WO2002053613A1 - (cyclo)condensation de composes isocyanates - Google Patents

(cyclo)condensation de composes isocyanates Download PDF

Info

Publication number
WO2002053613A1
WO2002053613A1 PCT/FR2001/004206 FR0104206W WO02053613A1 WO 2002053613 A1 WO2002053613 A1 WO 2002053613A1 FR 0104206 W FR0104206 W FR 0104206W WO 02053613 A1 WO02053613 A1 WO 02053613A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
nitrogen
isocyanate
heterocyclic
use according
Prior art date
Application number
PCT/FR2001/004206
Other languages
English (en)
Inventor
Jean-Marie Bernard
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to EP01989664A priority Critical patent/EP1358237A1/fr
Priority to BR0116561-5A priority patent/BR0116561A/pt
Priority to US10/450,035 priority patent/US6936677B2/en
Publication of WO2002053613A1 publication Critical patent/WO2002053613A1/fr
Priority to US11/062,579 priority patent/US7524435B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/027Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing urethodione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2027Heterocyclic amines; Salts thereof containing one heterocyclic ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26

Definitions

  • the invention relates to a method for promoting the opening of uretidiones cycles or the closure of isocyanate compounds in uretidiones cycles.
  • the invention more particularly relates to the (cyclo) condensation of isocyanate compounds.
  • dimers compounds with a uretidione ring also called dimers are obtained by dimerization of isocyanate compounds in the presence of a dimerization catalyst such as a trialkylphosphine, a tris- (N, N-dialkyl) phosphotriamide or an N, N , N ', N'-tetra-alkylguanidine.
  • a dimerization catalyst such as a trialkylphosphine, a tris- (N, N-dialkyl) phosphotriamide or an N, N , N ', N'-tetra-alkylguanidine.
  • WO 99/23128 describes a process for the catalytic trimerization of isocyanate using a catalyst based on a quaternary ammonium salt in which imidazole or one of its co-catalysts is used derivatives so as to increase the reactivity of isocyanates, in particular cycloaliphatic isocyanates and to control it effectively without it depending on the content of hydrolyzable chlorine contained in the starting isocyanate monomer.
  • the document also describes that the use of imidazole as a cocatalyst for a trimerization reaction in which the catalyst is a quaternary ammonium salt results in the formation of dimeric compounds with a uretidione cycle.
  • the amount of imidazole or its derivatives is such that the imidazole / quaternary ammonium molar ratio is of the order of 14 or more.
  • imidazole and other nitrogen-containing cyclic compounds having a five-membered nitrogen heterocyclic group comprising at least two nitrogen atoms add up on the isocyanate function at room temperature in accordance with the reaction scheme:
  • R being the residue of an isocyanate compound after removal of an isocyanate function and HET-H being a nitrogen heterocyclic compound as defined above, linked to the NCO group via the NH group of the heterocycle.
  • the mechanism proposed by the inventors is based on the assumption that in the presence of isocyanate and an anionic compound, as defined above, the five-membered heterocyclic compound promotes the addition of the isocyanate function on the urea-HET compound (I) to give a biuret-HET compound or also designated by "pseudo-biuret" of formula (II):
  • heterocyclic groups comprising an NH group
  • the addition of the nitrogen heterocyclic group to the isocyanate function is carried out via this group, with subsequent release of a HET-H compound.
  • the work of the inventors has shown that when the rate of NCO functions present in the reaction medium decreased and at a temperature of at least 40 ° C, the HET-H compound acted by opening the uretidione cycle and favored, in the presence of a monomeric isocyanate, the formation of a higher homologous cyclocondensation compound, in other words the cyclotimerization reaction.
  • the present invention has made it possible to determine that the heterocyclic compounds defined above catalyzed the addition reaction of the nucleophilic compounds on the uretidione cycle.
  • the reaction temperature for adding alcohol to the uretidione cycle is carried out at low temperature, generally around 80 to 100 ° C. instead of the high temperatures described below. - above.
  • This property can be taken advantage of in a particularly advantageous way for the opening of uretidiones rings originating from the condensation of isocyanate monomers, that is to say monomers in which the NCO function is carried by a carbon atom having steric hindrance, for example the dimers of IPD1, the opening of which is more difficult than for the true dimers formed by cyclodimerization of isocyanates. sparingly congested monomers, such as HDI.
  • the invention relates to the use of a compound comprising at least one heterocyclic nitrogen group having at least five atoms in the ring including at least two nitrogen atoms, to promote the closing reaction of uretidiones rings or of openings of uretidiones rings and their reaction with an isocyanate compound or a nucleophilic compound containing a mobile hydrogen atom, with the condition that, when the heterocyclic nitrogen group is imidazole, the opening / closing reaction is not not the closing reaction of isocyanate compounds in uretidiones cycles in the presence of a quaternary ammonium salt.
  • the nitrogen-containing cyclic compound advantageously has 5 links and is advantageously preferably chosen from imidazole, triazole, tetrazole and their derivatives comprising one or more substituents, in particular from 1 to 4 substituents depending on the nature of the cycle.
  • the substituents can, independently of one another, be chosen from the groups -R, -OR, -SR, -NRR ", -COR, -CONRR ', -NRCOR' and -NRCOOR ', R and R ', identical or different, being chosen from a hydrogen atom, a C 1 -C 4 alkyl, C 3 -C 8 cycloalkyl, C 5 -C 1 o aryl and a heterocycle comprising from 2 to 10 carbon atoms and from 1 to 4 identical or different heteroatoms chosen from O, S and N and the group -NR ", R” being a C 1 -C 4 alkyl or C 3 -C cycloalkyl group 8 , the alkyl, cycloalkyl, aryl or heteroaryl groups being optionally substituted by one or more groups chosen from OH, COOH, NH 2 , SH, alkoxy or alkoxycarbonyl.
  • the heterocyclic nitrogen compound can also be an isocyanate masked by a masking agent meeting the definition of heterocyclic nitrogen compounds given above, in other words a precursor of a heterocyclic nitrogen compound as defined above.
  • the nitrogenous heterocyclic compound is used to promote the closing reaction of a uretidione ring, starting from starting isocyanate monomers, these being in excess relative to the heterocyclic nitrogen compounds.
  • the nitrogen heterocyclic compound is used to promote the opening reaction of a uretidione ring, in the presence of an anionic compound in particular derived from a strong base, said base being in particular a catalyst for cyclocondensation of isocyanates.
  • a large number of cyclocondensation catalysts, in particular of cyclotrimerization, are anionic compounds within the meaning of the present invention.
  • the anionic compound may consist in particular of an alcoholate, hydroxide, fluoride, acetate, carbonate, hydrogen carbonate, carboxylate or a silazane salt of mineral or organic cations.
  • mineral cations there may be mentioned alkali metals, alkaline earth metals, transition metals, as well as rare earths.
  • the "oniums” or the “iniums” are preferred.
  • the oniums are chosen from the group of cations formed by the elements of columns Vb and Vlb (as defined in the table of the periodic classification of elements published in the supplement to the Bulletin of the departments Chimique de France in January 1966) with 4 (case of column Vb) or 3 (case of column Vlb) hydrocarbon chains.
  • the organic salt of the invention is in this case a phosphonium, sulfonium, ammonium, oxonium or diazonium.
  • the "iniums”, group to which the pyridiniums belong, are derived from oniums by the replacement of two substituents by a double substituent
  • a first type of trimerization catalyst which is particularly suitable for the invention when it is combined with a cyclic nitrogen compound as described above, consists of the rare earth alcoholates.
  • rare earth elements see the table on page B-208 of "Handbook of Chemistry and Physics", Editor Robert C. Weast, 67 th Ed.).
  • lanthanides include the following elements: scandium, yttrium, lanthanum as well as the lanthanides (cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, ytterbium and lutetium).
  • the rare earth alcoholate function can consist of any function obtained by substitution of an alcoholic OH group with a rare earth metal.
  • propylates in particular isopropylates, in particular isopropylate of the following rare earth elements: Y, Sm, Yb and The.
  • methylates ethylates and butylates
  • poly (alkylene glycol) alcoholates of which preferably at least one of the alcohol functions at the chain end is substituted by an ether, ester function, etc.
  • a second type of trimerization catalysts consists of alkali, alkaline earth, tin, zinc, or other metals of carboxylic acids such as acetic, propionic, octanoic or benzoic acids.
  • a third type of catalyst is constituted by alkali, alkaline earth, tin, zinc, alcoholates or phenolates salts.
  • a fourth type of catalyst is formed by hydroxides, carbonates, hydrogen carbonates or carboxylates of quaternary ammoniums.
  • a fifth type of catalyst consists of silazane salts or silanolates of mineral or organic cations. These are in particular the compounds of formula (1) or (2):
  • R 2 , R 3 , R 4 , R 5 and R 6 which are identical or different, represent a monovalent group of saturated or unsaturated, aliphatic, cycloaliphatic, aryl, aralkyl or alkylaryl nature, optionally substituted by halogen atoms, CN groups, or ester, or • in formula (1) one of R 1 ( R 2 , R 3 , R 4 , R 5 and R 6 represents a motif of formula:
  • A being an alkylene group having from 1 to 30 atoms, advantageously from 2 to 20 carbon atoms, preferably (C ⁇ with n 'between 1 and 6, advantageously from 2 to 6, and R' 1 to R ' 5 identical or different representing a monovalent group of hydrocarbon, aliphatic, cycloaliphatic saturated or unsaturated, aryl, aralkyl or alkylaryl nature, optionally substituted by halogen atoms, CN groups, or ester, and n is an integer between 1 and 50, or
  • At least one group chosen from Ri, R 2 and R 3 forms with at least one group from R 4 , R 5 and R 6 a divalent hydrocarbon group.
  • alkyl, alkenyl, haloalkyl or haloalkenyl group having from 1 to 20, preferably from 1 to 6 carbon atoms, and optionally comprising chlorine and / or fluorine atoms,
  • cycloalkyl, cycloalkenyl, halogenocycloalkyl or halogenocycloalkenyl group having from 3 to 30, preferably 3 to 10 carbon atoms and containing chlorine and / or fluorine atoms
  • aryl, alkylaryl or haloaryl group having from 6 to 30, preferably 6 to 10 carbon atoms and containing chlorine and / or fluorine atoms
  • Ri, R 2 and R 3 or R 3 , R and R5 together form a divalent radical comprising from 2 to 5 carbon atoms, - or two of Ri, R 2 and R 3 on the one hand and / or R 4 , R 5 and R ⁇ on the other hand, together constitute a divalent hydrocarbon group, or
  • At least one group chosen from Ri, R 2 and R 3 forms, with at least one group from R 4 , R 5 and R ⁇ , a divalent hydrocarbon group comprising from 2 to 5 carbon atoms.
  • Groups Ri to R 6 and R'i to R'5 which are particularly preferred are chosen from methyl, ethyl, propyl, linear or branched where appropriate, vinyl and phenyl, which may optionally be chlorinated and / or fluorinated.
  • the salt of the compound of formulas (1) and (2) can be a mineral, monovalent or multivalent salt, or a mixture of these salts.
  • the preferred mineral salts are those of K, Li, Na and Mg.
  • the salt of the compound of formulas (1) and (2) can also be an organic, monovalent or multivalent salt or a mixture of these salts.
  • the salts preferred organics are stable "oniums" or "iniums”.
  • the salt according to the invention can comprise at least one ligand of formula (1) or (2) above and optionally one or more different ligands. Generally, it is preferred that all of the ligands are compounds of formula (1) or (2).
  • the number of ligands is a function of the valence of the mineral or organic cation, as well as the number of nitrogen atoms in the compound of formula (1).
  • the nucleophilic compound or the solvent is an alcohol
  • the use of a catalyst of the silazane salt type is avoided.
  • an anionic compound having a nitrogen group of the type described above There may be mentioned histidine in its metallic carboxylate form which act both by its imidazole heterocycle to bind to the NCO function and COO function "of the. Group amino acid to catalyze the cyclotrimerization of isocyanate monomers.
  • a cyclic nitrogen compound as defined above allows, when added to a polycondensation catalyst, in particular of (cyclo) trimerization of isocyanates, of anionic type in a molar cyclic nitrogen compound / anionic catalyst ratio included between 0.1 and 10, in particular between 0.2 and 5, preferably 0.3 and 2.5, to obtain a reaction product comprising true dimer polyisocyanates and true trimer polyisocyanates in a ratio of true dimer polyisocyanates / trimer polyisocyanates true greater than 0.5, in particular greater than 0.6, preferably greater than 0.75, or even greater than 1.
  • the invention also relates to a process for the preparation of a polyisocyanate composition
  • a polyisocyanate composition comprising trimer polyisocyanates, in particular true trimer polyisocyanates and dimer polyisocyanates, in particular true dimer polyisocyanates, in which the polyisocyanate molar ratio true dimers / true trimer polyisocyanates is greater than 0.5, in particular greater than 0.6, preferably greater than " 0.75, or even greater than 1, in which polycondensation of isocyanate monomers is carried out, in the presence of a anionic type cyclotrimerization catalyst and of a nitrogen compound consisting of a five-membered heterocyclic compound, having at least two nitrogen atoms, the molar ratio of cyclic nitrogen compound / anionic catalyst being between 0.1 and 10, advantageously between 0.2 and 5, preferably between 0.3 and 2.5.
  • true dimers denotes the compounds obtained by condensation of two molecules of starting isocyanate monomers comprising a single uretidione ring.
  • true trimers denotes the compounds obtained by condensation of three starting isocyanate monomer molecules comprising a single isocyanurate ring.
  • heavy compounds denotes the compounds obtained by condensation of more than three monomeric isocyanate molecules, in particular “bis-trimers”, “bis-dimers”, tris-trimers and “dimers-trimers ".
  • Bis-trimers are polyisocyanate molecules comprising two isocyanurate rings, in which the connection between the two isocyanurate rings is ensured by a monomer unit, namely that two monomer units are engaged in each of the isocyanurate rings.
  • Bis-dimers are polyisocyanate molecules comprising two uretidion cycles, in which the connection between the two uretidion cycles is ensured by a monomer unit, namely that two monomer units are engaged in each of the uretidion cycles.
  • tris-trimers are the higher counterparts of the bis-trimers comprising three cycles of isocyanurates.
  • monomers are diisocyanates
  • tris-trimers are obtained by polycondensation of seven monomer chains and comprise three isocyanurate rings, two consecutive isocyanurate rings being linked in pairs by a monomer unit.
  • the dimer-trimers are higher homologs of the above compounds comprising an isocyanurate function and a mono-uretidione function.
  • the method according to the invention can be used for the cyclocondensation of any type of isocyanates, or mixture of isocyanates as defined above whether they are aliphatic, cycloaliphatic or aromatic, including the prepolymers having terminal isocyanate groups , in particular those described in US 5,115,071, the content of which is incorporated by reference in the present application. It can thus be used for the trimerization of isocyanates in the presence of various diols, triols and other polyols whose molecular weights are in a wide range, including polyols and aminopolyols comprising polyether and polyester groups, used for the production of polyurethane resins and polyisocyanurates. Diisocyanates are however preferred.
  • the diisocyanates for which the invention is interesting are those whose nitrogen atom is linked to a sp 3 hybridization carbon, and more particularly the (cyclo) aliphatic diisocyanates. Mention may in particular be made of polymethylene diisocyanates, namely compounds having at least two isocyanate functions comprising a sequence (CH 2 ) ⁇ where ⁇ represents an integer from 2 to 10, advantageously from 4 to 8. When there are several sequences, these can be similar or different. In addition, it is desirable that at least one, preferably all of these sequences, are free to rotate and therefore exocyclic.
  • polymethylene diisocyanates are TMDI (tetramethylene diisocyanate), HDI [hexamethylene diisocyanate,
  • OCN- (CH 2 ) 6 -NCO] and MPDI (2-methylpentane-diisocyanate) and 3,3,5- or 3,5,5-trimethylhexamethylene-diisocyanates In the case of a mixture obtained from several (in general, two) types of monomers, it is preferable that the one or those of the monomers which meets the above conditions and in particular the condition on the presence of polymethylene sequences (CH 2 ) ⁇ , represents at least a third, advantageously a half, preferably two thirds of the masked isocyanate functions.
  • Isocyanate monomers which are particularly suitable are cycloaliphatic monomers, that is to say those in which the backbone comprises an aliphatic cycle.
  • these monomers are advantageously such that at least one, advantageously the two isocyanate functions, is distant from the nearest ring, at most one carbon and preferably is connected directly to it.
  • these cycloaliphatic monomers advantageously have at least one, preferably two, isocyanate functions chosen from secondary, tertiary or neopentyl isocyanate functions.
  • Arylenedialcylene diisocyanates such as OCN-CH 2 -0-CH 2 -NCO are also suitable for the process of the invention.
  • the cyclic nitrogen compound / rare earth alcoholate molar ratio advantageously varies between 0.1 and 10, preferably between 0.2 and 5.
  • the reaction temperature is the temperature usually used for catalytic trimerization and depends on the type of catalyst.
  • the catalyst is a rare earth alcoholate, it is generally between 20 ° C, advantageously 50 ° C and 200 ° C, advantageously 150 ° C.
  • the catalyst is a silazane salt
  • it is generally between 20 ° C., advantageously 40 ° C. and 200 ° C., advantageously 150 ° C.
  • the catalyst is a rare earth alcoholate
  • the reaction is stopped at the rate of transformation of the desired NCO functions. This is generally between 5 and 100%, advantageously between 10 and 80%.
  • the invention also relates to the use of a nitrogen heterocyclic compound as defined above to promote the opening of a uretidione cycle and its reaction with a nucleophilic compound.
  • the nucleophilic compound is a compound having at least one function having a mobile hydrogen atom, reactive with the isocyanate function, such as phenol, amino alcohols, thiols, acids, amides, carbamates, ureas or releasing compounds.
  • a mobile hydrogen function during the reaction in other words the precursors of the compounds listed above.
  • the nucleophilic compound is advantageously chosen from amines, alcohols and thiols, preferably primary or secondary alcohols. It is also possible to use polyols, polyesters, polyethers, polyacrylics, polyurethanes, etc.
  • the invention is also particularly advantageous for compositions for polyurethane powder paints.
  • the polyol compounds are in this case powder compounds.
  • dimers of IPDI or HDI or their derivatives are used in particular, or compositions for powder paints comprising uretidiones functions resulting from the condensation of aliphatic or cycloaliphatic isocyanates.
  • the advantage of using a heterocyclic compound within the meaning of the invention makes it possible to lower the thermal threshold of the crosslinking which is generally between 80 and 150 ° C in the presence of the heterocyclic compound, whereas in absence of heterocyclic compound, the crosslinking temperatures are above 180 ° C., generally between 200 and 220 ° C.
  • the compositions for powder paints are generally stable on storage at a temperature above 0 ° C, preferably above 20 ° C.
  • Tg glass transition temperature
  • the Tg is a function of the basic units of the polymer and therefore of the final structure of the polymer. It is generally between -20 ° C and 150 ° C, preferably between 0 and 100 ° C and advantageously between 20 and 80 ° C.
  • the heterocyclic compound can be incorporated at different stages of the manufacture of the powder paint, either at the stage of synthesis of the dimeric compound, either in the polyol, or at the time of manufacture of powder paint in combination with the various constituents of the paint, for example at the time of extrusion.
  • the extrusion temperature generally being around 100 ° C. with an extrusion time, less than 30 minutes.
  • the nucleophilic function / uretidione ratio is between 10 and 0.05, preferably between 5 and 0.1, advantageously between 3 and 0.25, this ratio being obtainable at any stage of the reaction. crosslinking.
  • dimer functions are preserved and can react subsequently with other subsequent nucleophilic functions.
  • the nucleophilic functions are preserved and can react with other functions such as free isocyanate, masked isocyanate, anhydride or oxirane functions, etc.
  • the heterocyclic compounds be solid, that is to say that they have a melting temperature above 25 ° C, preferably above 50 ° C. Preference is therefore given to preferably substituted heterocyclic compounds having an aliphatic chain the number of carbon atoms of which is between 1 and 10.
  • nucleophilic compound participating in the opening of the uretidione cycle by the heterocyclic nitrogen compound it is not necessary for the nucleophilic compound participating in the opening of the uretidione cycle by the heterocyclic nitrogen compound to be an ionic compound. However, the presence of such a compound is not harmful to the opening reaction of the cycle and therefore the application of the final coating.
  • trimerization catalyst / imidazole ratios are molar ratios.
  • IPDI isophorone diisocyanate
  • NCO isophorone diisocyanate
  • the catalytic solution (1 g, or 2.75 10 "4 moles of imidazole and 2.75 10 "4 moles of lanthanum tris- (2-methoxyethylene glycolate)) is added to the reaction medium.
  • the amounts of lanthanum alcoholate and imidazole are respectively 100 mg and 19 mg, ie a ratio metal / NCO of 1.5 10 "3 .
  • the temperature of the reaction medium is brought to 60 ° C. and the reaction left under stirring for 5 hours then is blocked by adding paratoluene sulfonic acid (200 mg).
  • the IPDI transformation rate is 54.7%.
  • Example 2 The procedure is as in Example 1, replacing the lanthanum alcoholate with that of yttrium.
  • IPDl isophorone diisocyanate
  • NCO isophorone diisocyanate
  • the catalytic solution is added to the reaction medium.
  • the amounts of yttrium alcoholate and imidazole are respectively equal to 150 mg and 32 mg, ie a metal / NCO ratio of 2.6 ⁇ 10 ⁇ 3 .
  • the temperature of the reaction medium is brought to 60 ° C. and the reaction left with stirring for 5 hours then is blocked by the addition of para-toluene sulfonic acid (200 mg)
  • the IPDI transformation rate is 41%.
  • IPDl isophorone diisocyanate
  • NCO isophorone diisocyanate
  • Example 3 The procedure is as in Example 3, replacing the alcoholate of Yttrium with that of neodymium.
  • IPDl isophorone diisocyanate
  • NCO isophorone diisocyanate
  • IPDl isophorone diisocyanate
  • NCO isophorone diisocyanate
  • IPDl isophorone diisocyanate
  • NCO N-methylimidazole
  • 20 g of isophorone diisocyanate (IPDl), ie 0.09 moles, or 0.18 moles of NCO are added at ambient temperature, under a nitrogen stream, to a 50 ml three-neck reactor.
  • 200 mg of yttrium tris (isopropylate) (7.5 ⁇ 10 ⁇ 4 moles) and 51 mg of N-methylimidazole are added, ie a metal / NCO ratio of 4 ⁇ 10 ⁇ 3 .
  • the temperature of the reaction medium is brought to 60 ° C. and the reaction left under stirring for 5 hours then is blocked by addition of para-toluene sulfonic acid (150 mg). There is the presence of dimer and trimer bands.
  • Example 2 The procedure is as for Example 1, except that a methoxybutanol solution containing 5% by weight of lanthanum tris- (2-methoxy-ethylene glycolate) is added.
  • Example 2 The procedure is as for Example 2, except that a methoxyethylethylate solution containing 5% yttrium tris- (2-methoxy-ethylene glycolate) is added.
  • Example 3 The procedure is as for Example 3, except that a solution containing 200 mg of yttrium tris (isopropylate) is added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

L'invention concerne l'utilisation d'un composé comportant un groupe hétérocyclique azoté ayant cinq chaînons cycliques dont au moins deux atomes d'azote, l'un des atomes d'azote portant un atome d'hydrogène pour promouvoir la réaction d'ouverture/fermeture de cycles uretidiones en présence d'un composé nucléophile avec la condition que , lorsque le groupe hétérocyclique azoté est l'imidazole, la réaction d'ouverture/fermeture n'est pas la réaction de fermeture du cycle uretidione en présence d'un sel d'ammonium quaternaire.

Description

(Cyclo)condensation de composés isocyanates
[0001] L'invention concerne un procédé destiné à promouvoir l'ouverture de cycles uretidiones ou la fermeture de composés isocyanates en cycles uretidiones.
[0002] L'invention a plus particulièrement pour objet la (cyclo)condensation de composés isocyanates.
[0003] Dans la chimie des polyisocyanates, notamment dans les procédés de synthèse de polyisocyanates trimères possédant un cycle isocyanurate, il est généralement souhaitable, notamment pour des raisons de viscosité, d'obtenir un produit réactionnel ayant une certaine teneur en composés à cycle uretidione.
[0004] Généralement, les composés à cycle uretidione appelés également dimères sont obtenus par dimérisation de composés isocyanates en présence d'un catalyseur de dimérisation tel qu'une trialkylphosphine, un tris-(N,N-dialkyl)phosphotriamide ou une N,N,N',N'-tétra-alkylguanidine.
[0005] En outre, WO 99/23128 décrit un procédé de trimérisation catalytique d'isocyanate au moyen d'un catalyseur à base d'un sel d'ammonium quaternaire dans lequel on utilise comme co-catalyseur l'imidazole ou un de ses dérivés de manière à augmenter la réactivité des isocyanates notamment des isocyanates cycloaliphatiques et à contrôler celle-ci de façon efficace sans qu'elle dépende de la teneur en chlore hydrolysable contenue dans l'isocyanate monomère de départ.
[0006] Le document décrit par ailleurs que l'emploi d'imidazole en tant que co- catalyseur d'une réaction de trimérisation dans laquelle le catalyseur est un sel d'ammonium quaternaire, résulte en la formation de composés dimères à cycle uretidione. [0007] La quantité d'imidazole ou ses dérivés est telle que le ratio molaire imidazole/ammonium quaternaire est de l'ordre de 14 ou plus.
[0008] Il est par ailleurs connu que l'imidazole et d'autres composés cycliques azotés possédant un groupe hétérocyclique azoté à cinq chaînons comportant au moins deux atomes d'azote s'additionnent sur la fonction isocyanate à température ambiante conformément au schéma réactionnel :
Température
R-NCO + HET-H — am — —H biante - R-NH-CO-HET (I) '
R étant le reste d'un composé isocyanate après enlèvement d'une fonction isocyanate et HET-H étant un composé hétérocyclique azoté tel que défini ci- dessus, lié au groupe NCO par l'intermédiaire du groupe NH de l'hétérocycle.
[0009] À températures élevées, de l'ordre de 80 à 100°C, les hétérocycles azotés tels que décrits ci-dessus sont libérés de la fonction NCO suivant le schéma réactionnel :
R-NH-CO-HET 80 " 100°C ^ R-NCO + HET-H
[0010] La température de libération des composés hétérocycles azotés est relativement basse en comparaison avec d'autres agents bloquants de la fonction NCO. De ce fait, l'imidazole et les hétérocycles azotés tels que définis ci-dessus sont considérés comme de "bons groupes partants".
[0011] Il est par ailleurs connu que lorsque le rapport HET-H/NCO est petit, l'équilibre de la réaction est déplacé vers la formation de la forme protégée de l'isocyanate (I).
[0012] Les travaux réalisés par les inventeurs ont permis de constater qu'en présence d'un composé anionique, notamment issu d'une base forte, qu'un catalyseur de cyclocondensation de nature anionique, la réaction d'un isocyanate avec un hétérocycle tel que défini ci-dessus favorisait de manière surprenante la formation d'un composé mono-uretidione désigné également par "dimère vrai" issu de la polycondensation de deux molécules d'isocyanates de départ et comprenant un cycle uretidione unique. - .
[0013] Le mécanisme proposé par les inventeurs repose sur l'hypothèse qu'en présence d'isocyanate et d'un composé anionique, tel que défini ci-dessus, le composé hétérocyclique à cinq chaînons favorise l'addition de la fonction isocyanate sur le composé urée-HET (I) pour donner un composé biuret-HET ou désigné également par "pseudo-biuret" de formule (II) :
Figure imgf000004_0001
[0014] Du fait des caractéristiques nucléofuges du groupe HET, ce pseudo-biuret se cyclodimérise rapidement en "dimère vrai" avec libération de HET-H qui réagit rapidement sur les fonctions isocyanates en excès conformément au schéma réactionnel :
Figure imgf000004_0002
[0015] Tout se passe comme si la base constituée par le groupe anionique du catalyseur de cyclocondensation accélérait la cinétique de cyclodimérisation en favorisant l'arrachement d'un proton du pseudo-biuret suivi d'une réaction de cyclisation de l'atome d'azote nucleophile ainsi né, sur le groupe carbonyle de la fonction urée avec libération du groupe hétérocyclique HET vicinal.
[0016] Dans le cas des groupes hétérocycliques comportant un groupe NH, l'addition du groupe hétérocyclique azoté sur la fonction isocyanate se fait par l'intermédiaire de ce groupe, avec libération ultérieure d'un composé HET-H. [0017] Dans le cas des groupes hétérocycliques substitués, l'addition de l'hétérocycle azoté a- lieu probablement par l'intermédiaire d'une fonction =N- de l'hétérocyclique azoté.
[0018] , En d'autres termes dans un milieu réactionnel comportant des fonctions isocyanates et uretidiones, la cinétique d'addition de groupe HET-H sur la fonction isocyanate est plus rapide que la cinétique d'addition de HET-H sur le composé "dimère vrai".
[0019] D'autre part, les travaux des inventeurs ont permis de constater que lorsque le taux de fonctions NCO présentes dans le milieu réactionnel diminuait et à une température d'au moins 40°C, le composé HET-H agissait en ouvrant le cycle uretidione et favorisait, en présence d'un isocyanate monomère, la formation d'un composé de cyclocondensation homologue supérieur, en d'autres termes la réaction de cyclotrimérisation.
[0020] Il était en outre connu que certains composés nucléophiles Nu-H pouvaient promouvoir l'ouverture des cycles uretidiones pour former les produits d'addition correspondants suivant le schéma réactionnel :
Figure imgf000005_0001
[0021] Ainsi, il est décrit dans Houben-Weyl "Methoden der Organischen Chemie", 4. Auflage, Georg Thieme Verlag, (1983), pp 1110, que les aminés aliphatiques ouvrent, à température ambiante, le cycle uretidione. En revanche, les alcools n'ouvrent les cycles uretidiones qu'à température élevée, généralement à partir de 140-150°C.
[0022] De manière surprenante, la présente invention a permis de déterminer que les composés hétérocycliques définis ci-dessus catalysaient la réaction d'addition des composés nucléophiles sur le cycle uretidione. [0023] Ainsi, dans le cas notamment des alcools, la température de réaction d'addition de l'alcool sur le cycle uretidione s'effectue à basse température, généralement d'environ 80 à 100°C au lieu des températures élevées décrites ci- dessus.
[0024] Cette propriété peut être mise à profit de façon particulièrement intéressante pour l'ouverture de cycles uretidiones provenant de la condensation de monomères isocyanates c'est-à-dire de monomères dans lesquels la fonction NCO est portée par un atome de carbone ayant un encombrement stérique, par exemple les dimères d'IPDl dont l'ouverture est plus difficile que pour les dimères vrais formés par cyclodimérisation d'isocyanates . monomères faiblement encombrés, tels que l'HDI.
[0025] L'invention a pour objet l'utilisation d'un composé comportant au moins un groupe hétérocyclique azoté ayant au moins cinq atomes dans le cycle dont au moins deux atomes d'azote, pour promouvoir la réaction de fermeture de cycles uretidiones ou d'ouvertures de cycles uretidiones et leur réaction avec un composé isocyanate ou un composé nucleophile comportant un atome d' ydrogène mobile, avec la condition que, lorsque le groupe hétérocyclique azoté est l'imidazole, la réaction d'ouverture/fermeture n'est pas la réaction de fermeture de composés isocyanates en cycles uretidiones en présence d'un sel d'ammonium quaternaire.
[0026] Le composé cyclique azoté possède avantageusement 5 chaînons et est avantageusement choisi de préférence parmi l'imidazole, le triazole, le tétrazole et leurs dérivés comprenant un ou plusieurs substituants, notamment de 1 à 4 substituants suivant la nature du cycle.
[0027] Les substituants peuvent indépendamment l'un de l'autre être choisis parmi les groupes -R, -OR, -SR, -NRR", -COR, -CONRR', -NRCOR' et -NRCOOR', R et R', identiques ou différents, étant choisis parmi un atome d'hydrogène, un groupe alkyle en C1-C4, cycloalkyle en C3-C8, aryle en C5-C1o et un hétérocycle comprenant de 2 à 10 atomes de carbone et de 1 à 4 hétéroatomes identiques ou différents choisis parmi O, S et N et le groupe -NR", R" étant un groupe alkyle en C1-C4 ou cycloalkyle en C3-C8, les groupes alkyle, cycloalkyle, aryle ou hétéroaryle étant éventuellement substitués par un ou plusieurs groupes choisis parmi OH, COOH, NH2, SH, alkoxy ou alkoxycarbonyle.
[0028] Le composé hétérocyclique azoté peut également être un isocyanate masqué par un agent masquant répondant à la définition des composés hétérocycliques azotés donnés ci-dessus, en d'autres termes un précurseur d'un composé hétérocyclique azoté tel que défini ci-dessus.
[0029] On préfère les composés ayant un noyau imidazole non substitué sur l'atome d'azote ou ayant un noyau imidazole portant un substituant N-alkyle, ou N-aryle, ayant de 1 à 20 atomes de carbone, de préférence N-méthyle.
[0030] Selon un premier mode de réalisation de l'invention, le composé hétérocyclique azoté est utilisé pour promouvoir la réaction de fermeture d'un cycle uretidione, à partir d'isocyanates monomères de départ, ceux-ci étant en excès par rapport aux composés hétérocycliques azotés.
[0031] Selon un second mode de réalisation de l'invention, le composé hétérocyclique azoté est utilisé pour promouvoir la réaction d'ouverture d'un cycle uretidione, en présence d'un composé anionique notamment issu d'une base forte, ladite base étant notamment un catalyseur de cyclocondensation d'isocyanates.
[0032] Un grand nombre de catalyseurs de cyclocondensation notamment de cyclotrimérisation sont des composés anioniques au sens de la présente invention.
[0033] Le composé anionique peut consister notamment en un alcoolate, hydroxyde, fluorure, acétate, carbonate, hydrogénocarbonate, carboxylate ou un sel de silazane de cations minéraux ou organiques. [0034] Parmi les cations minéraux, on peut citer les métaux alcalins, alcalino- terreux, les métaux de transition, ainsi que les terres rares.
[0035] Parmi les sels organiques, on préfère les "oniums" ou les "iniums". Les oniums sont choisis dans le groupe des cations formés par les éléments des colonnes Vb et Vlb (tels que définis dans le tableau de la classification périodique des éléments publié au supplément du Bulletin de la Société Chimique de France en janvier 1966) avec 4 (cas de la colonne Vb) ou 3 (cas de la colonne Vlb) chaînes hydrocarbonées.
[0036] Avantageusement, le sel organique de l'invention est dans ce cas un phosphonium, sulfonium, ammonium, oxonium ou diazonium.
[0037] Les "iniums", ensemble auquel appartiennent les pyridiniums, dérivent des oniums par le remplacement de deux substituants par un substituant doublement
[0038] Un premier type de catalyseur de trimérisation particulièrement adapté à l'invention lorsqu'il est associé à un composé azoté cyclique tel que décrit ci- dessus, est constitué par les alcoolates de terres rares. Pour la définition des éléments des terres rares, on se reportera au tableau de la page B-208 de "Handbook of Chemistry and Physics", Editor Robert C. Weast, 67th Ed.).
[0039] Ceux-ci comprennent les éléments suivants : scandium, yttrium, lanthane ainsi que les lanthanides (cérium, praséodyme, néodyme, samarium, europium, gadolinium, terbium, ytterbium et lutécium).
[0040] Selon l'invention, il est possible d'ajouter un composé comprenant une fonction alcoolate de terre rare ou un mélange de composés. La fonction alcoolate de terres rares peut consister en toute fonction obtenue par substitution d'un groupe OH alcoolique par un métal de terres rares.
[0041] On peut citer en particulier les propylates, notamment les isopropylates, en particulier l'isopropylate des éléments de terres rares suivants : Y, Sm, Yb et La.
[0042] Conviennent également de façon satisfaisante les méthylates, éthylates et butylates, ainsi que les alcoolates de poly(alkylène glycol), dont de préférence une au moins des fonctions alcool en bout de chaîne est substituée par une fonction éther, ester, etc.
[0043] Un second type de catalyseurs de trimérisation est constitué par les sels alcalins, alcalino-terreux, d'étain, de zinc, ou d'autres métaux d'acides carboxyliques tels que les acides acétique, propionique, octanoïque ou benzoïque.
[0044] Un troisième type de catalyseurs est constitué par les sels alcalins, alcalino-terreux, d'étain, de zinc, d'alcoolates ou de phénolates.
[0045] Un quatrième type de catalyseurs est formé par les hydroxydes, carbonates, hydrogénocarbonates ou carboxylates d'ammoniums quaternaires.
[0046] Un cinquième type de catalyseurs est constitué par les sels de silazane ou les silanolates de cations minéraux ou organiques. Il s'agit notamment des composés de formule (1 ) ou (2) :
Figure imgf000009_0001
dans lesquelles les symboles :
• Ri, R2, R3, R4, R5 et R6 identiques ou différents représentent un groupe monovalent de nature hydrocarbonée, aliphatique, cycloaliphatique saturé ou insaturé, aryle, aralkyle ou alkylaryle, éventuellement substitué par des atomes d'halogène, des groupements CN, ou ester, ou • dans la formule (1 ) l'un de R1 ( R2, R3, R4, R5 et R6 représente un motif de formule :
Figure imgf000010_0001
A étant un groupe alkylène ayant de 1 à 30 atomes, avantageusement de 2 à 20 atomes de carbone, de préférence (C^ avec n' compris entre 1 et 6, avantageusement de 2 à 6, et R'1 à R'5 identiques ou différents représentant un groupe monovalent de nature hydrocarbonée, aliphatique, cycloàliphatique saturé ou insaturé, aryle, aralkyle ou alkylaryle, éventuellement substitué par des atomes d'halogène, des groupements CN, ou ester, et n est un nombre entier entre 1 et 50, ou
- deux parmi Ri, R2 et R3 d'une part et/ou R4, R5 et R6 d'autre part, constituent ensemble un groupe hydrocarboné divalent, et/ou
- au moins un groupe choisi parmi R-i, R2 et R3 forme avec au moins un groupe parmi R4, R5 et R6 un groupe hydrocarboné divalent.
[0047] Avantageusement R-i à R6 et R'-i à R'5, identiques ou différents représentent :
- un groupe alkyle, alkényle, halogénoalkyle ou halogénoalkényle ayant de 1 à 20, de préférence de 1 à 6 atomes de carbone, et comportant éventuellement des atomes de chlore et/ou de fluor,
- un groupe cycloalkyle, cycloalkényle, halogénocycloalkyle ou halogénocycloalkényle ayant de 3 à 30, de préférence 3 à 10 atomes de carbone et contenant des atomes de chlore et/ou de fluor, - un groupe aryle, alkylaryle ou halogénoaryle ayant de 6 à 30, de préférence 6 à 10 atomes de carbone et contenant des atomes de chlore et/ou de fluor,
- un groupe cyanoalkyle ayant de 1 à 6 atomes de carbone,
- ou deux groupes parmi Ri, R2 et R3 ou R3, R et R5 forment ensemble un radical divalent comprenant de 2 à 5 atomes de carbone, - ou deux parmi Ri, R2 et R3 d'une part et/ou R4, R5 et Rβ d'autre part, constituent ensemble un groupe hydrocarboné divalent, ou
- au moins un groupe choisi parmi Ri, R2 et R3 forme avec au moins un groupe parmi R4, R5 et Rβ un groupe hydrocarboné divalent, comprenant de 2 à 5 atomes de carbone.
[0048] Des groupes Ri à R6 et R'i à R'5 particulièrement préférés sont choisis parmi méthyle, éthyie, propyle, linéaires ou ramifiés le cas échéant, vinyle et phényle, pouvant éventuellement être chloré et/ou fluoré.
[0049] Lorsque les groupes R-i à Rβ et R'1 à R'5 sont chlorés et/ou fluorés, le nombre d'atomes d'halogène varie de 1 à la totalité des valences disponibles.
[0050] On peut tout particulièrement citer les sels des composés silazanes suivants :
• hexaméthyldisilazane,
• diéthyl-1 ,3-tétraméthyl-1 , 1 ,3,3-disilazane,
• divinyl-1 ,3-tétraméthyl-1 ,1 ,3,3-disilazane,
• hexa-éthyldisilazane, et • diphényl-1 ,3-tétraméthyl-1 , ,3,3-disilazane.
[0051] On peut également citer les silanolates suivants :
• triméthylsilanolate,
• triéthylsilanolate, • éthyldiméthylsilanolate,
• vinyldiméthylsilanolate.
[0052] Le sel du composé de formules (1 ) et (2) peut être un sel minéral, monovalent ou multivalent, ou un mélange de ces sels. Les sels minéraux préférés sont ceux de K, Li, Na et Mg.
[0053] Le sel du composé de formules (1 ) et (2) peut également être un sel organique, monovalent ou multivalent ou un mélange de ces sels. Les sels organiques préférés sont les "oniums" ou "iniums" stables.
[0054] Dans le cas de cations multivalents, le sel selon l'invention peut comprendre au moins un ligand de formule (1) ou (2) ci-dessus et éventuellement un ou plusieurs ligands différents. Généralement, on préfère que tous les ligands soient des composés de formule (1) ou (2).
[0055] Le nombre de ligands est fonction de la valence du cation minéral ou organique, ainsi que du nombre d'atomes d'azote dans le composé de formule (1 ).
[0056] Lorsque le composé nucleophile ou le solvant est un alcool, on évite d'utiliser un catalyseur de type sel de silazane.
[0057] On peut également utiliser à titre de catalyseur un composé anionique possédant un groupe azoté du type décrit ci-dessus. On peut citer notamment l'histidine sous sa forme carboxylate métallique qui agira à la fois par son hétérocycle imidazole pour se lier à la fonction NCO et la fonction COO" du . groupe aminoacide pour catalyser la cyclotrimérisation des isocyanates monomères.
[0058] Un composé azoté cyclique tel que défini ci-dessus permet, lorsqu'il est ajouté à un catalyseur de polycondensation, notamment de (cyclo)trimérisation d'isocyanates, de type anionique en un rapport molaire composé cyclique azoté/catalyseur anionique compris entre 0,1 et 10, notamment entre 0,2 et 5, de préférence 0,3 et 2,5, d'obtenir un produit réactionnel comprenant des polyisocyanates dimères vrais et des polyisocyanates trimères vrais en un rapport polyisocyanates dimères vrais/polyisocyanates trimères vrais supérieur à 0,5, notamment supérieur à 0,6, de préférence supérieur à 0,75, voire supérieur à 1.
[0059] L'invention a également pour objet un procédé de préparation d'une composition polyisocyanate comprenant des polyisocyanates trimères, notamment des polyisocyanates trimères vrais et des polyisocyanates dimères, notamment des polyisocyanates dimères vrais, dans lequel le rapport molaire polyisocyanates dimères vrais/polyisocyanates trimères vrais est supérieur à 0,5, notamment supérieur à 0,6, de préférence supérieur à "0,75, voire supérieur à 1 , dans lequel on réalise une polycondensation d'isocyanates monomères, en présence d'un catalyseur de cyclotrimérisation de type anionique et d'un composé azoté consistant en un composé hétérocyclique à cinq chaînons, possédant au moins deux atomes d'azote, le rapport molaire composé azoté cyclique/catalyseur anionique étant compris entre 0,1 et 10, avantageusement entre 0,2 et 5, de préférence entre 0,3 et 2,5.
[0060] Dans la présente invention, on désigne par "dimères vrais" les composés obtenus par condensation de deux molécules d'isocyanates monomères de départ comportant un cycle uretidione unique.
[0061] On désigne par "trimères vrais" les composés obtenus par condensation de trois molécules d'isocyanates monomères de départ comportant un cycle isocyanurate unique.
[0062] On désigne par "composés lourds" les composés obtenus par condensation de plus de trois molécules d'isocyanate monomères, notamment les "bis-trimères", les "bis-dimères", les tris-trimères et les "dimères-trimères".
[0063] Les bis-trimères sont des molécules polyisocyanates comportant deux cycles isocyanurates, dans lesquels la liaison entre les deux cycles isocyanurates est assurée par une unité monomère à savoir que deux unités monomères sont engagées dans chacun des cycles isocyanurates.
[0064] Les bis-dimères sont des molécules polyisocyanates comportant deux cycles uretidiones , dans lesquels la liaison entre les deux cycles uretidiones est assurée par une unité monomère à savoir que deux unités monomères sont engagées dans chacun des cycles uretidiones.
[0065] Les tris-trimères sont les homologues supérieurs des bis-trimères comportant trois cycles d'isocyanurates. [0066] Dans le cas où les monomères sont des diisocyanates, des tris-trimères sont obtenus par polycondensation de sept chaînes monomères et comportent trois cycles isocyanurates, deux cycles isocyanurates consécutifs étant reliés deux à deux par une unité monomère.
[0067] Les dimères-trimères sont des homologues supérieurs des composés ci- dessus comportant une fonction isocyanurate et une fonction mono-uretidione.
[0068] Le procédé selon l'invention peut être utilisé pour la cyclocondensation de tout type d'isocyanates, ou mélange d'isocyanates tels que définis précédemment qu'ils soient aliphatiques, cycloaliphatiques ou aromatiques, y compris les prépolymères ayant des groupes isocyanates terminaux, notamment ceux décrits dans US 5,115,071 , dont le contenu est incorporé par référence dans la présente demande. Il peut ainsi être utilisé pour la trimérisation d'isocyanates en présence de divers diols, triols et autres polyols dont les poids moléculaires se situent dans une large gamme, y compris les polyols et aminopolyols comprenant des groupes polyéther et polyester, employés pour la production de résines polyuréthanes et polyisocyanurates. Les diisocyanates sont toutefois préférés.
[0069] Les diisocyanates pour lesquels l'invention est intéressante sont ceux dont l'atome d'azote est lié à un carbone d'hybridation sp3, et plus particulièrement les diisocyanates (cyclo)aliphatiques. On peut citer notamment les polyméthylène- diisocyanates, à savoir les composés ayant au moins deux fonctions isocyanates comportant un enchaînement (CH2)π où π représente un entier de 2 à 10, avantageusement de 4 à 8. Quand il y a plusieurs enchaînements, ces derniers peuvent être semblables ou différents. En outre, il est souhaitable que l'un au moins, de préférence tous ces enchaînements, soient libres en rotation et donc exocycliques.
[0070] Les exemples préférés de polyméthylène diisocyanates sont le TMDI (tétraméthylène-diisocyanate), l'HDI [hexaméthylène-diisocyanate,
OCN-(CH2)6-NCO] et le MPDI (2-méthylpentane-diisocyanate) et les 3,3,5- ou 3,5,5-triméthylhexaméthylène-diîsocyanates. [0071] En cas de mélange obtenu à partir de plusieurs (en général, deux) types de monomères, il est préférable que celui ou ceux des monomères qui réponde aux conditions ci-dessus et notamment à la condition sur la présence d'enchaînements polyméthylène (CH2)π, représente au moins un tiers, avantageusement un demi, de préférence deux tiers des fonctions isocyanates masquées.
[0072] Des monomères isocyanates convenant particulièrement bien sont les monomères cycloaliphatiques, c'est-à-dire ceux dont le squelette comporte un cycle aliphatique.
[0073] Ces monomères sont avantageusement tels qu'au moins l'une, avantageusement les deux fonctions isocyanates, soit distante du cycle le plus proche, d'au plus un carbone et de préférence est reliée directement à lui. En outre, ces monomères cycloaliphatiques présentent avantageusement au moins une, de préférence deux, fonctions isocyanates choisies parmi les fonctions isocyanates secondaire, tertiaire ou néopentylique.
[0074] Les meilleurs résultats sont obtenus quand la liberté conformationnelle du monomère cycloaliphatique est faible. Comme monomères susceptibles de donner de bons résultats, on peut citer à titre d'exemple, les monomères suivants :
• les composés correspondant à l'hydrogénation du ou des noyaux aromatiques porteurs des fonctions isocyanates de monomère d'isocyanates aromatiques et notamment du TDI (toluène diisocyanate) et des diisocyanato-biphényles.
[0075] Sont particulièrement préférés les composés suivants :
• les divers BIC [bis(isocyanato-méthylcyclohexane)] ; et surtout • le norbomanediisocyanate souvent appelé par son sigle NBDI ;
• l'isophoronediisocyanate ou IPDI ou 3-isocyanatométhyl-3,5,5- triméthylcyclohexylisocyanate ; • le H12 DI (1 ,1-méthylène-bis-4,4-isocyanatocyclohexane).
[0076] Les arylènedialcoylène diisocyanates tel que OCN-CH2-0-CH2-NCO conviennent également au procédé de l'invention.
[0077] Lorsque le catalyseur est un alcoolate de terres rares, le rapport molaire composé azoté cyclique/alcoolate de terres rares varie avantageusement entre 0,1 et 10, de préférence entre 0,2 et 5.
[0078] La température de réaction est la température habituellement mise en oeuvre pour la trimérisation catalytique et dépend du type de catalyseur.
[0079] Lorsque le catalyseur est un alcoolate de terres rares, celle-ci est généralement comprise entre 20° C, avantageusement 50° C et 200° C, avantageusement 150° C.
[0080] Lorsque le catalyseur est un sel de silazane, elle est généralement comprise entre 20° C, avantageusement 40° C et 200° C, avantageusement 150°C.
[0081] On préfère généralement ajouter au milieu réactionnel le catalyseur et le composé cyclique azoté simultanément dans une solution de solvant.
[0082] On peut citer à titre de solvants les hydrocarbures aromatiques substitués comme le SOLVESSO®, le toluène, le xylène ou les esters (acétate de n-butyle) ou les éthers (méthyléther du propyfène glycol).
[0083] Lorsque le catalyseur est un alcoolate de terre rare, on préfère généralement ajouter celui-ci en même temps que le composé cyclique azoté, en particulier l'imidazole ou le N-méthylimidazole en solution dans un alcool éther par exemple le méthoxyéthanol.
>
[0084] On arrête la réaction au taux de transformation des fonctions NCO souhaité. Celui-ci est généralement compris entre 5 et 100 %, avantageusement entre 10 et 80 %.
[0085] L'invention a également pour objet l'utilisation d'un composé hétérocyclique azoté tel que défini ci-dessus pour promouvoir l'ouverture d'un cycle uretidione et sa réaction avec un composé nucleophile.
[0086] Avantageusement, le composé nucleophile est un composé possédant au moins une fonction ayant un atome d'hydrogène mobile, réactive avec la fonction isocyanate, tels que les alcools phénols, aminés, thiols, acides, amides, carbamates, urées ou composés libérant une fonction à hydrogène mobile au cours de la réaction, en d'autres termes les précurseurs des composés énumérés précédemment.
[0087] Le composé nucleophile est avantageusement choisi parmi les aminés, les alcools et les thiols, de préférence les alcools primaires ou secondaires. On peut aussi utiliser des polyols, polyesters, polyéthers, polyacryliques, polyuréthanes, etc.
[0088] L'invention est aussi particulièrement intéressante pour les compositions pour peintures polyuréthanes poudres. Les composés polyols sont dans ce cas des composés poudres. Pour les compositions pour peintures polyuréthanes poudres, on utilise notamment des dimères d'IPDI ou d'HDI ou leurs dérivés, ou des compositions pour peintures poudres comportant des fonctions uretidiones issues de la condensation d'isocyanates aliphatiques ou cycloaliphatiques.
[0089] L'intérêt d'utiliser un composé hétérocyclique au sens de l'invention permet d'abaisser le seuil thermique de la reticulation qui se situe généralement entre 80 et 150°C en présence du composé hétérocyclique, alors que, en l'absence de composé hétérocyclique, les températures de reticulation sont supérieures à 180°C, généralement comprises entre 200 et 220°C. Les compositions pour peintures en poudre sont en général stables au stockage à une température supérieure à 0°C, de préférence supérieure à 20°C. On choisira donc des polyols dont la température de transition vitreuse (Tg) est en adéquation avec la température de reticulation. La Tg est fonction des unités de base du polymère et donc de la structure finale du polymère. Elle est généralement comprise entre -20°C et 150°C, de préférence entre 0 et 100°C et avantageusement entre 20 et 80°C.
[0090] Dans le cas des compositions polyuréthanes poudres, le composé hétérocyclique peut être incorporé à différents stades de la fabrication de la peinture poudre, soit au stade de la synthèse du composé dimère, soit dans le polyol, soit au moment de la fabrication de la peinture poudre en association avec les différents constituants de la peinture, par exemple au moment de l'extrusion.
[0091] On optimisera ainsi les conditions opératoires de préparation de cette poudre de telle manière qu'il n'y ait pas une trop grande réaction entre le dimère et les composés à hydrogène mobile.
[0092] Pour ce faire, on optimisera surtout les conditions d'extrusion, à savoir les conditions d'extrusion de la peinture polyuréthane en poudre, la température d'extrusion étant généralement d'environ 100°C avec une durée d'extrusion, inférieure à 30 minutes.
[0093] Le ratio fonction nucléophile/uretidione est compris entre 10 et 0,05, de préférence entre 5 et 0,1 , avantageusement entre 3 et 0,25, ce ratio pouvant être obtenu à n'importe quel stade de la réaction de reticulation. Dans le cas où le ratio est petit, des fonctions dimères sont conservées et peuvent réagir ultérieurement avec d'autres fonctions nucléophiles ultérieures. Dans le cas où le ratio est plus élevé, les fonctions nucléophiles sont conservées et peuvent réagir avec d'autres fonctions telles que des fonctions isocyanates libres, isocyanates masquées, anhydrides ou oxiranes, etc.
[0094] Dans le cas des peintures poudres, on préfère que les composés hétérocycliques soient solides, c'est-à-dire qu'ils possèdent une température de fusion supérieure à 25°C, de préférence supérieure à 50°C. On préférera donc des composés hétérocycliques de préférence substitués possédant une chaîne aliphatique dont le nombre d'atomes de carbones est compris entre 1 et 10. [0095] On peut aussi utiliser des composés hétérocycliques selon l'invention en solution avec des polyols et des composés polyisocyanates uretidiones. Dans ce cas, on choisira le même solvant que celui utilisé pour les formulations finales, de préférence un ester, éther, hydrocarbure aromatique substitué, ou éventuellement l'eau pour les compositions de type peintures à l'eau.
[0096] Il n'est pas nécessaire que le composé nucleophile participant à l'ouverture du cycle uretidione par le composé hétérocyclique azoté soit un composé ionique. Toutefois, la présence d'un tel composé n'est pas néfaste à la réaction d'ouverture du cycle et donc l'application du revêtement final.
[0097] Les exemples suivants illustrent l'invention. Sauf indications contraires, les pourcentages sont exprimés en poids. Les rapports catalyseur de trimérisation / imidazole sont des rapports molaires.
Exemple 1 :
Polycondensation d'IPDI en présence de tris-(-2-méthoxy-éthylène glycolate) de lanthane et d'imidazole
Préparation de la solution de catalyseur : Dans un premier temps on prépare la solution catalytique :
On introduit dans 100 mL d'une solution à 10 % poids de tris-(2-méthoxy-éthylène glycolate) de lanthane dans du 2-méthoxyéthanol (densité 1 ,01), 1 ,87 g (0,0275 moles) d'imidazole. Le rapport molaire imidazole / tris-(2méthoxy-éthylène glycolate) de lanthane est égal à 1.
Réaction
Dans un réacteur tricol de 50mL on ajoute à température ambiante, sous courant d'azote, 20 g d'isophorone diisocyanate (IPDI) soit 0,09 moles soit 0,18 moles de NCO. La solution catalytique (1 g, soit 2,75 10"4 moles d'imidazole et 2,75 10"4 moles de tris-(2-méthoxyéthylène glycolate) de lanthane) est ajoutée au milieu réactionnel. Les quantités d'alcoolate de lanthane et d'imidazole sont respectivement égales à 100 mg et 19 mg, soit un ratio métal / NCO de 1 ,5 10"3. La température du milieu réactionnel est portée à 60°C et la réaction laissée sous agitation pendant 5 heures puis est bloquée par addition d'acide paratoluène sulfonique (200 mg). Le taux de transformation de l'IPDI est de 54,7%.
L'analyse du milieu réactionnel avant élimination de l'IPDI monomère est présentée dans le tableau ci après :
Figure imgf000020_0001
On note la présence de fonctions allophanates et dimères sous Je massifs des bis trimères et des lourds.
Exemple 2 :
Polycondensation d'IPDI en présence de tris-(2-méthoxy-éthylène glycolate) d'yttrium et d'imidazole
On procède comme pour l'exemple 1 en remplaçant l'alcoolate de lanthane par celui de l'yttrium.
Dans un réacteur tricol de 50mL on ajoute à température ambiante, sous courant d'azote, 20 g d'isophorone diisocyanate (IPDl) soit 0,09 moles, soit 0,18 moles de NCO. La solution catalytique est ajoutée au milieu réactionnel. Les quantités d'alcoolate d'yttrium et d'imidazole sont respectivement égales à 150 mg et 32 mg, soit un ratio métal /NCO de 2,6 10"3. La température du milieu réactionnel est portée à 60°C et la réaction laissée sous agitation pendant 5 heures puis est bloquée par addition d'acide para toluène sulfonique (200 mg). Le taux de transformation de l'IPDI est de 41 %.
L'analyse du milieu réactionnel avant élimination de l'IPDI monomère est présentée dans le tableau ci après :
Figure imgf000021_0001
On note la présence de fonctions allophanates et dimères sous les massifs des bis trimères et des lourds.
Exemple 3 :
Polycondensation d'IPDI en présence de tris(isopropylate) d'yttrium et d'imidazole
Dans un réacteur tricol de 50mL on ajoute à température ambiante, sous courant d'azote, 20 g d'isophorone diisocyanate (IPDl) soit 0,09 moles, soit 0,18 moles de NCO. On ajoute 200 mg de tris(isopropylate) d'yttrium (7.5.10"4 moles) et 51 mg d'imidazole, soit un ratio métal / NCO de 4 10"3. La température du milieu réactionnel est portée à 60°C et la réaction laissée sous agitation pendant 5 heures puis est bloquée par addition d'acide para toluène sulfonique (150 mg). Le titre NCO est de 0,552 et le taux de transformation de l'IPDI est de 77,3 %.
L'analyse du milieu réactionnel avant élimination de l'IPDI monomère est présentée dans le tableau ci après :
Figure imgf000022_0001
On note la présence de fonctions allophanates et dimères sous les massifs des bis trimères et des lourds.
Exemple 4 :
Polycondensation d'IPDI en présence de tris(isopropylate) de néodyme
On procède comme pour l'exemple 3 en remplaçant l'alcoolate d'Yttrium par celui de néodyme.
Dans un réacteur tricol de 50mL on ajoute à température ambiante, sous courant d'azote, 20 g d'isophorone diisocyanate (IPDl) soit 0,09 moles, soit 0,18 moles de NCO. On ajoute au milieu réactionnel 1 % en poids par rapport. à l'IPDI de tris(isopropylate) de néoόyme soit 200 mg (soit 6,2 10"4 moles soit un rapport métal / NCO de 3,5 10"3) et 42 mg d'imidazole. La température du milieu réactionnel est portée à 60°C et la réaction laissée sous agitation pendant 5 heures. On arrête la réaction par addition de 200 mg d'acide para-toluène, sulfonique. L'analyse du milieu réactionnel avant' distillation du monomère IPDl par chromatographie donne la composition suivante :
Figure imgf000023_0001
On note la présence de fonctions allophanates sous le massifs des bis trimères et des lourds.
Exemple 5 :
Polycondensation d'IPDI en présence de tris(isopropylate) d'yttrium et d'imidazole
Dans un réacteur tricol de 50mL on ajoute à température ambiante, sous courant d'azote, 20 g d'isophorone diisocyanate (IPDl) soit 0,09 moles, soit 0,18 moles de NCO. On ajoute 200 mg de tris(isopropylate) d'yttrium (7,5 10"4 moles) et 51 mg d'imidazole, soit un ratio métal / NCO de 4 10"3. La température du milieu réactionnel est portée à 60°C et la réaction laissée sous agitation pendant 5 heures puis est bloquée par addition d'acide para toluène sulfonique (150 mg). Le titre NCO est de 0,552 et le taux de transformation de l'IPDI est de 77,3%. L'analyse du milieu réactionnel avant élimination de l'IPDI monomère st présentée dans le tableau ci après :
Figure imgf000024_0001
On note la présence de fonctions allophanates et dimères sous les massifs des bis trimères et des lourds.
Exemple 6 :
Polycondensation d'IPDI en présence de tris(isopropylate) d'yttrium et de N-méthylimidazole
Dans un réacteur tricol de 50mL on ajoute à température ambiante, sous courant d'azote, 20 g d'isophorone diisocyanate (IPDl) soit 0,09 moles, soit 0,18 moles de NCO. On ajoute 200 mg de tris(isopropylate) d'yttrium (7,5 10"4 moles) et 51 mg de N-méthylimidazole, soit un ratio métal / NCO de 4 10"3. La température du milieu réactionnel est portée à 60°C et la réaction laissée sous agitation pendant 5 heures puis est bloquée par addition d'acide para-toluène sulfonique (150 mg). On constate la présence de bandes dimères et trimères.
L'analyse du milieu réactionnel avant élimination de l'IPDI monomère est présentée dans le tableau ci après :
Figure imgf000025_0001
On note la présence de fonctions allophanates et dimères sous les massifs des bis trimères et des lourds.
EXEMPLE COMPARATIF 1
On procède comme pour l'exemple 1 , sauf que l'on ajoute une solution de méthoxybutanol contenant 5% en poids de tris-(2-méthoxy-éthylène glycolate) de lanthane.
EXEMPLE COMPARATIF 2
On procède comme pour l'exemple 2, sauf que l'on ajoute une solution de méthoxyéthyléthylate contenant 5% de tris-(2-méthoxy-éthylène glycolate) d'yttrium.
EXEMPLE COMPARATIF 3
On procède comme pour l'exemple 3, sauf que l'on ajoute une solution contenant 200 mg de tris(isopropylate) d'yttrium.
EXEMPLE COMPARATIF 4 (CM1 129902)
On procède comme pour l'exemple 4, sauf que l'on ajoute une solution contenant 200 mg de tris(isopropylate) de néodyme. Les résultats sont rapportés au tableau ci-après : TABLEAU
Figure imgf000026_0001

Claims

REVENDICATIONS
1. Utilisation d'un composé comportant au moins un groupe hétérocyclique azoté ayant au moins cinq chaînons dont au moins deux atomes d'azote, pour promouvoir la réaction de fermeture de cycles uretidiones ou d'ouverture de cycles uretidiones et leur réaction avec un composé nucleophile comportant un atome d'hydrogène mobile avec la condition que, lorsque le groupe hétérocyclique azoté est l'imidazole, la réaction d'ouverture/fermeture n'est pas la réaction de fermeture de composés isocyanates en cycles uretidiones en présence d'un sel d'ammonium quaternaire.
2. Utilisation selon la revendication 1 , caractérisée en ce que le composé hétérocyclique azoté est mis. en oeuvre pour promouvoir la cyclodimérisation de composés isocyanates en présence d'un composé anionique, les composés isocyanates étant en excès par rapport aux composés hétérocycliques azotés, sous réserve que la cyclodimérisation ne soit pas mise en œuvre en présence d'ammonium quaternaire, lorsque le composé hétérocyclique azoté est l'imidazole.
3. Utilisation selon la revendication 1 , caractérisée en ce que le composé hétérocyclique azoté est mis en oeuvre pour promouvoir la réaction d'ouverture d'un cycle uretidiones en présence d'un composé nucleophile.
4. Utilisation selon la revendication 3, caractérisé en ce que le composé nucleophile est le produit de réaction d'une base sur un groupe isocyanate.
5. Utilisation selon la revendication 3, caractérisée en ce que le composé nucleophile est un composé possédant une fonction ayant un atome d'hydrogène mobile, réactive avec la fonction isocyanate.
6. Utilisation selon la revendication 4, caractérisée en ce que ledit composé nucleophile est choisi parmi les aminés, les alcools et les thiols.
7 Utilisation selon la revendication 1 , - caractérisée en ce que ledit composé cyclique azoté est choisi parmi l'imidazole, le triazole, le tétrazole et leurs dérivés comportant un ou plusieurs substituants.
8. Utilisation selon la revendication 7, caractérisée en ce que le composé hétérocyclique azoté à cinq chaînons est l'imidazole ou un de ses dérivés comportant un ou plusieurs substituants.
9. Procédé de préparation d'une composition polyisocyanate comprenant des polyisocyanates trimères, notamment des polyisocyanates trimères vrais et des polyisocyanates dimères, notamment des polyisocyanates dimères vrais, dans laquelle le rapport molaire polyisocyanates dimères vrais/polyisocyanates trimères vrais est supérieur à 0,5, notamment supérieure à 0,6, de préférence supérieure à 0,75 dans lequel on réalise une polycondensation d'isocyanates monomères, en présence d'un catalyseur de cyclotrimérisation de type anionique et d'un composé azoté consistant en un hétérocyclique à cinq chaînons, possédant au moins deux atomes d'azote, en un rapport molaire composé azoté cyclique/catalyseur anionique compris entre 0,1 et 10, avantageusement entre 0,2 et 8.
10. Utilisation selon la revendication 9, caractérisée en ce que le catalyseur de (cyclo)trimérisation est choisi dans la groupe constitué parmi les alcoolates, hydroxydes, fluorures, acétates, carbonates, hydrogénocarbonates, carboxylates, et sels de silazane de métaux alcalins, alcalino-terreux, de transition, de terres rares et de cations de type onium ou inium.
11. Procédé selon la revendication 10, caractérisée en ce que le catalyseur de (cyclo)trimérisation est un alcoolate de terres rares.
12. Utilisation selon la revendication 8, caractérisée en ce que le catalyseur de (cyclo)trimérisation est un hydroxyde, hydrogénocarbonate ou carboxylate d'ammonium quaternaire.
13. Utilisation selon la revendication 8, caractérisée en ce que le catalyseur de (cyclo)trimérisation est un sel de silazane de métaux alcalins, alcalinoterreux, transition, terres rares et cations de type onium ou inium.
14. Composé de formule (II) :
Figure imgf000029_0001
R étant le reste d'un composé isocyanate après enlèvement d'une w fonction isocyanate et HET étant un composé hétérocyclique azoté tel que défini à la revendication 1 , lié au groupe NCO par l'intermédiaire d'un atome d'azote de l'hétérocycle.
PCT/FR2001/004206 2000-12-29 2001-12-26 (cyclo)condensation de composes isocyanates WO2002053613A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01989664A EP1358237A1 (fr) 2000-12-29 2001-12-26 (cyclo)condensation de composes isocyanates
BR0116561-5A BR0116561A (pt) 2000-12-29 2001-12-26 (ciclo)condensação de compostos isocianatos
US10/450,035 US6936677B2 (en) 2000-12-29 2001-12-26 (Cyclo)condensation of isocyanate compounds
US11/062,579 US7524435B2 (en) 2000-12-29 2005-02-23 (Cyclo)condensation of isocyanate compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/17322 2000-12-29
FR0017322A FR2818974B1 (fr) 2000-12-29 2000-12-29 (cyclo) condensation de composes isocyanates

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10450035 A-371-Of-International 2001-12-26
US11/062,579 Continuation US7524435B2 (en) 2000-12-29 2005-02-23 (Cyclo)condensation of isocyanate compounds

Publications (1)

Publication Number Publication Date
WO2002053613A1 true WO2002053613A1 (fr) 2002-07-11

Family

ID=8858424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/004206 WO2002053613A1 (fr) 2000-12-29 2001-12-26 (cyclo)condensation de composes isocyanates

Country Status (6)

Country Link
US (2) US6936677B2 (fr)
EP (1) EP1358237A1 (fr)
CN (1) CN1238393C (fr)
BR (1) BR0116561A (fr)
FR (1) FR2818974B1 (fr)
WO (1) WO2002053613A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985308A1 (fr) * 2010-04-07 2016-02-17 Nuplex Resins B.V. Composition réticulable
US10604622B2 (en) 2013-04-08 2020-03-31 Allnex Netherlands B.V. Composition crosslinkable by Real Michael Addition (RMA) reaction
US10647876B2 (en) 2011-10-07 2020-05-12 Allnex Netherlands B.V. Crosslinkable composition cross-linkable by real Michael addition reaction and resins for use in said composition
US10759962B2 (en) 2015-04-17 2020-09-01 Allnex Netherlands B.V. Method for applying RMA crosslinkable coating on modified epoxy primer coating
US10767074B2 (en) 2015-04-17 2020-09-08 Allnex Netherlands B.V. Process for the manufacture of a crosslinkable composition
US10774238B2 (en) 2015-04-17 2020-09-15 Allnex Netherlands B.V. Method for curing a RMA crosslinkable resin coating, RMA crosslinkable compositions and resins for use therein
US11814536B2 (en) 2015-04-17 2023-11-14 Allnex Netherlands B.V. Floor coating compositions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818974B1 (fr) * 2000-12-29 2003-10-24 Rhodia Chimie Sa (cyclo) condensation de composes isocyanates
US6905765B2 (en) 2002-08-09 2005-06-14 E.I. Du Pont De Nemours And Company Polyether ester elastomers comprising poly(trimethylene-ethylene ether) ester soft segment and alkylene ester hard segment
DE102004012903A1 (de) * 2004-03-17 2005-10-06 Bayer Materialscience Ag Niedrigviskose Allophanate mit aktinisch härtbaren Gruppen
JP5268934B2 (ja) * 2006-12-04 2013-08-21 ビーエーエスエフ ソシエタス・ヨーロピア ポリイソシアネートを製造するための方法
EP2644270A1 (fr) * 2012-03-29 2013-10-02 Huntsman International Llc Composition de catalyseur de trimérisation de polyisocyanate
CN105061709B (zh) * 2015-08-26 2018-02-27 华南理工大学 一种基于甲苯二异氰酸酯二聚体的聚氨酯固化剂及其制法
JP2019527247A (ja) 2016-06-30 2019-09-26 エレメンティス スペシャルティーズ,インコーポレイテッド., ドーマントカルバメート開始剤が配合された架橋性コーティング組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252945A (en) * 1962-06-26 1966-05-24 Bayer Ag Polymerization of isocyanates utilizing an amidine, tetrazole, cyanamide or a related compound as the catalyst
US4697014A (en) * 1985-03-25 1987-09-29 Rhone-Poulenc Specialites Chimiques Catalytic partial cyclotrimerization of polyisocyanates and product thereof
WO1999023128A1 (fr) * 1997-11-04 1999-05-14 Rhodia Chimie Catalyseur et procede de trimerisation d'isocyanates

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978449A (en) * 1956-11-16 1961-04-04 Ici Ltd Polymeric isocyanates and their manufacture
NL270400A (fr) * 1960-10-20
DE2434185A1 (de) * 1974-07-16 1976-02-05 Bayer Ag Verfahren zur herstellung von amidin-metall-komplexen
GB2203159B (en) * 1987-04-03 1990-12-12 Asahi Chemical Ind An isocyanurate polyisocyanate and its use as a curing agent for a two-component polyurethane composition
DE3930670A1 (de) * 1989-09-14 1991-03-28 Basf Ag Verfahren zur herstellung von uretdiongruppen aufweisenden polyisocyanaten
US5264572A (en) * 1990-03-12 1993-11-23 Asahi Denka Kogyo K.K. Catalyst for isocyanate trimerization
DE4218540A1 (de) * 1992-06-05 1993-12-09 Basf Ag Verfahren zur Herstellung von Uretdiongruppen aufweisenden Polyisocanaten
DE4320821A1 (de) * 1993-06-23 1995-01-05 Basf Ag Verfahren zur Herstellung von Isocyanurat- und/oder Uretdiongruppen enthaltenden Polyisocyanaten mit reduzierter Farbzahl und verbesserter Lagerstabilität sowie nach diesem Verfahren hergestellte Produkte
FR2803297B1 (fr) * 1999-12-29 2002-10-25 Rhodia Chimie Sa Procede de polycondensation d'isocyanates
FR2818974B1 (fr) * 2000-12-29 2003-10-24 Rhodia Chimie Sa (cyclo) condensation de composes isocyanates
BR0116559A (pt) * 2000-12-29 2004-02-17 Rhodia Chimie Sa Catalisador de condensação para isocianato, composição compreendendo o mesmo, processo de utilização, e composições obtidas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252945A (en) * 1962-06-26 1966-05-24 Bayer Ag Polymerization of isocyanates utilizing an amidine, tetrazole, cyanamide or a related compound as the catalyst
US4697014A (en) * 1985-03-25 1987-09-29 Rhone-Poulenc Specialites Chimiques Catalytic partial cyclotrimerization of polyisocyanates and product thereof
WO1999023128A1 (fr) * 1997-11-04 1999-05-14 Rhodia Chimie Catalyseur et procede de trimerisation d'isocyanates

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985308A1 (fr) * 2010-04-07 2016-02-17 Nuplex Resins B.V. Composition réticulable
US9534081B2 (en) 2010-04-07 2017-01-03 Nuplex Resins B.V. Crosslinkable composition crosslinkable with a latent base catalyst
US10647876B2 (en) 2011-10-07 2020-05-12 Allnex Netherlands B.V. Crosslinkable composition cross-linkable by real Michael addition reaction and resins for use in said composition
US10604622B2 (en) 2013-04-08 2020-03-31 Allnex Netherlands B.V. Composition crosslinkable by Real Michael Addition (RMA) reaction
US10774238B2 (en) 2015-04-17 2020-09-15 Allnex Netherlands B.V. Method for curing a RMA crosslinkable resin coating, RMA crosslinkable compositions and resins for use therein
US10767074B2 (en) 2015-04-17 2020-09-08 Allnex Netherlands B.V. Process for the manufacture of a crosslinkable composition
US10759962B2 (en) 2015-04-17 2020-09-01 Allnex Netherlands B.V. Method for applying RMA crosslinkable coating on modified epoxy primer coating
US10920101B2 (en) 2015-04-17 2021-02-16 Allnex Netherlands B.V. RMA crosslinkable compositions and RMA crosslinkable resins for easy to clean coatings
US11072724B2 (en) 2015-04-17 2021-07-27 Allnex Netherlands B.V. Adhesion promotor for real michael addition crosslinkable compositions
US11414565B2 (en) 2015-04-17 2022-08-16 Allnex Netherlands B.V. Process for the manufacture of a crosslinkable composition
US11674055B2 (en) 2015-04-17 2023-06-13 Allnex Netherlands B.V. RMA crosslinkable compositions and RMA crosslinkable resins for easy to clean coatings
US11674054B2 (en) 2015-04-17 2023-06-13 Allnex Netherlands B.V. Method for curing a RMA crosslinkable resin coating, RMA crosslinkable compositions and resins for use therein
US11713402B2 (en) 2015-04-17 2023-08-01 Allnex Netherlands B.V. RMA crosslinkable compositions and RMA crosslinkable resins for easy to clean coatings
US11814536B2 (en) 2015-04-17 2023-11-14 Allnex Netherlands B.V. Floor coating compositions

Also Published As

Publication number Publication date
US7524435B2 (en) 2009-04-28
CN1492887A (zh) 2004-04-28
US20040030085A1 (en) 2004-02-12
US20050143575A1 (en) 2005-06-30
BR0116561A (pt) 2004-02-03
US6936677B2 (en) 2005-08-30
FR2818974A1 (fr) 2002-07-05
EP1358237A1 (fr) 2003-11-05
CN1238393C (zh) 2006-01-25
FR2818974B1 (fr) 2003-10-24

Similar Documents

Publication Publication Date Title
US7524435B2 (en) (Cyclo)condensation of isocyanate compounds
EP1375545B1 (fr) Catalyseur et procédé de trimerisation d'isocyanates
EP2134760B1 (fr) Composition a base de (poly)isocyanate modifie et d'un solvant de type acetal ou cetone aliphatique, et utilisation de cette composition pour la fabrication de revetements
JPH08319332A (ja) ブロックされたポリイソシアナート及びその製造法
EP1129120B1 (fr) Polyisocyanates modifies
EP1497351B1 (fr) Composition polyisocyanate de faible viscosite possedant une fonctionnalite elevee et procede de prepartion
EP1352006B1 (fr) Procede de dimerisation catalytique d'isocyanates
EP1250367B1 (fr) Procede de polycondensation d'isocyanates
EP1358238B1 (fr) Catalyseur de condensation pour isocyanate, composition en contenant, procede d'utilisation, et compositions obtenues
EP1325051B1 (fr) Utilisation comme catalyseur pour la formation d'urethanes, de sels d'acide fluores et de metal trivalent, composition en contenant et procede
EP0998511B1 (fr) Composition d'isocyanate(s) masque(s) mixte(s) et son utilisation en peinture poudre
WO2002012366A1 (fr) Composition polyisocyanate
EP1406938A1 (fr) Composition polycondensable comportant un heterocycle oxygene et un isocyanate, et procede de polycondensation y afferant
FR2770533A1 (fr) Utilisation d'imidazole en tant que co-catalyseur de la trimerisation d'isocyanates
FR2897613A1 (fr) Procede de preparation de polyisocyanates dimeres
FR2816939A1 (fr) Procede de dimerisation catalytique d'isocyanates
FR2818976A1 (fr) Procede de (cyclo) condensation au moyen d'un sel de silazane d'erbium
FR2818973A1 (fr) Nouveau procede de (cyclo) condensation d'isocyanates au moyen d'un sel de silazane d'etain
FR2818975A1 (fr) Nouveau procede de (cyclo) condensation, notamment de (cyclo) trimerisation catalytique d'isocyanates
FR2822828A1 (fr) Composition polyisocyanate de faible viscosite possedant une fonctionnalite elevee et procede de preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2001989664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001989664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10450035

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 01821410X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001989664

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP