的传统方法是在开炼机或密炼机上将各种 橡胶进行物理混合,显然本发明所采用的化学复配方法更简便易行、 效果更佳。
因此, 本发明的目的在于提供一类新颖的共轭二烯单体与单乙 烯基芳烃单体的星型嵌段共聚物, 它在同一分子中同时具有共轭二 烯与单乙烯基芳烃单体的无规共聚物嵌段和选自共轭二烯均聚物嵌 段、 共轭二烯梯形共聚物嵌段、 共轭二烯无规共聚物嵌段及其组合 的橡胶嵌段,从而使这类嵌段共聚物兼具所述两种橡胶的优异性能, 可作为用途广泛的弹性体材料, 例如可用于制备轮胎, 尤其用作性 能优异(如 "低滚高牵")的胎面胶。 本发明的星型嵌段共聚物还可 以被进一步官能化, 例如氢化、 环氧化、 羟基化、 羧基化等, 也可 以用于橡塑共混改性。 本发明的另一目的在于提供上述星型嵌段共聚物的制备方法, 它可以在单一反应器中原位实现化学复配, 而非通过物理共混的方 法。
因此, 本发明一方面涉及具有如下结构的星型嵌段共聚物:
( X-Y ) „-c
其中 X为共轭二烯单体与单乙烯基芳烃单体的无规共聚物嵌段;
Y为聚共轭二烯嵌段;
C为多官能锂引发剂残基; 和
n为引发剂官能度且其值大于等于 3。
另一方面, 本发明涉及采用阴离子聚合制备上述星型嵌段共聚 物的方法。
再一方面,本发明涉及上述星型嵌段共聚物作为弹性体的应用。 发明详述
以下将详细地说明本发明。
本发明中所用的术语 "共轭二烯单体" 意指在其分子中具有共 轭双键的任何单体, 如 C4-C6共轭二烯单体, 其具体实例包括丁二 烯、 异戊二烯、 1, 3-戊二烯、 1, 3-己二烯、 2, 3-二甲基丁二烯及 其混合物, 更优选丁二浠和异戊二烯。 本发明中所用的术语 "单乙 烯基芳烃单体"意指在其芳环上带有一个乙烯基取代基的芳烃单体, 其具体实例包括苯乙烯或烷基取代的苯乙烯, 如乙烯基甲苯(所有 异构体)、 α-甲基苯乙烯、 4-叔丁基苯乙烯、 4-甲基苯乙烯、 3, 5- 二乙基苯乙烯、 3, 5-二正丁基苯乙烯、 4-正丙基苯乙烯、 4-十二烷 基苯乙烯等,及其混合物, 更优选的单乙烯基芳烃单体包括苯乙烯、 乙烯基甲苯、 c -曱基苯乙烯及其混合物, 最优选苯乙烯。
在本发明的星型嵌段共聚物中, 嵌段 X为共轭二烯单体与单乙 烯基芳烃单体的无规共聚物嵌段; 优选嵌段 X中的共轭二烯单体为 丁二烯、 异戊二烯或其混合物, 更优选为丁二烯; 优选嵌段 X中的 单乙烯基芳烃单体为苯乙烯或烷基取代的苯乙烯,更优选为苯乙烯。
在嵌段 X中,基于嵌段 X中衍生于共轭二烯单体的单元的总重 量, 共轭二烯单体 1, 2-或 3, 4-加成聚合结构的含量优选为 6-80% (重量), 更优选 10-50% (重量)。
在嵌段 X中, 基于嵌段 X的总重量, 单乙烯基芳烃单体的含量 为 10-50% (重量), 优选 15-35% (重量); 共轭二烯单体的含量为 50-90% (重量 ), 优选 65-85% (重量)。
在本发明的星型嵌段共聚物中, 嵌段 Y为选自共轭二烯均聚物 嵌段、 共轭二烯梯形共聚物嵌段、 共轭二烯无规共聚物嵌段及其組 合的聚共轭二烯嵌段; 优选嵌段 Y为具有下式所示结构的嵌段:
B,
Ϊ-Β ,
B-I ,
IBR, 或
I-IB-B,
式中, B为丁二烯的均聚物嵌段, Ϊ为异戊二烯的均聚物嵌段, IB为丁二烯与异戊二烯的梯形共聚物嵌段,和 IBR为丁二烯与异戊 二烯的无规共聚物嵌段。
相应地, 本发明的星型嵌段共聚物优选为具有下式所示结构的 星型嵌段共聚物:
( X-B ) n-C,
( X-I ) n-C,
( -B-I ) n-C,
( X-I-B ) n-C,
( X- IBR )„-C或 ( -Ϊ-ΙΒ-Β ) n- (。
在嵌段 Y中,基于嵌段 Υ中衍生于对应共轭二烯单体的单元的 总重量, 共轭二烯单体 1, 2-或 3, 4-加成聚合结构的含量优选为 6-80% (重量), 更优选为 6-55% (重量), 最优选为 6-20% (重量)。 当嵌段 Υ含有两种不同的共轭二烯单体单元时,例如当嵌段 Υ含有 丁二烯与异戊二烯二者的均聚物嵌段、 丁二烯与异戊二烯的共聚物 嵌段或其组合时, 尤其当嵌段 Υ为 I- Β、 IBR或 MB- Β时, 在 该嵌段中丁二烯与异戊二烯单元的重量比为 10/90至 90/10, 更优选 30/70至 70/1
在本发明的星型嵌段共聚物中,嵌段 X与嵌段 Y的重量比优选 为 10/90至 90/10, 更优选 30/70至 70/30。
在本发明的星型嵌段共聚物中, n 的值大于等于 3, 优选为 3-150, 更优选为 3-50, 最优选为 3-10。
用凝胶渗透色谱法( GPC )测量, 本发明的星型嵌段共聚物的 数均分子量( Mn )优选为 5 X 104-50 x 104, 更优选为 10 x 104-30 x 104
本发明的星型嵌段共聚物可以用阴离子聚合方法制备。 在一优 选的实施方案中, 制备方法包括:
a )在多官能锂引发剂以及任选的极性添加剂存在下,使一种或 多种共轭二烯单体在非极性烃类溶剂中进行阴离子聚合, 直至所述 共轭二烯单体聚合完全, 以形成嵌段 Y; 和然后
b )向上述步驟 a )中得到的反应混合物中加入共轭二烯单体与 单乙烯基芳烃单体的混合物 , 使其在极性添加剂存在下继续阴离子 聚合, 直至聚合完全, 以形成嵌段 X。
取决于嵌段 Y的具体结构, 本发明方法的步骤 a )具体地可以 是:
( 1 )当嵌段 Y为 B时, 在步驟 a )中使丁二烯聚合; ( 2 )当嵌段 Y 为 I时, 在步驟 a ) 中使异戊二烯聚合; ( 3 ) 当嵌段 Y为 B时, 在步骤 a ) 中首先使丁二烯聚合完全, 然后再加入异戊二烯并使之 聚合完全; (4 ) 当嵌段 Y为 B 1时, 在步骤 a ) 中首先使异戊二烯 聚合完全, 然后再加入丁二烯并使之聚合完全; (5 ) 当嵌段 Y为 Ι-ΪΒ-Β时, 在步骤 a ) 中将丁二烯和异戊二烯的混合物加入非极性 烃类溶剂中, 并使它们在不存在极性添加剂的情况下聚合完全; 以 及(6 ) 当嵌段 Y为 IBR时, 在步驟 a ) 中将丁二烯和异戊二烯的 混合物加入非极性烃类溶剂中, 并使它们在极性添加剂存在下聚合 完全。
更具体地说, 本发明的星型嵌段共聚物 ( X-B ) n- C的制备方法 如下:
在非极性烃类溶剂中按单体配比将丁二烯单体加入到反应器中, 视 聚丁二烯微观结构要求确定是否使用极性添加剂, 并且极性添加剂 的种类和用量视聚丁二烯嵌段中 1, 2-聚丁二烯含量的设计值而定。 各步所加入的各种单体的总浓度为 10-20% (重量)。 打开搅拌, 达 到引发温度后 (引发温度通常为 30-80。C ), 加入多官能锂引发剂。 多官能锂引发剂的用量根据共聚物数均分子量的大小而定。 多官能 锂引发剂可以是一种多官能锂引发剂, 也可以是几种多官能锂引发 剂的混合物。 在丁二烯全部反应后, 再按共轭二烯单体与单乙烯基 芳烃单体无规共聚物嵌段的单体配比将含有极性添加剂的共轭二烯 单体和单乙烯基芳烃单体一次加入到反应器中, 开始制备 X嵌段。 加入极性添加剂的目的是改变共轭二烯单体和单乙烯基芳烃单体的 竟聚率, 实现共轭二烯单体和单乙烯基芳烃单体的无规共聚, 得到 无规共聚物嵌段 X。 极性添加剂的用量以实现共轭二烯单体和单乙 烯基芳烃单体进行无规共聚为准, 视极性添加剂的种类而定。 在共 轭二烯单体和单乙烯基芳烃单体全部反应后, 按照常规方式终止聚 合反应, 回收得到聚合物产品。 更具体地说, 本发明的星型嵌段共聚物 ( X-I ) u-c的制备方法 如下:
在非极性烃类溶剂中按单体配比将异戊二烯单体加入到反应器中, 视聚异戊二烯微观结构要求确定是否使用极性添加剂, 并且极性添 加剂的种类和用量视聚异戊二烯嵌段中 3, 4-聚异戊二烯含量的设计 值而定。 各步所加入的各种单体的总浓度为 10-20% (重量)。 打开 搅拌, 达到引发温度后(引发温度通常为 30- 80°C ), 加入多官能锂 引发剂。多官能锂引发剂的用量根据共聚物数均分子量的大小而定。 多官能锂引发剂可以是一种多官能锂引发剂, 也可以是几种多官能 锂引发剂的混合物。 在异戊二烯全部反应后, 再按共轭二烯单体与 单乙烯基芳烃单体无规共聚物嵌段的单体配比将含有极性添加剂的 共轭二烯单体和单乙烯基芳烃单体一次加入到反应器中, 开始制备
X嵌段。 加入极性添加剂的目的是改变共轭二烯单体和单乙烯基芳 烃单体的竟聚率, 实现共轭二烯单体和单乙烯基芳烃单体的无规共 聚, 得到无规共聚物嵌段 X。 极性添加剂的用量以实现共轭二烯单 体和单乙烯基芳烃单体进行无规共聚为准, 视极性添加剂的种类而 定。 在共轭二烯单体和单乙烯基芳烃单体全部反应后, 按照常规方 式终止聚合反应, 回收得到聚合物产品。
更具体地说, 本发明的星型嵌段共聚物 ( X-I-B ) n-C的制备方 法如下:
在非极性烃类溶剂中按单体配比将丁二烯单体加入到反应器中, 视 聚丁二婦微观结构要求确定是否使用极性添加剂, 并且极性添加剂 的种类和用量视聚丁二烯嵌段中 1 , 2-聚丁二烯含量的设计值而定。 各步所加入的各种单体总浓度为 10-20% (重量)。 打开搅拌, 达到 引发温度后 (引发温度通常为 30»80°C ), 加入多官能锂引发剂, 开 始制备 B嵌段。 多官能锂引发剂的用量根据共聚物数均分子量的大 小而定。 多官能锂引发剂可以是一种多官能锂引发剂, 也可以是几 种多官能锂引发剂的混合物。 在丁二烯全部反应后, 再按单体配比 加入异戊二烯和任选的极性添加剂, 开始制备 I嵌段。 是否使用极 性添加剂视聚异戊二烯微观结构要求而定, 且极性添加剂的种类和 用量视聚异戊二烯嵌段中 3, 4-聚异戊二烯含量的设计值而定。在异 戊二烯全部反应后, 再按共轭二烯单体与单乙烯基芳烃单体无规共 聚物嵌段的单体配比将含有极性添加剂的共轭二烯单体和单乙烯基 芳烃单体一次加入到反应器中, 开始制备 X嵌段。 加入极性添加剂 的目的是改变共轭二烯单体和单乙烯基芳烃单体的竟聚率, 实现共 轭二烯单体和单乙烯基芳烃单体的无规共聚, 得到无规共聚物嵌段 X。 极性添加剂的用量以实现共轭二烯单体和单乙烯基芳烃单体进 行无规共聚为准, 视极性添加剂的种类而定。 在共轭二烯单体和单 乙烯基芳烃单体全部反应后, 按照常规方式终止聚合反应, 回收得 到聚合物产品。
更具体地说, 本发明的星型嵌段共聚物 ( -B-I ) n-C的制备方 法:^下:
在非极性烃类溶剂中按单体配比将异戊二烯单体加入到反应器中, 视聚异戊二烯微观结构要求确定是否使用极性添加剂, 并且极性添 加剂的种类和用量视聚异戊二烯嵌段中 3, 4-聚异戊二烯含量的设计 值而定。 各步所加入的各种单体的总來度为 10-20% (重量)。 打开 搅拌, 达到引发温度后 (引发温度通常为 30-80°C ), 加入多官能锂 引发剂, 开始制备 I嵌段。 多官能锂引发剂的用量根据共聚物数均 分子量的大小而定。 多官能锂引发剂可以是一种多官能锂引发剂, 也可以是几种多官能锂引发剂的混合物。 在异戊二烯全部反应后, 再按单体配比加入丁二烯和任选的极性添加剂, 开始制备 B嵌段。 是否使用极性添加剂视聚丁二烯微观结构要求而定, 且极性添加剂 的种类和用量视聚丁二烯嵌段中 1, 2-聚丁二烯含量的设计值而定。 在丁二烯全部反应后, 再按共轭二烯单体与单乙烯基芳烃单体无规 共聚物嵌段的单体配比将含有极性添加剂的共轭二烯单体和单乙烯 基芳烃单体一次加入到反应器中,. 开始制备 X嵌段。 加入极性添加 剂的目的是改变共轭二烯单体和单乙烯基芳烃单体的竟聚率, 实现 共轭二烯单体和单乙烯基芳烃单体的无规共聚, 得到无规共聚物嵌 段 X。 极性添加剂的用量以实现共轭二烯单体和单乙烯基芳烃单体 进行无规共聚为准, 视极性添加剂的种类而定。 在共轭二烯单体和 单乙烯基芳烃单体全部反应后 , 按照常规方式终止聚合反应, 回收 得到聚合物产品。 .
更具体地说, 本发明的星型嵌段共聚物 ( X-IBR ) n-C的制备方 法如下:
在非极性烃类溶剂中按单体配比将异戊二烯单体、 丁二烯单体和第 一批极性添加剂加入到反应器中, 极性添加剂的加入应确保 IBR嵌 段中丁二烯和异戊二烯按无规的方式进行共聚合反应, 其种类和用 量视聚共轭二烯嵌段中 1, 2-聚丁二烯含量或 3, 4-聚异戊二烯含量 的设计值而定。各步所加入的各种单体的总浓度为 10-20% (重量)。 打开搅拌, 达到引发温度后 (引发温度通常为 30-80。C ), 加入多官 能锂引发剂, 开始制备丁二烯 /异戊二烯无规共聚物嵌段 IBR。 多官 能锂引发剂的用量才艮据共聚物数均分子量的大小而定。 多官能锂引 发剂可以是一种多官能锂引发剂, 也可以是几种多官能锂引发剂的 混合物。 在异戊二烯和丁二烯单体全部反应后, 再按共轭二烯单体 与单乙烯基芳烃单体无规共聚物嵌段的单体配比将任选含有第二批 极性添加剂的共轭二烯单体和单乙烯基芳烃单体一次加入到反应器 中, 开始制备 X嵌段。 加入极性添加剂的目的是改变共轭二烯单体 和单乙烯基芳烃单体的竟聚率, 实现共轭二烯单体和单乙烯基芳烃 单体的无规共聚, 得到无规共聚物嵌段 X。 第二批极性添加剂的用 量与笫一批极性添加剂的用量有关, 若笫一批极性添加剂的用量足 够多, 能使后加入的共轭二烯单体和单乙烯基芳烃单体进行无规共 聚, 则在加入共轭二烯单体和单乙烯基芳烃单体时可以不加第二批 极性添加剂; 反之, 则需补加极性添加剂, 以实现共轭二烯单体和 单乙烯基芳烃单体的无规共聚,且其用量视极性添加剂的种类而定。 第二批所加极性添加剂与第一批极性添加剂可相同或不同。 在共轭 二烯单体和单乙烯基芳烃单体全部反应后, 按照常规方式终止聚合 反应, 回收得到聚合物产品。
更具体地说, 本发明的星型嵌段共聚物 ( - Β-Β ) n-C的制备 方法如下:
在非极性烃类溶剂中按单体配比将异戊二烯单体和丁二烯单体加入 到反应器中, 视聚共轭二烯(异戊二烯和丁二烯) ^敫观结构要求确 定是否使用极性添加剂, 并且极性添加剂的种类和用量视聚共轭二 烯嵌段中 1, 2-聚丁二烯含量或 3, 4-聚异戊二烯含量的设计值而定。 各步所加入的各种单体的总浓度为 10-20% (重量)。 打开搅拌, 达 到引发温度后 (引发温度通常为 30-80°C ), 加入多官能锂引发剂, 开始制备聚共轭二烯嵌段 Ι-ΪΒ-Β。 多官能锂引发剂的用量根据共聚 物数均分子量的大小而定。 多官能锂引发剂可以是一种多官能锂引 发剂, 也可以是几种多官能锂引发剂的混合物。 在异戊二烯和丁二 烯全部反应后, 再按共轭二烯单体与单乙烯基芳烃单体无规共聚物 嵌段的单体配比将含有极性添加剂的共轭二烯单体和单乙烯基芳烃 单体一次加入到反应器中, 开始制备 X嵌段。 加入极性添加剂的目 的是改变共轭二烯单体和单乙烯基芳烃单体的竟聚率, 实现共轭二 烯单体和单乙烯基芳烃单体的无规共聚, 得到无规共聚物嵌段 X。 极性添加剂的用量以实现共轭二烯单体和单乙烯基芳烃单体进行无 规共聚为准, 视极性添加剂的种类而定。 在共轭二烯单体和单乙烯 基芳烃单体全部反应后, 按照常规方式终止聚合反应, 回收得到聚 合物产品。
本发明所使用的极性添加剂是选自含氧、 含氮、 含硫、 含磷类 极性化合物和鲩氧基金属化合物中的一种化合物或几种化合物的混 合物, 例如: ( 1 ) 含氧化合物, 一般选自 乙醚、 四氢呋喃、 ¾00¾€¾0¾ (其中 ¾和 是碳原子数为 1-6的烷基, ¾和 可以相同也可以不同, 优选 和¾不同, 如乙二醇二甲醚、 乙二 醇二乙醚)、 ¾OCH2C¾OCH2CH2OR2 (其中 ¾和 是^ 、子数 为 1-6的烷基, ¾和 可以相同也可以不同, 优选 和¾不同, 如二乙二醇二甲醚、 二乙二醇二丁醚)、 冠醚; (2 )含氮化合物, 一 般选自三乙胺、 四甲基乙二胺(TMEDA )、 二哌啶乙烷(DPE ), 优选 TMEDA; ( 3 )含磷化合物,一般选用六甲基磷酰三胺( HMPA ); ( 4 )烷氧基金属化合物, 一般选自式 ROM所示的化合物, 其中 R 是^^子数为 1-6的烷基, O为氧原子, M为金属离子钠 Na或钾 K, 优选叔丁氧基钾或叔戊氧基钾。
本发明所用的非极性烃类溶剂是选自非极性芳烃和非极性脂族 烃中的一种烃类溶剂或几种烃类溶剂的混合物, 一般选自苯、 甲苯、' 乙苯、 二甲苯、 戊烷、 己烷、 庚烷、 辛烷、 环己烷、 混合芳烃(如 混合二甲苯)、 混合脂族烃 (如抽余油), 优选己烷、 环己烷、 抽佘 油。
本发明所用的引发剂为已有技术所公开的任何多官能锂引发 剂,且可以是一种多官能锂引发剂或几种多官能锂引发剂的混合物, 如通式!?!^或 T ( RLi ) n所示的那些, 其中 R为碳原子数为 4-20 的烃基, 如脂族烃基或芳族烃基, T为金属原子, 一般为锡 Sn、 硅 Si、 铅 Pb、 钛 Ti、 锗 Ge等金属元素, II为引发剂官能度且其值大 于等于 3, 优选为 3-150, 更优选为 3-50, 最优选为 3-10。 多官能锂 引发剂 RLin可以是多螯型有机锂引发剂, 如 GB2124228A、 US3280084, EP0573893A2, CN1197806A等专利中提到的二乙烯基 苯(DVB )与烷基锂反应得到的各种多螯型有机锂引发剂。 多官能 鋰引发剂也可以是含上述金属类多官能锂引发剂 T ( RLi ) n, 其一 般选自含锡 Sii类多官能锂引发剂 ( RLi ) n,如专利 CN1148053A 中提到的含锡 Sn类多官能锂引发剂 Sn ( RLi ) 4。 多官能锂引发剂 还可以是其他能够用于引发丁二烯、 异戊二烯等共轭二烯单体和苯 乙烯类单体聚合的官能度不小于 3 的多官能锂引发剂, 如专利 USS262213 US5595951中提到的各种多官能锂引发剂。
引发剂的用量取决于星型嵌段共聚物的分子量。 优选地是, 在 本发明中多官能锂引发剂的用量使得星型嵌段共聚物的数均分子量 为 5 X 104至 50 x l04, 更优选 lO x lO4至 30 x l04
聚合反应的终止通常使用终止剂进行。 本发明所用的终止剂为 已有技术所公开的任何可用于阴离子聚合反应的终止剂 , 如水、 甲 醇、 乙醇或异丙醇等。
本发明的星型嵌段共聚物中可任选地加入常规添加剂和填料, 如抗氧剂等, 具体实例有 Irganox 1010 (商品名, 购自瑞士 Ciba-Geigy公司)和 Antigene BHT或 2.6.4 (商品名, 为 2, 6-二叔 丁基 -4-甲基苯酚, 购自日本住友化学株氏会社)。 实施本发明的最佳方式
下面结合实施例进一步说明本发明, 但并非限制本发明权利要 求所要求保护的范围。' 参考实施例
该参考实施例说明本发明以下各实施例所用多官能锂引发剂- 多螯型有机锂引发剂-的合成。
在高纯氮气保护下, 按配比将环己烷 160g、 1, 3-丁二烯 llg、 四氢呋喃(THF ) 80mmol> 二乙烯基苯 ( DVB ) lOOmmol加入到 500ml 干燥的盐水瓶中, 混合均匀后, 用注射器加入正丁基锂 lOOmmol, 在 70。C下反应 30分钟后, 生成深红色均相多螯型有机 锂引发剂溶液, 引发剂浓度采用传统方法测定。 实施例 1
在 S升带有搅拌的不锈钢反应釜中加入 3.5升环己烷、 140g丁 二烯,升温到 50°C,加入参考实施例中合成的多螯型有机锂引发剂, 其用量使得共聚物分子量为 IS X 104。当聚合反应进行到 30分钟时, 丁二烯聚合反应全部完成, 再加入含有极性添加剂 THF的 175g丁 二烯和 35g苯乙烯, THF/Li (摩尔比)为 35, 继续反应 60分钟。 当丁二烯和苯乙烯聚合反应全部完成后, 加入异丙醇作为终止剂结 束反应。 最后加入防老剂 ( irganox 1010与 Antigene BHT ( 2.6.4 ) 的 1: 1 (重量比)混合物) 3.Sg, 采用传统的方法进行胶液后处理, 干燥后采用经典方法测试样品的结构和性能, 结果如表 1所示。 实施例 2-7
聚合方法和工艺条件同实施例 1 , 只是丁二烯、 苯乙烯单体的 配比不同, 制备出(X- B ) n-C星型嵌段共聚物, 其中 X为丁二烯与 苯乙烯的无规共聚物嵌段 SBR。 聚合工艺奈件、 产品结构及物理性 能的测试结杲分别如表 1所示。
表 1 聚合工艺奈件及产品物理性能
实施例 1 2 3 4 5 6 7
S ( g ) 35 105 105 35 70 70 70
Bl ( g ) 140 105 70 105 70 140 105
B2 ( g ) 175 140 175 210 210 140 175
S/B2 17/83 42/58 37/63 14/86 25/75 33/67 28/72
SBR/B 60/40 70/30 80/20 70/30 80/20 60/40 70/30
1 , 2-B% 18.5 17.0 16.8 22.0 20.7 15.6 14.8
HI 1.36 1.45 1.48 1.35 1.41 1.32 1.41 注: S为苯乙烯用量, 为笫一批丁二烯用量(用于制备 B嵌段), Β2为笫二批丁 二烯用量(用于制备 SBR嵌段), S/B2为 SBR嵌段中苯乙烯和丁二烯单体配比(重 量比), SBR/B为 SBR嵌段与 Β嵌段的重量比, 1, 2-Β°/。为 1 , 2-聚丁二烯含量, HI为采用凝胶渗透色谱法(GPC )测得的分子量分布指数(重均分子量与数均分子 量之比, Mw/Mn )。 实施例 8 '
在 5升带有搅拌的不锈钢反应釜中加入 3.5升环己烷、 140g异 戊二烯, 升温到 50。C, 加入参考实施例中合成的多螯型有机锂引发 剂, 其用量使得共聚物分子量为 15 x l04。 当聚合反应进行到 30分 钟时,异戊二烯聚合反应全部完成,再加入含有极性添加剂 THF的 175g丁二烯和 35g苯乙烯, THF/Li (摩尔比)为 35, 继续反应 60 分钟。 当丁二烯和苯乙烯聚合反应全部完成后, 加入异丙醇作为终 止剂结束反应。 最后加入防老剂 (Irganox 1010与 Antigene BHT ( 2.6.4 ) 的 1: 1 (重量比)混合物) 3.5g, 采用传统的方法进行胶 液后处理, 干燥后采用经典方法测试样品的结构和性能, 结果如表 2所示。 实施例 9-14
聚合方法和工艺条件同实施例 8, 只是丁二烯、 异戊二烯和苯 乙烯单体的配比不同, 制备出 (X-I ) n-C星型嵌段共聚物, 其中 X 为 SBR嵌段。 聚合工艺条件、产品结构及物理性能的测试结果分别 如表 2所示。 表 2 聚合工艺条件及产品物理性能
Figure imgf000016_0001
注: S为苯乙烯用量, B为丁二烯用量, I为异戊二烯用量, S/B为 SBR嵌段中苯乙 烯和丁二烯单体配比(重量比), SBR/I为 SBR嵌段与 I嵌段的重量比, 1, 2-B%+3, 4-1%为 1, 2-聚丁二烯含量和 3, 4-聚异戊二烯含量之和, HI为采用凝胶渗透色谱法 ( GPC )测得的分子量分布指数(重均分子量与数均分子量之比, Mw/Mn )。 实施例 15
在 5升带有搅拌的不锈钢反应釜中加入 .3.5升环己烷、 70g丁二 烯, 升温到 50° , 加入参考实施例中合成的多螯型有机锂引发剂, 其用量使得共聚物分子量为 15 x 104。当聚合反应进行到 30分钟时, 丁二烯聚合反庶全部完成, 再加入 70g异戊二烯。 当聚合进行 30分 钟后异戊二烯聚合反应全部完成, 再加入含有极性添加剂 THF 的 175g丁二烯和 35g苯乙烯, THF/Li (摩尔比)为 35, 继续反应 60 分钟。 当丁二烯和苯乙烯聚合反应全部完成后, 加入异丙醇作为终 止剂结束反应。 最后加入防老剂 (Irganox 1010与 Antigene BHT ( 2.6.4 )的 1: 1 (重量比)混合物) 3.5g, 采用传统的方法进行胶 液后处理, 干燥后采用经典方法测试样品的结构和性能, 结果如表 3所示。 实施例 16-21
聚合方法和工艺条件同实施例 1S, 只是丁二烯、 异戊二烯、 苯 乙烯单体的配比不同, 丁二烯、 异戊二烯的加料顺序不同, 制备出
( -A1-A2 )„-C星型嵌段共聚物, 其中 X为 SBR嵌段, A1和 A2 互不相同且分别表示聚丁二烯嵌段和聚异戊二烯嵌段。 聚合工艺条 件、 产品结构及物理性能的测试结果分别如表 3所示。 表 3 聚合工艺条件及产品物理性能
Figure imgf000017_0001
注: S为苯乙烯用量, Al和 A2分别表示丁二烯(B )用量和异戊二烯(I )用量, B2为 SBR嵌段中丁二烯用量, S/B2为 SBR嵌段中苯乙烯和丁二烯单体配比(重量 比), SBR/ ( A1+A2 )为 SBR嵌段与聚共轭二烯嵌段的重量比, A1/A2为两种共轭 二烯聚合物嵌段的重量比, 1, 2-B%+3, 4-1%为 1, 2-聚丁二烯含量与 3, 4-聚异戊 二烯含量之和, HI为采用凝胶渗透色谱法(GPC )测得的分子量分布指数(重均分 子量与数均分子量之比, Mw/Mn )。 实施例 11
在 S升带有搅拌的不锈钢反应釜中加入 3.5升环己烷、 70g丁二 烯和 70g异戊二烯, 再加入极性添加剂 THF, THF/Li (摩尔比)为 35, 升温到 S0。C, 加入参考实施例中合成的多螯型有机鍍引发剂, 其用量使得共聚物分子量为 15 X 104。当聚合反应进行到 30分钟时, 丁二烯和异戊二烯聚合反应全部完成, 再加入 175g丁二烯和 35 g 苯乙烯,继续反应 60分钟。当丁二烯和苯乙烯聚合反应全部完成后, 加入异丙醇作为终止剂结束反应。 最后加入防老剂 (Irganox 1010 与 Antigene BHT ( 2.6.4 )的 1: 1 (重量比)混合物) 3.5g, 采用传 统的方法进行胶液后处理, 干燥后采用经典方法测试样品的结构和 性能, 结果如表 4所示。 实施例 23-28
聚合方法和工艺条件同实施例 22, 只是丁二烯、 异戊二烯、 苯 乙烯单体的配比不同, 制备出 (X-IBR ) n:C星型嵌段共聚物, 其中 X为 SBR嵌段。 聚合工艺条件、 产品结构及物理性能的测试结果分 别如表 4所示。
表 4 聚合工艺条件及产品物理性能
Figure imgf000019_0001
注: S为苯乙烯用量, Bl为 IBR嵌段中丁二烯用量, B2为 SBR嵌段中丁二烯用量, I为 IBR嵌段中异戊二烯用量, S/B2为 SBR嵌段中苯乙烯和丁二烯单体配比(重量 比), I B1为 IBR嵌段中异戊二烯与丁二烯单体的配比(重量比), SBR/IBR为 SBR 嵌段与 IBR嵌段的重量比, 1 , 2-B%+3, 4-1%为 1, 2-聚丁二烯含量与 3, 4-聚异戊 二烯含量之和, HI为采用凝胶渗透色谱法(GPC )测得的分子量分布指数(重均分, 子量与数均分子量之比, Mw/Mn )。 实施例 29
在 5升带有搅拌的不锈钢反应釜中加入 3.5升环己烷、 70g丁二 烯和 70g异戊二烯, 升温到 50°C, 加入参考实施例中合成的多螯型 有机裡引发剂,其用量使得共聚物分子量为 15 x l04。 当聚合反应进 行到 60分钟时, 丁二烯和异戊二烯聚合反应全部完成,再加入含有 极性添加剂 THF的 158g丁二烯和 52g苯乙烯, THF/Li (摩尔比) 为 35, 继续反应 45分钟。 当丁二烯和苯乙烯聚合反应全部完成后, 加入异丙醇作为终止剂结束反应。 最后加入防老剂 (Irganox 1010 与 Antigene BHT ( 2.6.4 )的 1: 1 (重量比)混合物) 3.5g, 采用传 统的方法进行胶液后处理, 干燥 采用经典方法测试样品的结构和 性能, 结果如表 S所示。 实施例 30-35
聚合方法和工艺条件同实施例 29, 只是丁二烯、 异戊二烯、 苯 乙烯单体的配比不同, 制备出 (X-I-IB-B ) n-C星型嵌段共聚物, 其 中 X为 SBR嵌段。聚合工艺奈件、产品结构及物理性能的测试结果 分别如表 5所示。 表 5 聚合工艺条件及产品物理性能
Figure imgf000020_0001
注: S为苯乙烯用量, I为异戊二烯用量, Bl为第一批丁二烯用量(用于制备 I+IB+B 嵌段), B2为笫二批丁二烯用量(用于制备 SBR嵌段), S/B2为 SBR嵌段中苯乙烯 和丁二烯单体配比(重量比), I/B1为 I+IB+B嵌段中异戊二烯与丁二烯单体的配比 (重量比), SBR/I+IB+B为 SBR嵌段与聚共轭二烯嵌段的重量比, 1, 2-B%-i-3 , 4-1% 为 1 , 2-聚丁二烯含量与 3, 4-聚异戊二烯含量之和, HI为采用凝胶渗透色谱法( GPC ) 测得的分子量分布指数(重均分子量与数均分子量之比, Mw/Mn )。

Claims

1. 一种具有如下结构的星型嵌段共聚物:
( X-Y ) n-c
其中 X为共轭二烯单体与单乙烯基芳烃单体的无规共聚物嵌段;
Y为聚共轭二烯嵌段;
C为多官能锂引发剂残基; 和
II为引发剂官能度且其值大于等于 3。
2. 根据权利要求 1 的星型嵌段共聚物, 其中所述星型嵌段共聚 物的数均分子量为 S X 104至 50 X 104且 X嵌段与 Y嵌段的重量比为 10/90至 90/10,
3. 根据权利要求 2 的星型嵌段共聚物, 其中所述星型嵌段共聚 物的数均分子量为 10 X 104至 30 X 104且 X嵌段与 Y嵌段的重量比 为 30/70至 70/30。
4. 根据权利要求 1的星型嵌段共聚物, 其中 X嵌段为丁二烯与 苯乙烯的无规共聚物嵌段且基于 X嵌段的总重量,嵌段 X中苯乙烯 含量为 10-50%重量, 丁二烯含量为 50-90%重量。
5. 根据权利要求 4的星型嵌段共聚物, 其中基于 X嵌段的总重 量, 嵌段 X中苯乙烯含量为 15-35%重量, 丁二烯含量为 65-85%重 量。
6. 根据权利要求 1的星型嵌段共聚物, 其中所述嵌段 Y选自共 轭二烯单体的均聚物嵌段、 共轭二烯单体梯形共聚物嵌段、 共轭二 烯单体无规共聚物嵌段及其组合, 且当嵌段 Y中含有两种不同的共 轭二烯单体单元时, 二者的重量比为 10/90至 90/10。
7. 根据权利要求 6的星型嵌段共聚物, 其中当嵌段 Y中含有两 种不同的共轭二烯单体单元时, 二者的重量比为 30/70至 70/30。
8. 根据权利要求 1的星型嵌段共聚物, 其中基于嵌段 X中衍生 于共轭二烯单体的单元的总熏量, 所述共轭二烯单体与单乙烯基芳 烃单体的无规共聚物嵌段 X中 1, 2-或 3,4-聚共轭二烯含量为 6-80% 重量。
9. 根据权利要求 8的星型嵌段共聚物, 其中基于嵌段 X中衍生 于共轭二烯单体的单元的总重量, 所述共轭二烯单体与单乙婦基芳 烃单体的无规共聚物嵌段 X 中 1 , 2-或 3 , 4-聚共轭二烯含量为 10-50%重量。
10. 根据权利要求 1的星型嵌 共聚物, 其中嵌段 Y选自 B、 I、 Β-L· I-B、 IBR和 MB-B, 其中 B为聚丁二烯嵌段, I为聚异戊二烯 嵌段、 IBR为丁二烯与异戊二烯的无规共聚物嵌段以及 IB为丁二烯 与异戊二烯的梯形共聚物嵌段。
11. 根据权利要求 10的星型嵌段共聚物, 其中当嵌段 Y为 B或 I时, 嵌段 Y中的 1, 2-聚丁二烯含量或 3, 4-聚异戊二烯含量基于 嵌段 Y中衍生于丁二烯或异戊二烯单体的单元的总重量为 6-80%重 量。
12. 根据权利要求 11的星型嵌段共聚物, 其中嵌段 Y中的 1, 2- 聚丁二烯含量或 3, 4-聚异戊二烯含量基于嵌段 Y中衍生于丁二烯 或异戊二烯单体的单元的总重量为 6-55%重量。
13. 根据权利要求 12的星型嵌段共聚物, 其中嵌段 Y中的 1, 2-聚丁二烯含量或 3, 4-聚异戊二烯含量基于嵌段 Y中衍生于丁二烯 或异戊二烯单体的单元的总重量为 6-20%重量。
14. 根据权利要求 10的星型嵌段共聚物, 其中当嵌段 Y为 I-B、 B-I、 IBR或 I-IB-B时, 嵌段 Y中的 1, 2-聚丁二烯含量和 3, 4-聚 异戊二烯含量分别基于嵌段 Υ中衍生于丁二烯的单元的总重量和衍 生于异戊二烯单体的单元的总重量为 6-80%重量。
15. 根据权利要求 14的星型嵌段共聚物, 其中嵌段 Υ中的 1, 2-聚丁二烯含量和 3, 4-聚异戊二烯含量分别基于嵌段 Υ中衍生于丁 二烯的单元的总重量和衍生于 戊二烯单体的单元的总重量为
6-55%重量。
16. 根据权利要求 15的星型嵌段共聚物, 其中嵌段 Y中的 1, 2-聚丁二烯含量和 3, 4-聚异戊二烯含量分别基于嵌段 Y中衍生于丁 二烯的单元的总重量和衍生于异戊二烯单体的单元的总重量为 6-20%重量。
17. 一种制备根据权利要求 1的星型嵌段共聚物的方法, 包括: a )在多官能锂引发剂和任选的极性添加剂存在下,使一种或多 种共轭二烯单体在非极性烃类溶剂中进行阴离子聚合, 直至所述共 轭二烯单体聚合完全, 以形成权利要求 1所迷的嵌段 Y; 和然后 b )向上述步驟 a ) 中得到的反应混合物中加入共轭二烯单体与 单乙烯基芳烃单体的混合物, 使其在极性添加剂存在下继续阴离子 聚合, 直至聚合完全, 以形成权利要求 1所述的嵌段 X。
18. 才艮据权利要求 17的方法, 其中所述步骤 a ) 包括
( 1 ) 在不存在极性添加剂的情况下聚合丁二烯,得到嵌段 B; 或
( 2 ) 在不存在极性添加剂的情况下聚合异戊二烯, 得到嵌段 I; 或
( 3 ) 在不存在极性添加剂的情况下依次聚合丁二烯和异戊二 烯, 得到嵌段 I-B; 或
( 4 ) 在不存在极性添加剂的情况下依次聚合异戊二烯和丁二 烯, 得到嵌段 B-I; 或
( 5 ) 在不存在极性添加剂的情况下聚合丁二烯和异戊二烯的 混合物, 得到嵌段 I-IB-B时; 或
( 6 ) 在极性添加剂的存在下聚合丁二烯和异戊二浠的混合 物, 得到嵌段 IBR;
其中 B为聚丁二烯嵌段, I为聚异戊二烯嵌段、 IBR为丁二烯与异 戊二烯的无规共聚物嵌段以及 IB 为丁二烯与异戊二烯的梯形共聚 物嵌段。
19. 根据权利要求 17或 18的方法, 其中多官能锂引发剂选自通 式 1^和 T (RLi)„所示的那些及其混合物, 其中 R为碳原子数 为 4-20的烃基, T为选自锡 Sn、 -硅 Si、 铅 Pb、 钛 Ti、 锗 Ge的金 属元素, n为引发剂的官能度且其值大于等于 3。
20. 根据权利要求 19的方法, 其中多官能锂引发剂 RLin为二乙 烯基苯与烷基锂反应得到的多螯型有机锂引发剂。
21. 根据权利要求 19的方法, 其中多官能锂引发剂 T (RLi) n 选自含 Sn类多官能锂引发剂 Sn (RLi) n
22. 根据权利要求 21的方法,其中含锡 Sn类多官能锂引发剂 Sn (RLi) Sn (RLi) 4
23. 根 权利要求 17 的方法, 其中非极性烃类溶剂选自苯、 甲 苯、 乙苯、 二甲苯、 戊烷、 己烷、 庚烷、 辛烷、 环己烷、 混二甲苯 和抽余油。
24. 根据权利要求 23 的方法, 其中非极性烃类溶剂选自己烷、 环己烷和抽佘油。
25. 根据权利要求 17的方法, 其中极性添加剂选自含氧、 含氮、 含硫、含磷类极性化合物和烷氧基金属化合物中的一种或其混合物 o
26. 根据权利要求 25 的方法, 其中含氧极性添加剂选自乙醚、 四氢呋喃、 RiOCH2CH2OR2, 0 ¾0!200¾( 112012及其混合 物, 其中 和 相同或不同且是碳原子数为 1-6的烷基。
27. 根据权利要求 26 的方法, 其中含氧极性添加剂选自乙二醇 二甲醚、 乙二醇二乙醚、 二乙二醇二甲醚、 二乙二醇二丁醚、 冠醚 及其混合物。
28. 根据权利要求 25的方法, 其中含氮极性添加剂选自三乙胺、 四甲基乙二胺(TMEDA)、 二哌啶乙烷(DPE)及其混合物。
29. 根据权利要求 28 的方法, 其中含氮极性添加剂为四甲基乙 二胺(TMEDA )。
30. 根据权利要求 25 的方法, 其中含碑极性添加剂为六甲基磚 酰三胺 ( HMPA )。
31. 根据权利要求 25的方法,其申烷氧基金属化合物为式 所示的化合物, 其中 R是^^子数为 1-6的烷基, O为 H ^子, Μ 为金属离子钠 Na或钾 Κ。
32. 根据权利要求 31 的 法, 其中烷 金属化合物为叔丁氧 基钾或叔戊
33. 根据权利要求 17 的方法, 其中所加入的各种单体的总浓度 为 10-20%重量。
34. 根据权利要求 17的方法, 其中引 温度为 30-80°C。
PCT/CN2001/001489 2000-10-19 2001-10-19 Copolymere sequence en etoile et son procede de preparation WO2002059174A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002559472A JP4213468B2 (ja) 2000-10-19 2001-10-19 星形−ブロックインターポリマー及びそれらの製造
EP01273428A EP1333042B1 (en) 2000-10-19 2001-10-19 Star block copolymer and preparing method thereof
KR1020037005519A KR100806402B1 (ko) 2000-10-19 2001-10-19 스타 블록 공중합체 및 그 제조 방법

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN 00130185 CN1118498C (zh) 2000-10-19 2000-10-19 异戊二烯、丁二烯、苯乙烯星型嵌段共聚物及其制备方法
CN00130185.3 2000-10-19
CNB001301829A CN1133672C (zh) 2000-10-19 2000-10-19 丁二烯、异戊二烯、苯乙烯星型嵌段共聚物及其制备方法
CN00130181.0 2000-10-19
CN00130182.9 2000-10-19
CN00130184.5 2000-10-19
CNB001301845A CN1133674C (zh) 2000-10-19 2000-10-19 苯乙烯、共轭二烯烃星型嵌段共聚物及其制备方法
CN 00130181 CN1118497C (zh) 2000-10-19 2000-10-19 丁二烯、苯乙烯星型嵌段共聚物及其制备方法
CNB001301837A CN1133673C (zh) 2000-10-19 2000-10-19 共轭二烯烃、苯乙烯星型嵌段共聚物及其制备方法
CN00130183.7 2000-10-19

Publications (1)

Publication Number Publication Date
WO2002059174A1 true WO2002059174A1 (fr) 2002-08-01

Family

ID=27509620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/001489 WO2002059174A1 (fr) 2000-10-19 2001-10-19 Copolymere sequence en etoile et son procede de preparation

Country Status (5)

Country Link
US (1) US6462137B2 (zh)
EP (1) EP1333042B1 (zh)
JP (1) JP4213468B2 (zh)
KR (1) KR100806402B1 (zh)
WO (1) WO2002059174A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974139A (zh) * 2010-10-21 2011-02-16 大连理工大学 星形高抗冲丁二烯/异戊二烯/苯乙烯三元共聚物树脂及其制备方法
CN113527604A (zh) * 2020-04-22 2021-10-22 中国石油化工股份有限公司 一种沥青改性剂及其制备方法与应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60235315D1 (de) * 2001-08-13 2010-03-25 Japan Elastomer Co Ltd Blockcopolymerzusammensetzungen
US7307124B2 (en) * 2004-02-19 2007-12-11 Kraton Polymers U.S. Llc Hot-melt adhesive composition for non-wovens
CN102295733B (zh) * 2010-06-25 2014-01-22 中国石油化工股份有限公司 一种具有星型嵌段结构的三元共聚橡胶、制备方法及其应用
EP3536723B1 (en) 2016-11-01 2023-01-25 NIPPON STEEL Chemical & Material Co., Ltd. Copolymer rubber and method for producing same, and crosslinked rubber composition
CN112771089B (zh) 2018-09-28 2022-11-01 日铁化学材料株式会社 多官能乙烯基芳香族共聚物及其制法、共轭二烯系共聚物及其组合物、交联物、轮胎构件
WO2020262371A1 (ja) 2019-06-25 2020-12-30 日鉄ケミカル&マテリアル株式会社 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、その組成物、ゴム架橋物及びタイヤ部材
CN113831476B (zh) * 2020-06-24 2023-07-25 中国石油天然气股份有限公司 一种低饱和度丁基橡胶的制备方法
CN114163586B (zh) * 2020-09-11 2023-07-25 中国石油天然气股份有限公司 四臂梳状星型支化丁基橡胶的制备方法
CN113801277A (zh) * 2021-09-10 2021-12-17 大连理工大学 一类星形嵌段共聚物(SBR-BR)n-C的超高抗冲击强度HIPS树脂及其制备方法
CN113912798B (zh) * 2021-11-15 2023-03-24 大连理工大学 一类基于dpe衍生物、丁二烯、异戊二烯、苯乙烯单体的星形嵌段共聚物及制备方法
CN113999355B (zh) * 2021-11-15 2023-04-28 大连理工大学 一类含dpe衍生物、丁二烯、苯乙烯星形共聚物嵌段的hips树脂及制备方法
CN113980215B (zh) * 2021-11-15 2023-04-28 大连理工大学 含dpe衍生物、丁二烯、异戊二烯、苯乙烯星形共聚物嵌段的hips树脂及制备方法
CN113912797A (zh) * 2021-11-15 2022-01-11 大连理工大学 一类dpe衍生物、丁二烯、苯乙烯星形嵌段共聚物及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248982A (en) * 1979-04-30 1981-02-03 Arco Polymers, Inc. Clear impact resistant thermoplastic star-block copolymers
US4346198A (en) * 1980-07-14 1982-08-24 Atlantic Richfield Company Clear impact resistant thermoplastic star-block copolymers
US4925899A (en) * 1986-07-17 1990-05-15 Montedipe S.P.A. Bimodal star-block copolymers, showing excellent optical properties and resilience, and process for their manufacture
CN1189170A (zh) * 1996-04-19 1998-07-29 巴斯福股份公司 热塑性模塑材料
CN1219545A (zh) * 1997-12-09 1999-06-16 北京燕山石油化工公司研究院 共轭二烯和单乙烯基芳烃二嵌段共聚物及其合成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE638995A (zh) 1962-07-16
US3985830B1 (en) * 1974-07-15 1998-03-03 Univ Akron Star polymers and process for the preparation thereof
DE3309748A1 (de) 1982-07-23 1984-03-01 Veb Chemische Werke Buna, Ddr 4212 Schkopau Verfahren zur herstellung mehrfunktioneller polymerisationsinitiatoren
US5399627A (en) * 1989-08-11 1995-03-21 The Dow Chemical Company Radial styrene-isoprene-butadiene multi-armed block copolymers and compositions and articles containing block copolymers
US5663239A (en) * 1990-01-16 1997-09-02 Mobil Oil Corporation Star-branched block elastomeric copolymers
US5194500A (en) * 1992-02-28 1993-03-16 Shell Oil Company Styrene-isoprene three-armed high load bearing capacity block copolymer composition for adhesives
JP2611717B2 (ja) 1992-06-10 1997-05-21 住友化学工業株式会社 ブタジエン系共重合体
US5262213A (en) 1992-09-14 1993-11-16 The Goodyear Tire & Rubber Company Styrene-butadiene rubber for truck tires
FR2714384B1 (fr) * 1993-12-29 1996-02-02 Atochem Elf Sa Copolymère bloc étoile d'un monomère vinylaromatique et d'un diène conjugué, son procédé d'obtention, et les compositions comprenant ledit copolymère et du polystyrène cristal.
US5595951A (en) 1995-03-16 1997-01-21 The Goodyear Tire & Rubber Company Process for preparing a multilithio initiator for improved tire rubbers
US5798418A (en) * 1995-07-31 1998-08-25 Fmc Corporation Star polymers from mixed initiators
CN1048989C (zh) * 1995-10-17 2000-02-02 中国石油化工总公司 多官能团有机碱金属引发剂及其合成方法
JP4130983B2 (ja) * 1996-10-30 2008-08-13 日本ゼオン株式会社 芳香族ビニル−イソプレンブロック共重合体混合物、その製法、およびそれを含む粘接着剤組成物
CN1069906C (zh) 1997-04-29 2001-08-22 北京燕山石油化工公司研究院 多螯型有机锂引发剂、用其合成宽分子量分布高门尼粘度聚合物的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248982A (en) * 1979-04-30 1981-02-03 Arco Polymers, Inc. Clear impact resistant thermoplastic star-block copolymers
US4346198A (en) * 1980-07-14 1982-08-24 Atlantic Richfield Company Clear impact resistant thermoplastic star-block copolymers
US4925899A (en) * 1986-07-17 1990-05-15 Montedipe S.P.A. Bimodal star-block copolymers, showing excellent optical properties and resilience, and process for their manufacture
CN1189170A (zh) * 1996-04-19 1998-07-29 巴斯福股份公司 热塑性模塑材料
CN1219545A (zh) * 1997-12-09 1999-06-16 北京燕山石油化工公司研究院 共轭二烯和单乙烯基芳烃二嵌段共聚物及其合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1333042A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974139A (zh) * 2010-10-21 2011-02-16 大连理工大学 星形高抗冲丁二烯/异戊二烯/苯乙烯三元共聚物树脂及其制备方法
CN113527604A (zh) * 2020-04-22 2021-10-22 中国石油化工股份有限公司 一种沥青改性剂及其制备方法与应用

Also Published As

Publication number Publication date
KR20030067679A (ko) 2003-08-14
EP1333042A1 (en) 2003-08-06
JP2004517202A (ja) 2004-06-10
US6462137B2 (en) 2002-10-08
KR100806402B1 (ko) 2008-02-21
EP1333042B1 (en) 2008-08-27
JP4213468B2 (ja) 2009-01-21
EP1333042A4 (en) 2004-04-07
US20020120069A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
US6521712B1 (en) Glass-clear impact-modified polystyrene based on styrene-butadiene block copolymers
WO2002059174A1 (fr) Copolymere sequence en etoile et son procede de preparation
CN88101272A (zh) 聚合方法
TWI405781B (zh) 偶合共聚物及其製造方法
US20060142500A1 (en) Multi-branched styrene-conjugated diene block copolymer and its preparation method
US3784637A (en) Multifunctional polymerization initiators from vinylsilanes or vinylphosphines and organomonolithium compounds
US3624057A (en) Polymerization with multifunctional iniators prepared from vinylsilanes or vinylphosphines and organomonolithium compounds
CN110591025A (zh) 一类双锂引发双端官能化三嵌段苯乙烯-二烯烃-苯乙烯聚合物及其制备方法
WO1997014722A1 (fr) Initiateur organique multifonctionnel a metal alcalin, sa synthese, des polymeres anioniques en etoile obtenus par polymerisation anionique et leur preparation
JP2004508434A5 (zh)
US6777499B2 (en) Multiblock interpolymers and processes for the preparation thereof
CN112759730B (zh) 一类胺基多功能化sebs热塑性弹性体及其制备方法
JPH07188360A (ja) 不斉ラジアルポリマーの製造方法
US7166679B2 (en) Conjugated diene polymers and copolymer blocks having high vinyl content prepared using mixed microstructure control agents and process for preparing same
EP1266916B1 (en) Multiblock copolymer and the preparing method thereof
JPH01249894A (ja) 分散剤特性を有する粘度指数改善剤を含有する潤滑剤組成物
CN1108321C (zh) 异戊二烯-丁二烯-异戊二烯三嵌段共聚物及其制备方法
CN113912798B (zh) 一类基于dpe衍生物、丁二烯、异戊二烯、苯乙烯单体的星形嵌段共聚物及制备方法
CN1137174C (zh) 用多螯型引发剂制备共轭二烯烃和单乙烯基芳轻二嵌段溶聚橡胶
CN113999355B (zh) 一类含dpe衍生物、丁二烯、苯乙烯星形共聚物嵌段的hips树脂及制备方法
CN113980215B (zh) 含dpe衍生物、丁二烯、异戊二烯、苯乙烯星形共聚物嵌段的hips树脂及制备方法
CN1133673C (zh) 共轭二烯烃、苯乙烯星型嵌段共聚物及其制备方法
KR970005479B1 (ko) 고무상 중합체의 제조방법
CN1133674C (zh) 苯乙烯、共轭二烯烃星型嵌段共聚物及其制备方法
CN113912797A (zh) 一类dpe衍生物、丁二烯、苯乙烯星形嵌段共聚物及制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001273428

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037005519

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002559472

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001273428

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037005519

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001273428

Country of ref document: EP