WO2002051792A1 - Verfahren zur herstellung von 1,5-naphthalindiamin - Google Patents

Verfahren zur herstellung von 1,5-naphthalindiamin Download PDF

Info

Publication number
WO2002051792A1
WO2002051792A1 PCT/EP2001/014449 EP0114449W WO02051792A1 WO 2002051792 A1 WO2002051792 A1 WO 2002051792A1 EP 0114449 W EP0114449 W EP 0114449W WO 02051792 A1 WO02051792 A1 WO 02051792A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitro
amino
dihydro
naphthylamine
nitrophenyl
Prior art date
Application number
PCT/EP2001/014449
Other languages
English (en)
French (fr)
Inventor
Michael Schelhaas
Katrin Joschek
Manfred Jautelat
Joachim Zechlin
Dietmar Wastian
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10149041A external-priority patent/DE10149041A1/de
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to EP01990532A priority Critical patent/EP1345888A1/de
Priority to JP2002552891A priority patent/JP4206270B2/ja
Publication of WO2002051792A1 publication Critical patent/WO2002051792A1/de
Priority to HK04104612A priority patent/HK1061675A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/20Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups being part of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/45Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/28Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with other reducing agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/60Preparation of compounds containing amino groups bound to a carbon skeleton by condensation or addition reactions, e.g. Mannich reaction, addition of ammonia or amines to alkenes or to alkynes or addition of compounds containing an active hydrogen atom to Schiff's bases, quinone imines, or aziranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/60Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton containing a ring other than a six-membered aromatic ring forming part of at least one of the condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/11Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/42Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Definitions

  • the invention relates to a process for the preparation of 1,5-naphthalenediamine by reacting ortbo-nitrotoluene with an acrylic acid derivative and the im
  • 1,5-naphthalenediamine Various processes for the preparation of 1,5-naphthalenediamine are already known in the literature. In general, the preparation of 1,5-naphthalenediamine starts from naphthalene, which is appropriately substituted.
  • JP-A-2-07 278 066 describes the synthesis of 1,5-naphthalenediamine via an amine-bromine
  • JP-A2-04 154 745, JP-A2-56 059 738 and DE-Al-2 523 351 describe the synthesis of 1,5-naphthalenediamine in combination with 1,8-naphthalenediamine by reducing a mixture of 1,5- and 1,8-dinitronaphthalene.
  • DE-Cl-3 840 618 describes the synthesis of 1,5-naphthalenediamine by alkaline hydrolysis of disodium naphthalene-1,5-disulfonate and subsequent reaction with ammonia.
  • the object of the present invention is therefore to provide a simple process for the preparation of 1,5-naphthalenediamine, according to which 1,5-naphthalenediamine can be prepared in basic steps from basic chemicals, without other isomers occurring and being separated off in appreciable amounts have to.
  • the object is achieved according to the invention by a process for the preparation of 1,5-naphthalenediamine which comprises a step in which ortbo-nitrotoluene is reacted with an acrylic acid derivative.
  • acrylic acid derivatives are acrylic acid esters, such as, for example, methyl acrylate and ethyl acrylate, acrylic acid amide and acrylonitrile.
  • the process for the preparation of 1,5-naphthalenediamine contains the steps
  • step b) cyclization of the 4- (2-nitrophenyl) butyronitrile formed in step a) to give the nitro-imine and / or nitro-enamine, c) aromatizing the nitro-imine and / or nitro-enamine formed in step b) to 5-nitro-1-naphthylamine and / or 5-nitroso-1-naphthylamine,
  • step c) hydrogenating the 5-nitro-1-naphthylamine and / or 5-nitroso-1-naphthylamine formed in step c) to 1,5-naphthalenediamine.
  • 4- (2-nitrophenyl) -butyromtril is preferably produced from ortbo-nitrotoluene and acrylonitrile at temperatures from -10 ° C to 100 ° C. It is particularly preferred to work at 20 ° C. to 75 ° C., very particularly preferably at temperatures from 30 ° C. to 60 ° C.
  • the reaction is carried out under base catalysis.
  • Oxides, hydroxides and carbonates of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium or aluminum and mixtures thereof can be used as bases.
  • Sodium and potassium hydroxide are particularly suitable.
  • Phase transfer catalyst used are e.g. quaternary ammonium salts.
  • Suitable ammonium compounds are tetraalkylammonium halides and hydrogen sulfates such as tributylmethylammonium chloride, trioctylammonium chloride, tetrabutylammonium chloride or tetrabutylammonium hydrogen sulfate.
  • suitable is the use of corresponding tertaalkyl or tetraaryl phosphonium salts such as tetramethylphosphonium bromide and tetraphenylphosphonium bromide, and the use of solubilizers such as polyethylene glycol dimethyl ether.
  • Aromatic solvents such as benzene, toluene, xylene, chlorobenzene, nitrobenzene or nitrotoluene and dimethyl sulfoxide are preferred; Dimethylformamide and aliphatic hydrocarbons such as ligroin, cyclohexane, pentane, hexane, heptane, octane are used.
  • Ortbo-nitrotoluene is particularly preferably used as starting material and at the same time as solvent, and an excess of ortbo-nitrotoluene of 1 to 40 equivalents, very particularly 5 to 20 equivalents, based on acrylonitrile, is used.
  • cyclization of 4- (2-nitrophenyl) butyronitrile to 5-nitro-3,4-dihydro-l-naphthylamine or the tautomeric 5-nitro-3,4-dihydro-l (2H) -naphthylimine is carried out in bulk or carried out in an inert solvent in the presence of strong acids.
  • Suitable solvents are linear, branched or cyclic aliphatic hydrocarbons such as ligroin or cyclohexane, pentane, hexane, heptane, octane and aromatic solvents such as nitrotoluene. It is preferred to work in bulk or in ortbo-nitrotoluene.
  • Suitable acids are strong Lewis or Bronsted acids such as e.g. Aluminum chloride, boron trifluoride, sulfuric acid, phosphoric acid, polyphosphoric acid, phosphorus pentoxide, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid or
  • Mixtures of antimony pentafluoride and fluorosulfuric acid can also be used.
  • the acid is generally used in 0.1 to 100 molar equivalents, based on 4- (2-nitrophenyl) butyronitrile. 0.5 to 20 equivalents are preferably used, particularly preferably 1 to 10 equivalents.
  • the reaction is generally carried out at temperatures from 0 ° C. to 200 ° C., preferably between 40 ° C. to 150 ° C., particularly preferably between 60 ° C. and 110 ° C.
  • the hydrolysis-sensitive nitro-imine and / or nitro-enamine formed in step b) is preferably first reacted, for example by hydrolysis, to give the nitroketone 5-nitro-3,4-dihydro-l (2H) -naphthalinone and the nitroketone is isolated. The isolation takes place, for example, by phase separation.
  • step c) the nitroketone is then converted back to the nitroimine and / or nitroenamine by reaction with ammonia, preferably in the presence of ammonium salts such as ammonium chloride, and then aromatized. The aromatization then preferably takes place in ammonia as the solvent.
  • the aromatization or dehydrogenation of the nitro-enamine 5-nitro-3,4-dihydro-1-naphthylamine or the nitro-imine 5-nitro-3,4-dihydro-1 (2H) -naphthylimine to 5-nitro-1 -naphthylamine or 5-nitroso-l-naphthylamine or a mixture of the compounds is carried out, for example in an inert solvent, in the presence of a catalyst.
  • the 5-nitroso-1-naphthylamine formally formed by synproportionation can also be formed. 1,5-naphthalenediamine is also produced in traces.
  • the products can be processed in any mixing ratio.
  • Suitable solvents are ammonia and linear, branched or cyclic aliphatic hydrocarbons such as ligroin or cyclohexane, and acetonitrile and aromatic solvents such as benzene, toluene, xylene, nitrobenzene, nitrotoluene or chlorobenzene.
  • the flavoring can also be carried out in the absence of a solvent.
  • Suitable catalysts are dehydrogenation catalysts which are described in the literature (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10th edition 1997, p. 891, chapter “Dehydration", section 1; Ullmann's Encyclopedia of Industrial Chemistry, NCH Verlagsgesellschaft mbH, Weinheim, 5th edition 1989, Vol A13, chapter “Hydrogenation and Dehydrogenation", subsection 2. "Dehydrogenation”, pp. 494-497). These include the metals of the 8th-10th group of the
  • Periodic table (GJ Leigh [Editor], omenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 "Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.),
  • platinum Palladium, ruthenium and iridium, iron, cobalt, nickel and combinations thereof.
  • the metals can also be used together with other metals such as lanthanum, scandium, vanadium, chromium, molybdenum, tungsten, manganese, tin, Zinc, copper, silver or indium can be used.
  • the metals mentioned can be present as pure elements, as oxides, sulfides, halides, carbides or nitrides or can be used in combination with organic ligands.
  • Suitable ligands are hydrocarbon compounds with donor groups such as, for example, amines, nitriles, phosphines, thiols, thioethers, alcohols, ethers or
  • Carboxylic acids are optionally applied to a support material.
  • Suitable carrier materials are activated carbon, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, zeolites.
  • reaction is generally carried out at temperatures from 50 ° C. to 250 ° C., preferably at 100 ° C. to 200 ° C.
  • the nitro group is reduced to the product 1,5-naphthalenediamine by hydrogenation in the presence of suitable hydrogenation catalysts.
  • Rhodium, platinum and palladium are particularly preferred. More preferred Raney nickel and supported nickel catalysts are catalysts. It is also possible to use the above-mentioned metals or their compounds in pure form as a solid. Examples of a metal in pure form are palladium and platinum black.
  • the catalysts can be used in amounts of 0.01 to 50% by weight, based on the 5-nitro- or 5-nitroso-1-naphthylamine used, preferably in amounts of 0.01 to 20% by weight. %, particularly preferably in amounts of 0.01 to 10% by weight.
  • reaction temperatures are generally from -20 ° C to 150 ° C, especially
  • the hydrogen pressure is generally 0.1 to 150 bar, in particular 0.5 to 70 bar, very particularly preferably 1 to 50 bar.
  • the same catalyst is preferably used for the aromatization and the subsequent hydrogenation, it being possible for the two steps to be carried out in one reaction vessel.
  • All reaction steps in this preferred embodiment of the process can be carried out continuously or batchwise, for example in stirred tank reactors or tubular reactors.
  • the process for the preparation of 1,5-naphthalenediamine contains the steps
  • step b) cyclizing the 4- (2-aminophenyl) butyronitrile formed in step b) to the amino-imine and / or amino-enamine,
  • step c) Flavoring the amino imine and / or amino enamine formed in step c) to give 1,5-naphthalenediamine.
  • 4- (2-nitrophenyl) butyronitrile is prepared from ort ⁇ o-nitrotoluene and acrylonitrile analogously to step a) of the first preferred embodiment.
  • This compound is then reduced to 4- (2-aminophenyl) butyronitrile.
  • the transformation can be carried out by hydrogenation in the presence of a hydrogenation catalyst.
  • a hydrogenation catalyst Practically all heterogeneous catalysts known as hydrogenation catalysts are suitable as hydrogenation catalysts for the process according to the invention (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10th edition 1997, p. 1831, chapter "Hydrogenation”; Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5th edition 1989,
  • Catalysts are the metals from 8th to 10th Group of the Periodic Table (GJ Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 "Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), Copper or chromium on a suitable carrier with a metal content of 0.01 to 50% by weight, preferably 0.1 to 20% by weight, based on the total weight of the catalyst. Catalysts containing one or more of the metals mentioned above can also be used. Preferred metals are in particular platinum, palladium and rhodium, platinum and palladium are particularly preferred. More preferred
  • Raney nickel and supported nickel catalysts are catalysts. It can the abovementioned metals or their compounds can also be used in pure form as a solid. Examples of a metal in pure form are palladium and platinum black.
  • the nitro group can be reduced by conversion with metal hydrides, if appropriate with the addition of additives, or by conversion with base metals such as iron.
  • Preferred metal hydrides are sodium borohydride, potassium borohydride, lithium borohydride, sodium cyanoborohydride, lithium cyanoborohydride, lithium aluminum hydride and diisobutyl aluminum hydride.
  • Suitable additives are nickel salts, tellurium compounds and antimony compounds.
  • Preferred base metals for the reaction under acidic conditions are iron, zinc, magnesium, aluminum and tin, iron and are particularly preferred
  • Suitable solvents for this are water or alcohols or alcohol mixtures which are acidified with acids such as acetic acid, hydrochloric acid, sulfuric acid, ammonium chloride.
  • Suitable alcohols are methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol or cyclohexanol. Methanol and ethanol are particularly preferred.
  • Aminophenyl) butyronitrile at least one molar equivalent of acid (based on 4- (2-aminophenyl) butyronitrile) are additionally added. 1.5 to 21 equivalents of acid are preferably used, particularly preferably 1.5 to 11 equivalents.
  • the reaction is carried out in bulk or in an inert solvent in the presence of strong acids.
  • Suitable solvents are linear, branched or Cyclic aliphatic hydrocarbons such as ligroin or cyclohexane, pentane, hexane, heptane, octane and aromatic solvents such as nitrotoluene. Is preferably carried out in bulk or in place / io-nitrotoluene.
  • Suitable acids are strong Lewis or Bronsted acids such as e.g. Aluminum chloride, boron trifluoride, sulfuric acid, phosphoric acid, polyphosphoric acid, phosphorus pentoxide, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid or mixtures of antimony pentafluoride and fluorosulfuric acid. Mixtures of the acids can also be used.
  • the reaction is generally carried out at temperatures from 0 ° C. to 150 ° C., preferably between 60 ° C. and 110 ° C.
  • reaction mixture is usually neutralized. This is done, for example, by adding sodium hydroxide solution.
  • the amino-imine and / or amino-enamine formed in step c) is preferably first reacted, for example by hydrolysis, to give the amino ketone 5-amino-3,4-dihydro-l (2H) -naphthalinone and the amino ketone is isolated. The isolation takes place, for example, by phase separation. Then the amino ketone is in
  • Step d) is converted to the amino-imine and / or amino-enamine by reaction with ammonia, preferably in the presence of ammonium chloride, and then flavored.
  • the aromatization then preferably takes place in ammonia.
  • the aromatization of 5-amino-3,4-dihydro-l-naphthylamine or the imine tautomer 5-amino-3,4-dihydro-l (2H) -naphthylimine to 1,5-naphthalenediamine is carried out analogously to the aromatization of the nitro compounds 5- Nitro-3,4-dihydro-1-naphthylamine or 5-nitro-3,4-dihydro-1 (2H) -naphthylimine (step c) of the first preferred embodiment).
  • the reaction is carried out in an inert solvent in the presence of a catalyst.
  • Suitable solvents are ammonia and linear, branched or cyclic aliphatic hydrocarbons such as ligroin or cyclohexane, and acetonitrile and aromatic solvents such as benzene, toluene, xylene, nitrobenzene, nitrotoluene or chlorobenzene.
  • Suitable catalysts are dehydrogenation catalysts which are described in the literature (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10th edition 1997, p. 891, chapter “Dehydration", section 1; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5th edition 1989,
  • the metals can also be used together with other metals such as lanthanum, scandium, vanadium, chromium, molybdenum, tungsten, manganese, tin, zinc, copper, silver or indium.
  • the metals mentioned can be present as pure elements, as oxides, sulfides, halides, carbides or nitrides or can be used in combination with organic ligands.
  • Suitable ligands are hydrocarbon compounds with donor groups such as amines, nitriles, phosphines, thiols, thioethers, alcohols, ethers or carboxylic acids.
  • the catalysts are optionally applied to a support material. Suitable carrier materials are activated carbon, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide,
  • reaction is generally carried out at temperatures from 50 ° C. to 250 ° C., preferably at 100 ° C. to 200 ° C.
  • Tube reactors are carried out.
  • the process for the preparation of 1,5-naphthalenediamine contains the steps
  • step b) cyclization of the 4- (2-nitrophenyl) butyronitrile formed in step a) to give the nitro-imine and / or nitro-enamine,
  • step b) reducing the nitro-imine and / or nitro-enamine formed in step b) to the amino-imine and / or amino-enamine
  • 4- (2-nitrophenyl) butyronitrile is prepared from ortbo-nitrotoluene and acrylonitrile analogously to step a) of the first preferred embodiment.
  • This compound is then cyclized to 5-nitro-3,4-dihydro-l-naphthylamine or the tautomeric 5-nitro-3,4-dihydro-l (2H) -naphthylimine analogously to step b) of the first preferred embodiment.
  • the compound 5-nitro-3,4-dihydro-l-naphthylamine or the tautomeric 5-nitro-3,4-dihydro-l (2H) -naphthylimine is now converted into 5-amino-3,4-dihydro-l - naphthylamine or the tautomeric 5-amino-3,4-dihydro-l (2H) -naphthylimine reduced.
  • the transformation can be carried out by hydrogenation in the presence of a hydrogenation catalyst.
  • Suitable hydrogenation catalysts for the process according to the invention are virtually all heterogeneous catalysts known as hydrogenation catalysts (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10th edition 1997, p. 1831, chapter "Hydrogenation”; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5th edition 1989,
  • Catalysts are the metals from 8th to 10th Group of the Periodic Table (GJ Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 "Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), Copper or chromium on a suitable carrier with a metal content of 0.01 to 50% by weight, preferably 0.1 to 20% by weight, based on the total weight of the catalyst. Catalysts containing one or more of the metals mentioned above can also be used. Preferred metals are in particular platinum, palladium and rhodium, platinum and palladium are particularly preferred. More preferred
  • Raney nickel and supported nickel catalysts are catalysts. It is also possible to use the metals mentioned above or their compounds in pure form as a solid. Examples of a metal in pure form are palladium and platinum black.
  • step d) second preferred embodiment The final aromatization of 5-amino-3,4-dihydro-l-naphthylamine or the tautomeric 5-amino-3,4-dihydro-l (2H) -naphthylimine to 1,5-naphthalenediamine is analogous to step d) second preferred embodiment performed. All reaction steps in this preferred embodiment of the process can be carried out continuously or batchwise, for example in stirred tank reactors or tubular reactors.
  • step b) cyclization of the 4- (2-nitrophenyl) butyronitrile formed in step a) to give nitro-imine and / or nitro-enamine, conversion to nitro-ketone 5-nitro-3,4-dihydro-1 (2H) -naphthalenone, and Isolation of nitroketone,
  • step b) reducing the nitroketone formed in step b) to the aminoketone 5-
  • step d) converting the amino ketone formed in step c) to the amino-imine and / or amino-enamine and aromatizing to the 1,5-naphthalenediamine.
  • 4- (2-nitrophenyl) butyronitrile is prepared from ortbo-nitrotoluene and acrylonitrile analogously to step a) of the first preferred embodiment.
  • 4- (2-nitrophenyl) butyronitrile is then converted to 5-nitro-3,4-dihydro-l-naphthylamine or the tautomeric 5-nitro-3,4-dihydro-l (2H) -naphthylimine analogously to step b) the first preferred embodiment cyclized.
  • the 5-nitro-3,4-dihydro-l-naphthylamine and or 5-nitro-3,4-dihydro-l (2H) -naphthylimine is then, for example by hydrolysis, to the nitroketone 5-nitro-3,4-dihydro -l (2H) -naphthalenone implemented and the nitroketone isolated.
  • the nitroketone is isolated, for example, by phase separation.
  • the compound 5-nitro-3,4-dihydro-l (2H) -naphthalinone is now reduced to 5-amino-3,4-dihydro-1 (2H) -naphthalinone.
  • the transformation can be carried out by hydrogenation in the presence of a hydrogenation catalyst.
  • Suitable hydrogenation catalysts for the process according to the invention are virtually all heterogeneous catalysts known as hydrogenation catalysts (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10th edition 1997, p. 1831, chapter “Hydrogenation”; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5th edition 1989, Vol AI 3, chapter “Hydrogenation and Dehydrogenation", subsection 1.2
  • Catalysts p. 488.
  • Preferred catalysts are the metals of the 8th-10th group of the periodic table (GJ Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapters 1-3.8.1 "Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), Or copper and / or chrome on a suitable carrier with a metal content of 0.01 to
  • Catalysts containing one or more of the metals mentioned above can also be used.
  • Preferred metals are in particular platinum, palladium and rhodium, platinum and palladium are particularly preferred.
  • Other preferred catalysts are Raney nickel and supported nickel catalysts. It is also possible to use the above-mentioned metals or their compounds in pure form as a solid. Examples of a metal in pure form are palladium and platinum black.
  • the 5-amino-3,4-dihydro-l (2H) -naphthalinone produced in the reduction is then converted to 5-amino-3,4-dihydro-l -naphthylamine and / by reaction with ammonia, preferably in the presence of ammonium chloride. or 5-amino-3, 4-dihy dro-1 (2H) -naphthylimine.
  • the conversion of 5-amino-3,4-dihydro-1 (2H) -naphthalenone to 5-amino-3,4-dihydro-1-naphthylamine and / or 5-amino-3,4-dihydro-1 (2H) -naphthylimine and the subsequent aromatization are preferably carried out in a reaction vessel.
  • All reaction steps in this preferred embodiment of the process can be carried out continuously or batchwise, for example in stirred tank reactors or tubular reactors.
  • the process for making 1,5-naphthalenediamine includes the steps
  • step b) cyclization of the butyric acid ester or butyric acid amide formed in step a) to give 5-nitro-3,4-dihydro-l (2H) -naphthalinone,
  • step d) hydrogenating the 5-nitro-1-naphthylamine and / or 5-nitroso-1-naphthylamine formed in step d) to 1,5-naphthalenediamine.
  • 4- (2-nitrophenyl) butyric acid esters or 4- (2-nitrophenyl) butyric acid amides are preferably prepared from ortbo-nitrotoluene and acrylic acid esters or acrylic acid amides at temperatures from -10 ° C. to 100 ° C. It is particularly preferred to work at 20 ° C. to 75 ° C., very particularly preferably at temperatures from 30 ° C. to 60 ° C.
  • Hydroxides and carbonates of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium or aluminum and mixtures thereof can be used.
  • Sodium and potassium hydroxide are particularly suitable.
  • the aqueous solutions are used in combination with a phase transfer catalyst.
  • phase transfer catalysts are, for example, quaternary ammonium salts.
  • Suitable ammonium compounds are tetraalkyl - 18 -
  • Chloride trioctylammonium chloride, tetrabutylammonium chloride or tetrabutylammonium hydrogen sulfate.
  • tertaalkyl or tetraaryl phosphonium salts such as tetramethylphosphonium bromide and tetraphenylphosphonium bromide and solubilizers such as polyethylene glycol dimethyl ethers.
  • Aromatic solvents such as benzene, toluene, xylene, chlorobenzene, nitrobenzene or nitrotoluene and dimethyl sulfoxide, dimethylformamide and aliphatic hydrocarbons such as ligroin, cyclohexane are preferred.
  • Pentane, hexane, heptane, octane are used.
  • Ortbo-nitrotoluene is particularly preferably used as starting material and at the same time as solvent, and an excess of ort ⁇ o-nitrotoluene of 1 to 40 equivalents, very particularly 5 to 20 equivalents, based on the acrylic acid derivative, is used.
  • Solvents are linear, branched or cyclic aliphatic hydrocarbons such as ligroin or cyclohexane, pentane, hexane, heptane, octane and aromatic solvents such as nitrotoluene. It is preferred to work in bulk or in ⁇ rtbo nitrotoluene.
  • Suitable acids are strong Lewis or Bronsted acids such as e.g. Aluminum chloride, boron trifluoride, sulfuric acid, phosphoric acid, polyphosphoric acid, phosphorus pentoxide, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid or mixtures of antimony pentafluoride and fluorosulfuric acid. Mixtures of these acids can also be used. Sulfuric acid or is preferred
  • the acid is generally used in 0.1 to 100 molar equivalents, based on 4- (2-nitrophenyl) butyric acid derivative. 0.5 to 20 equivalents are preferably used, particularly preferably 1 to 10 equivalents.
  • the reaction is generally carried out at temperatures from 0 ° C. to 150 ° C., preferably between 60 ° C. and 110 ° C.
  • Compounds is carried out, for example in an inert solvent, in the presence of a catalyst.
  • a catalyst In addition to the dehydrated product 5-nitro-1-naphthylamine, the 5-nitroso-1-naphthylamine that is formally formed by synproportionation can also be formed. 1,5-naphthalenediamine is also produced in traces.
  • the products can be processed in any mixing ratio.
  • Suitable solvents are ammonia and linear, branched or cyclic aliphatic hydrocarbons such as ligroin or cyclohexane, and acetonitrile and aromatic solvents such as benzene, toluene, xylene, nitrobenzene, nitrotoluene or chlorobenzene.
  • the flavoring can also be carried out in the absence of a solvent.
  • Suitable catalysts are dehydrogenation catalysts which are described in the literature (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10th edition 1997, p. 891, chapter “Dehydration", section 1; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5th edition 1989,
  • the metals can also be used together with other metals such as lanthanum, scandium, vanadium, chromium, molybdenum, tungsten, manganese, tin, zinc, copper, silver or indium.
  • the metals mentioned can be present as pure elements, as oxides, sulfides, halides, carbides or nitrides or can be used in combination with organic ligands.
  • Suitable ligands are hydrocarbon compounds with donor groups such as amines, nitriles, phosphines, thiols, thioethers, alcohols, ethers or carboxylic acids.
  • the catalysts are optionally applied to a support material. Suitable carrier materials are activated carbon, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, zeolites.
  • reaction is generally carried out at temperatures from 50 ° C. to 250 ° C., preferably at 100 ° C. to 200 ° C.
  • X OAlkyl, OAryl, NH 2 , NHAlkyl, N (alkyl) 2 , NHAryl, N (aryl) 2 , NAIkylAryl
  • the 1,5-naphthalene diamine can be phosgenated to 1,5-naphthalene diisocyanate in a manner known per se (DE-Al-19 651 041).
  • 5-nitro-3,4-dihydro-l (2H) -na ⁇ hthylimine is 77% according to GC.
  • 5-Amino-3,4-dihydro-l (2H) -naphthylimine can also be named 5-imino-5,6,7,8-tetrahydro-l-naphthylamine.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von 1,5-Naphthalindiamin sowie die im Laufe des Verfahrens erhältlichen Zwischenprodukte 4-(2-Nitrophenyl)-butyronitril, 5-Nitro-3,4-dihydro-1(2H)-naphthylimin, 5-Nitroso-1-naphthylamin, 5-Nitro-1-naphthylamin, 4-(2-Aminophenyl)-butyronitril, 5-Amino-3,4-dihydro-1(2H)-naphthalinimin, 4-(2-Nitrophenyl)-buttersäureethylester und 4-(2-Nitrophenyl)-buttersäureamid.

Description

Verfahren zur Herstellung von 1,5-Naphthalindiamin
Die Erfindung betrifft ein Verfahren zur Herstellung von 1,5-Naphthalindiamin durch Umsetzung von ortbo-Nitrotoluol mit einem Acrylsäurederivat sowie die im
Laufe des Verfahrens erhältlichen Zwischenprodukte 4-(2-Nitrophenyl)-butyronitril, 5-Nitro-3,4-dihydro- 1 (2H)-naphthylimin, 5-Nitroso- 1 -naphthylamin, 5-Nitro- 1 - naphthylamin, 4-(2-Aminophenyl)-butyronitril, 4-(2-Nitrophenyl)-buttersäureethyl- ester, 4-(2-Nitrophenyl)-buttersäurebutylester, 4-(2-Nitrophenyl)-buttersäureamid und 5-Amino-3,4-dihydro-l(2H)-naphthalinimin.
Verschiedene Verfahren zur Herstellung von 1,5-Naphthalindiamin sind in der Literatur bereits bekannt. Im Allgemeinen geht die Darstellung von 1,5-Naphtha- lindiamin von Naphthalin aus, das geeignet substituiert wird. So wird in JP- A-2-07 278 066 die Synthese von 1,5-Naphthalindiamin über einen Amin-Brom-
Austausch an 1,5-Bromaminonaphthalin beschrieben. Das benötigte Edukt wird bei diesem Verfahren durch Bromierung von 1-Nitronaphthalin erzeugt.
In JP-A2-04 154 745, JP-A2-56 059 738 und DE-Al-2 523 351 wird die Synthese von 1,5-Naphthalindiamin in Kombination mit 1,8-Naphthalindiamin durch Reduktion eines Gemisches aus 1,5- und 1,8-Dinitronaphthalin beschrieben. In DE-Cl- 3 840 618 wird die Synthese von 1 ,5-Naphthalindiamin durch alkalische Hydrolyse von Dinatrium Naphthalin- 1, 5 -disulfonat und anschließende Umsetzung mit Ammoniak beschrieben.
Alle diese Verfahren haben den Nachteil, dass das Produkt oder ein im Laufe des Verfahrens erzeugtes Zwischenprodukt als Isomerenmischung anfällt, die neben dem 1,5 -Isomeren noch weitere Isomere enthält, die abgetrennt werden müssen. Zudem verläuft insbesondere das in DE-Cl-3 840 618 beschriebene Verfahren unter sehr drastischen und korrosiven Reaktionsbedingungen ab. Aufgabe der vorliegenden Erfindung ist daher, ein einfaches Verfahren zur Herstellung von 1,5-Naphthalindiamin bereit zu stellen, nach dem 1,5-Naphthalindiamin ausgehend von Basischemikalien in wemgen Schritten hergestellt werden kann, ohne dass andere Isomere in nennenswerten Mengen anfallen und abgetrennt werden müssen.
Es wurde nun ein Verfahren gefunden, durch das ausgehend von ortbo-Nitrotoluol und Acrylsäurederivaten wie beispielsweise Acrylnitril, zweier wohlfeiler Basischemikalien, 1,5-Naphthalindiamin in wemgen Schritten einfach und weitgehend isomerenrein dargestellt werden kann.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von 1 ,5-Naphthalindiamin, das einen Schritt enthält, in dem man ortbo-Nitrotoluol mit einem Acrylsäurederivat umsetzt.
Bevorzugte Acrylsäurederivate sind Acrylsäureester, wie beispielsweise Acrylsäure- methylester und Acrylsäureethylester, Acrylsäureamid und Acrylnitril.
Die Aufgabe wird insbesondere erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von 1,5-Naphthalindiamin, das einen Schritt enthält, in dem man ortho-
Nitrotoluol mit Acrylnitril zu 4-(2-Nitrophenyl)-butyronitril umsetzt.
In einer ersten bevorzugten Ausführung enthält das Verfahren zur Herstellung von 1,5-Naphthalindiamin die Schritte
a) Umsetzung von ortbo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitrophenyl)- butyronitril,
b) Cyclisierung des in Schritt a) gebildeten 4-(2-Nitrophenyl)-butyronitril zum Nitro-Imin und / oder Nitro-Enamin, c) Aromatisieren des in Schritt b) gebildeten Nitro-Imin und/oder Nitro-Enamin zu 5-Nitro-l -naphthylamin und/oder 5-Nitroso-l -naphthylamin,
d) Hydrieren des in Schritt c) gebildeten 5-Nitro-l -naphthylamin und/oder 5- Nitroso-1 -naphthylamin zu 1,5-Naphthalindiamin.
4-(2-Nitrophenyl)-butyromtril wird aus ortbo-Nitrotoluol und Acrylnitril bevorzugt bei Temperaturen von -10°C bis 100°C hergestellt. Besonders bevorzugt arbeitet man bei 20°C bis 75°C, ganz besonders bevorzugt bei Temperaturen von 30°C bis 60°C.
Die Reaktion wird basenkatalysiert durchgeführt. Als Basen können Oxide, Hydroxide und Carbonate von Lithium, Natrium, Kalium, Rubidium, Cäsium, Magnesium, Calcium, Strontium, Barium oder Aluminium sowie Mischungen daraus eingesetzt werden. Besonders geeignet sind Natrium- und Kaliumhydroxid. In einer bevorzugten Ausführung werden die wässrigen Lösungen in Kombination mit einem
Phasentransferkatalysator eingesetzt. Solche Phasentransferkatalysatoren sind z.B. quartäre Ammoniumsalze. Geeignete Ammoniumverbindungen sind Tetraalkyl- ammonium-Halogenide und -Hydrogensulfate wie Tributylmethylammonium- Chlorid, Trioctylammonium-Chlorid, Tetrabutylammonium-Chlorid oder Tetra- butylammonium-Hydrogensulfat. Ebenso geeignet ist die Verwendung von entsprechenden Tertaalkyl- bzw. Tetraaryl-Phosphoniumsalzen wie Tetramethylphos- phonium-Bromid und Tetraphenylphosphonium-Bromid sowie die Verwendung von Löslichkeitsvermittlern wie Polyethylenglycoldimethylethem.
Als Lösungsmittel sind grundsätzlich Wasser sowie alle basenstabilen organischen
Lösungsmittel geeignet. Bevorzugt werden aromatische Lösungsmittel wie Benzol, Toluol, Xylol, Chlorbenzol, Nitrobenzol oder Nitrotoluol sowie Dimethylsulfoxid; Dimethylformamid und aliphatische Kohlenwasserstoffe wie Ligroin, Cyclohexan, Pentan, Hexan, Heptan, Octan eingesetzt. Besonders bevorzugt wird ortbo-Nitrotoluol als Edukt und gleichzeitig als Lösungsmittel verwendet und im Uberschuss an ortbo-Nitrotoluol von 1 bis 40 Äquivalenten, ganz besonders von 5 bis 20 Äquivalenten, bezogen auf Acrylnitril, eingesetzt.
Die Cyclisierung von 4-(2-Nitrophenyl)-butyronitril zu 5-Nitro-3,4-dihydro-l- naphthylamin bzw. dem tautomeren 5-Nitro-3,4-dihydro-l(2H)-naphthylimin wird in Substanz oder in einem inerten Lösungsmittel in Gegenwart starker Säuren durchgeführt. Geeignete Lösungsmittel sind lineare, verzweigte oder cyclische aliphatische Kohlenwasserstoffe wie Ligroin oder Cyclohexan, Pentan, Hexan, Heptan, Octan so- wie aromatische Lösungsmittel wie Nitrotoluol. Bevorzugt wird in Substanz oder in ortbo-Nitrotoluol gearbeitet.
Geeignete Säuren sind starke Lewis- oder Bronstedsäuren wie z.B. Aluminium- chlorid, Bortrifluorid, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Phosphor- pentoxid, Methansulfonsäure, Trifluormethansulfonsäure, Trifluoressig-säure oder
Gemische aus Antimonpentafluorid und Fluorschwefelsäure. Es können auch Mischungen der Säuren eingesetzt werden.
Die Säure wird im Allgemeinen in 0,1 bis 100 Mol-Äquivalenten, bezogen auf 4-(2- Nitrophenyl)-butyronitril, eingesetzt. Bevorzugt werden 0,5 bis 20 Äquivalente verwendet, besonders bevorzugt 1 bis 10 Äquivalente.
Die Reaktion wird im Allgemeinen bei Temperaturen von 0°C bis 200°C durchgeführt, bevorzugt zwischen 40°C bis 150°C , besonders bevorzugt zwischen 60°C und 110°C.
Vorzugsweise wird das in Schritt b) gebildete hydrolyseempfindliche Nitro-Imin und /oder Nitro-Enamin zunächst beispielsweise durch Hydrolyse zum Nitroketon 5- Nitro-3,4-dihydro-l(2H)-naphthalinon umgesetzt und das Nitroketon isoliert. Die Isolierung erfolgt beispielsweise durch Phasentrennung. Anschließend wird das Nitroketon in Schritt c) durch Umsetzung mit Ammoniak, vorzugsweise in Gegenwart von Ammomumsalzen wie Ammoniumchlorid, zum Nitro-Imin und/oder Nitro-Enamin zurückgebildet und anschließend aromatisiert. Die Aromatisierung findet dann bevorzugt in Ammoniak als Lösungsmittel statt.
Die Aromatisierung bzw. Dehydrierung des Nitro-Enamins 5-Nitro-3,4-dihydro-l- naphthylamin bzw. des Nitro-Imins 5-Nitro-3,4-dihydro-l(2H)-naphthylimin zu 5- Nitro-1 -naphthylamin oder 5-Nitroso-l-naphthylamin oder einem Gemisch der Verbindungen wird, beispielsweise in einem inerten Lösungsmittel, in Gegenwart eines Katalysators durchgeführt. Dabei kann neben dem dehydrierten Produkt 5-Nitro-l- naphthylamin auch das formal durch Synproportionierung entstandene 5-Nitroso-l- naphthylamin entstehen. In Spuren entsteht auch 1,5-Naphthalindiamin. Die Produkte können in beliebigen Mischungsverhältnissen weiter verarbeitet werden. Geeignete Lösungsmittel sind Ammoniak und lineare, verzweigte oder cyclische aliphatische Kohlenwasserstoffe wie Ligroin oder Cyclohexan, sowie Acetonitril und aromatische Lösungsmittel wie Benzol, Toluol, Xylol, Nitrobenzol, Nitrotoluol oder Chlorbenzol. Die Aromatisierung kann auch in Abwesenheit eines Lösungsmittels durchgeführt werden.
Geeignete Katalysatoren sind Dehydrierungskatalysatoren, die in der Literatur beschrieben sind (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10. Auflage 1997, S. 891, Kapitel „Dehydrierung", 1. Abschnitt; Ullmann's Encyclopedia of Industrial Chemistry, NCH Verlagsgesellschaft mbH, Weinheim, 5. Auflage 1989, Vol A13, Kapitel „Hydrogenation and Dehydrogenation", Unterkapitel 2. „De- hydrogenation", S. 494-497). Dazu gehören die Metalle der 8.-10. Gruppe des
Periodensystems (G. J. Leigh [Editor], Νomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 „Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), insbesondere Platin, Palladium, Ruthenium und Iridium, Eisen, Cobalt, Nickel und Kombinationen davon. Die Metalle können auch gemeinsam mit weiteren Metallen wie Lanthan, Scandium, Vanadium, Chrom, Molybdän, Wolfram, Mangan, Zinn, Zink, Kupfer, Silber oder Indium eingesetzt werden. Die genannten Metalle können dabei als reine Elemente, als Oxide, Sulfide, Halogenide, Carbide oder Nitride vorliegen oder aber kombiniert mit organischen Liganden eingesetzt werden. Als Liganden geeignet sind Kohlenwasserstoffverbindungen mit Donorgruppen wie beispielsweise Amine, Nitrile, Phosphine, Thiole, Thioether, Alkohole, Ether oder
Carbonsäuren. Gegebenenfalls sind die Katalysatoren auf einem Trägermaterial aufgebracht. Geeignete Trägermaterialien sind Aktivkohle, Aluminiumoxid, Silicium- oxid, Zirkonoxid, Zinkoxid, Zeolithe.
Gegebenenfalls wird in Gegenwart eines Oxidationsmittels wie Sauerstoff oder Luft gearbeitet. Die Reaktion wird im Allgemeinen bei Temperaturen von 50°C bis 250°C durchgeführt, bevorzugt bei 100°C bis 200°C.
Die Reduktion der Nitrogruppe zum Produkt 1,5-Naphthalindiamin geschieht durch Hydrierung in Gegenwart geeigneter Hydrierkatalysatoren.
Als Hydrierkatalysatoren eignen sich für das erfindungsgemäße Verfahren praktisch alle heterogenen Katalysatoren, die als Hydrierkatalysatoren bekannt sind (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10. Auflage 1997, S. 1831, Kapitel „Hydrierung"; Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5. Auflage 1989, Vol A13, Kapitel „Hydrogenation and Dehydrogenation", Unterkapitel 1.2 „Catalysts", S. 488). Bevorzugte Katalysatoren sind die Metalle der 8.-10. Gruppe des Periodensystems (G. J. Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 „Groups of
Elements in the Periodic Table and their Subdivision, p. 41-43.), Kupfer oder Chrom auf geeignetem Träger mit einem Metallgehalt von 0,01 bis 50 Gew.-%, bevorzugt 0,1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators. Es können auch Katalysatoren eingesetzt werden, die eines oder mehrere der oben genannten Metalle enthalten. Bevorzugte Metalle sind insbesondere Platin, Palladium und
Rhodium, besonders bevorzugt sind Platin und Palladium. Weitere bevorzugte Katalysatoren sind Raney-Nickel und geträgerte Nickelkatalysatoren. Es können auch die obengenannten Metalle oder ihre Verbindungen in reiner Form als Feststoff eingesetzt werden. Als Beispiele für ein Metall in reiner Form seien Palladium- und Platinschwarz genannt.
Die Katalysatoren können in diskontinuierlichen Verfahrensvarianten in Mengen von 0,01 bis 50 Gew.-%, bezogen auf eingesetztes 5-Nitro- bzw. 5 -Nitroso-1 -naphthylamin verwendet werden, bevorzugt in Mengen von 0,01 bis 20 Gew.-%, besonders bevorzugt in Mengen von 0,01 bis 10 Gew.-%. Bei kontinuierlicher Durchführung der Reaktion, beispielsweise in einem Rührkessel mit pulverförmigen Katalysator oder in der Rieselphase am Festbettkatalysator, können Belastungen von 0,01 bis 500 g, bevorzugt 0,1 - 200 g, besonders bevorzugt 1 bis 100 g 5-Nitro- bzw. 5- Nitroso-1 -naphthylamin pro g Katalysator und Stunde eingestellt werden.
Die Reaktionstemperaturen betragen im Allgemeinen - 20°C bis 150°C, insbesondere
-10°C bis 80°C; der Wasserstoffdruck liegt im Allgemeinen bei 0,1 bis 150 bar, insbesondere bei 0,5 bis 70 bar, ganz besonders bevorzugt bei 1 bis 50 bar.
Bevorzugt wird für die Aromatisierung und die anschließende Hydrierung der gleiche Katalysator verwendet, wobei die beiden Schritte in einem Reaktionsgefäß durchgeführt werden können.
Alle Reaktionsschritte in dieser bevorzugten Ausführung des Verfahrens können kontinuierlich oder diskontinuierlich, beispielsweise in Rührkesselreaktoren oder Rohrreaktoren, durchgeführt werden.
In einer zweiten bevorzugten Ausführung enthält das Verfahren zur Herstellung von 1,5-Naphthalindiamin die Schritte
a) Umsetzung von ortAo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitrophenyl)- butyronitril, b) Reduzieren des in Schritt a) gebildeten 4-(2-Nitrophenyl)-butyronitril zum 4- (2-Aminophenyl)-butyronitril,
c) Cyclisieren des in Schritt b) gebildeten 4-(2-Aminophenyl)-butyronitril zum Amino-Imin und/oder Amino-Enamin,
d) Aromatisieren des in Schritt c) gebildeten Amino-Imin und/oder Amino- Enamin zum 1,5-Naphthalindiamin.
4-(2-Nitrophenyl)-butyronitril wird aus ortΛo-Nitrotoluol und Acrylnitril analog zu Schritt a) der ersten bevorzugten Ausführung dargestellt.
Diese Verbindung wird dann zu 4-(2-Aminophenyl)-butyronitril reduziert. Die Transformation kann durch Hydrierung in Gegenwart eines Hydrierkatalysators durchgeführt werden. Als Hydrierkatalysatoren eignen sich für das erfindungsgemäße Verfahren praktisch alle heterogenen Katalysatoren, die als Hydrierkatalysatoren bekannt sind (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10. Auflage 1997, S. 1831, Kapitel „Hydrierung"; Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5. Auflage 1989,
Vol AI 3, Kapitel „Hydrogenation and Dehydrogenation", Unterkapitel 1.2 „Catalysts", S. 488). Bevorzugte Katalysatoren sind die Metalle der 8.-10. Gruppe des Periodensystems (G. J. Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 „Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), Kupfer oder Chrom auf geeignetem Träger mit einem Metallgehalt von 0,01 bis 50 Gew.-%, bevorzugt 0,1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators. Es können auch Katalysatoren eingesetzt werden, die eines oder mehrere der oben genannten Metalle enthalten. Bevorzugte Metalle sind insbesondere Platin, Palladium und Rhodium, besonders bevorzugt sind Platin und Palladium. Weitere bevorzugte
Katalysatoren sind Raney-Nickel und geträgerte Nickelkatalysatoren. Es können auch die obengenannten Metalle oder ihre Verbindungen in reiner Form als Feststoff eingesetzt werden. Als Beispiele für ein Metall in reiner Form seien Palladium- und Platinschwarz genannt.
In einer weiteren Ausführung kann die Nitrogruppe durch Umsatz mit Metallhydriden, gegebenenfalls unter Zusatz von Additiven, oder durch Umsatz mit Nichtedelmetallen wie Eisen reduziert werden.
Bevorzugte Metallhydride sind Natriumborhydrid, Kaliumborhydrid, Lithiumbor- hydrid, Natriumcyanoborhydrid, Lithiumcyanoborhydrid, Lithiumaluminiumhydrid und Diisobutylaluminiumhydrid. Geeignete Additive sind Nickelsalze, Tellurverbindungen und Antimonverbindungen.
Bevorzugte Nichtedelmetalle für die Umsetzung unter sauren Bedingungen sind Eisen, Zink, Magnesium, Aluminium und Zinn, besonders bevorzugt sind Eisen und
Zink. Geeignete Lösungsmittel hierfür sind Wasser oder Alkohole oder Alkohol- Mischungen, die mit Säuren wie Essigsäure, Salzsäure, Schwefelsäure, Ammoniumchlorid angesäuert werden. Geeignete Alkohole sind Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol, sec.-Butanol, tert.-Butanol oder Cyclohexanol. Besonders bevorzugt sind Methanol und Ethanol.
Die Cyclisierung zu 5-Amino-3,4-dihydro-l -naphthylamin bzw. dem Imintautomeren 5-Amino-3,4-dihydro-l(2H)-naphthylimin wird analog der Cyclisierung der Nitroverbindung (Schritt b der ersten bevorzugten Ausführung) durchgeführt. Jedoch muss wegen der Basizität der Aminogruppe in 4-(2-
Aminophenyl)-butyronitril mindestens ein Mol-Äquivalent Säure (bezogen auf 4-(2- Aminophenyl)-butyronitril) zusätzlich zugegeben werden. Bevorzugt werden 1 ,5 bis 21 Äquivalente Säure verwendet, besonders bevorzugt 1,5 bis 11 Äquivalente.
Die Reaktion wird in Substanz oder in einem inerten Lösungsmittel in Gegenwart starker Säuren durchgeführt. Geeignete Lösungsmittel sind lineare, verzweigte oder cyclische aliphatische Kohlenwasserstoffe wie Ligroin oder Cyclohexan, Pentan, Hexan, Heptan, Octan sowie aromatische Lösungsmittel wie Nitrotoluol. Bevorzugt wird in Substanz oder in ort/io-Nitrotoluol gearbeitet.
Geeignete Säuren sind starke Lewis- oder Bronstedsäuren wie z.B. Aluminiumchlorid, Bortrifluorid, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Phosphor- pentoxid, Methansulfonsäure, Trifluormethansulfonsäure, Trifluoressig-säure oder Gemische aus Antimonpentafluorid und Fluorschwefelsäure. Es können auch Mischungen der Säuren eingesetzt werden.
Die Reaktion wird im Allgemeinen bei Temperaturen von 0°C bis 150°C durchgeführt, bevorzugt zwischen 60°C und 110°C.
Nach der Cyclisierung wird das Reaktionsgemisch üblicherweise neutralisiert. Dies geschieht beispielsweise durch die Zugabe von Natronlauge.
Vorzugsweise wird das in Schritt c) gebildete Amino-Imin und / oder Amino-Enamin zunächst, beispielsweise durch Hydrolyse, zum Aminoketon 5-Amino-3,4-dihydro- l(2H)-naphthalinon umgesetzt und das Aminoketon isoliert. Die Isolierung erfolgt beispielsweise durch Phasentrennung. Anschließend wird das Aminoketon in
Schritt d) durch Umsetzung mit Ammoniak, vorzugsweise in Gegenwart von Ammoniumchlorid, zum Amino-Imin und / oder Amino-Enamin zurückgebildet und anschließend aromatisiert. Die Aromatisierung findet dann bevorzugt in Ammoniak statt.
Die Aromatisierung von 5-Amino-3,4-dihydro-l -naphthylamin bzw. dem Imintautomeren 5-Amino-3,4-dihydro-l(2H)-naphthylimin zu 1,5-Naphthalindiamin wird analog der Aromatisierung der Nitroverbindungen 5-Nitro-3,4-dihydro-l -naphthylamin bzw. 5-Nitro-3,4-dihydro-l(2H)-naphthylimin (Schritt c) der ersten bevor- zugten Ausführung) durchgeführt. Die Reaktion wird in einem inerten Lösungsmittel in Gegenwart eines Katalysators durchgeführt. Geeignete Lösungsmittel sind Ammoniak und lineare, verzweigte oder cyclische aliphatische Kohlenwasserstoffe wie Ligroin oder Cyclohexan, sowie Acetonitril und aromatische Lösungsmittel wie Benzol, Toluol, Xylol, Nitrobenzol, Nitrotoluol oder Chlorbenzol.
Geeignete Katalysatoren sind Dehydrierungskatalysatoren, die in der Literatur beschrieben sind (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10. Auflage 1997, S. 891, Kapitel „Dehydrierung", 1. Abschnitt; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5. Auflage 1989,
Vol AI 3, Kapitel „Hydrogenation and Dehydrogenation", Unterkapitel 2. „Dehydro- genation", S. 494-497). Dazu gehören die Metalle der 8.-10. Gruppe des Periodensystems (G. J. Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommen- dations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 „Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), insbesondere Platin,
Palladium, Ruthenium und Iridium, Eisen, Cobalt, Nickel und Kombinationen davon. Die Metalle können auch gemeinsam mit weiteren Metallen wie Lanthan, Scandium, Vanadium, Chrom, Molybdän, Wolfram, Mangan, Zinn, Zink, Kupfer, Silber oder Indium eingesetzt werden. Die genannten Metalle können dabei als reine Elemente, als Oxide, Sulfide, Halogenide, Carbide oder Nitride vorliegen oder aber kombiniert mit organischen Liganden eingesetzt werden. Als Liganden geeignet sind Kohlenwasserstoffverbindungen mit Donorgruppen wie beispielsweise Amine, Nitrile, Phosphine, Thiole, Thioether, Alkohole, Ether oder Carbonsäuren. Gegebenenfalls sind die Katalysatoren auf einem Trägermaterial aufgebracht. Geeignete Träger- materialien sind Aktivkohle, Aluminiumoxid, Siliciumoxid, Zirkonoxid, Zinkoxid,
Zeolithe.
Gegebenenfalls wird in Gegenwart eines Oxidationsmittels wie Sauerstoff oder Luft gearbeitet. Die Reaktion wird im Allgemeinen bei Temperaturen von 50°C bis 250°C durchgeführt, bevorzugt bei 100°C bis 200°C.
Alle Reaktionsschritte in dieser bevorzugten Ausführung des Verfahrens können kontinuierlich oder diskontinuierlich, beispielsweise in Rührkesselreaktoren oder
Rohrreaktoren, durchgeführt werden.
In einer dritten bevorzugten Ausführung enthält das Verfahren zur Herstellung von 1,5-Naphthalindiamin die Schritte
a) Umsetzung von ort/zo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitrophenyl)- butyronitril,
b) Cyclisierung des in Schritt a) gebildeten 4-(2-Nitrophenyl)-butyronitril zum Nitro-Imin und/oder Nitro-Enamin,
c) Reduzieren des in Schritt b) gebildeten Nitro-Imin und/oder Nitro-Enamin zum Amino-Imin und /oder Amino-Enamin,
d) Aromatisieren des in Schritt c) gebildeten Amino-Imin und/oder Amino-
Enamin zum 1,5-Naphthalindiamin.
4-(2-Nitrophenyl)-butyronitril wird aus ortbo-Nitrotoluol und Acrylnitril analog zu Schritt a) der ersten bevorzugten Ausführung dargestellt.
Diese Verbindung wird dann zu 5-Nitro-3,4-dihydro-l-naphthylamin bzw. dem tautomeren 5-Nitro-3,4-dihydro-l(2H)-naphthylimin analog zu Schritt b) der ersten bevorzugten Ausführung cyclisiert. Die Verbindung 5-Nitro-3,4-dihydro-l -naphthylamin bzw. das tautomere 5-Nitro- 3,4-dihydro-l(2H)-naphthylimin wird nun zu 5 -Amino-3,4-dihydro-l -naphthylamin bzw. dem tautomeren 5-Amino-3,4-dihydro-l(2H)-naphthylimin reduziert.
Die Transformation kann durch Hydrierung in Gegenwart eines Hydrierkatalysators durchgeführt werden. Als Hydrierkatalysatoren eignen sich für das erfindungsgemäße Verfahren praktisch alle heterogenen Katalysatoren, die als Hydrierkatalysatoren bekannt sind (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10. Auflage 1997, S. 1831, Kapitel „Hydrierung"; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5. Auflage 1989,
Vol AI 3, Kapitel „Hydrogenation and Dehydrogenation", Unterkapitel 1.2 „Catalysts", S. 488). Bevorzugte Katalysatoren sind die Metalle der 8.-10. Gruppe des Periodensystems (G. J. Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 „Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), Kupfer oder Chrom auf geeignetem Träger mit einem Metallgehalt von 0,01 bis 50 Gew.-%, bevorzugt 0,1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators. Es können auch Katalysatoren eingesetzt werden, die eines oder mehrere der oben genannten Metalle enthalten. Bevorzugte Metalle sind insbesondere Platin, Palladium und Rhodium, besonders bevorzugt sind Platin und Palladium. Weitere bevorzugte
Katalysatoren sind Raney-Nickel und geträgerte Nickelkatalysatoren. Es können auch die oben genannten Metalle oder ihre Verbindungen in reiner Form als Feststoff eingesetzt werden. Als Beispiele für ein Metall in reiner Form seien Palladium- und Platinschwarz genannt.
Die abschließende Aromatisierung von 5-Amino-3,4-dihydro-l -naphthylamin bzw. dem tautomeren 5-Amino-3,4-dihydro-l(2H)-naphthylimin zu 1,5-Naphthalindiamin wird analog zu Schritt d) der zweiten bevorzugten Ausführung durchgeführt. Alle Reaktionsschritte in dieser bevorzugten Ausführung des Verfahrens können kontinuierlich oder diskontinuierlich, beispielsweise in Rührkesselreaktoren oder Rohrreaktoren, durchgeführt werden.
In einer vierten bevorzugten Ausführung enthält des Verfahren zur Herstellung von
1,5-Naphthalindiamin die Schritte
a) Umsetzung von ortΛo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitrophenyl)- butyronitril,
b) Cyclisierung des in Schritt a) gebildeten 4-(2-Nitrophenyl)-butyronitril zum Nitro-Imin und / oder Nitro-Enamin, Umsetzung zum Nitroketon 5-Nitro-3,4- dihydro-l(2H)-naphthalinon, sowie Isolierung des Nitroketons,
c) Reduzieren des in Schritt b) gebildeten Nitroketons zum Aminoketon 5-
Amino-3 ,4-dihydro- 1 (2H)-naphthalinon,
d) Überführen des in Schritt c) gebildeten Aminoketons zum Amino-Imin und /oder Amino-Enamin und Aromatisieren zum 1,5-Naphthalindiamin.
4-(2-Nitrophenyl)-butyronitril wird aus ortbo-Nitrotoluol und Acrylnitril analog zu Schritt a) der ersten bevorzugten Ausführung dargestellt.
4-(2-Nitrophenyl)-butyronitril wird dann zu 5-Nitro-3,4-dihydro-l -naphthylamin bzw. dem tautomeren 5-Nitro-3,4-dihydro-l(2H)-naphthylimin analog zu Schritt b) der ersten bevorzugten Ausführung cyclisiert. Das 5-Nitro-3,4-dihydro-l -naphthylamin und oder 5-Nitro-3,4-dihydro-l(2H)-naphthylimin wird anschließend, beispielsweise durch Hydrolyse, zum Nitroketon 5-Nitro-3,4-dihydro-l(2H)-naphthali- non umgesetzt und das Nitroketon isoliert. Die Isolierung des Nitroketons erfolgt beispielsweise durch Phasentrennung. Die Verbindung 5-Nitro-3,4-dihydro-l(2H)-naphthalinon wird nun zu 5-Amino-3,4- dihydro- 1 (2H)-naphthalinon reduziert.
Die Transformation kann durch Hydrierung in Gegenwart eines Hydrierkatalysators durchgeführt werden. Als Hydrierkatalysatoren eignen sich für das erfindungsgemäße Verfahren praktisch alle heterogenen Katalysatoren, die als Hydrierkatalysatoren bekannt sind (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10. Auflage 1997, S. 1831, Kapitel „Hydrierung"; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5. Auflage 1989, Vol AI 3, Kapitel „Hydrogenation and Dehydrogenation", Unterkapitel 1.2
„Catalysts", S. 488). Bevorzugte Katalysatoren sind die Metalle der 8.-10. Gruppe des Periodensystems (G. J. Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 „Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), oder Kupfer und/oder Chrom auf geeignetem Träger mit einem Metallgehalt von 0,01 bis
50 Gew.-%, bevorzugt 0,1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators. Es können auch Katalysatoren eingesetzt werden, die eines oder mehrere der oben genannten Metalle enthalten. Bevorzugte Metalle sind insbesondere Platin, Palladium und Rhodium, besonders bevorzugt sind Platin und Palladium. Weitere bevorzugte Katalysatoren sind Raney-Nickel und geträgerte Nickelkatalysatoren. Es können auch die obengenannten Metalle oder ihre Verbindungen in reiner Form als Feststoff eingesetzt werden. Als Beispiele für ein Metall in reiner Form seien Palladium- und Platinschwarz genannt.
Anschließend wird das in der Reduktion erzeugte 5-Amino-3,4-dihydro-l(2H)- naphthalinon durch Umsetzung mit Ammoniak, vorzugsweise in Gegenwart von Ammomumchlorid, zum 5 -Amino-3,4-dihydro-l -naphthylamin und/oder 5-Amino- 3 ,4-dihy dro- 1 (2H)-naphthylimin umgesetzt. Die abschließende Aromatisierung von 5-Amino-3,4-dihydro-l-naphthylamin bzw. dem tautomeren 5-Amino-3,4-dihydro-l(2H)-naphthylimin zu 1,5-Naphthalindiamin wird analog zu Schritt d) der zweiten bevorzugten Ausführung durchgeführt.
Die Umsetzung des 5-Amino-3,4-dihydro-l(2H)-naphthalinon zum 5-Amino-3,4- dihydro-1 -naphthylamin und/oder 5-Amino-3,4-dihydro-l(2H)-naphthylimin und die anschließende Aromatisierung werden bevorzugt in einem Reaktionsgefäß durchgeführt.
Alle Reaktionsschritte in dieser bevorzugten Ausführung des Verfahrens können kontinuierlich oder diskontinuierlich, beispielsweise in Rührkesselreaktoren oder Rohrreaktoren, durchgeführt werden.
Die erfindungsgemäßen Verfahren auf Basis von ortbo-Nitrotoluol und Acrylnitril lassen sich in idealisierter Weise am folgenden Reaktionsschema verdeutlichen:
Figure imgf000018_0001
4-(2-Aminophenyl)- 5-Amino-3,4-dihydro- 5-Amino-3,4-dihydro- 1 ,5-Naphthalindiamin butyronitril 1 -naphthylamin 1 (2H)-naphthalinon bzw.
5-Amino-3,4-dihydro- 1(2H)-naphthylimin
Kat.
- 16b -
In einer fünften bevorzugten Ausführung enthält das Verfahren zur Herstellung von 1,5-Naphthalindiamin die Schritte
ERSATZBLAπ (REGEL 26) - 17 -
a) Umsetzung von ortAo-Nitrotoluol mit einem Acrylsäureester oder Acrylsäureamid zum 4-(2-Nitrophenyl)-buttersäureester bzw. 4-(2- Nitrophenyl)-buttersäureamid,
b) Cyclisierung des in Schritt a) gebildeten Buttersäureesters bzw. des Buttersäureamids zum 5-Nitro-3,4-dihydro-l(2H)-naphthalinon,
c) Aminierung des in Schritt b) gebildeten 5-Nitro-3,4-dihydro-l(2H)- naphthalinon zu 5 -Nitro-3,4-dihydro-l -naphthylamin bzw. dem tautomeren 5-
Nitro-3,4-dihydro- 1 (2H)-naphthylimin,
d) Aromatisierung des in Schritt c) gebildeten 5 -Nitro-3,4-dihydro-l -naphthylamin bzw. des tautomeren 5-Nitro-3,4-dihydro-l(2H)-naphthylimin zu 5- Nitro-1 -naphthylamin und oder 5-Nitroso-l -naphthylamin,
e) Hydrieren des in Schritt d) gebildeten 5-Nitro-l -naphthylamin und / oder 5- Nitroso-1 -naphthylamin zu 1,5-Naphthalindiamin.
4-(2-Nitrophenyl)-buttersäureester bzw. 4-(2-Nitrophenyl)-buttersäureamide werden aus ortbo-Nitrotoluol und Acrylsäureestern bzw. Acrylsäureamiden bevorzugt bei Temperaturen von -10°C bis 100°C hergestellt. Besonders bevorzugt arbeitet man bei 20°C bis 75°C, ganz besonders bevorzugt bei Temperaturen von 30°C bis 60°C.
Die Reaktion wird basenkatalysiert durchgeführt. Als Basen können Oxide,
Hydroxide und Carbonate von Lithium, Natrium, Kalium, Rubidium, Cäsium, Magnesium, Calcium, Strontium, Barium oder Aluminium sowie Mischungen daraus eingesetzt werden. Besonders geeignet sind Natrium- und Kaliumhydroxid. In einer bevorzugten Ausführung werden die wässrigen Lösungen in Kombination mit einem Phasentransferkatalysator eingesetzt. Solche Phasentransferkatalysatoren sind z.B. quartäre Ammoniumsalze. Geeignete Ammoniumverbindungen sind Tetraalkyl- - 18 -
Chlorid, Trioctylammonium-Chlorid, Tetrabutylammonium-Chlorid oder Tetrabutyl- ammonium-Hydrogensulfat. Ebenso geeignet ist die Verwendung von entsprechenden Tertaalkyl- bzw. Tetraaryl-Phosphoniumsalzen wie Tetramethylphos- phonium-Bromid und Tetraphenylphosphonium-Bromid sowie die Verwendung von Löslichkeitsvermittlem wie Polyethylenglycoldimethylethern.
Als Lösungsmittel sind grundsätzlich Wasser sowie alle basenstabilen organischen Lösungsmittel geeignet. Bevorzugt werden aromatische Lösungsmittel wie Benzol, Toluol, Xylol, Chlorbenzol, Nitrobenzol oder Nitrotoluol sowie Dimethylsulfoxid, Dimethylformamid und aliphatische Kohlenwasserstoffe wie Ligroin, Cyclohexan,
Pentan, Hexan, Heptan, Octan eingesetzt.
Besonders bevorzugt wird ortbo-Nitrotoluol als Edukt und gleichzeitig als Lösungsmittel verwendet und im Uberschuss an ortΛo-Nitrotoluol von 1 bis 40 Äquivalenten, ganz besonders von 5 bis 20 Äquivalenten, bezogen auf das Acrylsäurederivat, eingesetzt.
Die Cyclisierung von 4-(2-Nitrophenyl)-buttersäureestern bzw. 4-(2-Nitrophenyl)- buttersäureamiden zu 5-Nitro-3,4-dihydro-l(2H)-naphthalinon wird in Substanz oder in einem inerten Lösungsmittel in Gegenwart starker Säuren durchgeführt. Geeignete
Lösungsmittel sind lineare, verzweigte oder cyclische aliphatische Kohlenwasserstoffe wie Ligroin oder Cyclohexan, Pentan, Hexan, Heptan, Octan sowie aromatische Lösungsmittel wie Nitrotoluol. Bevorzugt wird in Substanz oder in σrtbo-Nitrotoluol gearbeitet.
Geeignete Säuren sind starke Lewis- oder Bronstedsäuren wie z.B. Aluminiumchlorid, Bortrifluorid, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Phosphor- pentoxid, Methansulfonsäure, Trifluormethansulfonsäure, Trifluoressig-säure oder Gemische aus Antimonpentafluorid und Fluorschwefelsäure. Es können auch Mischungen dieser Säuren eingesetzt werden. Bevorzugt wird Schwefelsäure oder
Phosphorsäure eingesetzt. - 19 -
Die Säure wird im Allgemeinen in 0,1 bis 100 Mol-Äquivalenten, bezogen auf 4-(2- Nitrophenyl)-buttersäurederivat, eingesetzt. Bevorzugt werden 0,5 bis 20 Äquivalente verwendet, besonders bevorzugt 1 bis 10 Äquivalente.
Die Reaktion wird im Allgemeinen bei Temperaturen von 0°C bis 150°C durchgeführt, bevorzugt zwischen 60°C und 110°C.
Die Arnim erung von 5-Nitro-3,4-dihydro-l(2H)-naphthalinon zum Nitro-Imin bzw. Nitro-Enamin geschieht durch Umsetzung mit Ammoniak, vorzugsweise in Gegenwart von Ammoniumsalzen wie Ammoniumchlorid.
Die Aromatisierung bzw. Dehydrierung des Nitro-Enamins 5-Nitro-3,4-dihydro-l- naphthylamin bzw. des Nitro-Imins 5-Nitro-3,4-dihydro-l(2H)-naphthylimin zu 5- Nitro-1 -naphthylamin oder 5-Nitroso-l-naphthylamin oder einem Gemisch der
Verbindungen wird, beispielsweise in einem inerten Lösungsmittel, in Gegenwart eines Katalysators durchgeführt. Dabei kann neben dem dehydrierten Produkt 5- Nitro-1 -naphthylamin auch das formal durch Synproportionierung entstandene 5- Nitroso-1 -naphthylamin entstehen. In Spuren entsteht auch 1,5-Naphthalindiamin. Die Produkte können in beliebigen Mischungsverhältnissen weiter verarbeitet werden. Geeignete Lösungsmittel sind Ammoniak und lineare, verzweigte oder cyclische aliphatische Kohlenwasserstoffe wie Ligroin oder Cyclohexan, sowie Acetonitril und aromatische Lösungsmittel wie Benzol, Toluol, Xylol, Nitrobenzol, Nitrotoluol oder Chlorbenzol. Die Aromatisierung kann auch in Abwesenheit eines Lösungsmittels durchgeführt werden.
Geeignete Katalysatoren sind Dehydrierungskatalysatoren, die in der Literatur beschrieben sind (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10. Auflage 1997, S. 891, Kapitel „Dehydrierung", 1. Abschnitt; UUmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 5. Auflage 1989,
Vol AI 3, Kapitel „Hydrogenation and Dehydrogenation", Unterkapitel 2. „Dehydro- - 20 -
genation", S. 494-497). Dazu gehören die Metalle der 8.-10. Gruppe des Periodensystems (G. J. Leigh [Editor], Nomenclature of Inorganic Chemistry, Recommen- dations 1990, Blackwell Scientific Publications, Oxford, Chapter 1-3.8.1 „Groups of Elements in the Periodic Table and their Subdivision, p. 41-43.), insbesondere Platin, Palladium, Ruthenium und Iridium, Eisen, Cobalt, Nickel und Kombinationen davon.
Die Metalle können auch gemeinsam mit weiteren Metallen wie Lanthan, Scandium, Vanadium, Chrom, Molybdän, Wolfram, Mangan, Zinn, Zink, Kupfer, Silber oder Indium eingesetzt werden. Die genannten Metalle können dabei als reine Elemente, als Oxide, Sulfide, Halogenide, Carbide oder Nitride vorliegen oder aber kombiniert mit organischen Liganden eingesetzt werden. Als Liganden geeignet sind Kohlen- wasserstoffverbindungen mit Donorgruppen wie beispielsweise Amine, Nitrile, Phosphine, Thiole, Thioether, Alkohole, Ether oder Carbonsäuren. Gegebenenfalls sind die Katalysatoren auf einem Trägermaterial aufgebracht. Geeignete Trägermaterialien sind Aktivkohle, Aluminiumoxid, Siliciumoxid, Zirkonoxid, Zinkoxid, Zeolithe.
Gegebenenfalls wird in Gegenwart eines Oxidationsmittels wie Sauerstoff oder Luft gearbeitet. Die Reaktion wird im Allgemeinen bei Temperaturen von 50°C bis 250°C durchgeführt, bevorzugt bei 100°C bis 200°C.
Die anschließende Hydrierung von 5-Nitro-l -naphthylamin oder 5-Nitroso-l- naphthylamin oder einem Gemisch der Verbindungen zu 1,5-Naphthalindiamin wird analog zu Schritt d) der ersten bevorzugten Ausführung durchgeführt.
Das erfindungsgemäße Verfahren auf Basis von ortbo-Nitrotoluol und Acryl- säureestern und Acrylsäureamiden lässt sich in idealisierter Weise am folgenden Reaktionsschema verdeutlichen:
Figure imgf000024_0001
m o-Nitrotoluol Acrylsäure- 4-(2-Nitrophenyl)- 5-Nitro-3,4-dihydro- 5-Nitro-3,4-dihydro- 5-Nitro-1 -naphthylamin 1 ,5-Naphthalindiamin ester bzw. buttersäureester 1(2H)-naphthalinon 1 -naphthylamin und /oder a -amid bzw. -amid bzw. 5-Nitroso-1 -naphthylamin
5-Nitro-3,4-dihydro- und/oder 1 (21-1 )-naphthylimin 1 ,5-Naphthalindiamin
X = OAlkyl, OAryl, NH2, NHAlkyl, N(Alkyl)2, NHAryl, N(Aryl)2, NAIkylAryl
Figure imgf000024_0002
- 21a -
Das 1,5-Naphthalindiamin kann in an sich bekannter Weise zum 1,5-Naphthalin- diisocyanat phosgeniert werden (DE-Al-19 651 041).
ERSATZBLAπ (REGEL 26) - 22 -
Beispiele
Ausführung 1:
Beispiel 1 Darstellung von 4-(2-Nitrophenyl)-butyronitril
In einem 100 ml Dreihalskolben mit Tropftrichter, Rückflusskühler und Innen- thermometer wird unter Rühren 0,75 ml 45 % Natronlauge und 175 mg Tributyl- methylammonium-Chlorid gegeben. Bei 40°C wird eine Mischung von 1,4 ml Acrylnitril (21,15 mmol) und 25 ml ortbo-Nitrotoluol zugetropft und 3 h bei dieser
Temperatur gehalten. Die Phasen werden getrennt, die organische Phase getrocknet und abfiltriert. Bei quantitativem Umsatz an Acrylnitril werden 1,61 g 4-(2-Nitro- phenyl)-butyronitril (8,5 mmol, 40 %) erhalten.
Beispiel 2 Darstellung von 5 -Nitro-3 ,4-dihydro- 1 (2H)-naphthylimin
In einem 50 ml Glasrundkolben werden unter Schutzgas 107 mg 4-(2-Nitrophenyl)- butyronitril (0,89 mmol) mit 4 ml konzentrierte Schwefelsäure (75 mmol) versetzt und die Mischung 12 h auf 100°C erhitzt. Die erkaltete Mischung wird auf Eis gegeben und sofort mit Toluol extrahiert. Die Ausbeute an 5-Nitro-3,4-dihydro- l(2H)-naρhthylimin beträgt laut GC 85 % (Flächenprozent).
Beispiel 2a Darstellung von 5-Nitro-3,4-dihydro-l(2H)-naphthalinon
In einem 50ml Glasrundkolben werden unter Schutzgas 1,00 g Fluorschwefelsäure
(10 mmol) zu 1,30 g Antimon-(V)-fluorid (6 mmol) gegeben und die Mischung auf 0°C gekühlt. Dann werden vorsichtig 380 mg 4-(2-Nitrophenyl)-butyronitril (2 mmol) zugegeben. Die Mischung erwärmt sich auf etwa 50°C und wird 12h bei Raumtemperatur weitergerührt. Die Mischung wird auf eiskalte Natronlauge ge- geben, bei Raumtemperatur 30 Min. nachgerührt und dann mit Toluol extrahiert.
Durch die Nachrührzeit wird eine weitgehend vollständige Hydrolyse ermöglicht. - 23 -
Die organische Phase wird über Natriumsulfat getrocknet, abfiltriert und das Lösungsmittel unter vermindertem Druck abdestilliert. Der Rückstand wird durch Chromatographie an Kieselgel gereinigt (Eluent Cyclohexan Ethylacetat 5:1 v/v). Die Ausbeute an 5-Nitro-3,4-dihydro-l(2H)-naphthalinon beträgt 297 mg mit einer GC-Reinheit von 97 % (76 % der Theorie).
Beispiel 3 Darstellung von 5-Nitro-l -naphthylamin:
1,0 g 5-Nitro-3,4-dihydro-l(2H)-naphthalinon (5,2 mmol), 5,2 mg Ammonium- chlorid (0,1 mmol) und 10,9 mg Ruthem'umtrichloridhydrat (0,05 mmol) werden in einem 0,11 Autoklaven vorgelegt. 10 ml Ammoniak werden einkondensiert, der Autoklav auf 80°C erwärmt und dann wird der Druck mit Stickstoff auf 200 bar erhöht. Nach 20h Rühren unter den angegebenen Bedingungen wird abgekühlt, vorsichtig entspannt und die Reaktionsmischung mit 20 ml Dichlormethan aus dem Autoklaven gelöst. Man erhält eine Mischung, die laut GC neben 12 % Edukt zu
68 % 5-Nitro-3,4-dihydro-l-naρhthylamin bzw. 5-Nitro-3,4-dihydro-l(2H)-naphthyl- imin, zu 17 % 5 -Nitro-1 -naphthylamin und in Spuren 1,5-Naphthalindiamin enthält (GC-Flächenprozente).
Beispiel 4 Hydrierung von 5-Nitro- 1 -naphthylamin
In einem 0,1 1 Autoklaven werden 8,20 g 5 -Nitro-1 -naphthylamin (43,6 mmol) in 35 ml Toluol mit 0,5 g Palladium auf Kohle (5 %) vorgelegt und unter Rühren bei 50°C bei 40 bar Wasserstoffdruck für 5 h hydriert. Nach beendeter Reaktion wird der abgekühlte Autoklav entspannt und der Katalysator abfiltriert. Bei quantitativem
Umsatz werden 6,72 g 1,5-Naphthalindiamin (42,5 mmol, 97,5 %) gebildet. - 24 -
Ausführung 2:
Beispiel 5 Synthese von 4-(2-Aminophenyl)-butyronitril
In einem 100 ml Glasrundkolben werden zu einer Mischung von 412 mg Eisenpulver
(7,5 mmol) und 663 mg Ammoniumchlorid (12,5 mmol) in 12,5 ml Wasser bei Raumtemperatur und unter Schutzgas 450 mg 4-(2-Nitrophenyl)-butyronitril, gelöst in 12,5 ml Methanol, zugetropft. Die Mischung wird 5 Stunden auf Rückfluss erhitzt. Die erkaltete Mischung wird mit 25 ml Wasser versetzt und mit Toluol extrahiert. Die vereinigten Toluolphasen werden getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Der Rückstand wird säulenchromatographisch an Kieselgel (Eluent Toluol/Ethylacetat 10:1 v/v) gereinigt. Ausbeute: 276 mg (1,73 mmol, 72 %).
Beispiel 6 Synthese von 5 - Amino-3 ,4-dihydro- 1 (2H)-naphthylimin
Unter Argon werden in einem 50 ml Glaskolben zu 122 mg 4-(2-Aminophenyl)- butyronitril (0,74 mmol) und 495 mg Antimon-(V)-fluorid (2,29 mmol) unter Rühren 380 mg Fluorschwefelsäure (3,8 mmol) getropft und die Mischung für 4 Stunden auf 100°C erhitzt. Nach dem Abkühlen wird die Mischung auf Eis gegeben, direkt mit
Natronlauge neutralisiert und mit Toluol extrahiert. Die Ausbeute an 5-Nitro-3,4- dihydro-l(2H)-naρhthylimin beträgt laut GC 77 %. 5-Amino-3,4-dihydro-l(2H)- naphthylimin kann auch 5-Imino-5,6,7,8-tetrahydro-l-naphthylamin benannt werden.
Beispiel 6a Synthese von 5- Amino-3 ,4-dihydro- 1 (2H)-naphthalinon
Unter Argon werden in einem 50 ml Glaskolben zu 122 mg 4-(2-Aminophenyl)- butyronitril (0,74 mmol) und 495 mg Antimon-(N)-fluorid (2,29 mmol) unter Rühren 380 mg Fluorschwefelsäure (3,8 mmol) getropft und die Mischung für 4 Stunden auf 100°C erhitzt. Nach dem Abkühlen wird die Mischung auf Eis gegeben, mit Natronlauge neutralisiert, bei Raumtemperatur 30 Min. gerührt und mit Toluol extrahiert. - 25 -
Durch die Nachrührzeit von 30 Min. wird eine weitgehend vollständige Hydrolyse ermöglicht. Die Ausbeute an 5-Amino-3,4-dihydro-l(2H)-naphthalinon beträgt 64 %.
Beispiel 6b Synthese von 5-Amino-3,4-dihydro-l(2H)-naphthalinon
Unter Argon werden in einem 20 ml Schlenkgefäß zu 100 mg 4-(2-Aminophenyl)- butyronitril (0,62 mmol) 1 g 96 %ige Schwefelsäure (9,79 mmol) gegeben. Unter Rühren wird 66h auf 100°C erhitzt. Nach dem Abkühlen wird mit wässriger Ammoniak-Lösung (Eiskühlung) neutralisiert, das Produkt anschließend mit Chloro- form extrahiert und mittels GC nachgewiesen.
Beispiel 7 Synthese von 1,5-Naphthalindiamin aus 5-Amino-3,4-dihydro-l(2H)- naphthalinon
In einem 0,1 1 VA-Autoklaven werden 419.1 mg (2.6 mmol) Aminotetralon, 52 mg
(0,97 mmol) Ammoniumchlorid, 230.5 mg (1.3 mmol) Palladium(II)chlorid in 1 ml Acetonitril vorgelegt. Es werden 5 ml Ammoniak zugeben, auf 130°C erwärmt und dann der Druck mit Stickstoff auf 200 bar erhöht. Es wird 20 h unter den angegebenen Reaktionsbedingungen gerührt, dann auf Raumtemperatur abgekühlt und langsam entspannt. Der Rückstand wird in einer Mischung von Acetonitril, Toluol und Dichlormethan gelöst, über Natriumsulfat filtriert, und dann das Lösungsmittel im Vakuum entfernt.
Ausbeute: 321 mg (78 %).
Ausführung 4:
Beispiel 8 Synthese von 5-Amino-3,4-dihydro-l(2H)-naphthalinon aus 5-Nitro-3,4- dihydro- 1 (2H)-naphthalinon - 26 -
In einem 11 Vierhalskolben werden 9,18 g Eisenpulver und 16,64 g Ammoniumchlorid in 274 ml Wasser vorgelegt. Unter Rühren werden 10g 5-Nitro-3,4-dihydro- l(2H)-naphthalinon (52,4mmol) in 550 ml Methanol gelöst innerhalb von 3,5 h bei 25°C zugetropft. Nach beendetem Zutropfen wird 3,5 h zum Rückfluss erhitzt. Nach dem Abkühlen erfolgt mit wässriger Ammoniak-Lösung (25 %ig) die Einstellung auf pH 11. Das Produkt wird aus der wässrigen Phase mit Chloroform extrahiert, über Natriumsulfat getrocknet und im Vakuum eingeengt. Das Produkt wird als rotbrauner Feststoff in 81 % Ausbeute (6,8 g) erhalten.
Ausführung 5:
Beispiel 9 Synthese von 4-(2-Nitrophenyl)-buttersäuremethylester
Zu einer Mischung aus 14,4g 67 % Kalilauge und 1,7 g Tetrabutylammoniumchlorid wird bei 40°C eine Mischung aus 400 g (2,92 mol) ortbo-Nitrotoluol und 12,7 g (0,148 mol) Acrylsäuremethylester gegeben und die Mischung 1 h gerührt. Die Mischung wird mit 30 % Schwefelsäure neutralisiert und die Phasen getrennt. Laut GC- Analyse mit internem Standard beträgt die Ausbeute 50 %.
Die organischen Phasen von 4 identischen Versuchen werden vereinigt und über Na2SO getrocknet. Bei einem Druck von 0,1 bar wird überschüssiges Nitrotoluol bis zu einer Kopftemperatur von 110°C abdestilliert. Bei einer Kopftemperatur von 120 - 130°C erhält man 59,1 g (265 mmol) 4-(2-Nitrophenyl)-buttersäuremethylester mit einer Reinheit von ca. 98%. Die isolierte Ausbeute entspricht 45%.
Beispiel 10 Synthese von 5-Nitro-3,4-dihydro-l(2H)-naphthalinon
In 1,68 g Trifluormethansulfonsäure werden 100 mg (0,45 mmol) 4-(2-Nitrophenyl)- buttersäuremethylester gelöst und für 24 h auf 100°C erhitzt. Zu der erkalteten - 27 -
Reaktionsmischung werden vorsichtig 5 ml Wasser und 5 ml Toluol gegeben. Die Phasen werden getrennt und die organische Phase gaschromatographisch mit internem Standard untersucht. Die Ausbeute an 5-Nitro-3,4-dihydro-l(2H)- naphthalinon beträgt 81%.
Beispiel 10a Synthese von 5-Nitro-3,4-dihydro-l(2H)-naphthalinon
In 5,49 g 98 % Schwefelsäure werden 250 mg (1,12 mmol) 4-(2-Nitrophenyl)- buttersäuremethylester gelöst und für 24 h auf 100°C erhitzt. Zu der erkalteten
Reaktionsmischung werden vorsichtig 5 ml Wasser und 5 ml Toluol gegeben. Die Phasen werden getrennt und die organische Phase gaschromatographisch mit internem Standard untersucht. Die Ausbeute an 5-Nitro-3,4-dihydro-l(2H)-naphtha- linon beträgt 42%.

Claims

- 28 -Patentansprüche
1. Verfahren zur Herstellung von 1,5-Naphthalindiamin, das einen Schritt enthält, in dem man ortbo-Nitrotoluol mit einem oder mehreren Acrylsäure- derivaten umsetzt.
2. Verfahren nach Anspruch 1, bei dem man als Acrylsäurederivat Acrylsäure- methylester, Acrylsäureethylester, Acrylsäurebutylester oder Acrylsäureamid einsetzt.
3. Verfahren nach Anspruch 1, das einen Schritt enthält, in dem man ortho- Nitrotoluol mit Acrylnitril zu 4-(2-Nitrophenyl)-butyronitril umsetzt.
4. Verfahren zur Herstellung von 1,5-Naphthalindiamin nach Anspruch 3, ent- haltend die Schritte
a) Umsetzung von ortbo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitro- phenyl)-butyronitril,
b) Cyclisierung des in Schritt a) gebildeten 4-(2-Nitrophenyl)-butyronitril zum Nitro-Imin und/oder Nitro-Enamin,
c) Aromatisieren des in Schritt b) gebildeten Nitro-Imin und/oder Nitro- Enamin zu 5-Nitro-l -naphthylamin und oder 5-Nitroso-l-naphthyl- amin,
d) Hydrieren des in Schritt c) gebildeten 5-Nitro-l -naphthylamin und/oder 5 -Nitroso-1 -naphthylamin zu 1 ,5-Naphthalindiamin.
5. Verfahren nach Anspruch 4, bei dem das in Schritt b) gebildete Nitro-Imin und/oder Nitro-Enamin zunächst zum Nitroketon 5 -Nitro-3,4-dihydro-l(2H)- - 29 -
naphthalinon umgesetzt wird, das Nitroketon anschließend isoliert wird, anschließend zum Nitro-Imin und/oder Nitro-Enamin zurückgebildet wird und anschließend in Schritt c) aromatisiert wird.
6. Verfahren zur Herstellung von 1,5-Naphthalindiamin nach Anspruch 3, enthaltend die Schritte
a) Umsetzung von ortbo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitro- phenyl)-butyronitril,
b) Reduzieren des in Schritt a) gebildeten 4-(2-Nitrophenyl)-butyronitril zum 4-(2-Aminophenyl)-butyronitril,
c) Cyclisieren des in Schritt b) gebildeten 4-(2-Aminophenyl)-butyro- nitril zum Amino-Imin und/oder Amino-Enamin,
d) Aromatisieren des in Schritt c) gebildeten Amino-Imin und/oder Amino-Enamin zum 1,5-Naphthalindiamin.
7. Verfahren nach Anspruch 6, bei dem das in Schritt c) gebildete Amino-Imin und/oder Amino-Enamin zunächst zum Aminoketon 5-Amino-3,4-dihydro- l(2H)-naphthalinon umgesetzt wird, das Aminoketon anschließend isoliert wird, anschließend zum Amino-Imin und/oder Amino-Enamin zurückgebildet wird und anschließend in Schritt d) aromatisiert wird.
8. Verfahren zur Herstellung von 1,5-Naphthalindiamin nach Anspruch 3, enthaltend die Schritte
a) Umsetzung von ortbo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitro- phenyl)-butyronitril, - 30 -
b) Cyclisierung des in Schritt a) gebildeten 4-(2-Nitrophenyl)- butyronitril zum Nitro-Imin und/oder Nitro-Enamin,
c) Reduzieren des in Schritt b) gebildeten Nitro-Imin und /oder Nitro- Ena in zum Amino-Imin und /oder Amino-Enamin,
d) Aromatisieren des in Schritt c) gebildeten Amino-Imin und/oder Amino-Enamin zum 1,5-Naphthalindiamin.
9. Verfahren zur Herstellung von 1,5-Naphthalindiamin nach Anspruch 3, enthaltend die Schritte
a) Umsetzung von ortbo-Nitrotoluol mit Acrylnitril zu 4-(2-Nitro- phenyl)-butyronitril,
b) Cyclisierung des in Schritt a) gebildeten 4-(2-Nitrophenyl)- butyronitril zum Nitro-Imin und/oder Nitro-Enamin, Umsetzung zum Nitroketon 5-Nitro-3,4-dihydro-l(2H)-naphthalinon, sowie Isolierung des Nitroketons,
c) Reduzieren des in Schritt b) gebildeten Nitroketons 5-Nitro-3,4- dihydro-l(2H)-naphthalinon zum Aminoketon 5-Amino-3,4-dihydro- 1 (2H)-naphthalinon,
d) Überführen des in Schritt c) gebildeten Aminoketons zum Amino-
Imin 5-Amino-3,4-dihydro-l(2H)-naphthylimin und/oder Amino-Enamin 5-Amino-3,4-dihydro-l -naphthylamin und Aromatisieren zum 1 ,5-Naphthalindiamin.
10. Verfahren zur Herstellung von 1,5-Naphthalindiamin nach Anspruch 1, enthaltend die Schritte - 31 -
a) Umsetzung von ortbo-Nitrotoluol mit einem Acrylsäureester oder Acrylsäureamid zum 4-(2-Nitrophenyl)-buttersäureester bzw. 4-(2- Nitrophenyl)-buttersäureamid,
b) Cyclisierung des in Schritt a) gebildeten Buttersäureesters bzw. des Buttersäureamids zum 5-Nitro-3,4-dihydro-l(2H)-naphthalinon,
c) Aminierung des in Schritt b) gebildeten 5-Nitro-3,4-dihydro-l(2H)- naphthalinon zu 5 -Nitro-3,4-dihydro-l -naphthylamin bzw. dem tautomeren 5-Nitro-3,4-dihydro- 1 (2H)-naphthylimin,
d) Aromatisierung des in Schritt c) gebildeten 5-Nitro-3,4-dihydro-l- naphthylamin bzw. des tautomeren 5-Nitro-3,4-dihydro-l(2H)- naphthylimin zu 5-Nitro-l -naphthylamin und/oder 5-Nitroso-l- naphthylamin,
e) Hydrieren des in Schritt d) gebildeten 5-Nitro-l -naphthylamin und / oder 5-Nitroso-l -naphthylamin zu 1,5-Naphthalindiamin.
11. Verbindungen der Bezeichnung 5 -Nitro-3,4-dihydro-l -naphthylamin bzw. das tautomere 5-Nitro-3,4-dihydro- 1 (2H)-naphthylimin, 5-Nitroso-l -naphthylamin, 4-(2-Aminophenyl)-butyronitril, 5-Amino-3,4-dihydro-l(2H)-naphthyl- imin bzw. das tautomere 5-Amino-3,4-dihydro-l -naphthylamin, 4-(2- Nitrophenyl)-buttersäureethylester, 4-(2-Nitrophenyl)-buttersäurebutylester,
4-(2-Nitrophenyl)-buttersäureamid.
12. Verwendung von Acrylsäurederivaten und ort zo-Nitrotoluol als Edukte zur Herstellung von 1,5-Naphthalindiamin.
13. Verwendung nach Anspruch 12, wobei das Acrylsäurederivat Acrylnitril ist. - 32 -
14. Verfahren zur Herstellung von 1,5-Naphthalindiisocyanat, bei dem man 1,5- Naphthalindiamin, hergestellt nach einem der Ansprüche 1 bis 10, phosgeniert.
PCT/EP2001/014449 2000-12-22 2001-12-10 Verfahren zur herstellung von 1,5-naphthalindiamin WO2002051792A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01990532A EP1345888A1 (de) 2000-12-22 2001-12-10 Verfahren zur herstellung von 1,5-naphthalindiamin
JP2002552891A JP4206270B2 (ja) 2000-12-22 2001-12-10 1,5−ナフタレンジアミンの製造方法
HK04104612A HK1061675A1 (en) 2000-12-22 2004-06-28 Process for the production of 1, 5-naphthalenediamine and process for the production of 1, 5-naphthalene-diisocyanate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10064779.0 2000-12-22
DE10064779 2000-12-22
DE10149041.0 2001-10-02
DE10149041A DE10149041A1 (de) 2000-12-22 2001-10-05 Verfahren zur Herstellung von 1,5-Naphthalindiamin

Publications (1)

Publication Number Publication Date
WO2002051792A1 true WO2002051792A1 (de) 2002-07-04

Family

ID=26008078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/014449 WO2002051792A1 (de) 2000-12-22 2001-12-10 Verfahren zur herstellung von 1,5-naphthalindiamin

Country Status (6)

Country Link
US (1) US6706924B2 (de)
EP (1) EP1345888A1 (de)
JP (1) JP4206270B2 (de)
CN (1) CN1275934C (de)
HK (1) HK1061675A1 (de)
WO (1) WO2002051792A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090315A1 (fr) * 2001-05-08 2002-11-14 Mitsui Chemicals, Inc. Procede de preparation de 1,5-diaminonaphtalenes
EP1369412A1 (de) * 2002-06-03 2003-12-10 Bayer Ag Verfahren zur Herstellung von 5-Nitro-3,4-dihydro-1(2H)-naphthalinon, 1,5-Naphtalindiamin und 1,5-Naphtalindiisocyanat
EP1568681A1 (de) * 2002-12-04 2005-08-31 Mitsui Chemicals, Inc. Verfahren zur herstellung von 1,5-diaminonaphthalin

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100521933B1 (ko) * 2002-06-05 2005-10-13 엘지전자 주식회사 재기록 가능 기록매체의 편집 요약정보 관리방법
US7439369B2 (en) * 2004-06-22 2008-10-21 Loa Alamos National Security, Llc Method and system for hydrogen evolution and storage
JP4598486B2 (ja) * 2004-11-17 2010-12-15 三井化学株式会社 1,5−ジアミノナフタレンの製造方法
CN1687011B (zh) * 2005-03-31 2010-05-05 聂天明 一种氨基萘的精制方法
JP2018519134A (ja) 2015-05-22 2018-07-19 イービーエム フュージョン ソリューションズ リミテッド ライアビリティ カンパニー 変形矯正のための関節又は分節骨インプラント
CN106432320B (zh) * 2016-09-14 2019-04-05 山西大学 一种含缩醛结构的有机硫化氢供体及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2523351C2 (de) 1975-05-27 1982-12-02 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von 1,5- und 1,8-Diaminonaphthalin
JPS5851946B2 (ja) 1979-10-19 1983-11-19 大阪曹達株式会社 ジアミノナフタレンの製造方法
DE3840618C1 (de) 1988-12-02 1990-03-15 Bayer Ag, 5090 Leverkusen, De
JPH04154745A (ja) 1990-10-16 1992-05-27 Nippon Steel Chem Co Ltd ジアミノナフタレンの製造方法
DE19651041A1 (de) * 1996-12-09 1998-06-10 Bayer Ag Verfahren zur Herstellung von Isocyanaten aus schwerlöslichen primären Aminen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OHIRA, NORIYUKI ET AL: "Organotelluriums. Part IV. Reduction of aromatic nitro compounds to amines by benzenetellurol", CHEM. LETT. (1984), (6), 853-4, XP002198319 *
See also references of EP1345888A1 *
YOSHIHIKO, ITO ET AL.: "A new synthetic method for preparation of 1,3,4,5-tetrahydro-2H-1-benzapin-2-one derivatives", CHEM.LETT., 1980, pages 487 - 490, XP002198320 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090315A1 (fr) * 2001-05-08 2002-11-14 Mitsui Chemicals, Inc. Procede de preparation de 1,5-diaminonaphtalenes
US6737548B2 (en) 2001-05-08 2004-05-18 Mitsui Chemicals, Inc. Process for preparing 1,5-diaminonaphthalene derivative
EP1369412A1 (de) * 2002-06-03 2003-12-10 Bayer Ag Verfahren zur Herstellung von 5-Nitro-3,4-dihydro-1(2H)-naphthalinon, 1,5-Naphtalindiamin und 1,5-Naphtalindiisocyanat
EP1568681A1 (de) * 2002-12-04 2005-08-31 Mitsui Chemicals, Inc. Verfahren zur herstellung von 1,5-diaminonaphthalin
JPWO2004050603A1 (ja) * 2002-12-04 2006-03-30 三井化学株式会社 1,5−ジアミノナフタレンの製造方法
EP1568681A4 (de) * 2002-12-04 2007-05-02 Mitsui Chemicals Polyurethanes Verfahren zur herstellung von 1,5-diaminonaphthalin
JP4553192B2 (ja) * 2002-12-04 2010-09-29 三井化学株式会社 1,5−ジアミノナフタレンの製造方法

Also Published As

Publication number Publication date
HK1061675A1 (en) 2004-09-30
US6706924B2 (en) 2004-03-16
CN1275934C (zh) 2006-09-20
CN1483017A (zh) 2004-03-17
JP4206270B2 (ja) 2009-01-07
EP1345888A1 (de) 2003-09-24
JP2004516309A (ja) 2004-06-03
US20020103401A1 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
US5739403A (en) Process for the production of optionally substituted 4-aminodiphenylamines
WO2002051792A1 (de) Verfahren zur herstellung von 1,5-naphthalindiamin
DE2148223A1 (de) Verfahren zur herstellung von nitrodiphenylaminderivaten
EP1527042B1 (de) Verfahren zur herstellung von aminoalkoxybenzylaminen und aminoalkoxybenzonitrilen als zwischenprodukte
EP1369412B1 (de) Verfahren zur Herstellung von 5-Nitro-3,4-dihydro-1(2H)-naphthalinon, 1,5-Naphtalindiamin und 1,5-Naphtalindiisocyanat
EP0057871B1 (de) Verfahren zur Herstellung von gegebenenfalls p-chlor-substituiertem 2,6-Diaminotoluol
EP1205469A1 (de) Verfahren zur Herstellung von 4-Aminodiphenylamin
EP0104531B1 (de) Gegebenenfalls Isomerengemische darstellende cycloaliphatische Diisocyanate, ein Verfahren zu ihrer Herstellung, sowie ihre Verwendung als Ausgangsmaterialien bei der Herstellung von Polyurethankunststoffen
DE10149041A1 (de) Verfahren zur Herstellung von 1,5-Naphthalindiamin
EP1268400B1 (de) Verfahren zur herstellung von n-butyryl-4-amino-3-methyl-benzoesäuremethylester und die neue verbindung n-(4-brom-2-methylphenyl)-butanamid
DE2547654A1 (de) Herstellung von 2-amino-1-alkoholen
EP0180890B1 (de) Verfahren zur diastereoselektiven Reduktion von 3-Amino-1-benzoxepin-5(2H)-onen
DE69911757T2 (de) Verfahren zur herstellung von 3-bromanisol und 3-bromnitrobenzol
DD142331A5 (de) Verfahren zur herstellung von p-amino-diphenylamin
EP0820981B1 (de) Verfahren zur Herstellung von 2-Trifluormethoxy-anilin
WO2000055138A1 (de) Verfahren zur herstellung von oxcarbazepin (=10,11- dihydro- 10- oxo- 5h- dibenz[b,f]- azepin- 5- carboxamid) und zwischenprodukte
DE2452015C2 (de) Verfahren zur Herstellung von Diaminonaphthalin
DE102004038577B4 (de) Herstellung von 1,5-Naphthalindiamin durch selektive Halogenierung
EP0307777B1 (de) Neue 2-Methyl-4-fluor- phenole und deren Herstellung
EP0743299B1 (de) Verfahren zur Herstellung von 2-Fluorcyclopropylaminsulfonsäuresalzen
EP0292885A2 (de) Katalytische Transferhydrierungen mit aromatischen Nitroverbindungen als Wasserstoffacceptor
EP0672651A1 (de) Verfahren zur Herstellung von 4-Fluoralkoxyzimtsäurenitrilen
DE2713431A1 (de) Verfahren zur herstellung von diacylierten 4-imidazolinonen-2 und deren verwendung fuer cycloadditionen
CH682562A5 (de) Verfahren zur Herstellung von 3-Amino-5-ethyl-6-methyl-1H-pyridin-2-on.
DE2816122A1 (de) 1,8-diamino-1,2,3,4-tetrahydronaphthalin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001990532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002552891

Country of ref document: JP

Ref document number: 01821228X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001990532

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642