WO2002058125A1 - Dispositif et procede de traitement au plasma - Google Patents

Dispositif et procede de traitement au plasma Download PDF

Info

Publication number
WO2002058125A1
WO2002058125A1 PCT/JP2002/000428 JP0200428W WO02058125A1 WO 2002058125 A1 WO2002058125 A1 WO 2002058125A1 JP 0200428 W JP0200428 W JP 0200428W WO 02058125 A1 WO02058125 A1 WO 02058125A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
gas
plasma processing
diameter
plasma
Prior art date
Application number
PCT/JP2002/000428
Other languages
English (en)
French (fr)
Inventor
Koichi Takatsuki
Hikaru Yoshitaka
Shigeo Ashigaki
Yoichi Inoue
Takashi Akahori
Shuuichi Ishizuka
Syoichi Abe
Takashi Suzuki
Kohei Kawamura
Hidenori Miyoshi
Gishi Chung
Yasuhiro Oshima
Hiroyuki Tkahashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020037009600A priority Critical patent/KR100564168B1/ko
Priority to US10/466,873 priority patent/US20040127033A1/en
Priority to JP2002558317A priority patent/JP3946640B2/ja
Publication of WO2002058125A1 publication Critical patent/WO2002058125A1/ja
Priority to US11/656,379 priority patent/US8394231B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method.
  • the present invention relates to a plasma processing apparatus and a plasma processing method that perform processing such as film formation processing and etching processing using plasma.
  • a plasma processing apparatus that processes the surface of a substrate such as a semiconductor wafer using plasma is used.
  • the plasma processing apparatus include a plasma etching apparatus for performing etching on a substrate and a plasma CVD apparatus for performing chemical vapor deposition (CVD).
  • parallel plate type plasma processing apparatuses are widely used because of their excellent processing uniformity and relatively simple apparatus configuration.
  • Fig. 17 shows the structure of a parallel plate type plasma processing apparatus.
  • the plasma processing apparatus 101 includes a champer 102, a processing gas for supplying a processing gas into the champer 102, a shower electrode 103 constituting an upper electrode, and a semiconductor wafer or the like. And a susceptor 104 on which the object to be processed W is placed and which constitutes a lower electrode.
  • the shower electrode 103 has an electrode plate 106 having a large number of gas holes 105, and an electrode having a hollow portion 107 supporting the electrode plate 106 and guiding the processing gas to the gas hole 105. And a support 108.
  • the electrode plate 106 is supported at its periphery by a screw or the like on an electrode support 108, and the supporting portion is covered by a shield ring 109 made of an insulating material.
  • the shield ring 109 has an opening having a smaller diameter than the electrode plate 106, and the electrode plate 106 is exposed in the opening. The shield ring 109 reduces the occurrence of abnormal discharge at the support portion.
  • the plasma processing apparatus 101 supplies a processing gas (solid arrow in the drawing) to the workpiece W from the gas holes 105 of the electrode plate 106 and supplies RF power to the electrode plate 106.
  • Electric An RF electric field (dashed arrow in the figure) is formed between the exposed surface of the electrode plate 106 and the susceptor 104.
  • a plasma of the processing gas is generated on the processing target W, and a predetermined processing is performed on the surface of the processing target W.
  • the plasma processing apparatus 101 having the above configuration has the following problems (1) and (2).
  • the shield ring 109 for protecting the periphery of the electrode plate 106 is made of a plate-like member having a thickness of, for example, about 10 mm in order to secure insulation.
  • the electrode plate 106 is overlaid on the shield ring 109 so as to be exposed in the opening of the shield ring 109. At this time, a step ⁇ is generated between the periphery of the exposed surface (lower surface) of the electrode plate 106 and the surface near the opening of the shield ring 109.
  • Such a step ⁇ makes the processing characteristics of the entire surface of the workpiece W different, and lowers the uniformity of the processing. That is, the gas supplied from the gas hole 105 in the opening stays at the step ⁇ ⁇ and the gas flow is disturbed. Thereby, for example, the gas supply at the central portion and the end portion of the target object W becomes non-uniform, and the uniformity of the process decreases.
  • the diameter of the exposed surface of the electrode plate 106 that comes into contact with the plasma (hereinafter, referred to as the upper electrode diameter) is formed to be substantially equal to the diameter of the surface of the object W to be treated. Chi words, the upper electrode diameter, are formed between the electrode plate 1 0 6 and the object W, and optimize the flow and field of gas, determined as uniform 1 raw high processing is performed It is not. For this reason, there is a possibility that a sufficiently uniform treatment is not performed.
  • the gas blowing diameter and the upper electrode diameter are substantially equal to the shield ring 10. Determined by the diameter of the nine openings. For this reason, it is difficult to improve the processing uniformity by independently changing and optimizing the gas blowing diameter and the upper electrode diameter.
  • the upper electrode diameter and the gas blowing diameter were optimized, and the uniformity of the processing was not sufficiently improved.
  • the plasma processing apparatus 101 uses a halogen-based gas such as a fluorine-based gas. Dry cleaning is performed. Specifically, a plasma of a hagogen-based gas is generated inside or outside the champa 102, and the haggen-active species in the gas plasma is generated.
  • a halogen-based gas such as a fluorine-based gas. Dry cleaning is performed. Specifically, a plasma of a hagogen-based gas is generated inside or outside the champa 102, and the haggen-active species in the gas plasma is generated.
  • fluorine radicals remove the film adhered and deposited in the champer 102.
  • fluorine has high reactivity with silicon and is suitable for cleaning of a processing apparatus for processing a silicon-based film.
  • the electrode plate 106 is made of silicon in order to avoid metal contamination.
  • Such an electrode plate 106 made of silicon is easily etched by the above cleaning.
  • the activity of the radical species is high, so that the electrode plate 106 is inferior. (Etching) becomes remarkable.
  • Deterioration of the electrode plate 106 means that the shape of the electrode plate 106 changes, and changes the RF electric field. Due to the change in the electric field, for example, the processing characteristics at the center and the end of the object to be processed W change, and the uniform production of the processing decreases.
  • an object of the present invention is to provide a plasma processing apparatus and a plasma processing method capable of performing a highly uniform processing on an object to be processed.
  • a plasma processing apparatus (1) according to a first aspect of the present invention comprises:
  • An electrode plate (20) having a gas hole (19) for supplying a processing gas in the chamber (2), and having a projection (20a);
  • the projection (20a) of the electrode plate (20) is substantially fitted to the main surface of the shield ring (26) in a state fitted to the opening (26a). Form a flat surface.
  • a plasma processing apparatus (1) according to a second aspect of the present invention comprises:
  • the apparatus having the above configuration, further comprising: an opening having a diameter substantially equal to a diameter of the facing surface.
  • (26a) may be formed, and a shield ring (26) covering a peripheral portion of the second electrode plate (20) is provided so that the facing surface is exposed inside the opening (26a).
  • the second electrode plate (20) may include a convex portion (20a) having the opposing surface as a main surface and fitting with the opening (26a).
  • a plasma processing apparatus (1) according to a third aspect of the present invention comprises:
  • An electrode plate (20) connected to a high-frequency power supply (24) and having a first gas hole (19) for supplying a processing gas into the champer (2);
  • the second gas hole (26b) may be annularly arranged around the opening (26a), and the maximum gas at which the second gas hole (26b) is arranged may be arranged.
  • the diameter is, for example, about 1.1 times the diameter of the opening (26a).
  • the electrode plate (20) has the exposed surface as a main surface, A convex portion (20a) fitted to the opening (26a) may be provided, and a main surface of the convex portion (20a) forms a substantially flat surface with the shield ring (26). You may do so.
  • An electrode plate (20) having a gas hole (19) for supplying a processing gas in the champer (2), and comprising a material resistant to halogen radicals;
  • the electrode plate (20) is configured to include, for example, a material that is more resistant to halogen radicals than silicon.
  • the cleaning gas is made of, for example, a substance containing fluorine
  • the halogen radical is made of, for example, a fluorine radical
  • the material having resistance to the halogen radical may be selected from the group consisting of silicon carbide, carbon, aluminum, alumite, alumina, and quartz alumina sprayed.
  • the apparatus having the above configuration is provided so as to face the electrode plate (20), and a mounting table (10) on which the object to be processed is mounted;
  • a ring-shaped member (17) that is provided so as to surround the outer periphery of the object placed on the placement table (10) and that is made of a material resistant to the halogen radical. Good.
  • the cleaning gas is turned into plasma in the chamber (2) to generate the halogen radical.
  • the apparatus having the above configuration may further include an activator (33) provided outside the chamber (2) and connected to the tall gas supply port.
  • the activator (33) activates the cleaning gas and activates the halogen gas. And the generated halogen radicals may be supplied into the chamber (2) 2.
  • the cleaning gas includes a substance containing oxygen.
  • a plasma processing method includes: a plasma processing method; A first electrode plate (10) on which the processing object is mounted, and a second electrode plate (20) connected to the high-frequency power supply (24) and having an opposing surface facing in parallel with the front surface.
  • a plasma method comprises: a champer (2) for performing a predetermined process on an object to be processed by generating plasma therein;
  • An electrode plate (20) connected to a high-frequency power supply (24), and a first gas hole (19) for supplying a processing gas into the chamber; It has two gas holes (26b), has an opening (26a), and covers the periphery of the electrode plate (20) such that the electrode plate (20) is exposed inside the opening (26a).
  • FIG. 1 shows a configuration of a plasma processing apparatus according to the first embodiment.
  • FIG. 2 shows the configuration of the upper electrode shown in FIG.
  • Fig. 3A shows the result of examining the pressure above the wafer when using a convex electrode plate
  • Fig. 3B shows the pressure above the wafer when using a flat electrode plate. The results are shown.
  • Figure 4 shows the relationship between the electrode gap and pressure when using convex and flat electrode plates.
  • Fig. 5 shows the relationship between the step between the electrode plate and the shield ring and the uniformity of the deposition rate.
  • Figure 6 shows the relationship between the step between the electrode plate and the shield ring and the aspect ratio of the groove that can be embedded.
  • FIG. 7 is an enlarged view of the upper electrode and the susceptor according to the second embodiment.
  • FIG. 8 shows the relationship between the upper and lower electrode diameter ratio (D 2 / D 1) and the uniformity of the deposition rate.
  • FIG. 9 shows the film thickness distribution on the wafer surface in A, B, and C of FIG.
  • FIG. 10 is an enlarged view of the upper electrode and the susceptor according to the third embodiment.
  • FIG. 11 shows the relationship between the gas blowing diameter (D 3) and the deposition rate.
  • FIG. 12 shows a configuration of a plasma processing apparatus according to the fourth embodiment.
  • FIG. 13 shows the results of examining the etching rates of electrode plates made of various materials.
  • FIG. 14 shows the results of examining the film formation rate when a continuous film formation process was performed using electrode plates made of various materials.
  • FIG. 15 shows the results when cleaning was performed using a cleaning gas to which oxygen was added.
  • Figure 16 shows the results when cleaning was performed using oxygen-added cleaning gas.
  • FIG. 17 shows the configuration of a conventional plasma processing apparatus.
  • wafer W a semiconductor wafer (hereinafter, wafer W) is provided with C VD
  • a parallel plate type plasma processing apparatus for forming a silicon fluorinated oxide (SiO F) film by (Chemical Vapor Deposition) will be described as an example.
  • FIG. 1 shows a configuration of a plasma processing apparatus 1 according to the first embodiment.
  • the surface is anodized (anodized).
  • a cylindrical champer 2 made of aluminum. Champer 2 is grounded and has a common potential.
  • a gas supply pipe 3 is provided above the chamber 2.
  • the gas supply pipe 3 is connected to the S i F 4, S i E , 0 2,
  • a r such as a gas supply source 4 for supplying a process gas is mixed.
  • the processing gas is supplied from the gas supply pipe 3 into the champer 2 at a predetermined flow rate adjusted by a mass flow controller (not shown).
  • An exhaust port 5 is provided on the side of the bottom of the chamber 2.
  • the exhaust port 5 is connected to an exhaust device 6 composed of a terpomolecular pump or the like.
  • the exhaust device 6 exhausts the inside of the chamber 2 to a predetermined reduced-pressure atmosphere, for example, a predetermined pressure of 1 Pa or less.
  • Gate pulp 7 is provided on the side wall of the chamber 2. With the gate pulp 7 opened, the loading and unloading of the W "W between the champer 2 and the adjacent load lock chamber (not shown) is performed.
  • a substantially cylindrical susceptor support 8 stands from the center of the bottom of the chamber 2.
  • a susceptor 10 is provided on the susceptor support 8 via an insulator 9 such as a ceramic.
  • the susceptor support 8 is connected to an elevating mechanism (not shown) provided below the champ 2 via a shaft 11 so that the susceptor support 8 can move up and down.
  • An unillustrated electrostatic chuck having substantially the same diameter as the wafer W is provided on the susceptor 10.
  • the wafer W placed on the susceptor 10 is fixed by a cooler by an electrostatic chuck.
  • the susceptor 10 is made of a conductor such as aluminum and constitutes a lower electrode of the parallel plate electrode.
  • a first RF power supply 12 is connected to the susceptor 10 via a first matching unit 13.
  • the first RF power supply 12 has a frequency in the range of 0.1 to 13 MHz.
  • a refrigerant chamber 14 is provided inside the susceptor support 8.
  • a refrigerant circulates in the refrigerant chamber 14.
  • the refrigerant supplied from the refrigerant supply pipe 15 passes through the refrigerant chamber 14 and is discharged from the refrigerant discharge pipe 16.
  • Lift pin for transfer (not shown) Force It is provided so as to be able to move up and down through the susceptor 10 and the electrostatic chuck.
  • a focus ring 17 made of an insulator such as ceramic is provided on a peripheral portion of the surface of the susceptor 10.
  • the focus ring 17 has an opening at the center, and the opening has a slightly larger diameter than the wafer W.
  • the wafer W is placed on the surface of the susceptor 10 exposed inside the opening of the focus ring 17.
  • the focus ring 17 effectively makes the plasma active species incident on the wafer W.
  • an upper electrode 18 of a parallel plate electrode is provided on the ceiling of the chamber 2.
  • the upper electrode 18 has a so-called shower head structure and has an electrode plate 20 having a number of gas holes 19 and an electrode support for forming a hollow diffusion portion 21 between the electrode plate 20 and the electrode plate 20. It consists of body 2 2 and
  • the electrode support 22 is connected to the gas supply pipe 3.
  • the gas supplied from the gas supply pipe 3 is diffused in the diffusion section 21 and is ejected from a number of gas holes 19.
  • the electrode plate 20 is provided so as to face the susceptor 10 and is formed to have a slightly larger diameter than the wafer W. Thus, the processing gas is supplied to the entire surface of the wafer W.
  • the electrode plate 20 is made of a conductive material such as aluminum and is formed in a disk shape. Electrode plate 20 is connected to second RF power supply 24 via second matching box 23. By applying RF power to the electrode plate 20, plasma of the gas supplied from the gas holes 19 is generated.
  • FIG. 2 shows an enlarged view of the vicinity of the electrode plate 20.
  • the electrode plate 20 is formed such that its peripheral portion has a small thickness and forms a columnar convex portion 20a.
  • the electrode plate 20 has a thread groove or the like formed on the peripheral edge thereof, and is fixed to the electrode support 22 by screws 25 at the peripheral edge.
  • the screwed portion on the periphery of the electrode plate 20 is covered with a shield ring 26 made of a ceramic such as aluminum nitride.
  • the shield ring 26 has a main surface on which an opening 26 a is formed, and is fixed to a side portion of the ceiling of the champer 2 so that the main surface is substantially parallel to the ceiling surface of the champer 2. .
  • the opening 26 a of the shield ring 26 is formed with a smaller diameter than the electrode plate 20, and the electrode plate 20 is provided in the opening 26 a. Is provided so as to be exposed.
  • At least the main surface of the shield ring 26 is formed in a plate shape having a thickness of about 1 Omm. Since the screwed portion is covered by the shield ring 26, abnormal discharge at the screwed portion during plasma generation is prevented.
  • the diameter of the opening 26 a of the shield ring 26 is formed to be substantially the same as the diameter of the projection 20 a of the electrode plate 20, and the shield plate 26 has an electrode plate in its opening 26 a. It is installed so that the 20 protrusions 20 a fit downward.
  • the diameter of the convex portion 20a of the electrode plate 20 is set to be substantially the same as the diameter of the opening of the shield ring 26, and the convex portion 20a is substantially in the opening 26a of the sinor red ring 26. It is configured to fit without gap. Further, the gas hole 19 is formed so as to penetrate the convex portion 20 a, and the shield ring 26 does not hinder the ejection of the processing gas.
  • the projections 20a of the electrode plate 20 and the shield ring 26 form substantially the same surface when fitted together. That is, the height of the ⁇ portion 20 a of the electrode plate 20 is set to be substantially the same value (for example, about 10 mm) as the thickness near the opening 26 a of the shield ring 26. .
  • the electrode plate 20 and the shield ring 26 form a flat surface with respect to the plasma generation region.
  • no step is formed between the exposed surface of the electrode plate 20 and the main surface of the shield ring 26.
  • the flow of the processing gas ejected from the gas holes 19 is not disturbed at such a step, and the flow of the processing gas ejected from the entire gas holes 19 is substantially uniform.
  • the processing gas is supplied to the surface of the wafer W with high uniformity, and the processing with high uniformity is performed on the wafer W.
  • FIG. 3A shows the result of examining the pressure at each point above the wafer W when the Ar gas was supplied into the champer 2 via the convex electrode plate 20.
  • FIG. 3B shows the results obtained when a flat electrode plate 20 having no projections 20a is used.
  • the distance (electrode gap) between the electrode plate 20 and the susceptor 10 is 30 mm, and Ar gas is flowed at 300 sccm over the surface of the wafer W of 200 mm.
  • the pressure does not change between the center and the end above W, which is constant at about 1 Pa. .
  • FIG. 4 shows the results of examining the pressure change above the center of the wafer W when the gap between the electrodes was changed in the experiments shown in FIGS. 3A and 3B.
  • the pressure increases greatly with a decrease in the gap between the electrodes, and reaches about 4 Pa when the gap between the electrodes is 1 Omm.
  • Figure 5 shows the uniformity of the deposition rate on the surface of the wafer W when the step between the exposed surface of the electrode plate 20 and the exposed surface of the shield ring 26 (the height of the projection 2Oa) was changed.
  • the results are shown below.
  • 3 P a, at the inter-electrode gap 2 Omm is there.
  • the thickness of the shield ring 26 Is 10 mm, and when the height of the step is 0 mm, the electrode plate 20 and the shield ring 26 form a flat surface.
  • Fig. 6 shows the results of examining the maximum possible aspect ratio that allows good embedding processing without generating voids by performing the embedding processing for grooves having a predetermined aspect ratio by changing the step. Show.
  • the aspect ratio is expressed as a ratio when the result when a flat electrode plate 20 (step difference: 10 mm) is used is set to 1.
  • the smaller or smaller the step the higher the maximum aspect ratio that can be well embedded.
  • the electrode plate 20 and the shield ring 26 form a flat surface (step difference 0 mm)
  • Good embedding processing is possible for grooves having an aspect ratio.
  • a groove having a higher aspect ratio is more likely to generate a void during the filling process.
  • the process pressure above the wafer W is kept low by using the convex electrode plate 20 to reduce or eliminate the step, and a highly reliable filling process with few voids is generated. Is performed.
  • the electrode plate 20 is formed in a convex shape, and the exposed surface of the electrode plate 20 and the main surface of the shield ring 26 form a flat surface. It has been With this configuration, a step between the electrode plate 20 and the shield ring 26 is eliminated, and turbulence of the processing gas above the wafer W can be reduced or eliminated. As a result, the pressure above W is almost uniform over the entire surface, and highly uniform processing can be performed over the entire surface. Further, the pressure on the wafer W can be maintained at a relatively low pressure, and a highly reliable embedding process in which generation of voids is suppressed can be performed.
  • the height of the projection 20 a of the electrode plate 20 is substantially the same as the thickness of the shield ring 26, and the electrode plate 20 and the shield ring 26 are substantially The same surface was formed.
  • the height of the protrusion 20 a is not limited to this, The height may be larger than the thickness of the shield ring 26 and may be such that the protrusions 20 a protrude from the opening of the shield ring 26.
  • the plasma processing apparatus 1 according to the second embodiment has almost the same configuration as the plasma processing apparatus 1 according to the first embodiment shown in FIG.
  • FIG. 6 shows an enlarged view near the upper and lower electrodes of the second embodiment.
  • the same portions as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted to facilitate understanding.
  • the electrode plate 20 has a configuration similar to that of the first embodiment. That is, as shown in FIG. 6, the electrode plate 20 is formed in a convex shape, and the exposed surface (lower surface) of the convex portion 20a and the exposed surface (lower surface) of the shield ring 26 are substantially the same plane. Is formed.
  • the opening of the focus ring 17 is set to have a diameter substantially equal to the diameter of the wafer W.
  • the ratio between the diameter of the exposed surface of the susceptor 10 (the lower electrode diameter D 1) and the diameter of the exposed surface of the electrode plate 20 (the upper electrode diameter D 2) is configured to be a predetermined value.
  • the exposed surface of the susceptor 10 refers to a surface that substantially functions as a lower electrode
  • the lower electrode diameter D 1 is substantially equal to the diameter of the opening of the focus ring 17 or the diameter of the wafer W.
  • the exposed surface of the electrode plate 20 refers to a surface that substantially functions as an upper electrode
  • the upper electrode diameter D 2 is the diameter of the main surface of the projection 20 a or the opening of the shield ring 26. It is almost the same as the diameter of 26a.
  • the lower electrode diameter D1 indicates the diameter of the wafer W
  • the upper electrode diameter D2 indicates the diameter of the main surface of the projection 20a.
  • the lower electrode diameter D1 and the upper electrode diameter D2 are configured so that their ratio (D2D1) is 1.2 to 1.5, and especially 1.25 to 1.45. ing.
  • the gas holes 19 are provided, for example, concentrically so as to penetrate the convex portions 20a of the electrode plate 20.
  • the electrode diameter ratio (D 2 / D 1) is changed so as not to change the arrangement of the gas holes 19. Therefore, by changing the ratio of the electrode diameters (D 2 / D 1), the electrode is formed between the upper and lower electrodes while keeping the supply of the processing gas constant.
  • the RF electric field can be changed.
  • FIG. 8 shows the result of examining the uniformity of the film forming rate on the surface of the wafer W by performing the film forming process while changing the electrode diameter ratio (D 2 / D 1).
  • the convex electrode plate 20 is used.
  • the present invention is applicable not only to the convex electrode plate 20 but also to a flat electrode plate 20.
  • the upper electrode diameter D 2 is set to the diameter of the exposed surface of the electrode plate 20,
  • the ratio of the upper and lower electrode diameters may be defined as the diameter of the opening.
  • FIG. 10 shows an enlarged view of the vicinity of the upper and lower electrodes of the third embodiment.
  • the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted to facilitate understanding.
  • the electrode plate 20 is formed in a convex shape, and as shown in FIG. 10, the exposed surface (lower surface) of the convex portion 20a and the exposed surface (lower surface) of the scino red ring 26 are substantially the same. It forms a plane. The exposed surface of the protrusion 20a substantially forms an RF electric field.
  • the third embodiment has a configuration in which the processing gas supply area (processing gas blowing diameter) can be increased as desired while keeping the exposed surface area of the electrode plate 20 constant. That is, the gas hole 19 is provided not only in the electrode plate 2 ⁇ but also in the shield ring 26 surrounding the electrode plate 2 ⁇ .
  • the shield ring 26 has a gas hole 26 b formed around the electrode plate 20.
  • the electrode support 22 is provided such that the diffusion portion 21 formed inside and the gas hole 26 b communicate with each other. As a result, the processing gas is blown out from the gas holes 19 provided in the electrode plate 20 and the gas holes 26 b of the shield ring 26.
  • the gas holes 26 b are arranged similarly to the gas holes 19 of the electrode plate 20.
  • the gas holes 19 of the electrode plate 20 are provided substantially concentrically, for example, and the gas holes 26 b of the shield ring 26 are provided on the outer periphery of the gas holes 19 of the electrode plate 20.
  • the blowout diameter (D 3) of the processing gas composed of the gas holes 19 and 26 b is larger than the diameter of the exposed surface of the electrode plate 20 (the upper electrode diameter D 2). , About 1.1 times larger (D 3 / D 1> 1.1).
  • the blowout diameter D3 is, for example, the diameter of the outermost gas hole 26b.
  • the gas blowing diameter D3 is about 280 mm, which is about 1.1 times D2.
  • the gas supply area can be enlarged without changing the exposed surface area of the plate 20 and without changing the RF electric field.
  • gas can be supplied more evenly to the entire surface of the wafer W. Therefore, a highly uniform treatment can be performed on the surface of W.
  • FIG. 11 shows the results of examining the uniformity of the film forming rate on the surface of the wafer W by changing the processing gas blowing diameter D 3.
  • the upper electrode diameter D 2 was 260 mm.
  • a sufficiently high deposition rate can be obtained with a blowing diameter D3 of about 240 mm or more (about 0.85 times or more of the upper electrode diameter D2 and about 1.2 times or more of the wafer diameter).
  • a blowing diameter D3 of about 240 mm or more (about 0.85 times or more of the upper electrode diameter D2 and about 1.2 times or more of the wafer diameter).
  • the blowout diameter D3 is larger than the upper electrode diameter D2, in particular, it is 280 mm or more (about 1.1 times or more the upper electrode diameter D2 and about 1.4 times or more the wafer diameter).
  • the uniformity of the deposition rate shows a stable high value.
  • the gas blowing diameter D 3 is larger than the upper electrode diameter D 2, especially if it is about 1.1 times or more, highly uniform processing can be performed on the entire surface of the wafer W. Can be done at speed.
  • the gas holes 26 b are provided in the shield ring 26. This makes it possible to change the area of the exposed surface of the electrode plate 20 functioning as the upper electrode; and to increase the blowout diameter D3 of the processing gas without changing the F electric field. As a result, it is possible to improve the film forming speed and the surface uniformity of the processing.
  • the gas hole 26 b provided in the shield ring 26 communicates with the hollow portion in the electrode support 22, and the same processing as the gas hole 19 in the electrode plate 20 is performed. It is assumed that gas will be supplied. And connected to the gas hole 26 b of the shield ring 26 Independent gas passages may be provided. At this time, a flow rate control device or the like may be provided in the gas flow path for the shield ring 26 to adjust the gas supply amounts to the electrode plate 20 and the shield ring 26, respectively.
  • the convex type electrode 20 is used.
  • the same configuration can be applied not only to the convex electrode plate 20 but also to the flat electrode plate 20.
  • the diameter of the exposed surface of the electrode plate 20, that is, the inner diameter of the opening of the shield ring 26 ' is defined as the upper electrode diameter (D2), and the gas blowing diameter (D3) is determined accordingly. do it.
  • FIG. 12 shows a configuration of a plasma processing apparatus 1 according to the fourth embodiment.
  • a cleaning gas supply port 30 is formed on the side wall of the champer 2.
  • the cleaning gas supply port 30 is connected to a cleaning gas supply source 31 and a carrier gas source 32.
  • the cleaning gas supply source 31 supplies a fluorine-based cleaning gas, for example, nitrogen trifluoride (NF 3 ).
  • the carrier gas source 32 supplies argon (Ar), nitrogen, or the like. Activated gas is supplied.
  • An activator 33 is provided between the cleaning gas supply port 30 and the cleaning gas supply source 31 and the carrier gas supply source 32.
  • the activator 33 has a plasma generation mechanism (not shown), and is a high-density plasma such as an EC (Electron Cyclotron Resonance) plasma or an inductively coupled plasma (ICP). Generate. Rectifier 33 selectively exhausts fluorine radicals in the plasma.
  • EC Electro Cyclotron Resonance
  • ICP inductively coupled plasma
  • the cleaning gas By supplying the cleaning gas into the chamber 2, contaminants such as silicon-based substances adhered and deposited in the chamber 2 are decomposed by fluorine radicals and removed together with the exhaust gas.
  • the cleaning gas is pumped outside of Champer 2. Razmatized, so-called remote plasma cleaning is performed.
  • the electrode plate 20 is made of a material that is more resistant to fluorine radicals than silicon. That is, the electrode plate 20 is made of alumite-treated aluminum, silicon carbide, carbon, aluminum, alumina, quartz alumina sprayed or the like. By configuring the electrode plate 20 from the above-described material, the deterioration of the electrode plate 20 due to cleaning using fluorine gas can be suppressed. This suppresses a decrease in uniformity of film formation due to deterioration of the electrode plate 20 and a decrease in productivity due to an increase in the frequency of replacement of the electrode plate 20.
  • the wafer W is carried into the chamber 2 and placed on the susceptor 10. Then, supplying a process gas consisting of S i F 4, S i H 4, 0 2 and A r into the chamber 2, by application of RF power to generate a plasma of the processing gas.
  • the generated plasma forms an Si OF film on the wafer W.
  • a film having a predetermined thickness is formed on the wafer W, and the wafer W is carried out of the chamber 2.
  • the above operation is repeated to process the wafer W continuously. At this time, every time a predetermined number of ⁇ ⁇ C Ws are processed, the cleaning of Champer 2 is performed.
  • the dummy wafer is loaded into the champer 2 and placed on the susceptor 10. Then, to start the supply of NF 3 and A r, to create moving the Akuchibeta 3 3.
  • the activator 33 generates a plasma of a processing gas, and supplies a gas containing a fluorine radical as a main component into the champer 2.
  • the cleaning gas for example, Si OF adhered to the chamber 2 reacts with fluorine radicals, is decomposed into silane tetrafluoride (Si F 4 ), and is removed. Thus, the deposits and the like in the chamber 2 are removed, and the cleaning proceeds.
  • the activator 33 is turned off and the gas supply is stopped.
  • the cleaning is completed, and the film forming process is started again.
  • the etching rate of the electrode plate 20 was examined.
  • the materials used were silicon, silicon oxide, silicon nitride silicon, anodized aluminum, silicon carbide, carbon, aluminum, alumina, and quartz alumina sprayed.
  • Figure 13 shows the results. The results were expressed as a ratio when the etching rate of silicon was set to 100.
  • the etching rates of aluminum, silicon carbide, carbon, aluminum, alumina and quartz alumina sprayed with anodized aluminum are lower than the etching rates of silicon, silicon oxide and silicon nitride. In particular, it is less than half (less than 50%) the etching rate of silicon. This indicates that the electrode plate 20 made of anodized aluminum, silicon carbide, carbon, aluminum, alumina, and quartz-alumina is hardly etched and corroded by fluorine-based gas.
  • FIG. 13 also shows the result of performing in-situ plasma cleaning instead of remote plasma cleaning.
  • NF 3 and Ar are introduced into the chamber 2 and a plasma of a cleaning gas is generated inside the chamber 2.
  • Electrode plate 2 As shown in Fig. 13, the same tendency is observed in in-situ plasma cleaning as in remote plasma cleaning. That is, while the etching rate ratio when using an electrode plate 20 made of silicon, silicon oxide and silicon nitride is close to 20%, anodized aluminum, silicon carbide, carbon, aluminum, alumina and quartz are used. The etching rate ratio of the electrode plate 20 using alumina spraying is about 10% or less. As described above, the electrode plate 20 made of a plasma-resistant material such as silicon carbide is less likely to be deteriorated by remote and in-situ plasma cleaning than the electrode plate 20 made of silicon or the like. Using an electrode plate 20 made of various materials, the film deposition process is The results of examining the film formation rate in each film formation process are shown in FIG. Electrode plate 2
  • 0 was composed of any of alumite, silicon carbide, carbon, aluminum, alumina, quartz alumina sprayed or silicon. Further, the film forming process was performed so that a film having a predetermined thickness was formed on the wafer W, and the film forming speed was calculated from the time required for processing 100 wafers W. The cleaning was performed every time 25 wafers W were processed.
  • the film formation rate is very high at the beginning of the process as compared with other materials.
  • the deposition rate has since declined significantly and has become lower than other materials.
  • the deposition rate does not decrease so much, and is relatively constant even after processing 100 wafers W.
  • the electrode plate 20 made of silicon carbide the highest film formation rate is maintained. From this, it is understood that the thermal spraying of alumite, silicon carbide, carbon, aluminum, alumina, and quartz-alumina, in particular, the electrode plate 20 made of silicon carbide is hardly deteriorated by dry cleaning.
  • the electrode plate 20 made of a material that is resistant to plasma, such as silicon carbide is etched by a fluorine-containing cleaning gas, and the electrode plate 20 has a high productivity. At this time, since the electrode plate 20 is hardly etched at this time, the shape of the electrode plate 20 is maintained in the initial shape for a long time, and a process with high uniformity is performed for a long time.
  • the electrode plate 20 is made of a material having fluorine radical resistance.
  • the present invention is not limited to the electrode plate 20, and the electrode peripheral members exposed to fluorine radicals during cleaning may be made of the above materials.
  • the focus ring 17 may be made of the above material.
  • a fluorine-based gas in particular, NF 3 is used as a cleaning species.
  • another halogen gas for example, a chlorine-based gas may be used.
  • the cleaning gas used for the Si-based film type is N
  • F 3, F 2, CF 4 , C 2 F 6, Ru can be used a fluorine-based gas such as SF 6.
  • other than Ar other inert gas such as Ne may be used.
  • a cleaning gas obtained by adding an oxygen-containing substance such as O 2 , O 3 , CO, CO 2 , and N 2 to the above gas may be used.
  • an oxygen-containing substance such as O 2 , O 3 , CO, CO 2 , and N 2
  • SiC silicon carbide
  • a substance containing carbon (C) adheres to the inside of the champer 2 by the etching of the electrode plate 20.
  • Carbon-containing material in general, while difficult to etch by halogen gas, the gas of oxygen-containing materials, are readily decomposed into co 2 or the like.
  • FIG. 15 shows the result of examining the cleaning speed when performing the talling by adding an oxygen-containing substance to the cleaning gas containing NF 3 and Ar.
  • FIG. 15 shows the result when the inside of the processing apparatus for forming the SiC film is cleaned with a cleaning gas to which O 2 , CO, C ⁇ 2 , and N 2 ⁇ are added.
  • Kleejung performed in-situ plasma and a combination of remote plasma and in-situ plasma.
  • the combination of the remote plasma and the in-situ plasma means that after the cleaning gas is turned into plasma outside the champer 2, it is turned into plasma again in the champer 2 for cleaning.
  • the Si OF film is formed on the ueno by the parallel plate type plasma processing apparatus 1
  • the film type is limited regardless to the above example, other silicon-based film, for example, S I_ ⁇ 2, S i N, S i CN, S i CH, may be S i ⁇ _CH like.
  • various kinds of gases can be used according to the kind of the film.
  • the present invention is not limited to a film forming apparatus, but is applicable to any plasma processing apparatus in which dry cleaning is performed, such as an etching apparatus and a heat treatment apparatus.
  • any plasma processing apparatus in which dry cleaning is performed such as an etching apparatus and a heat treatment apparatus.
  • the plasma generation method is not limited to the parallel plate type, but may be any type such as a magnetron type, an inductive coupling type, an ECR (Electron Cyclotron Resonance) type.
  • the object to be processed is not limited to a semiconductor wafer, but may be a glass substrate for a liquid crystal display device or the like. Industrial applicability
  • This invention can be used suitably for manufacture of electronic devices, such as a semiconductor device and a liquid crystal display device.
  • the present invention relates to Japanese Patent Application No. 2001-13572 filed on Jan. 22, 2001, Japanese Patent Application No. 2001-13574 filed on Jan. 22, 2001, filed on Aug. 7, 2001. Based on Japanese Patent Application No. 2001-239720, including its description, claims, and drawings and abstract. The disclosure in the above application is incorporated herein by reference in its entirety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

プラズマ処理装置およびプラズマ処理方法 技術分野
本発明は、 プラズマを用いて成膜処理、 エッチング処理等の処理を行うプラズ マ処理装置及ぴプラズマ処理方法に関する。 背景技術
半導体装置、 液晶表示装置等の製造プロセスには、 プラズマを用いて半導体ゥ ェハ等の基板の表面を処理するプラズマ処理装置が使用されている。 プラズマ処 理装置としては、 例えば、 基板にエッチングを施すプラズマエッチング装置や、 化学的気相成長(Chemical Vapor Deposition: C V D )を施すプラズマ C V D装置 等が挙げられる。 中でも、 平行平板型のプラズマ処理装置は、 処理の均一性に優 れ、 また、 装置構成も比較的簡易であることから、 広く使用されている。
平行平板型のプラズマ処理装置の構造を図 1 7に示す。 図 1 7に示すように、 プラズマ処理装置 1 0 1は、 チャンパ 1 0 2と、 チャンパ 1 0 2内に処理ガスを 供給し、 上部電極を構成するシャワー電極 1 0 3と、 半導体ウェハ等の被処理体 Wが載置され、 下部電極を構成するサセプタ 1 0 4と、 から構成される。
シャワー電極 1 0 3は、 多数のガス穴 1 0 5を有する電極板 1 0 6と、 電極板 1 0 6を支持し、 処理ガスをガス穴 1 0 5に導く中空部 1 0 7を備える電極支持 体 1 0 8と、 から構成される。 電極板 1 0 6は、 その周縁部において、 電極支持 体 1 0 8にねじ等により支持され、 支持部分は絶縁材からなるシールドリング 1 0 9によって覆われている。 シールドリング 1 0 9は電極板 1 0 6よりも小径の 開口を有し、 開口内に電極板 1 0 6が露出する構成となっている。 シールドリン グ 1 0 9は、 支持部分における異常放電の発生を低減させる。
上記プラズマ処理装置 1 0 1は、 電極板 1 0 6のガス穴 1 0 5から被処理体 W に処理ガス (図中実線矢印) を供給し、 電極板 1 0 6に R F電力を供給して、 電 極板 1 0 6の露出面と、 サセプタ 1 0 4と、 の間に R F電界 (図中破線矢印) を 形成する。 これにより、 被処理体 Wの上に処理ガスのプラズマを発生させ、 被処 理体 Wの表面に所定の処理を施す。
上記構成のプラズマ処理装置 1 0 1には、 下記 (1 ) および (2 ) のような問 題がある。
( 1 ) 電極板 1 0 6の周縁を保護するシールドリング 1 0 9は、 絶縁性を確保 するため、 例えば、 1 O mm程度の厚さを有する板状部材から構成される。 電極 板 1 0 6は、 シールドリング 1 0 9の開口内に露出するようにシールドリング 1 0 9上に重ねられる。 このとき、 電極板 1 0 6の露出面 (下面) の周縁部と、 シ 一ルドリング 1 0 9の開口近傍の面と、 の間には、 段差 Δが生じる。
このような段差 Δは、 被処理体 Wの表面全体の処理特性を異なったものとし、 処理の均一性を低下させる。 すなわち、 開口内のガス穴 1 0 5から供給されるガ スは、 段差 Λにおいて滞留などし、 ガスの流れに乱れが生じる。 これにより、 例 えば、 被処理体 Wの中心部と、 端部と、 におけるガス供給が不均一となり、 処理 の均一性が低下する。
また、 プラズマと接触する電極板 1 0 6の露出面の径 (以下、 上部電極径とす る) は、 対向する被処理体 Wの表面の径とほぼ等しいように形成される。 すなわ ち、 上部電極径は、 電極板 1 0 6と被処理体 Wとの間に形成される、 ガスの流れ および電界を最適化して、 均一1生の高い処理がなされるように決定されたもので はない。 このため、 十分に均一性の高い処理が行われないおそれがある。
また、 ガスの流れおょぴ電界を最適化するため、 ガスの吹き出し径と、 上部電 極径と、 を変化させる場合でも、 ガスの吹き出し径および上部電極径は、 実質的 にシールドリング 1 0 9の開口の径によって決定される。 このため、 ガスの吹き 出し径と、 上部電極径と、 をそれぞれ独立に変化させて最適化し、 処理の均一性 を向上させることは難しい。
以上のように、 従来のプラズマ処理装置 1 0 1は、 上部電極径と、 ガスの吹き 出し径と、 が最適化され、 処理の均一性が十分に高められたものとはいえなかつ た。
( 2 ) 上記プラズマ処理装置 1 0 1には、 フッ素系ガス等のハロゲン系ガスを用 いたドライクリーニングが行われる。 具体的には、 チャンパ 1 02の内部または 外部でハ口ゲン系ガスのプラズマを生成し、 ガスプラズマ中のハ口ゲン活性種
(例えば、 フッ素ラジカル) により、 チャンパ 102内に付着、 堆積した膜を除 去する。 特に、 フッ素は、 シリコンとの反応性が高く、 シリコン系の膜を処理す る処理装置のクリーニングに好適である。
ここで、 電極板 106は、 メタルコンタミを避けるため、 シリコンから構成さ れる。 このようなシリコンからなる電極板 106は、 上記クリーニングによって エッチングされやすい。 特に、 チャンパ 102の外部でクリーニングガスのプラ ズマを生成し、 ラジカル種を選択的にチャンパ 102内に導入するリモートプラ ズマクリーニングにおいては、 ラジカル種の活性が高いため、 電極板 106の劣 ィ匕 (エッチング) が顕著となる。
電極板 106の劣化は、 電極板 106の形状を変化を意味し、 RF電界を変化 させる。 電界の変化により、 例えば、 被処理体 Wの中心部と端部とにおける処理 特性が変化し、 処理の均一†生が低下する。
以上のように、 シリコンからなる電極板 106を用いた場合には、 クリーニン グにより電極板 106がエッチングされやすく、 十分に均一性の高い処理が行わ れないおそれがあった。 発明の開示 ' 上記事情を鑑みて、 本発明は、 被処理体に均一性の高い処理を施すことのでき るブラズマ処理装置及ぴプラズマ処理方法を提供することを目的とする。
上記目的を達成するため、 本発明の第 1の観点に係るプラズマ処理装置 (1) は、
チャンパ (2) と、
前記チャンバ (2) 内に処理用のガスを供給するガス穴 (1 9) を備え、 凸部 (20 a) を有する電極板 (20) と、
前記凸部 (20 a) と嵌合する開口 (26 a) を有し、 前記凸部 (20 a) と 前記開口 (26 a) とが嵌合した状態で前記電極板 (20) の周縁部を覆う環状 の板部材から構成されたシールドリング (26) と、 を備える。
上記構成の装置において、 例えば、 前記電極板 (20) の凸部 (20 a) は、 前記開口 (26 a) と嵌合した状態で、 前記シールドリング (26) の主面と実 質的に平坦な面を形成する。
上記目的を達成するため、 本発明の第 2の観点に係るプラズマ処理装置 (1) は、
一面上に被処理体が载置される第 1の電極板 (10) と、
高周波電源に接続され、 前記一面と平行に対向し、 前記一面の径の 1. 2倍〜 1. 5倍の径を有する対向面を備える第 2の電極板 (20) と、
を備える。
上記構成の装置において、 さらに、 前記対向面の径と略同一の径を有する開口
(26 a) が形成されてもよく、 前記開口 (26 a) の内側に前記対向面が露出 するように、 前記第 2の電極板 (20) の周縁部を覆うシールドリング (26) を備えるにしてもよレ、。
上記構成の装置において、 前記第 2の電極板 (20) は、 前記対向面を主面と し、 前記開口 (26 a) と嵌合する凸部 (20 a) を備えてもよい。
上記目的を達成するため、 本発明の第 3の観点に係るプラズマ処理装置 (1) は、
チャンパ (2) と、
高周波電源 (24) に接続され、 前記チャンパ (2) 内に処理用のガスを供給 する第 1のガス穴 (1 9) を備える電極板 (20) と、
前記チャンバ (2) 内に前記ガスを供給する第 2のガス穴 (26 b) を備え、 開口 (26 a) を有し、 前記開口 (26 a) の内側に前記電極板 (20) が露出 するように前記電極板 (20) の周縁を覆うシールドリング (26) と、 を備える。
上記構成の装置において、 前記第 2のガス穴 (26 b) は前記開口 (26 a) の周囲に環状に配置されてもよく、 前記第 2のガス穴 (26 b) の配置された最 大径は、 例えば、 前記開口 (26 a) の径の約 1. 1倍である。
上記構成の装置において、 前記電極板 (20) は、 前記露出面を主面とし、 前 記開口 (26 a) と嵌合する凸部 (20 a) を備えてもよく、 前記凸部 (20 a) の主面は、 前記シールドリング (26) と実質的に平坦な面を形成するよう にしてもよい。
上記目的を達成するため、 本発明の第 4の観点に係るプラズマ処理装置 (1) は、
内部で被処理体に所定のプラズマ処理が施されるチャンパ (2) と、
ハロゲンを含むクリーニングガスを前記チャンパ (2) 内に供給するクリー二 ングガス供給口 (30) と、
前記チャンパ (2) 内に処理用のガスを供給するガス穴 (1 9) を備え、 ハロ ゲンラジカルに耐性のある材料を含んで構成される電極板 (20) と、
を備える。
上記構成の装置において、 前記電極板 (20) は、 例えば、 ケィ素よりもハロ ゲンラジカルに耐性のある材料を含んで構成される。
上記構成の装置において、 前記クリーニングガスは、 例えば、 フッ素を含む物 質から構成され、 前記ハロゲンラジカルは、 例えば、 フッ素ラジカルから構成さ れる。
上記構成の装置において、 前記ハロゲンラジカルに耐性のある材料は、 炭化ケ ィ素、 カーボン、 アルミニウム、 アルマイト、 アルミナ、 及ぴ、 石英アルミナ溶 射からなる群から選択されてもよい。
上記構成の装置は、 前記電極板 (20) と対向して設けられ、 前記被処理体の 戴置される戴置台 (10) と、
前記戴置台 (10) 上に戴置された前記被処理体の外周を囲むよう設けられ、 前記ハロゲンラジカルに耐性のある材料から構成されるリング状部材 (1 7) と、 をさらに備えてもよい。
上記構成の装置において、 例えば、 前記クリーニングガスは、 前記チャンバ (2) 内でプラズマとされて前記ハロゲンラジカルを生成する。
上記構成の装置は、 さらに、 前記チャンバ (2) の外部に設けられ、 前記タリ 一二ングガス供給口に接続されたァクチベータ (33) を備えてもよく、
前記ァクチベータ (3 3) は、 前記クリーニングガスを活性化して前記ハロゲ ンラジカルを生成し、 発生した前記ハロゲンラジカルを前記チャンバ (2) 2内 に供給してもよい。
上記構成の装置において、 例えば、 前記クリーニングガスは、 酸素を含む物質 を含んで構成される。
上記目的を達成するため、 本発明の第 5の観点に係るプラズマ処理方法は、 内部でのプラズマの生成により、 被処理体に所定の処理が施されるチャンパ (2) と、 一面上に被処理体が載置される第 1の電極板 (10) と、 高周波電源 (24) に接続され、 前貢己一面と平行に対向する対向面を有する第 2の電極板 (20) と、 を備えたプラズマ処理装置 (1) を用いたプラズマ処理方法であつ て、
前記対向面の径を、 前記前記一面の径の 1. 2倍〜 1. 5倍として、 前記第 2 の電極に高周波電力を供給する工程を含む。
上記目的を達成するため、 本発明の第 6の観点に係るプラズマ方法は、 内部でのプラズマの生成により、 被処理体に所定の処理が施されるチャンパ (2) と、 前記チャンパ (2) 内に処理用のガスを供給する第 1のガス穴 (1 9) を備え、 高周波電源 (24) に接続される電極板 (20) と、 前記チャンバ (2) 内に前記ガスを供給する第 2のガス穴 (26 b) を備え、 開口 (26 a) を有し、 前記開口 (26 a) の内側に前記電極板 (20) が露出するように前記 電極板 (20) の周縁を覆うシールドリング (26) と、 を備えるプラズマ処理 装置 (1) を用いたプラズマ処理方法であって、
前記ガスを前記第 1のガス穴 (19) と、 前記第 2のガス穴 (26 b) と、 か ら前記チャンパ (2) 内に噴出する工程を含む。 図面の簡単な説明
図 1は、 第 1の実施の形態に係るプラズマ処理装置の構成を示す。
図 2は、 図 1に示す上部電極の構成を示す。
図 3 Aは、 凸型の電極板を用いたときの、 ウェハの上方の圧力を調べた結果を 示し、 図 3Bは、 平坦な電極板を用いたときの、 ウェハの上方の圧力を調べた結 果を示す。 図 4は、 凸型および平坦な電極板を用いたときの、 電極間ギャップと圧力との 関係を示す。
図 5は、 電極板とシールドリングとの段差と、 成膜速度の均一性との関係を示 す。
図 6は、 電極板とシールドリングとの段差と、 埋め込み可能な溝のアスペクト 比との関係を示す。
図 7は、 第 2の実施の形態の上部電極およびサセプタの拡大図である。
図 8は、 上下の電極径比 (D 2 /D 1 ) と、 成膜速度均一性と、 の関係を示す。 図 9は、 図 8の A、 B、 Cにおける、 ウェハ表面の膜厚分布を示す。
図 1 0は、 第 3の実施の形態の上部電極およぴサセプタの拡大図である。
図 1 1は、 ガスの吹き出し径 (D 3 ) と、 成膜速度と、 の関係を示す。
図 1 2は、 第 4の実施の形態に係るプラズマ処理装置の構成を示す。
図 1 3は、 各種材料からなる電極板のエッチングレートを調べた結果を示す。 図 1 4は、 各種材料からなる電極板を用いて連続成膜処理を行ったときの、 成 膜速度を調べた結果を示す。
図 1 5は、 酸素を添加したクリーニングガスを用いてクリー-ングしたときの 結果を示す。
図 1 6は、 酸素を添加したクリーユングガスを用いてクリーエングしたときの 結果を示す。
図 1 7は、 従来のプラズマ処理装置の構成を示す。 発明を実施するための最良の形態
(第 1の実施の形態)
本発明の第 1の実施の形態にかかる処理装置について、 以下図面を参照して説 明する。 以下に示す実施の形態では、 半導体ウェハ (以下、 ウェハ W) に C VD
(Chemical Vapor Deposition)によりフッ化酸化シリコン (S i O F ) 膜を形成す る、 平行平板型のプラズマ処理装置を例として説明する。
図 1に第 1の実施の形態に係るプラズマ処理装置 1の構成を示す。
プラズマ処理装置 1は、 例えば、 表面がアルマイト処理 (陽極酸化処理) され たアルミニウムからなる、 円筒状のチャンパ 2を有する。 チャンパ 2は接地され、 共通電位とされている。
チャンバ 2の上部にはガス供給管 3が設けられている。 ガス供給管 3は、 S i F 4、 S i E 、 02、 A r等が混合された処理ガスを供給するガス供給源 4に接続 されている。 処理ガスは、 ガス供給管 3から、 マスフローコントローラ (図示せ ず) により、 所定の流量に調節されてチャンパ 2内に供給される。
チャンバ 2の底部側方には、 排気口 5が設けられている。 排気口 5には、 ター ポ分子ポンプなどから構成される排気装置 6が接続されている。 排気装置 6は、 チャンパ 2内を所定の減圧雰囲気、 例えば、 1 P a以下の所定の圧力まで排気す る。
チャンバ 2の側壁にはゲートパルプ 7が設けられている。 ゲートパルプ 7を開 放した状態で、 チャンパ 2と隣接するロードロック室 (図示せず) との間でのゥ ヱハ" Wの搬入出がなされる。
チヤンパ 2内の底部中央からは、 略円柱状のサセプタ支持台 8が起立している。 サセプタ支持台 8の上にはセラミック等の絶縁体 9を介してサセプタ 1 0が設け られている。 また、 サセプタ支持台 8はチャンパ 2の下方に設けられた昇降機構 (図示せず) にシャフト 1 1を介して接続され、 昇降可能となっている。
サセプタ 1 0上には、 ウェハ Wと略同径の図示しない静電チャックが設けられ ている。 サセプタ 1 0上に載置されたウェハ Wは、 静電チャックによってクーロ ンカにより固定される。
サセプタ 1 0は、 アルミニウム等の導体から構成され、 平行平板電極の下部電 極を構成する。 サセプタ 1 0には、 第 1の R F電源 1 2が第 1の整合器 1 3を介 して接続されている。 第 1の R F電源 1 2は 0 . 1〜1 3 MH zの範囲の周波数 を有している。 第 1の R F電源 1 2に上記範囲の周波数を印加することにより、 被処理体に適度なィォン衝撃を与える等の効果が得られる。
サセプタ支持台 8の内部には、 冷媒室 1 4が設けられている。 冷媒室 1 4には 冷媒が循環している。 冷媒供給管 1 5から供給された冷媒は冷媒室 1 4を通って 冷媒排出管 1 6から排出される。 冷媒室 1 4を冷媒が循環することにより、 サセ プタ 1 0及びウェハ Wの処理面は所望の温度に維持される。 また、 ゥヱハ Wの受 け渡し用のリフトピン (図示せず) 力 サセプタ 1 0及ぴ静電チャックを貫通し て昇降可能に設けられている。
サセプタ 1 0表面の周縁部には、 セラミック等の絶縁体から構成されるフォー カスリング 1 7が設けられている。 フォーカスリング 1 7は中心に開口を有し、 開口はウェハ Wとやや大きい径とされている。 ウェハ Wは、 フォーカスリング 1 7の開口の内側に露出したサセプタ 1 0の表面上に载置される。 フォーカスリン グ 1 7は、 ウェハ Wにプラズマ活性種を効果的に入射させる。
チャンバ 2の天井部には、 平行平板電極の上部電極 1 8が設けられている。 上 部電極 1 8は、 いわゆるシャワーへッド構造を有し、 多数のガス穴 1 9を有する 電極板 2 0と、 電極板 2 0との間に中空の拡散部 2 1を形成する電極支持体 2 2 と、 から構成される。
電極支持体 2 2は、 ガス供給管 3に接続されている。 ガス供給管 3から供給さ れたガスは、 拡散部 2 1において拡散され、 多数のガス穴 1 9から噴出される。 電極板 2 0は、 サセプタ 1 0と対向するように設けられ、 ウェハ Wよりもやや大 径を有するように形成されている。 これにより、 処理ガスは、 ウェハ Wの表面全 体に供給される。
電極板 2 0は、 アルミニウム等の導体材料から構成され、 円板状に形成されて いる。 電極板 2 0は、 第 2の整合器 2 3を介して第 2の R F電源 2 4に接続され ている。 電極板 2 0への R F電力の印加により、 ガス穴 1 9から供給されたガス のプラズマが生成する。
図 2に、 電極板 2 0の近傍の拡大図を示す。 図 2に示すように、 電極板 2 0は、 その周縁部の厚さが薄く形成され、 円柱状の凸部 2 0 aを形成するように構成さ れている。 電極板 2 0は、 周縁部にはねじ溝等が形成されており、 周縁部におい て電極支持体 2 2にねじ 2 5により止められる。
電極板 2 0の周縁部のねじ止め部分は、 窒化アルミニウム等のセラミック等か ら構成されるシールドリング 2 6によって覆われている。 シールドリング 2 6は、 開口 2 6 aが形成された主面を有し、 この主面がチャンパ 2の天井面と略平行と なるように、 チャンパ 2の天井の側部等に固定されている。 シールドリング 2 6 の開口 2 6 aは、 電極板 2 0よりも小径に形成され、 開口 2 6 a内に電極板 2 0 が露出するように設けられる。 また、 シールドリング 2 6の、 少なくとも主面部 分は、 1 O mm程度の厚さを有する板状に形成されている。 シールドリング 2 6 によりねじ止め部分が覆われることにより、 プラズマ生成時のねじ止め部分にお ける異常放電等は防がれる。
ここで、 シールドリング 2 6の開口 2 6 aの径は、 電極板 2 0の凸部 2 0 aの 径と略同一に形成され、 シールドリング 2 6は、 その開口 2 6 a内に電極板 2 0 の凸部 2 0 aが下向きに嵌合するように設置される。
電極板 2 0の凸部 2 0 aの径は、 シールドリング 2 6の開口の径とほぼ同じに 設定されており、 凸部 2 0 aはシーノレドリング 2 6の開口 2 6 a内にほぼ隙間無 く嵌合するよう構成されている。 また、 ガス穴 1 9は、 凸部 2 0 aを貫通するよ うに形成されており、 シールドリング 2 6により処理ガスの噴出が妨げられるこ とはない。
電極板 2 0の凸部 2 0 aと、 シールドリング 2 6と、 は、 互いに嵌合したとき に、 実質的に同一の面を形成する。 すわなち、 電極板 2 0の ώ部 2 0 aの高さは、 シールドリング 2 6の開口' 2 6 a付近の厚さとほぼ同一の値 (例えば、 1 0 mm 程度) に設定されている。
上記構成では、 電極板 2 0と、 シールドリング 2 6と、 は、 プラズマ生成領域 に対して平坦な面を形成する。 この場合、 電極板 2 0の露出面と、 シールドリン グ 2 6の主面と、 'の間に段差が形成されない。 これにより、 ガス穴 1 9から噴出 される処理ガスの流れが、 このような段差部分で乱れることはなく、 ガス穴 1 9 全体から噴出される処理ガスの流れは、 ほぼ均等なものとなる。 これにより、 処 理ガスは高い均一性でウェハ Wの表面に供給され、 ウェハ Wに均一性の高い処理 が行われる。
(実施例 1 )
図 3 Aに、 凸型の電極板 2 0を介して A rガスをチャンパ 2内に供給した場合 の、 ウェハ Wの上方の各地点における圧力を調べた結果を示す。 また、 図 3 Bに、 凸部 2 0 aを有しない、 平坦な電極板 2 0を用いた場合の結果を示す。 ここで、 電極板 2 0とサセプタ 1 0との距離 (電極間ギャップ) は 3 0 mmであり、 2 0 0 mmのウェハ Wの表面に A rガスを 3 0 0 s c c mで流し 7こ。 図 3 Aに示されるように、 凸型の電極板 20を用いた場合には、 ゥヱハ Wの上 方では、 中心部と端部とで圧力は変わらず、 ほぼ 1 P a程度で一定である。 一方、 図 2 Bに示されるように、 平坦な電極板 20を用いた場合には、 ウェハ W上方の 端部では 1 P a程度であるのに対し、 中心部では 1. 5 P a程度と 50%近く高 くなつている。 この圧力の差は、 電極板 20とシールドリング 26との段差部分 の近ぐで発生している。 このことから、 段差を生じない凸型の電極板 20を用い ることにより、 ウェハ Wの上方の圧力をほぼ一定とすることができることがわか る。
図 4に、 図 3 A及ぴ 3 Bに示す実験において、 電極間ギャップを変化させたと きのウェハ Wの中心の上方の圧力変化を調べた結果を示す。 図 4に示されるよう に、 平坦な電極板 20を用いた場合、 圧力は電極間ギャップの減少とともに大き く上昇し、 電極間ギャップ 1 Ommでは約 4 P aに達する。
一方、 凸型の電極板 20を用いた場合、 電極間ギャップが変化しても、 大きな 圧力上昇は見られず、 電極間ギャップ 1 Ommでも、 圧力は平坦型のほぼ半分の 約 2 P aである。
図 4に示す結果から、 凸型の電極板 20を用いた場合、 ウェハ W上方の圧力 (すなわち、 実質的なプロセス圧力) は、 比較的低くなることがわかる。 一般に、 高いプロセス圧力は、 プラズマ処理に好ましくない影響を与える。 特に、 CVD による埋め込み処理においては、 圧力が高いとポイドが発生しやすい。 このこと から、 凸型の電極板 20を用いることにより、 信頼性の高い処理、 特に、 埋め込 み処理が可能であることがわかる。
図 5に、 電極板 20の露出面とシールドリング 26の露出面との段差 (凸部 2 O aの高さ) を変化させたときの、 ウェハ Wの表面における成膜速度の均一性を 調べた結果を示す。 ここで、 成膜条件は、 S i H4/S i F4/02/Ar = 22Z 28/250/50 ( s c c m) 、 圧力 (排気圧) 1. 3 P a、 電極間ギャップ 2 Ommである。 また、 成膜速度均一性は、 (成膜速度均一性 (%) ) = ( (最 大成膜速度) + (最小成膜速度) ) / ( (平均成膜速度) X 2) X 1 0 0として 算出した。 なお、 成膜速度均一性の値が低いほど、 成膜速度のばらつきが少ない ことを示し、 処理の均一性が高いことを示す。 また、 シールドリング 26の厚さ は 1 0 mmであり、 段差の高さが 0 mmの場合、 電極板 2 0とシールドリング 2 6とは平坦面を形成する。
図 5に示されるように、 電極板 2 0とシールドリング 2 6との段差が小さいほ ど、 成膜速度の均一性の値は減少し、 ウェハ Wの表面全体に均一性の高い成膜処 理が行われることがわかる。
また、 図 6に、 上記段差を変化させ、 所定のアスペクト比を有する溝の埋め込 み処理を行い、 ボイドの発生なく良好な埋め込み処理の可能な最大のァスぺクト 比を調べた結果を示す。 なお、 図 6中、 アスペクト比は、 平坦な電極板 2 0 (段 差一 1 0 mm) を用いた場合の結果を 1としたときの比として表した。
図 6に示されるように、 段差が小さいまたは無いほど、 良好に埋め込み可能な 最大のァスぺクト比は高い。 例えば、 電極板 2 0とシールドリング 2 6とが平坦 面を形成する場合 (段差 0 mm) には、 平坦な電極板 2 0を用いた場合 (段差— 1 0 mm) の 1 . 5倍のアスペク ト比を有する溝に対して良好な埋め込み処理が 可能である。 ここで、 アスペクト比が高い溝ほど、 埋め込み処理時にポイドが発 生しやすい。
図 4に示す結果とあわせて、 凸型の電極板 2 0を用いて段差を小さくまたは無 くすことにより、 ウェハ W上方のプロセス圧力が低く抑えられ、 ボイドの発生の 少ない信頼性の高い埋め込み処理が行われることがわかる。
以上説明したように、 第 1の実施の形態では、 電極板 2 0を凸型に形成し、 電 極板 2 0の露出面とシールドリング 2 6の主面とが平坦面を形成する構成となつ ている。 この構成により、 電極板 2 0とシールドリング 2 6との段差は無くなり、 ウェハ Wの上方における処理ガスの乱れを低減し、 または無くすことができる。 これにより、 ゥヱハ Wの上方の圧力は、 その表面上全体でほぼ均一となり、 表面 全体に均一性の高い処理を行うことができる。 さらに、 ウェハ W上の圧力を、 比 較的低い圧力に保つことができ、 ボイドの発生が抑えられた信頼性の高い埋め込 み処理を行える。
上記第 1の実施の形態では、 電極板 2 0の凸部 2 0 aの高さは、 シールドリン グ 2 6の厚さとほぼ同じであり、 電極板 2 0とシールドリング 2 6とが実質的に 同一の面を形成するものとした。 しかし、 凸部 2 0 aの高さは、 これに限らず、 シールドリング 2 6の厚さよりも大きく、 シールドリング 2 6の開口から凸部 2 0 aが突出するような高さであってもよい。
(第 2の実施の形態)
以下、 本発明の第 2の実施の形態について説明する。 第 2の実施の形態に係る プラズマ処理装置 1は、 図 1に示す第 1の実施の形態のプラズマ処理装置 1とほ ぼ同一の構成を有する。 図 6に、 第 2の実施の形態の上下電極近傍の拡大図を示 す。 なお、 図中、 図 1およぴ図 2と同一の部分には同一の符号を付し、 理解を容 易にするため説明を省略する。
第 2の実施の形態では、 電極板 2 0は、 第 1の実施の形態と同様の構成を有す る。 すなわち、 図 6に示すように、 電極板 2 0は凸型に形成され、 凸部 2 0 aの 露出面 (下面) と、 シールドリング 2 6の露出面 (下面) とが、 略同一の平面を 形成している。 また、 フォーカスリング 1 7の開口は、 ウェハ Wの径とほぼ同一 の径に設定されている。
サセプタ 1 0の露出面の径 (下部電極径 D 1 ) と、 電極板 2 0の露出面の径 (上部電極径 D 2 ) と、 の比は、 所定の値となるように構成されている。 ここで、 サセプタ 1 0の露出面とは、 実質的に下部電極として機能する面を指し、 下部電 極径 D 1は、 フォーカスリング 1 7の開口の径、 または、 ウェハ Wの径と、 ほぼ 同一である。 また、 電極板 2 0の露出面とは、 実質的に上部電極として機能する 面を指し、 上部電極径 D 2は、 凸部 2 0 aの主面の径、 または、 シールドリング 2 6の開口 2 6 aの径とほぼ同一である。 なお、 以下では、 下部電極径 D 1は、 ウェハ Wの径を指し、 上部電極径 D 2は、 凸部 2 0 aの主面の径を指すものとす る。
例えば、 下部電極径 D 1と上部電極径 D 2とは、 その比 (D 2 D 1 ) 力 1 . 2〜1 . 5、 特に、 1 . 2 5〜1 . 4 5であるように構成されている。 例えば、 下部電極径 D 1を 2 0 0 mmとした場合、 上部電極径 D 2は 2 6 0 mmとされる。 ここで、 ガス穴 1 9は、 電極板 2 0の凸部 2 0 aを貫通するように、 例えば、 同心円状にそれぞれ設けられている。 電極径の比 (D 2 /D 1 ) は、 ガス穴 1 9 の配置を変えないように変化させる。 従って、 電極径の比 (D 2 /D 1 ) を変え ることにより、 処理ガスの供給を一定としたままで、 上下の電極間に形成される R F電界を変化させることができる。
(実施例 2 )
電極径の比 (D 2/D 1 ) を変化させて成膜処理を行い、 ウェハ Wの表面にお める成膜速度の均一性を調べた結果を図 8に示す。 ここで、 成膜条件は、 S i H A/S i F 4/O2/A r = 2 2/2 8/2 5 0/5 0 ( s c c m) 、 圧力 1. 3 P a、 電極間ギャップ 2 0mmとした。 また、 成膜速度均一性は、 (成膜速度均一 性:%) = ( (最大成膜速度) + (最小成膜速度) ) / ( (平均成膜速度) X 2) X 1 0 0として算出した。
図 8に示す結果から、 電極径の比 (D 2/D 1) が 1. 2〜1. 5の範囲にあ るとき、 成膜速度均一性は 5%以下であり、 ゥヱハ Wの表面全体に膜が高い均一 性で形成されることがわかる。 また、 特に、 電極径の比が 1. 2 5〜1. 4 5の 範囲にあるとき一層高い均一性を示すことがわかる。
一方で、 上下の電極径が等しい場合 (D 2/D 1 = 1) 、 および、 上部電極径 D 2が大きすぎる場合 (D 2/D 1〉1. 5) の場合には、 ウェハ Wの表面全体 に均一性の高い成膜が行われておらず、 成膜速度均一性の値は高く、 処理に適し た RF電界が形成されていないことがわかる。
電極径の比が、 1. 1 (図 8の A) 、 1. 4 (B) および 1. 6 (C) の場合 について、 それぞれ、 成膜処理後のゥヱハ W表面の各地点における膜厚を調べた 結果を図 9に示す。 '
図 9より、 電極径の比が 1. 4 (B) の場合、 ウェハ Wの中心から端部にわた つてほぼ均一な厚さの膜が形成されており、 均一性の高い成膜が行われているこ とがわかる。 一方、 比が 1. 1 (A) の場合、 ウェハ Wの中心部で成膜速度が高 く、 端部では低い。 また、 比が 1. 6 (C) の場合には、 逆に、 端部で成膜速度 が高く、 中心部では低い。 これらのことから、 図 8に示す結果と同様に、 電極径 の比が 1. 2〜1. 5の範囲内にある場合に、 最適な: RF電界が形成され、 ゥヱ ハ Wの表面全体に均一性の高い成膜が可能であることがわかる。
上記第 2の実施の形態では、 凸型の電極板 2 0を用いている。 し力 し、 本発明 は、 凸型の電極板 2 0に限らず、 平坦な電極板 2 0にも適用可能である。 例えば、 上部電極径 D 2を、 電極板 2 0の露出面の径、 すなわち、 シールドリング 2 6の 開口の径として、 同様に上下の電極径の比を規定するようにしてもよい。
(第 3の実施の形態)
以下、 本発明の第 3の実施の形態について説明する。 第 3の実施の形態に係る プラズマ処理装置 1は、 図 1に示す第 1の実施の形態のプラズマ処理装置 1とほ ぼ同一の構成を有する。 図 1 0に、 第 3の実施の形態の上下電極近傍の拡大図を 示す。 なお、 図中、 図 1およぴ図 2と同一の部分には同一の符号を付し、 理解を 容易にするため、 説明を省略する。
電極板 2 0は凸型に形成され、 図 1 0に示すように、 凸部 2 0 aの露出面 (下 面) と、 シーノレドリング 2 6の露出面 (下面) とが、 略同一の平面を形成してい る。 凸部 2 0 aの露出面が、 実質的に R F電界を形成する。
第 3の実施の形態では、 電極板 2 0の露出面の面積を一定に保ちつつ、 処理ガ スの供給面積 (処理ガスの吹き出し径) を所望のように拡大可能な構成を有する。 すなわち、 ガス穴 1 9を、 電極板 2 Θだけでなく、 これを包囲するシールドリン グ 2 6にも設けた構成を有する。
図 1 0に示すように、 シールドリング 2 6は、 電極板 2 0の周囲に形成された ガス穴 2 6 bを有する。 電極支持体 2 2は、 内部に形成される拡散部 2 1と、 ガ ス穴 2 6 bと、 が連通するように設けられている。 これにより、 処理ガスは、 電 極板 2 0に設けられたガス穴 1 9と、 シールドリング 2 6のガス穴 2 6 bと、 力、 ら吹き出される。
ガス穴 2 6 bは、 電極板 2 0のガス穴 1 9と同様に配置されている。 電極板 2 0のガス穴 1 9は、 例えば、 ほぼ同心円状に設けられており、 シールドリング 2 6のガス穴 2 6 bは、 電極板 2 0のガス穴 1 9の外周に設けられる。
ここで、 ガス穴 1 9とガス穴 2 6 bとから構成される処理ガスの吹き出し径 (D 3 ) は、 電極板 2 0の露出面の径 (上部電極径 D 2 ) よりも大きく、 特に、 約 1 . 1倍よりも大きい (D 3 /D 1 > 1 . 1 ) ように構成されている。 ここで、 吹き出し径 D 3は、 例えば、 最外周のガス穴 2 6 bの径である。 例えば、 上部電 極径 D 2を 2 6 0 mmとしたとき、 ガス吹き出し径 D 3は、 D 2の約 1 . 1倍の 約 2 8 0 mmでとされる。
上記のように、 シールドリング 2 6にガス穴 2 6 bを設けることにより、 電極 板 2 0の露出面の面積を変えずに、 R F電界を変えることなく、 ガス供給面積の 拡大を図れる。 ガス供給面積を拡大させることにより、 ウェハ Wの表面全体によ り均等にガスを供給することができる。 従って、 ゥヱハ Wの表面に均一性の高い 処理が行える。
(実施例 3 )
処理ガスの吹き出し径 D 3を変化させて、 成膜速度おょぴウェハ Wの表面にお ける成膜速度の均一性を調べた結果を、 図 1 1に示す。 ここで、 上部電極径 D 2 は、 2 6 0 mmとした。 また、 成膜条件は、 S i t^Z S i F a/OaZA r = 2 2 / 2 8 / 2 5 0 / 5 0 ( s c c m) 、 圧力 1 . 3 P a、 電極間ギャップ 2 O mm とした。 また、 成膜速度均一性は、 (成膜速度均一性:%) = ( (最大成膜速 度) X (最小成膜速度) ) / ( (平均成膜速度) X 2 ) X I 0 0として算出した。 図 1 1より、 ガスの吹き出し径 D 3が大きいほど成膜速度は高いことがわかる。 また、 吹き出し径 D 3が約 2 4 0 mm以上 (上部電極径 D 2の約 0 . 8 5倍以上、 ウェハ径の約 1 . 2倍以上) で、 十分に高い成膜速度が得られることがわかる。 また、 ガスの吹き出し径 D 3が大きいほど成膜速度の均一性は高いことがわか る。 また、 吹き出し径 D 3が上部電極径 D 2よりも大きく、 特に、 2 8 0 mm以 上 (上部電極径 D 2の約 1 . 1倍以上、 ウェハ径の約 1 . 4倍以上) であれば、 成膜速度の均一性は、 安定した高い値を示す。
これらのことから、 ガスの吹き出し径 D 3が上部電極径 D 2よりも大きく、 特 に、 約 1 . 1倍以上であれば、 ウェハ Wの表面全体に均一性の高い処理を、 高い 成膜速度で行うことができる。
以上説明したように、 第 3の実施の形態では、 シールドリング 2 6にガス穴 2 6 bを設ける。 これにより、 上部電極として機能する電極板 2 0の露出面の面積 を変えて; F電界を変化させることなく、 処理ガスの吹き出し径 D 3を拡大する ことができる。 これにより、 成膜速度の向上、 および、 処理の面內均一性の向上 を図ることができる。
上記第 3の実施の形態では、 シールドリング 2 6に設けられたガス穴 2 6 bは、 電極支持体 2 2内の中空部と連通し、 電極板 2 0のガス穴 1 9と同一の処理ガス の供給を受けるものとした。 し力 し、 シールドリング 2 6のガス穴 2 6 bに接続 された独立なガス流路を設けるようしてもよい。 またこのとき、 シールドリング 2 6用のガス流路に流量制御装置等を設け、 電極板 2 0とシールドリング 2 6と におけるガス供給量をそれぞれ調節する構成としてもよい。
上記第 3の実施の形態では、 凸型の電極扳 2 0を用いるものとした。 し力 し、 凸型の電極板 2 0に限らず、 平坦な電極板 2 0に関しても同様の構成とすること ができる。 この場合、 電極板 2 0の露出面の径、 すなわち、 シールドリング 2 6 ' の開口の内径を上部電極径 (D 2 ) とし、 これに対してガス吹き出し径 (D 3 ) を決定するようにすればよい。
(第 4の実施の形態)
以下、 本発明の第 4の実施の形態にかかるブラ'ズマ処理装置 1について、 図面 を参照して説明する。 第 4の実施の形態に係るプラズマ処理装置 1は、 フッ素系 のクリーニングガスを用いて、 その内部をドライクリーニングする構成を有する。 第 4の実施の形態に係るプラズマ処理装置 1の構成を、 図 1 2に示す。 なお、 図 1 2中、 図 1と同一の構成については、 同一の符号を付し、 説明を省略する。 図 1 2に示すように、 チャンパ 2の側壁には、 クリ一二ングガス供給口 3 0が 形成されている。 クリーニングガス供給口 3 0は、 クリーニングガス供給源 3 1 およびキャリアガス源 3 2に接続されている。 クリーニングガス供給源 3 1から は、 フッ素系のクリーニングガス、 例えば、 三フッ化窒素 (N F 3) が供給される < また、 キャリアガス源 3 2からは、 アルゴン (A r ) 、 窒素等の不活性ガスが供 給される。
クリーニングガス供給口 3 0と、 クリーニングガス供給源 3 1およびキャリア ガス供給源 3 2と、 の間には、 ァクチベータ 3 3が設けられている。 ァクチべ一 タ 3 3は、 図示しないプラズマ発生機構を備え、 内部を通過するガスの、 例えば、 E C (Electron Cyclotron Resonance) プラズマ、 誘導結合型プラズマ (Indu ctive Coupled Plasma: I C P ) 等の高密度プラズマを発生させる。 了クチべ一 タ 3 3は、 プラズマ中のフッ素ラジカルを選択的に排気する。
クリーニングガスをチャンパ 2内に供給することにより、 チャンバ 2内に付着、 堆積したシリコン系物質等の汚れ物質は、 フッ素ラジカルにより分解され、 排気 とともに除去される。 このように、 クリーニングガスは、 チャンパ 2の外部でプ ラズマ化され、 いわゆる、 リモートプラズマクリーニングが行われる。
第 4の実施の形態において、 電極板 2 0は、 ケィ素よりもフッ素ラジカルに耐 性のある材料から構成されている。 すなわち、 電極板 2 0は、 アルマイト処理さ れたアルミニウム、 炭化ケィ素、 カーボン、 アルミニウム、 アルミナ、 石英アル ミナ溶射等から構成されている。 電極板 2 0を上記材料から構成することにより、 フッ素ガスを用いたクリーニングによる、 電極板 2 0の劣化を抑制することがで きる。 これにより、 電極板 2 0の劣化による成膜均一性の低下、 および、 電極板 2 0の交換頻度の増大による生産性の低下は抑制される。
次に、 プラズマ処理装置 1の成膜処理及ぴクリーニング時の動作に関して、 図 1 2を参照して説明する。
まず、 ゥェハ Wをチヤンバ 2內へ搬入し、 サセプタ 1 0上に載置する。 次いで、 S i F 4、 S i H4、 02および A rからなる処理ガスをチャンバ 2内に供給し、 R F電力の印加により、 処理ガスのプラズマを生成する。 発生したプラズマにより、 ウェハ W上に S i O F膜が成膜される。 所定の厚さの膜がウェハ W上に成膜され、 ウェハ Wはチャンバ 2から搬出される。 上述の動作を繰り返してウェハ Wを連続 的に処理する。 このとき、 所定枚数のゥヱハ Wを処理する毎に、 チャンパ 2のク リーユングを行う。
クリーニング時、 まず、 ダミーウェハをチャンパ 2内に搬入してサセプタ 1 0 上に載置する。 次いで、 N F 3および A rの供給を開始し、 ァクチベータ 3 3を作 動させる。 ァクチベータ 3 3は処理ガスのプラズマを生成し、 チャンパ 2内にフ ッ素ラジカルを主成分として含むガスを供給する。 クリーニングガスにより、 例 えば、 チャンバ 2内に付着した S i O Fは、 フッ素ラジカルと反応して、 四フッ 化シラン (S i F 4) 等に分解され、 除去される。 このようにして、 チャンバ 2内 の堆積物等は除去され、 クリーニングが進行する。
その後、 時間、 清净度等の所定の終了条件に達した後、 ァクチベータ 3 3をォ フとし、 ガスの供給を停止する。 以上でクリーニングは終了し、 再び成膜処理を 開始する。
(実施例 4 )
各種材料から構成された電極板 2 0を用い、 上記クリーユングを行ったときの、 電極板 20のエッチングレートを調べた。 材料は、 シリコン、 酸化シリコン、 窒 ィ匕シリコン、 アルマイ ト処理されたアルミニウム、 炭化ケィ素、 カーボン、 アル ミニゥム、 アルミナおよび石英アルミナ溶射を用いた。 その結果を図 13に示す。 なお、 結果は、 シリコンのエッチングレートを 100としたときの比として表し た。 また、 タリ一二ング条件は、 NFa/A r = 1 500 s c c m/ 1 500 s c c m、 圧力 300 P a、 電極間ギヤップ 48 mm、 プラズマ供給パワー約 2 k W である。
図 13より、 アルマイト処理されたアルミニウム、 炭化ケィ素、 カーボン、 ァ ルミユウム、 アルミナおよび石英アルミナ溶射のエッチングレートは、 シリコン、 酸化シリコンおよぴ窒化シリコンのエッチングレートよりも低いことがわかる。 特に、 シリコンのエッチングレートと比べて半分以下 (50%以下) となってい る。 これは、 アルマイ ト処理されたアルミニウム、 炭化ケィ素、 カーボン、 アル ミニゥム、 アルミナおよぴ石英アルミナ溶射からなる電極板 20は、 フッ素系ガ スによりエッチングされにくく、 腐食されにくいことを示す。
また、 図 1 3には、 リモートプラズマクリーニングではなく、 その場 ( i n s i t u) プラズマクリーニングを行った場合の結果も示している。 その場プラ ズマクリーニングでは、 チャンバ 2内に NF 3および A rを導入し、 チャンバ 2の 内部でクリーニングガスのプラズマを生成する。 また、 タリーユング条件は、 N Fa/A r = 100 s c c m/ 0 s c c m、 圧力 65 P a、 電極間ギヤップ 48 m m、 上部電極供給パワー 500Wである。
図 1 3に示すように、 その場プラズマクリーニングにおいても、 リモートプラ ズマクリーニングの場合と同様の傾向が見られる。 すなわち、 シリコン、 酸化シ リコンおよび窒化シリコンからなる電極板 20を用いた場合のエッチングレート 比が 20%近くであるのに対し、 アルマイト処理されたアルミニウム、 炭化ケィ 素、 カーボン、 アルミニウム、 アルミナおよび石英アルミナ溶射を用いた電極板 20のエッチングレート比は、 約 10%以下となっている。 このように、 炭化ケ ィ素等の耐プラズマ性材料からなる電極板 20は、 シリコン等からなる電極板 2 0よりもリモートおよびその場プラズマクリーニングによって劣化しにくレ、。 各種材料からなる電極板 20を用い、 クリーニングを挟んで成膜処理を連続し て行い、 各成膜処理における成膜速度を調べた結果を、 図 1 4に示す。 電極板 2
0は、 アルマイ ト、 炭化ケィ素、 カーボン、 アルミニウム、 アルミナ、 石英アル ミナ溶射又はシリコンのいずれかから構成した。 また、 成膜処理は、 ウェハ Wに 所定の厚さの膜が形成されるよう行い、 ウェハ Wを 1 0 0枚処理するのに要する 時間から、 成膜速度を算出した。 クリーニングは、 2 5枚のウェハ Wを処理する 毎に行った。
図 1 4からわかるように、 シリコンからなる電極板 2 0を用いた場合、 成膜速 度は、 処理の最初は、 他の材料と比べて非常に高い。 しかし、 成膜速度は、 その 後大きく低下し、 他の材料よりも低くなつている。
—方、 シリコン以外の材料を用いた場合には、 成膜速度は、 それほど大きく減 少せず、 ウェハ Wを 1 0 0 0枚処理した後でも、 比較的一定である。 特に、 炭化 ケィ素からなる電極板 2 0を用いた場合には、 最も高い成膜速度が維持されてい る。 このことから、 アルマイ ト、 炭化ケィ素、 カーボン、 アルミニウム、 アルミ ナおよび石英アルミナ溶射、 特に、 炭化ケィ素からなる電極板 2 0は、 ドライク リーエングによって劣化しにくいことがわかる。 このように、 炭化ケィ素等のプ ラズマに耐性を有する材料からなる電極板 2 0は、 フッ素を含むクリーニングガ スによってエッチングされ Jこくく、 電極板 2 0の交換頻度が少ないなど、 高い生 産"生を実現する。 また、 このとき、 エッチングされにくいことから、 電極板 2 0 の形状も長期にわたって初期の形状に保持され、 長期にわたって、 均一性の高い 処理が行われる。
上記第 4の実施の形態では、 電極板 2 0をフッ素ラジカル耐性のある材料から 構成した。 しかし、 電極板 2 0に限らず、 クリーニング時にフッ素ラジカルに曝 される電極周辺部材を上記材料から構成するようにしてもよい。 例えば、 フォー カスリング 1 7を上記材料から構成するようにしてもよい。 このように、 電極周 辺部材をプラズマ耐性材料から構成することにより、 部材の劣化を抑えて高い生 産性を実現できる。
上記第 4の実施の形態では、 クリーニング種としてフッ素系ガス、 特に、 N F 3を用いている。 しかし、 他のハロゲンガス、 例えば、 塩素系ガスを用いるようし てもよい。 また、 S i系膜種に対して用いられるクリーニングガスとしては、 N F3の他に、 F2、 CF4、 C2F6、 S F6等のフッ素系ガスを使用することができ る。 また、 Arの他に、 Ne等の他の不活性ガスを用いてもよい。
また、 上記ガスに、 O2、 O3、 C〇、 C02、 N2〇等の酸素含有物質を添加し たクリーニングガスを用いてもよい。 特に、 電極板 20の材料として炭化ケィ素 (S i C) を用いる場合に有効である。 すなわち、 電極板 20のエッチングによ つて、 チャンパ 2内には炭素 (C) を含む物質が付着する。 炭素含有物質は、 一 般に、 ハロゲン系ガスによってエッチングされにくい一方、 酸素含有物質のガス により、 co2等に容易に分解される。
NF3と Arとを含むクリーユングガスに、 酸素含有物質を添加してタリーニン グを行ったときのクリーニング速度を調べた結果を、 図 15に示す。 図 1 5では、 S i C膜を成膜する処理装置の内部を、 02、 CO、 C〇2、 N2〇を添加したクリ 一ユングガスでクリーニングした場合の結果を示す。 また、 クリーユングは、 リ モートプラズマの他に、 その場プラズマ、 および、 リモートプラズマとその場プ ラズマの組み合わせで行った。 ここで、 リモートプラズマとその場プラズマの組 み合わせとは、 クリーニングガスをチャンパ 2の外部でプラズマ化した後、 チヤ ンパ 2内で再ぴプラズマ化してクリーニングする。
また、 同様に、 F2と A rとを含むクリーニングガスに酸素含有物質を添加した 場合の結果を図 16に示す。
リモートプラズマにおけるクリ一ユング条件は、 NF3/O2/A r = 1 500 s e c m/ 500 s c c m/ 1500 s c cm、 圧力 300 P a、 電極間ギヤッ プ 48mm、 プラズマ供給パワー約 2 kWである。 また、 その場プラズマにおけ るタリ一二ング条件は、 NF3/〇2ノ A r = 100 s c c m/50 s c c m/0 s c c m、 圧力 65 P a、 電極間ギヤップ 48 mm、 上部電極供給パワー 500 Wである。 また、 リモートプラズマ +その場プラズマにおけるクリーニング条件 は、 NF3/O2/A r = 1000 s c c m/ 500 s c c m/ 15 O 0 s c cm、 圧力 300 P a、 電極間ギャップ 48 mm、 プラズマ供給パワー約 2 kW、 上部 電極供給パワー 50 OWである。
図 1 5および図 16から、 酸素含有物質を添加したクリーニングガスを用いた 場合には、 添加しない場合よりも、 高いクリーニング速度が得られることがわか る。 これは、 フッ素ラジカルによって除去されにくい炭素 (C) を含有する堆積 物が、 酸素含有物質から発生する酸素ラジカルによって CO等として容易に除去 されることによる。 このように、 クリーニングガスに酸素含有物質を添加するこ とにより、 クリーニング速度を高めることができる。
上記第 1〜第 4の実施の形態では、 平行平板型プラズマ処理装置 1でウエノ、に S i OF膜を成膜する場合を例として説明した。 しかし、 膜種は、 上記の例に限 らず、 他のシリコン系膜、 例えば、 S i〇2、 S i N、 S i CN、 S i CH、 S i 〇CH等であってもよい。 また、 用いるガス種も、 膜種に合わせて、 種々のもの を用いることができる。
さらに、 本発明は、 成膜装置に限らず、 エッチング装置、 熱処理装置等、 ドラ イクリーユングが行われるいかなるプラズマ処理装置にも適用可能である。 例え ば、 CVD処理に限らず、 エッチング処理等、 種々のプラズマ処理に用いること ができる。 また、 プラズマ発生方法に関しても、 平行平板型に限らず、 マグネト ロン型、 誘導結合型、 ECR (Electron Cyclotron Resonance) 型等、 いかなる ものであってもよい。 さらにまた、 被処理体としては、 半導体ウェハに限らず、 液晶表示装置用のガラス基板等であってもよい。 産業上の利用可能性
本発明は、 半導体装置、 液晶表示装置等の電子デバイスの製造に好適に用いる ことができる。
本発明は、 2001年 1月 22日に出願された特願 2001— 13572号、 2001年 1月 22日に出願された特願 2001-13574号おょぴ 2001 年 8月 7日に出願された特願 2001-239720号に基づき、 その明細書、 特許請求の範囲、 図面おょぴ要約書を含む。 上記出願における開示は、 本明細書 中にその全体が引例として含まれる。

Claims

請求の範囲
1. チャンバ (2) と、
前記チャンパ (2) 内に処理用のガスを供給するガス穴 (1 9) を備え、 凸部 (20 a) を有する電極板 (20) と、
前記凸部 (20 a) と嵌合する開口 (26 a) を有し、 前記凸部 (20 a) と 前記開口 (26 a) とが嵌合した状態で前記電極板 (20) の周縁部を覆う環状 の板部材から構成されたシールドリング (26) と、
を備える、 ことを特徴とするプラズマ処理装置 (1) 。
2. 前記電極板 (20) の凸部 (20 a) は、 前記開口 (26 a) と嵌合した 状態で、 前記シールドリング (26) の主面と実質的に平坦な面を形成する、 こ とを特徴とする請求項 1に記載のプラズマ処理装置 (1) 。
3. 一面上に被処理体が载置される第 1の電極板 (10) と、
高周波電源に接続され、 前記一面と平行に対向し、 前記一面の径の 1. 2倍〜 1. 5倍の径を有する対向面を備える第 2の電極板 (20) と、
を備える、 ことを特徴とするプラズマ処理装置 (1) 。
4. さらに、 前記対向面の径と略同一の径を有する開口 (26 a) が形成され、 前記開口 (26 a) の内側に前記対向面が露出するように、 前記第 2の電極板
(20) の周縁部を覆うシールドリング (26) を備える、 ことを特徴とする請 求項 3に記載のプラズマ処理装置 (1) 。
5. 前記第 2の電極板 (20) は、 前記対向面を主面とし、 前記開口 (26 a) と嵌合する凸部 (20 a) を備える、 ことを特徴とする請求項 4に記載のプ ラズマ処理装置 (1) 。
6. チャンパ (2) と、
高周波電源 (24) に接続され、 前記チャンパ (2) 内に処理用のガスを供給 する第 1のガス穴 (19) を備える電極板 (20) と、
前記チャンパ (2) 内に前記ガスを供給する第 2のガス穴 (26 b) を備え、 開口 (26 a) を有し、 前記開口 (26 a) の内側に前記電極板 (20) が露出 するように前記電極板 (20) の周縁を覆うシールドリング (26) と、 を備える、 ことを特徴とするプラズマ処理装置 (1) 。
7. 前記第 2のガス穴 (26 b) は前記開口 (26 a) の周囲に環状に配置さ れ、 前記第 2のガス穴 (26 b) の配置された最大径は、 前記開口 (26 a) の 径の約 1. 1倍である、 ことを特徴とする請求項 6に記載のプラズマ処理装置 (1) 。
8. 前記電極板 (20) は、 前記露出面を主面とし、 前記開口 (26 a) と嵌 合する凸部 (20 a) を備え、 前記凸部 (20 a) の主面は、 前記シールドリン グ (26) と実質的に平坦な面を形成する、 ことを特徴とする請求項 7に記載の プラズマ処理装置 (1) 。
9. 内部で被処理体に所定のプラズマ処理が施されるチャンパ (2) と、 ハロゲンを含むクリーニングガスを前記チャンパ (2) 内に供給するクリー- ングガス供給口 (30) と、
前記チャンパ (2) 内に処理用のガスを供給するガス穴 (1 9) を備え、 ハロ ゲンラジカルに耐性のある材料を含んで構成される電極板 (20) と、
を備える、 ことを特徴とするプラズマ処理装置 (1) 。
10. 前記電極板 (20) は、 ケィ素よりもハロゲンラジカルに耐性のある材 料を含んで構成される、 ことを特徴とする請求項 9に記載のプラズマ処理装置
(1) 。
1 1. 前記クリーニングガスは、 フッ素を含む物質から構成され、 前記ハロゲ ンラジカルは、 フッ素ラジカルから構成される、 ことを特徴とする請求項 9に記 載のプラズマ処理装置 (1) 。
12. 前記ハロゲンラジカルに耐性のある材料は、 炭化ケィ素、 カーボン、 ァ ルミ-ゥム、 アルマイト、 アルミナ、 及ぴ、 石英アルミナ溶射からなる群から選 択される、 ことを特徴とする請求項 9に記載のプラズマ処理装置 (1) 。
1 3. 前記電極板 (20) と対向して設けられ、 前記被処理体の戴置される戴 置台 (10) と、
前記戴置台 (10) 上に戴置された前記被処理体の外周を囲むよう設けられ、 前記ハロゲンラジカルに耐性のある材料から構成されるリング状部材 (1 7) と、 をさらに備える、 ことを特徴とする請求項 9に記載のプラズマ処理装置 (1) 。
14. 前記クリーニングガスは、 前記チャンパ (2) 内でプラズマとされて前 記ハロゲンラジカルを生成する、 ことを特徴とする請求項 9に記載のプラズマ処 理装置 (1) 。
• 1 5. さらに、 前記チャンパ (2) の外部に設けられ、 前記クリーニングガス 供給口に接続されたァクチベータ (33) を備え、
前記ァクチベータ (33) は、 前記クリーニングガスを活性化して前記ハロゲ ンラジカルを生成し、 発生した前記ハロゲンラジカルを前記チャンパ (2) 2内 に供給する、 ことを特徴とする請求項 9に記載のプラズマ処理装置 (1) 。
16. 前記クリーニングガスは、 酸素を含む物質を含んで構成される、 ことを 特徴とする請求項 9に記載のプラズマ処理装置 (1) 。
1 7. 内部でのプラズマの生成により、 被処理体に所定の処理が施されるチヤ ンパ (2) と、 一面上に被処理体が載置される第 1の電極板 (10) と、 高周波 電源 (24) に接続され、 前記一面と平行に対向する対向面を有する第 2の電極 板 (20) と、 を備えたプラズマ処理装置 (1) を用いたプラズマ処理方法であ つて、
前記対向面の径を、 前記前記一面の径の 1. 2倍〜 1. 5倍として、 前記第 2 の電極に高周波電力を供給する工程を含む、 ことを特徴とするブラズマ処理方法。 18. 内部でのプラズマの生成により、 被処理体に所定の処理が施されるチヤ ンパ (2) と、 前記チャンパ (2) 内に処理用のガスを供給する第 1のガス穴 (1 9) を備え、 高周波電源 (24) に接続される電極板 (20) と、 前記チヤ ンバ (2) 内に前記ガスを供給する第 2のガス穴 (26 b) を備え、 開口 (26 a) を有し、 前記開口 (26 a) の内側に前記電極板 (20) が露出するように 前記電極板 (20) の周縁を覆うシールドリング (26) と、 を備えるプラズマ 処理装置 (1) を用いたプラズマ処理方法であって、
前記ガスを前記第 1のガス穴 (19) と、 前記第 2のガス穴 (26 b) と、 か ら前記チャンバ (2) 内に噴出する工程を含む、 ことを特徴とするプラズマ処理 方法。
PCT/JP2002/000428 2001-01-22 2002-01-22 Dispositif et procede de traitement au plasma WO2002058125A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037009600A KR100564168B1 (ko) 2001-01-22 2002-01-22 플라즈마 처리 장치 및 플라즈마 처리 방법
US10/466,873 US20040127033A1 (en) 2001-01-22 2002-01-22 Plasma processing device and plasma processing method
JP2002558317A JP3946640B2 (ja) 2001-01-22 2002-01-22 プラズマ処理装置およびプラズマ処理方法
US11/656,379 US8394231B2 (en) 2001-01-22 2007-01-23 Plasma process device and plasma process method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001013572 2001-01-22
JP2001-13572 2001-01-22
JP2001-13574 2001-01-22
JP2001013574 2001-01-22
JP2001239720 2001-08-07
JP2001-239720 2001-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/656,379 Division US8394231B2 (en) 2001-01-22 2007-01-23 Plasma process device and plasma process method

Publications (1)

Publication Number Publication Date
WO2002058125A1 true WO2002058125A1 (fr) 2002-07-25

Family

ID=27345786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000428 WO2002058125A1 (fr) 2001-01-22 2002-01-22 Dispositif et procede de traitement au plasma

Country Status (4)

Country Link
US (2) US20040127033A1 (ja)
JP (1) JP3946640B2 (ja)
KR (1) KR100564168B1 (ja)
WO (1) WO2002058125A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167019A (ja) * 2003-12-03 2005-06-23 Sharp Corp トランジスタおよびそのゲート絶縁膜の成膜に用いるcvd装置
JP2006086325A (ja) * 2004-09-16 2006-03-30 Tokyo Electron Ltd クリーニングの終点検出方法
JP2006169562A (ja) * 2004-12-14 2006-06-29 Shinko Seiki Co Ltd 表面処理装置
JP2008526024A (ja) * 2004-12-23 2008-07-17 ラム リサーチ コーポレーション プラズマ処理装置用のシリコン電極及び炭化珪素電極の表面から黒色シリコン及び黒色炭化珪素を除去する方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794661B1 (ko) * 2006-08-18 2008-01-14 삼성전자주식회사 기판 처리 장치 및 그 장치의 세정 방법
JP5043394B2 (ja) * 2006-09-29 2012-10-10 東京エレクトロン株式会社 蒸着装置およびその運転方法
JP5348848B2 (ja) * 2007-03-28 2013-11-20 東京エレクトロン株式会社 プラズマ処理装置
KR101380861B1 (ko) * 2007-11-09 2014-04-03 참엔지니어링(주) 플라즈마 에칭 챔버
US8291857B2 (en) 2008-07-03 2012-10-23 Applied Materials, Inc. Apparatuses and methods for atomic layer deposition
JP5697389B2 (ja) * 2010-09-27 2015-04-08 東京エレクトロン株式会社 プラズマエッチング用の電極板及びプラズマエッチング処理装置
US20120083129A1 (en) * 2010-10-05 2012-04-05 Skyworks Solutions, Inc. Apparatus and methods for focusing plasma
US9478428B2 (en) 2010-10-05 2016-10-25 Skyworks Solutions, Inc. Apparatus and methods for shielding a plasma etcher electrode
US9082593B2 (en) * 2011-03-31 2015-07-14 Tokyo Electron Limited Electrode having gas discharge function and plasma processing apparatus
US8944003B2 (en) * 2012-11-16 2015-02-03 Taiwan Semiconductor Manufacturing Company, Ltd. Remote plasma system and method
WO2017159838A1 (ja) * 2016-03-17 2017-09-21 株式会社Jcu プラズマ生成装置
JP6609535B2 (ja) * 2016-09-21 2019-11-20 株式会社日立ハイテクノロジーズ プラズマ処理方法
CN114059044A (zh) * 2021-11-09 2022-02-18 长江存储科技有限责任公司 一种膜层生长设备和膜层生长方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624499A (en) * 1995-04-28 1997-04-29 Anelva Corporation CVD apparatus
JPH09134910A (ja) * 1995-11-10 1997-05-20 Hitachi Ltd プラズマ化学気相成長装置および半導体装置の製造方法
JPH1050663A (ja) * 1996-07-29 1998-02-20 Sumitomo Metal Ind Ltd 電極の製造方法およびこの電極を備えるプラズマ処理装置
JPH1143781A (ja) * 1997-07-22 1999-02-16 Konica Corp 電極、表面処理方法及び表面処理装置
JPH11251093A (ja) * 1998-02-27 1999-09-17 Kyocera Corp プラズマ発生用電極
JPH11293468A (ja) * 1998-04-07 1999-10-26 Nissin Electric Co Ltd プラズマcvd装置およびそのクリーニング方法
WO1999065057A1 (en) * 1998-06-12 1999-12-16 Applied Materials, Inc. Gas distribution system
JP2000200782A (ja) * 1998-10-26 2000-07-18 Hitachi Ltd 半導体製造装置のクリ―ニング方法
JP2000260721A (ja) * 1999-01-08 2000-09-22 Sony Corp 化学的気相成長装置、化学的気相成長方法および化学的気相成長装置のクリーニング方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755886A (en) * 1986-12-19 1998-05-26 Applied Materials, Inc. Apparatus for preventing deposition gases from contacting a selected region of a substrate during deposition processing
US5449410A (en) * 1993-07-28 1995-09-12 Applied Materials, Inc. Plasma processing apparatus
US5680013A (en) * 1994-03-15 1997-10-21 Applied Materials, Inc. Ceramic protection for heated metal surfaces of plasma processing chamber exposed to chemically aggressive gaseous environment therein and method of protecting such heated metal surfaces
EP0854210B1 (en) * 1996-12-19 2002-03-27 Toshiba Ceramics Co., Ltd. Vapor deposition apparatus for forming thin film
JPH11350118A (ja) 1998-06-12 1999-12-21 Applied Materials Inc 成膜装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624499A (en) * 1995-04-28 1997-04-29 Anelva Corporation CVD apparatus
JPH09134910A (ja) * 1995-11-10 1997-05-20 Hitachi Ltd プラズマ化学気相成長装置および半導体装置の製造方法
JPH1050663A (ja) * 1996-07-29 1998-02-20 Sumitomo Metal Ind Ltd 電極の製造方法およびこの電極を備えるプラズマ処理装置
JPH1143781A (ja) * 1997-07-22 1999-02-16 Konica Corp 電極、表面処理方法及び表面処理装置
JPH11251093A (ja) * 1998-02-27 1999-09-17 Kyocera Corp プラズマ発生用電極
JPH11293468A (ja) * 1998-04-07 1999-10-26 Nissin Electric Co Ltd プラズマcvd装置およびそのクリーニング方法
WO1999065057A1 (en) * 1998-06-12 1999-12-16 Applied Materials, Inc. Gas distribution system
JP2000200782A (ja) * 1998-10-26 2000-07-18 Hitachi Ltd 半導体製造装置のクリ―ニング方法
JP2000260721A (ja) * 1999-01-08 2000-09-22 Sony Corp 化学的気相成長装置、化学的気相成長方法および化学的気相成長装置のクリーニング方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167019A (ja) * 2003-12-03 2005-06-23 Sharp Corp トランジスタおよびそのゲート絶縁膜の成膜に用いるcvd装置
JP2006086325A (ja) * 2004-09-16 2006-03-30 Tokyo Electron Ltd クリーニングの終点検出方法
JP2006169562A (ja) * 2004-12-14 2006-06-29 Shinko Seiki Co Ltd 表面処理装置
JP4675617B2 (ja) * 2004-12-14 2011-04-27 神港精機株式会社 表面処理装置
JP2008526024A (ja) * 2004-12-23 2008-07-17 ラム リサーチ コーポレーション プラズマ処理装置用のシリコン電極及び炭化珪素電極の表面から黒色シリコン及び黒色炭化珪素を除去する方法
KR101191697B1 (ko) * 2004-12-23 2012-10-16 램 리써치 코포레이션 플라즈마 처리 장치용 실리콘 및 실리콘 카바이드 전극의표면으로부터 블랙 실리콘 및 블랙 실리콘 카바이드를제거하는 방법

Also Published As

Publication number Publication date
JP3946640B2 (ja) 2007-07-18
US20040127033A1 (en) 2004-07-01
KR20030074721A (ko) 2003-09-19
US8394231B2 (en) 2013-03-12
US20070131171A1 (en) 2007-06-14
JPWO2002058125A1 (ja) 2004-06-17
KR100564168B1 (ko) 2006-03-27

Similar Documents

Publication Publication Date Title
US8394231B2 (en) Plasma process device and plasma process method
JP5274229B2 (ja) プラズマcvd装置及びその方法
JP4572100B2 (ja) プラズマ処理装置
US8128831B2 (en) Plasma etching method and computer-readable storage medium
JP4394073B2 (ja) 処理ガス導入機構およびプラズマ処理装置
JP2009071292A (ja) プラズマ処理装置、プラズマ処理方法及び記憶媒体
US20070227666A1 (en) Plasma processing apparatus
JP2007266529A (ja) プラズマ処理装置及びプラズマ処理方法
KR20170028849A (ko) 포커스 링 및 기판 처리 장치
US20090314435A1 (en) Plasma processing unit
TWI725034B (zh) 電漿處理方法
US10553409B2 (en) Method of cleaning plasma processing apparatus
JP2001504160A (ja) 基板ホルダ上へのポリマーの堆積を削減する装置
US8034213B2 (en) Plasma processing apparatus and plasma processing method
KR20180124773A (ko) 플라즈마 처리 장치의 세정 방법
JP2002198356A (ja) プラズマ処理装置
JP2007184611A (ja) プラズマ処理装置およびプラズマ処理方法
JP5893260B2 (ja) プラズマ処理装置および処理方法
KR20220017961A (ko) 정전 척을 구비하는 기판 처리 시스템
JP7285152B2 (ja) プラズマ処理装置
KR100725614B1 (ko) 플라즈마 처리 장치
KR20210046150A (ko) 기판 처리 시스템 및 방법
JP5064708B2 (ja) プラズマ処理装置
JP2004047500A (ja) プラズマ処理装置およびその初期化方法
KR20220044705A (ko) 샤워 헤드 유닛 및 이를 구비하는 기판 처리 시스템

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037009600

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037009600

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10466873

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2002558317

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 1020037009600

Country of ref document: KR