WO2002056012A1 - Element d'analyse par fluorescence au moyen d'un nanopuits metallique et procede de production de cet element - Google Patents

Element d'analyse par fluorescence au moyen d'un nanopuits metallique et procede de production de cet element Download PDF

Info

Publication number
WO2002056012A1
WO2002056012A1 PCT/JP2002/000026 JP0200026W WO02056012A1 WO 2002056012 A1 WO2002056012 A1 WO 2002056012A1 JP 0200026 W JP0200026 W JP 0200026W WO 02056012 A1 WO02056012 A1 WO 02056012A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
nanowell
dna
thin film
fluorescent
Prior art date
Application number
PCT/JP2002/000026
Other languages
English (en)
French (fr)
Inventor
Akito Ishida
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to EP02715712A priority Critical patent/EP1353179B1/en
Priority to DE60222378T priority patent/DE60222378T2/de
Priority to US10/415,246 priority patent/US20040029152A1/en
Publication of WO2002056012A1 publication Critical patent/WO2002056012A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • the present invention relates to a device for fluorescence analysis using metal nanoparticles and a method for producing the same.
  • the present invention relates to a fluorescent analysis element used for biochemistry, clinical use, environmental analysis, and the like, and a method for producing the same. Background art
  • the target antigen or DNA is detected or quantified using the strong binding interaction between the antigen and the antibody or complementary DNA.
  • fluorescence analysis which detects the binding of both by fluorescence, has been applied in a wide range of applications, from biochemical research to clinical analysis, because of its high sensitivity.
  • the method that goes through steps (1) and (2) is the simplest method, and it is usual to improve the sensitivity by adopting a complicated procedure. Several powerful procedures have been established to improve sensitivity. Also, it is usually used as a substrate for analysis. 96-: A 1536-well multi-well plate is used. The series of processes in the wells, from quantification to quantification, are fully automated, and the analysis operation is made high-throughput. Particularly in gene analysis, DNA chips in which DNA is spot-shaped at about 200 ⁇ and integrated and immobilized on a substrate have begun to be used, and excellent high throughput has been achieved.
  • the present invention has been devised to solve such a problem, and by using a hole having a diameter of several hundred nm formed in a metal thin film of several hundred nm to several ⁇ as a nanojewel, It is an object of the present invention to provide a high-performance fluorescence analysis element that simultaneously satisfies the requirements of (1) to (c).
  • the fluorescence analysis element of the present invention comprises a metal thin film formed on a substrate surface, a nanowell formed on the metal thin film, and an active group or detection DNA modified and immobilized on the bottom surface of the nanowell.
  • the fluorescent reagent bound to the target DNA hybridized to the antigen bound to the active group or the detection DNA is caused to emit fluorescence by photoexcitation.
  • This element for fluorescence analysis is manufactured by depositing a metal thin film on a substrate treated with a silane coupling reagent and modifying and fixing an active group or detection DNA on the bottom surface of the nanowell of the metal thin film.
  • Nanowells can be formed by the method of vapor deposition of Au, Ag, etc. by the projection method, electron beam lithography, photolithography, direct writing by laser, and the like.
  • Fig. 1 is a flow chart for fabricating metal nanoparticles on a metal thin film on a substrate.
  • Figure 2 shows the flow chart for modifying and immobilizing antibodies on the bottom surface of a metal nanowell.
  • Figure 3A shows the fluorescence spectrum of rhodamine 6G bound to an anti-rhodamine antibody.
  • Figure 3B shows the effect of rhodamine 6G on fluorescence intensity.
  • Figure 4 shows a flow chart for modifying and immobilizing avidin on metal nano-wells.
  • Figure 5A is a diagram illustrating the biotinylation of detection DNA.
  • Figure 5B is an illustration of the binding to avidin on a metal nanowell
  • Fig. 6 is a diagram illustrating gene analysis by DNA hybridization.
  • Fig. 7 is a diagram illustrating a fluorescent spectrum generated by modifying hybridized DNA with a fluorescent reagent and generating light by light excitation. Best form
  • the fluorescence analysis element forms a metal thin film having a thickness of several hundred nm to several ⁇ on a substrate surface such as quartz, glass, sapphire, surface-oxidized silicon, a diamond thin film, or a metal plate. A hole with a diameter of several hundred nanometers is used for the nanowell.
  • a thin film of Au, Ag or the like is preferable because various proteins and nucleic acids can be easily surface-modified. Thin films of Au, Ag, etc. are also suitable for immunology and gene analysis, and the detection reagents and samples are immobilized extremely effectively by the nanopores (hereinafter referred to as “metal nanopores”) generated in the metal thin film. .
  • the metal nano-well has a capillary force that sucks the liquid droplets in contact with the surface of the thin nanometer into the nanowell.
  • Metal nanoparticles on the surface of the thin film are also effective in causing the fluorescent reagent to efficiently emit fluorescence.
  • Conventional fluorescence analysis which improves excitation efficiency by increasing the transparency of the substrate and the intensity of the light source as much as possible, raises the problem of applicability as the sample volume decreases.
  • the excitation efficiency is improved by a principle different from that of the conventional fluorescence analysis. It is presumed that the metal thin film improves the excitation efficiency by the following mechanism.
  • Au having a smooth surface when the light irradiating the metal thin film such as A g, most of the irradiation light resulting in loss by reflection or transmission.
  • the energy of the irradiated light is several hundred times the electric field It is converted into a strong surface plasmon electric field, which is enhanced and strongly localized inside the metal nanowell.
  • the surface plasmon electric field has properties similar to light and excites a fluorescent sample. In this regard, it can be said that metal nanoparticles function as an antenna that concentrates the energy of the excitation light inside.
  • the sample encapsulated inside the nanowell is exposed to the enhanced plasmon electric field and is excited by receiving energy.
  • the fluorescent sample is excited with much higher efficiency than the conventional excitation method that directly irradiates the sample with light.
  • Metal nanoparticles are also effective in improving detection efficiency. Both the detection reagent and the sample are liquids whose refractive indices are almost equal to that of water. When the ratio (aspect ratio) between the diameter of the metal nanoparticle and the film thickness of the metal thin film is increased, the metal nanohole becomes a waveguide. Function. Therefore, the fluorescence generated from the sample inside the nanometer is effectively collected and efficiently reaches the detector from the opening of the metal nanohole.
  • the projection method was used to make holes in the metal thin film to produce metal nano-gauges, but metal nano-gauges can also be formed by electron beam lithography, photolithography, direct drawing using a laser, or the like.
  • an object is placed between a deposition source and a substrate, and a metal thin film on which the shape of the object is projected is formed.
  • a silane coupling reagent having a thiol group at the end
  • the OH group and the thiol group on the quartz surface undergo a substitution reaction, and a monomolecular film having a thiol group is formed on the quartz substrate 1. Formed on the surface ( a ).
  • the present invention is not limited to this, and there is no restriction on the usable silane coupling reagent as long as it has a thiol group at the terminal.
  • the monomolecular film having a thiol group firmly fixes the metal thin film formed by vapor deposition in a later step to the quartz substrate 1 and also functions as an active site when the bottom surface of the metal nanogel is molecularly modified.
  • a diluent containing polystyrene latex spheres having a diameter of 480 nm was applied onto the surface-treated quartz substrate 1, and the solvent of the diluent was gradually evaporated. Due to the evaporation of the solvent, the polystyrene latex spheres remained in a dispersed state on the surface of the quartz substrate 1.
  • Au was deposited on this quartz substrate 1 to form a metal thin film 2 having a thickness of 70 nm.
  • an Au thin film was formed, but Ag, Cu, A1, etc. can also be used as a thin film material as long as the metal induces surface plasmon resonance.
  • the quartz substrate 1 on which the metal thin film 2 was formed was immersed in an organic solvent to dissolve and remove polystyrene latex spheres from the surface of the quartz substrate 1. Traces of polystyrene latex spheres remained on the metal thin film 2 as metal nanospheres 3. On the bottom surface of the metal nanowell 3, a monomolecular film having a thiol group modified on the surface of the quartz substrate 1 is exposed (b).
  • a polystyrene latex sphere having an optimum diameter is used according to the wavelength of the excitation light, the properties of the sample, the arrangement of the detection system, and the like.
  • the thickness of the metal thin film is set to an optimum value according to the wavelength of the excitation light, the properties of the sample, the arrangement of the detection system, and the like.
  • the antibody and the reagent used for the immobilization for modification of the antibody are not limited to succinimidyl-6-maleimidylhexanoate anti-rhodamine antibody, and various antibodies and reagents can be used.
  • a dual antibody can be used to increase sensitivity.
  • a method for modifying and immobilizing the antibody a method was used in which the quartz substrate 1 was immersed in a solution and all the metal nano-wells 3 were modified with the same antibody. If the patterning of droplets by a printer is adopted, it is also possible to individually modify and immobilize many types of antibodies on a large number of metal nanowells 3.
  • An anti-rhodamine antibody was incorporated into the anti-rhodamine antibody by dropping a ⁇ solution of rhodamine 6G onto the metal thin film 2 on which the anti-rhodamine antibody was immobilized with the metal nano-well 3 and washing the metal thin film 2 after 15 minutes. .
  • the metal nanowell 3 treated as described above was fixed on the stage of an epi-illumination fluorescence microscope, and irradiated with 488 nm light of an Ar laser to generate a surface plasmon electric field.
  • the fluorescence of rhodamine emitted from inside the metal nanowell 3 was measured by a fluorescence microscope. Observed at At the time of observation, the field of view was narrowed using a pinhole, and fluorescence from only one metal nanoparticle 3 was guided to a liquid nitrogen-cooled CCD detector and detected.
  • Fig. 3A shows the spectrum as a result of the investigation
  • Fig. 3B shows the relationship between the concentration of the rhodamine antigen and the fluorescence intensity.
  • Figure 3 clearly shows fluorescence from the nanometer region, indicating that there is a good linear relationship between antigen concentration and fluorescence intensity. This result demonstrates an immunoassay in metal nanowell 3.
  • Example 2 Example 2:
  • Example 2 molecularly modified metal nanoparticles were used for gene analysis.
  • succinimidyl-6-maleimidylhexanoate was reacted with the metal nanoparticle 3 having a thiol group modified on the bottom surface, thereby producing a metal nanoparticle 3 having a succinimide group modified on the bottom surface (FIG. 4A). ).
  • the metal nanopore 3 was immersed in an avidin solution, and the amino group on the surface of the avidin was reacted with the succinimide group on the bottom of the metal nanowell 3 to modify the bottom of the metal nanowell 3 with avidin (Fig. 4B).
  • TS oligonucleotide was used as a target DNA for detecting hybridization.
  • detection DNA a 13-mer oligonucleotide having a complementary relationship between the TS oligonucleotide and 12 bases was used, and the 5 'end was preliminarily aminated, followed by the biotinylation reagent biotin succinimidyl ester. After the reaction, the 5 ′ end was biotinylated (FIG. 5A).
  • the target DNA is not limited to TS oligonucleotides, and any DNA hybridization can be detected.
  • DNA biotinylation reagents are not limited to biotin succinimidyl esters.
  • the length of the DNA for detection is not limited to 12 bases, and is appropriately selected depending on the target DNA.
  • Avidin and piotin are very strongly interacting substances.By immersing the avidin-modified metal nanoparticle 3 in a 5 ng Zml solution of biotinylated detection DNA for 3 minutes, the detection DNA is coated on the bottom of the metal nanoplate 3. (Fig. 5B). In this example, the avidin / pyotin bond was used for modifying the DNA for detection, but it is also possible to directly bind the DNA to a thiol group.
  • Quartz substrates 1 each having metal nanowales 3 modified with DNA for detection on the bottom surface were prepared.
  • One quartz substrate 1 was immersed in a 30 ng / ml solution of a TS oligonucleotide, and the other quartz substrate 1 was immersed in a 30 ng / ml solution of a control oligonucleotide having no complementation with the DNA for detection, for 30 minutes.
  • the target DNA compatible with the detection DNA was hybridized and incorporated into the metal nanogel 3, but the compatible target DNA did not cause hybridization (Fig. 6).
  • YOYO-1 a fluorescent reagent that specifically binds to double-stranded DNA, for 10 minutes.
  • YOYO-1 bound to the target DNA in the metal nanowell 3 to which the target DNA was hybridized, but YOYO-1 did not bind to the metal nanowell 3 without hybridization.
  • the fluorescent reagent used for labeling DNA is not limited to YOYO-1, and various fluorescent reagents can be used as long as they specifically bind to double-stranded DNA. It is also possible to directly label the target DNA with fluorescence.
  • the metal nanowell 3 treated as described above is fixed on the stage of the epi-illumination fluorescence microscope, and irradiated with 488 nm light of an Ar laser to generate a surface plasmon electric field, and the fluorescence of YOYO-1 emitted from inside the metal nanowell 3 was observed with a fluorescence microscope.
  • strong fluorescence was emitted from the metal nanowell 3 immersed in the TS oligonucleotide that is complementary to the detection DNA.
  • the fluorescence emitted from the metal nanogel 3 immersed in the non-complementary control oligonucleotide was very weak. From this comparison, hybridization was clearly observed, demonstrating the gene analysis in the metal nanowell 3.
  • the fluorescence analysis element of the present invention uses an antibody or detection DNA modified and immobilized on the bottom surface of a metal nano-well formed on a metal thin film, and reacts with an antigen-antibody reaction or target DNA. Fluorescence generated by the occurrence of hybridization and the application of a surface plasmon electric field is detected and measured.
  • a surface plasmon electric field By applying a surface plasmon electric field to a metal nanowell to cause fluorescence, it is possible to fix detection reagents and samples, achieve high-efficiency excitation and high-efficiency detection without inducing fluorescence fading. Measurement results can be obtained with high sensitivity. Therefore, it is used as a functional element in a wide range of fields such as biochemistry, clinical analysis, and environmental analysis.

Description

明 細 書
金属ナノゥ ルを用いた蛍光分析用素子及びその製造方法 技術分野
本発明は、 生化学, 臨床用, 環境分析等に使用される蛍光分析用素子及びその 製造方法に関する。 背景技術
免疫分析や遺伝子分析では、 抗原と抗体又は相補性のある DNA相互の強力な 結合性相互作用を利用し、 標的とする抗原や DNAを検出又は定量している。 な かでも、 両者の結合を蛍光によって検出する蛍光分析は、 容易に高感度が得られ るため生化学研究から臨床分析までの広範囲で応用されている。
蛍光分析として種々の方法が知られているが、 次の手順で蛍光分析することが 最も基本的な方法である。
(1) 検出'定量の標的である抗原や DNAと強く結合する抗体又は DNAを化学 修飾により基板表面に予め固定したプレートを作製する。
(2) 標的である抗原や DNAを含む検体試料に蛍光標識試薬を添加し、 標的を 蛍光修飾する。
(3) プレートを検体試料に浸漬して両者を結合させた後、 プレート表面を十分 洗浄することにより未結合成分を除去する。
(4) 光励起によりプレートに結合した標的の蛍光信号を検出し、 蛍光強度から 標的濃度を定量する。
(1) 〜 (2) の手順を経る方法は最も単純な方法であり、 複雑な手順を採用 することにより感度を向上させることが通常である。 感度向上を目的として、 い くつかの有力な手順がこれまで確立されている。 また、 分析用基板として通常 96〜: 1536 ゥエルのマルチウエルプレートが用いられ、 ゥエル内における一連の 処理から定量までが完全自動化され、 分析操作をハイスル一プット化している。 特に遺伝子分析に関しては、 DNAを 200μπι程度のスポット状にして基板上に 集積固定化した DNAチップが使用され始め、 優れたハイスループットが達成さ れる。 しかし、 基礎科学では研究の急速な発展'拡大, 臨床分析では各種のウィルス 疾患やアレルギ疾患等の著しい増加に伴って検体数が増加する一方である。 1536 ゥエルの実用化等、 マルチウエルプレートの高密度化は進んでいるものの、 目視可能なサイズでは近レ、将来に対応困難な事態に至ることが容易に予想される。 高感度化を可能にした DNAチップにしても、 最小でもスポットサイズが 150μπι程度に過ぎず、 チップ全体では数センチ角のサイズになることもある。 遺伝子分析検体数の指数関数的な増加を考慮すると、 従来の集積密度では極めて 不充分であり、 サイズが数 μπι以下のナノゥヱルを集積させたマイクロチップを 用いた分析の実現が望まれている。
ところが、 試料体積が減少すると、 励起分子数が減少するばかりでなく、 外乱 因子の影響が指数関数的に増加し、 結果として蛍光強度が著しく低下する。 また、 蛍光分析の最大のネックである蛍光試薬を褪色させる原因ともなる。 この点、 ナ ノゥェルを用いた蛍光分析の実用化には次の要求を満足させることが重要である 力 (a) 〜 (c) の要求事項は互いに強く相関しているので個別解決が極めて困 難である。
(a) 極力閉鎖された微小空間に検出用試薬や試料を効果的に固定化 ·封入する ことにより、 蛍光試薬と酸素等の褪色促進物質の相互作用を抑制する。
(b) 励起光のエネルギを蛍光性分子に効率よく伝達させる。
(c) 発生した蛍光を検出器に効率よく導入する。 発明の開示
本発明は、 このような問題を解消すべく案出されたものであり、 数百 nm〜数 μηιの金属薄膜に形成した直径数百 nmの穴をナノゥエルとして使用することに より、 前掲 (a) 〜 (c) の要求事項を同時に満足させ、 高性能の蛍光分析用素子 を提供することを目的とする。
本発明の蛍光分析用素子は、 その目的を達成するため、 基板表面に形成された 金属薄膜と、 金属薄膜に形成されたナノウエルと、 ナノウエルの底面に修飾固定 化された活性基又は検出用 DNA とを備え、 活性基に結合した抗原又は検出用 DNAにハイブリダイゼーションした標的 DNAに結合した蛍光試薬を光励起に より蛍光発色させることを特徴とする。
この蛍光分析用素子は、 シランカツプリング試薬で処理した基板に金属薄膜を 堆積させ、 金属薄膜のナノゥエルの底面に活性基又は検出用 DNAを修飾固定す ることにより製造される。 ナノウエルは、 プロジヱクシヨン法で Au, Ag等を 蒸着させる方法や、 電子ビームリソグラフィ, フォトリソグラフィ, レーザによ る直接描画等で形成できる。 図面の簡単な説明
図 1は、 基板上の金属薄膜に金属ナノゥヱルを作製するフロー図
図 2は、 金属ナノゥエル底面に抗体を修飾固定化するフロー図
図 3Aは、 抗ローダミン抗体に結合したローダミン 6Gの蛍光スぺクトル 図 3Bは、 蛍光強度に及ぼすローダミン 6Gの影響を表したグラフ
図 4は、 金属ナノゥエルにアビジンを修飾固定化するフロー図
図 5Aは、 検出用 DNAのビォジン化を説明する図
図 5Bは、 金属ナノゥエルのアビジンに結合させる説明図 図 6は、 DNAのハイプリダイゼーシヨンによる遺伝子分析の説明図 図 7は、 ハイブリダイゼーシヨンした DNAを蛍光試薬で修飾し、 光励起によ つて生じた蛍光スぺク トル 発明を実施するための最良の形態
本発明に従った蛍光分析用素子は、 石英, ガラス, サファイア, 表面酸化した シリコン, ダイヤモンド薄膜, 金属板等の基板表面に数百 nm〜数 μιη の金属薄 S莫を形成し、 金属薄膜中にある直径数百 nmの穴をナノゥエルに使用している。 金属薄膜としては、 各種の蛋白や核酸を容易に表面修飾できることから Au, Ag 等の薄膜が好ましい。 Au, Ag等の薄膜は、 免疫 ·遺伝子分析の場としても好適 であり、 金属薄膜に生じているナノゥエル (以下、 「金属ナノゥヱル」 という) によって検出用試薬や試料が極めて効果的に固定される。
金属ナノウエノレは、 薄 S莫表面に接触した液滴をナノゥエル内部に吸い込む毛管 力をもつ。 そのため、 検出用試薬や試料が金属ナノゥエルに容易に固定され、 し かも金属ナノゥ ルの微小空間に検出用試薬や試料が保持されるため空気との接 触面積が大幅に減少し、 蛍光褪色が防止される。
薄膜表面にある金属ナノゥ ルは、 蛍光試薬を効率よく蛍光発色させる点でも 有効である。 基板の透明度及ぴ光源の強度を極力高めることにより励起効率を向 上させる従来の蛍光分析では、 試料体積の減少に応じて適用可能性に問題が生じ る。 他方、 本発明では、 光透過率の低い Au, Ag等の金属薄膜を基板表面に形 成することにより、 従来の蛍光分析とは異なる原理で励起効率が向上する。 金属 薄膜は、 次のメカニズムで励起効率を向上させるものと推察される。
平滑な表面をもつ Au, Ag等の金属薄膜を光照射すると、 照射光の大半が反 射又は透過によって損失してしまう。 他方、 励起光の波長に近い直径の金属ナノ ゥエルをもつ金属薄膜を光照射すると、 照射光のエネルギは、 その数百倍の電場 強度をもつ表面プラズモン電場に変換'増強され、 金属ナノゥエルの内側に強く 局在化する。 表面プラズモン電場は、 光に似た性質をもち、 蛍光性試料を励起す る作用を呈する。 この点、 金属ナノゥヱルは、 励起光のエネルギを内部に集中さ せるアンテナとして機能するといえる。
ナノウエル内部に封入された試料は、 増強されたプラズモン電場に曝されるた め、 エネルギを受けて励起される。 その結果、 試料を直接的に光照射する従来の 励起法に比較し、 格段に高い効率で蛍光性試科が励起される。
金属ナノゥヱルは、 検出効率を向上させる上でも有効である。 検出用試薬及び 試料は何れも屈折率が水とほぼ等しい液体であり、 金属ナノゥ ルの直径と金属 薄膜の膜厚との比 (アスペク ト比) を大きくすると、 金属ナノゥエルが導波路と して機能する。 したがって、 ナノゥュル内部にある試料から発生した蛍光が効果 的に集光され、 金属ナノゥエルの開口部から効率よく検出器に到達する。
このように、 金属ナノゥヱルを使用することにより、 分析密度が飛躍的に向上 するばかりでなく、 高効率励起と高効率検出が両立する。 そのため、 一定の蛍光 信号を得ようとする際、 従来の蛍光分析に比較して励起光の強度を大幅に低下で き、 蛍光褪色が抑制され、 分析精度及び感度が更に向上する。 実施例 1 :
免疫分析に適用した例によって、 本発明を具体的に説明する。
金属ナノゥエルの作製
金属薄膜に穴を開け、 金属ナノゥエルを作製する方法として、 プロジェクショ ン法を採用したが、 電子ビームリソグラフィ, フォトリソグラフィ, レーザを用 いた直接描画等によっても金属ナノゥエルを形成できる。 プロジェクション法で は、 蒸着源と基板との間に物体を配置させ、 物体の形状が投影された金属薄膜が 形成される。 末端にチオール基をもつシランカップリング試薬で石英基板 1 の表面を処理 することにより、 石英表面の OH基とチオール基とを置換反応させ、 チォ一ル 基をもつ単分子膜を石英基板 1 の表面に形成した (a)。 シランカップリング試 薬としてメルカプトプロピルトリエトキシシランを使用したが、 本発明はこれに 拘束されるものではなく、 末端にチオール基をもつ限り使用可能なシランカップ リング試薬に制約が加わることはない。 チオール基をもつ単分子膜は、 後工程の 蒸着で形成される金属薄膜を強固に石英基板 1 に固定すると共に、 金属ナノゥ ェルの底面を分子修飾する際の活性部位として機能する。
表面処理した石英基板 1の上に直径 480nmのポリスチレンラテックス球を含 む希釈液を塗布し、 希釈液の溶媒を徐々に蒸発させた。 溶媒の蒸発によって、 ポ リスチレンラテックス球が分散状態で石英基板 1 の表面に残留した。 この石英 基板 1に Auを蒸着し、 膜厚 70nmの金属薄膜 2を形成した。 本実施例では Au 薄膜を形成したが、 表面プラズモン共鳴が誘起される金属である限り、 Ag, Cu, A1等も薄膜材料として使用できる
金属薄膜 2が形成された石英基板 1を有機溶媒に浸漬し、 石英基板 1表面か らポリスチレンラテックス球を溶解除去した。 金属薄膜 2 には、 ポリスチレン ラテックス球の痕跡が金属ナノゥエル 3 として残った。 金属ナノゥエル 3 の底 面では、 石英基板 1 に表面修飾されたチオール基をもつ単分子膜が露出してい る (b)。
ポリスチレンラテックス球の直径に対応する内径の金属ナノゥエルが形成され ることから、 励起光の波長, 試料の性状, 検出系の配置等に応じて最適の直径を もつポリスチレンラテックス球が使用される。 金属薄膜の膜厚も、 同様に励起光 の波長, 試料の性状, 検出系の配置等に応じた最適値に設定される。
金属ナノゥエル底面の分子修飾
金属ナノゥエル 3 中での蛍光免疫分析を実証するため、 次の手順で金属ナノ ゥエル 3 の底面を分子修飾した。 まず、 スクシンィミジル- 6-マレイミジルへキ サノエート溶液に石英基板 1 全体を浸漬した後、 十分に洗浄し、 金属ナノゥェ ノレ 3底面にあるチオール基とスクシンィミジル- 6-マレイミジルへキサノエート を反応させ、 金属ナノゥエル 3 の底面にスクシンイミド基を修飾した (図 2A)。 次いで、 抗ローダミン抗体の溶液に石英基板 1 を浸漬し、 金属ナノゥエル 3底 面のスクシンイミド基と抗ローダミン抗体表面にあるアミノ基とを反応させ、 抗 ローダミン抗体を金属ナノゥエル 3底面に修飾固定化した (図 2B)。
抗体及び抗体の修飾固定化に使用する試薬は、 スクシンィミジル -6-マレイミ ジルへキサノエ一トゃ抗ローダミン抗体に限らず、 種々の抗体及び試薬を使用で きる。 たとえば、 感度向上のために二重抗体を使用できる。 また、 抗体の修飾固 定化法として、 溶液に石英基板 1 を浸漬し、 全ての金属ナノゥエル 3 を同一の 抗体で修飾する方法を採用したが、 マイクロピぺットによる液滴のハンドリング やインクジエツトプリンタによる液滴のパターユング等を採用すると、 多数の金 属ナノウエル 3 に対し多種類の抗体をそれぞれ個別に修飾固定化することも可 能である。
抗原 ·抗体反応
金属ナノゥエル 3で抗ローダミン抗体を固定化した金属薄膜 2にローダミン 6Gの ΙμΜ溶液を滴下し、 15分経過した時点で金属薄膜 2を洗浄することによ り、 抗ローダミン抗体にローダミンを取り込ませた。
表面ブラズモン電場の発生及び蛍光観測
以上の処理を施した金属ナノゥエル 3 を落射蛍光顕微鏡のステージ上に固定 し、 Ar レーザの 488nm光を照射して表面プラズモン電場を発生させ、 金属ナ ノウエル 3 内部から発せられるローダミンの蛍光を蛍光顕微鏡で観測した。 観 測に際し、 ピンホールを用いて視野を絞ることにより、 一つの金属ナノゥヱル 3 のみからの蛍光を液体窒素冷却 CCD検出器に導いて検出した。 調査結果であるスぺク トルを図 3Aに、 抗原であるローダミンの濃度と蛍光強 度との関係を図 3Bに示す。 図 3は、 ナノメータ領域からの蛍光が明瞭に観測さ れ、 抗原濃度と蛍光強度との間に良好な直線関係があることを示している。 この 結果から、 金属ナノゥエル 3中における免疫分析が実証される。 実施例 2:
実施例 2では、 分子修飾した金属ナノゥエルを遺伝子分析に用いた。
金属ナノゥエルの作製
実施例 1 と同様にチオール基が底面に修飾された金属ナノゥエル 3 に対して スクシンィミジル- 6-マレイミジルへキサノエートを反応させることにより、 底 面にスクシンイミド基を修飾した金属ナノゥエル 3を作製した (図 4A)。
金属ナノゥエル底面の分子修飾
金属ナノゥヱル 3 をアビジン溶液に浸漬し、 アビジン表面のアミノ基を金属 ナノウエル 3底面のスクシンィミド基に反応させ、 金属ナノゥエル 3 の底面に アビジンを修飾した (図 4B)。
ハイブリダイゼーションを検出する標的 DNAとして TSオリゴヌクレオチド を使用した。 検出用 DNAとしては、 TSオリゴヌクレオチドと 12塩基が相補関 係にある 13量体のオリゴヌクレオチドを用い、 予め 5'末端をァミノ化した上で、 ビォチン化試薬であるピオチンスクシンィミジルエステルと反応させ、 5'末端を ピオチン化した (図 5A)。
勿論、 標的 DNAは T Sオリゴヌクレオチドに限定されるものではなく、 あら ゆる DNAのハイブリダィゼーシヨンを検出可能である。 DNAのピオチン化試 薬も、 ピオチンスクシンィミジルエステルに限られるものではない。 検出用 DNAの鎖長も 12塩基に限定されるものではなく、 標的 DNAに応じて適宜選択 される。 ァビジンとピオチンは非常に強く相互反応する物質であり、 ァビジンを修飾し た金属ナノゥヱル 3をビォチン化した検出用 DNAの 5ngZml溶液に 3分間浸 漬することにより、 検出用 DNAを金属ナノゥエル 3 の底面に修飾できた (図 5B)。 本実施例ではアビジン/ピオチン結合を検出用 DNAの修飾に利用したが、 DNAをチオール基に直接結合させることも可能である。
ハイブリダイゼーション
検出用 DNAを底面に修飾した金属ナノウ: ル 3をもつ石英基板 1を 2枚用意 した。 一方の石英基板 1を TSオリゴヌクレオチドの 30ng/ml溶液に、 他方の 石英基板 1を検出用 DNAと全く相補性のない対照オリゴヌクレオチドの 30ng /ml溶液にそれぞれ 30分間浸漬した。 検出用 DNAに対する適合性のある標的 DNAはハイプリダイゼーシヨンして金属ナノゥエル 3に取り込まれるが、 適合 性のなレヽ標的 DNAはハイブリダイゼーシヨンを起こさなかった (図 6)。
次いで、 二重鎖 DNAに対して特異的に結合する蛍光試薬である YOYO - 1の 5ng/ml溶液に 1 0分間浸漬した。 標的 DNAがハイブリダイゼーシヨンした金 属ナノウエル 3では YOYO - 1が標的 DNAに結合したが、 ハイブリダイゼーシ ョンのない金属ナノウエノレ 3では YOYO - 1の結合が生じなかった。
DNA の標識に用いられる蛍光試薬は、 YOYO - 1 に限定されるものではなく、 二重鎖 DNAに特異的に結合する限り種々の蛍光試薬を使用できる。 また、 標的 DNAを直接蛍光標識することも可能である。
表面ブラズモン電場の発生及び蛍光観測
以上の処理が施された金属ナノゥエル 3 を落射蛍光顕微鏡のステージ上に固 定し、 Ar レーザの 488nm光を照射して表面プラズモン電場を発生させ、 金属 ナノウエル 3 内部から発せられる YOYO— 1 の蛍光を蛍光顕微鏡で観測した。 その結果、 図 7のスペク トルにみられるように、 検出用 DNAと相補関係にある TSオリゴヌクレオチドに浸漬した金属ナノゥエル 3からは強い蛍光が発せられ たが、 相補関係にない対照オリゴヌクレオチドに浸漬した金属ナノゥエル 3 か ら発せられる蛍光は非常に弱かった。 この対比から、 ハイブリダィゼ一シヨンが 明瞭に観測され、 金属ナノゥエル 3中における遺伝子分析が実証された。 産業上の利用可能性
以上に説明したように、 本発明の蛍光分析用素子は、 金属薄膜に生じている金 属ナノゥエルの底面に修飾固定化した抗体や検出用 DNAを用いて、 抗原 ·抗体 反応や標的 DNAとのハイプリダイゼーションを生起させ、 表面ブラズモン電場 を加えることにより発生する蛍光を検出測定している。 金属ナノゥエルに表面プ ラズモン電場をかけて蛍光発色させることから、 蛍光褪色を招くことなく検出用 試薬や試料の固定, 高効率励起, 高効率検出が可能となり、 従来の蛍光分析に比 較し極めて高感度で測定結果が得られる。 そのため、 生化学, 臨床分析, 環境分 析等、 広範な分野における機能素子として使用される。

Claims

請求の範囲
1. 基板表面に形成された金属薄膜と、 金属薄膜に形成されたナノウエルと、 ナノウエルの底面に修飾固定化された活性基又は検出用 DNA とを備え、 活 性基に結合した抗原又は検出用 DNA にハイブリダィゼーシヨンした標的 DNA に結合した蛍光試薬を光励起して蛍光発色させることを特徴とする金 属ナノゥエルを用いた蛍光分析用素子。
2. シランカップリング試薬で処理した基板に金属薄膜を堆積させ、 金属薄膜 内に生じているナノゥエル又は金属薄膜に開けたナノゥエルの底面に活性基 又は検出用 DNA を修飾固定することを特徴とする蛍光分析用素子の製造方 法。
PCT/JP2002/000026 2001-01-12 2002-01-09 Element d'analyse par fluorescence au moyen d'un nanopuits metallique et procede de production de cet element WO2002056012A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02715712A EP1353179B1 (en) 2001-01-12 2002-01-09 Fluorescent analysis element with the use of metallic nanowell and process for producing the same
DE60222378T DE60222378T2 (de) 2001-01-12 2002-01-09 Fluoreszenzanalseelement mit der Verwendung einer metallischen Nanovertiefung und Verfahren zur Herstellung desselben
US10/415,246 US20040029152A1 (en) 2001-01-12 2002-01-09 Fluorescent analysis element with the use of metallic nanowell and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001005041A JP3525142B2 (ja) 2001-01-12 2001-01-12 金属ナノウェルを用いた蛍光分析用素子及びその製造方法
JP2001-5041 2001-01-12

Publications (1)

Publication Number Publication Date
WO2002056012A1 true WO2002056012A1 (fr) 2002-07-18

Family

ID=18873135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000026 WO2002056012A1 (fr) 2001-01-12 2002-01-09 Element d'analyse par fluorescence au moyen d'un nanopuits metallique et procede de production de cet element

Country Status (6)

Country Link
US (1) US20040029152A1 (ja)
EP (1) EP1353179B1 (ja)
JP (1) JP3525142B2 (ja)
AT (1) ATE373235T1 (ja)
DE (1) DE60222378T2 (ja)
WO (1) WO2002056012A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1027031C2 (nl) * 2004-09-13 2006-03-14 Univ Delft Tech Titerplaat.
US9012207B2 (en) * 2005-08-02 2015-04-21 University Of Utah Research Foundation Biosensors including metallic nanocavities
US8535616B2 (en) * 2005-08-02 2013-09-17 Moxtek, Inc. Sub-wavelength metallic apertures as light enhancement devices
US20070148677A1 (en) * 2005-12-02 2007-06-28 Chagovetz Alexander M Methods and systems for acquiring real-time quantitative melt data
US7618771B2 (en) 2006-06-30 2009-11-17 Searete Llc Method of combing a nucleic acid
US7851028B2 (en) 2006-06-30 2010-12-14 The Invention Science Fund I, Llc Method of combing an elongated molecule
US7312029B1 (en) 2006-06-30 2007-12-25 Searete Llc Method of combing an elongated molecule
JP2008051512A (ja) * 2006-08-22 2008-03-06 Fujifilm Corp 近接場光を用いたセンサおよびその作製方法
CN101711257A (zh) * 2007-01-22 2010-05-19 瓦弗根公司 用于高通量化学反应的装置
JP5222599B2 (ja) * 2007-07-20 2013-06-26 株式会社日立ハイテクノロジーズ 核酸分析デバイス及びそれを用いた核酸分析装置
CL2009000560A1 (es) * 2008-03-11 2010-02-19 Univ Duke Un metodo para endurecer un medio endurecible por radiacion que comprende colocar una composicion dentro de un objeto para ser endurecido, la aplicacion de al menos uno elegido entre rayos x, rayos gama o haz de electrones a traves del objeto y dentro de la composicion.
EP2100849B1 (en) 2008-03-13 2010-09-22 Institut de Ciències Fotòniques, Fundació Privada Method of manufacturing molecular plasmonic nanostructures
US9518288B2 (en) 2008-04-11 2016-12-13 University Of Utah Research Foundation Methods and compositions related to quantitative, array based methylation analysis
JP4997181B2 (ja) * 2008-06-13 2012-08-08 株式会社日立ハイテクノロジーズ 核酸分析デバイス及び核酸分析装置
JP5066110B2 (ja) 2009-01-30 2012-11-07 株式会社日立ハイテクノロジーズ 蛍光分析装置、及び蛍光分析方法
JP5707030B2 (ja) * 2009-04-02 2015-04-22 株式会社日立ハイテクノロジーズ 核酸分析デバイス、及び核酸分析装置
FR2951271B1 (fr) * 2009-10-13 2012-11-16 Univ Troyes Technologie Support d'echantillon, procede et systeme d'imagerie par fonctionnalisation du substrat
WO2011084671A2 (en) * 2009-12-17 2011-07-14 University Of Maryland, Baltimore County Mixed-metal substrates for metal-enhanced fluorescence
KR20120010513A (ko) 2010-07-26 2012-02-03 삼성전자주식회사 바이오 물질 수용소자와 그 제조 및 동작방법
KR101663183B1 (ko) 2010-08-26 2016-10-06 삼성전자주식회사 열전재료, 이를 포함하는 열전모듈과 열전장치
JP5372876B2 (ja) * 2010-09-10 2013-12-18 株式会社日立ハイテクノロジーズ 核酸分析デバイス,核酸分析装置、及び核酸分析方法
CN102604140B (zh) * 2012-03-21 2013-12-11 陕西师范大学 含胆固醇的聚合物荧光传感薄膜的制备方法
CN103980884B (zh) * 2014-05-21 2016-09-21 南京理工大学 Al3+荧光传感器、合成方法及应用
JP2016012114A (ja) * 2014-06-02 2016-01-21 オリンパス株式会社 照明装置、これを有する顕微鏡装置及び顕微鏡観察方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307141A (ja) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh プラズモン共鳴および蛍光検出を用いた生体分子相互作用の同時検出法
JPH10311831A (ja) * 1996-12-30 1998-11-24 Diagnostic Prod Corp 蛍光誘導された表面プラズマ放射を用いる免疫アッセイ法及び装置
JPH11332595A (ja) * 1997-07-09 1999-12-07 Masao Karube プローブpnaによるdnaの検出方法
JPH11344437A (ja) * 1998-05-29 1999-12-14 Canon Inc 面発光レーザーを用いた表面プラズモン共鳴センサ装置
JP2000249706A (ja) * 1999-02-26 2000-09-14 Hokuto Kagaku Sangyo Kk 新規の生物学的チップ及び分析方法
JP2001021565A (ja) * 1999-07-07 2001-01-26 Japan Science & Technology Corp 蛍光免疫分析方法及び装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8423204D0 (en) * 1984-09-14 1984-10-17 Comtech Res Unit Assay technique and equipment
CA2076709A1 (en) * 1992-08-24 1994-02-25 Ulrich J. Krull Amplified fluorescence emission for chemical transduction
US5690894A (en) * 1995-05-23 1997-11-25 The Regents Of The University Of California High density array fabrication and readout method for a fiber optic biosensor
US6210910B1 (en) * 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
US6262216B1 (en) * 1998-10-13 2001-07-17 Affymetrix, Inc. Functionalized silicon compounds and methods for their synthesis and use
US6236033B1 (en) * 1998-12-09 2001-05-22 Nec Research Institute, Inc. Enhanced optical transmission apparatus utilizing metal films having apertures and periodic surface topography
US6429027B1 (en) * 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US6489102B2 (en) * 1999-08-05 2002-12-03 Wisconsin Alumni Research Foundation Biomolecule and/or cellular arrays on metal surfaces and product produced thereby
WO2001009388A1 (en) * 1999-07-30 2001-02-08 The Penn State Research Foundation Instruments, methods and reagents for surface plasmon resonance
US6395483B1 (en) * 1999-09-02 2002-05-28 3M Innovative Properties Company Arrays with mask layers
CN1468385A (zh) * 2000-07-21 2004-01-14 �Ƹ��� 表面等离子体偏振子带隙结构
CA2314398A1 (en) * 2000-08-10 2002-02-10 Edward Shipwash Microarrays and microsystems for amino acid analysis and protein sequencing
US6699665B1 (en) * 2000-11-08 2004-03-02 Surface Logix, Inc. Multiple array system for integrating bioarrays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311831A (ja) * 1996-12-30 1998-11-24 Diagnostic Prod Corp 蛍光誘導された表面プラズマ放射を用いる免疫アッセイ法及び装置
JPH10307141A (ja) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh プラズモン共鳴および蛍光検出を用いた生体分子相互作用の同時検出法
JPH11332595A (ja) * 1997-07-09 1999-12-07 Masao Karube プローブpnaによるdnaの検出方法
JPH11344437A (ja) * 1998-05-29 1999-12-14 Canon Inc 面発光レーザーを用いた表面プラズモン共鳴センサ装置
JP2000249706A (ja) * 1999-02-26 2000-09-14 Hokuto Kagaku Sangyo Kk 新規の生物学的チップ及び分析方法
JP2001021565A (ja) * 1999-07-07 2001-01-26 Japan Science & Technology Corp 蛍光免疫分析方法及び装置

Also Published As

Publication number Publication date
DE60222378T2 (de) 2008-06-12
US20040029152A1 (en) 2004-02-12
EP1353179A4 (en) 2004-05-19
EP1353179B1 (en) 2007-09-12
EP1353179A1 (en) 2003-10-15
JP3525142B2 (ja) 2004-05-10
DE60222378D1 (de) 2007-10-25
JP2002214142A (ja) 2002-07-31
ATE373235T1 (de) 2007-09-15

Similar Documents

Publication Publication Date Title
JP3525142B2 (ja) 金属ナノウェルを用いた蛍光分析用素子及びその製造方法
Oliverio et al. Chemical functionalization of plasmonic surface biosensors: a tutorial review on issues, strategies, and costs
EP1825249B1 (en) Microwave accelerated assays
US8886464B2 (en) Microwave-accelerated metal-enhanced detection method
US8076162B2 (en) Method of providing particles having biological-binding areas for biological applications
KR20100061603A (ko) 바이오 물질 감지용 나노 입자 및 이를 이용한 바이오 센서
JP2010145408A (ja) バイオチップ及び生体物質検出装置
WO2014129933A1 (ru) Биологический сенсор и способ создания биологического сенсора
US9995749B2 (en) Method for detecting a target analyte
JP2012513586A (ja) 磁気ラベルを使用するトロポニンiに関するアッセイ
JP2010256161A (ja) プラズモン励起センサおよびそれを用いたアッセイ法
Salva et al. Methods for immobilizing receptors in microfluidic devices: A review
US11280784B2 (en) Patterned plasmonic nanoparticle arrays for multiplexed, microfluidic biosensing assays
JP3524390B2 (ja) 生化学センサおよびこれを利用する生化学検出装置
JP2022535637A (ja) 分子事象の感知および定量のための表面固定化された双安定ポリヌクレオチド装置
JP2010145390A (ja) バイオチップ及びこれを利用したバイオ物質検出装置
JP3448654B2 (ja) バイオチップ、バイオチップアレイ、及びそれらを用いたスクリーニング方法
EP1321761B1 (en) Method of detecting an analyte
WO2009150583A1 (en) Diagnostic device
JP2010175327A (ja) 金属ナノ粒子複合体およびその製造方法、バイオチップおよびその製造方法
US11561180B2 (en) Hydrophilic coatings of plasmonic metals to enable low volume metal-enhanced fluorescence
Shiue et al. Preparation of substrates for microarray protein chips with different ending functional groups
US20040248122A1 (en) Biochip and the production method thereof
WO2024063121A1 (ja) 微小液滴を形成する方法
Ramesh Barcode Biosensors Based on Surface Plasmon Resonance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002715712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10415246

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002715712

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002715712

Country of ref document: EP