WO2002039626A1 - Circuit et methode de mesure du rapport onde desiree/puissance des parasites - Google Patents

Circuit et methode de mesure du rapport onde desiree/puissance des parasites Download PDF

Info

Publication number
WO2002039626A1
WO2002039626A1 PCT/JP2001/009817 JP0109817W WO0239626A1 WO 2002039626 A1 WO2002039626 A1 WO 2002039626A1 JP 0109817 W JP0109817 W JP 0109817W WO 0239626 A1 WO0239626 A1 WO 0239626A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
wave
power ratio
wave power
measuring
Prior art date
Application number
PCT/JP2001/009817
Other languages
English (en)
French (fr)
Inventor
Hitoshi Iochi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2002212744A priority Critical patent/AU2002212744A1/en
Priority to KR1020027008806A priority patent/KR20020073160A/ko
Priority to EP01981046A priority patent/EP1239615A1/en
Publication of WO2002039626A1 publication Critical patent/WO2002039626A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to a desired wave to interference wave power ratio measuring circuit and a desired wave to interference wave power ratio measuring method.
  • the SIR measured by the above-described conventional SIR measurement method includes thermal noise, an interference wave component included in the desired wave power, a desired wave component included in the interference wave power, and the like. It was found that the resulting bias error was included. In other words, it has been found that the above-described conventional SIR measurement method cannot measure accurate SIR.
  • the SIR measurement without considering those numbers is performed as described above.
  • the conventional SIR measurement method has a problem that the SIR measurement error increases according to the number of despread signals, the number of symbols, and the like. Disclosure of the invention
  • FIG. 1 is a graph showing the results of a simulation performed by the inventor on the average value of the measured SIR.
  • Figure 1 is a characteristic diagram of the desired-to-interference power ratio, which shows the difference between the correct desired-to-interference power ratio and the actually measured desired-to-interference power ratio (that is, the bias error). is there.
  • the average value of the measured SIR the average value of several thousand symbol sections was used.
  • bias errors shown in the above (i) to (iii) can be corrected by measuring the SIR according to the following equation.
  • 'SIR' is the average value of the measured SIR
  • 'S' is the average value of the measured desired signal power
  • 'I' is the value of the measured interference wave power.
  • the average value, 'a' is the correction factor for the desired signal power
  • 'b' is the correction factor for the interference signal power
  • 'c' is the correction factor for the fixed bias error.
  • the correction coefficient a and the correction coefficient b are determined by the number of despread signals and the despread signal used for SIR measurement. The decision is made according to the number of symbols included in the signal and the number of receiving antennas.
  • the correction coefficient a and the correction coefficient b are adaptively changed according to the change. Let it do.
  • FIG. 2 is a graph showing a simulation result of an average value of SIR measured according to the above equation (4). From this graph, it was found that by measuring the SIR according to the above equation (4), the bias error was corrected over the entire region of the SIR, and an almost correct SIR could be measured. The correction of the bias error in the low SIR region is due to the part corresponding to the above equation (1) in the above equation (4). The correction of the bias error in the high SIR region is based on the portion corresponding to the above equation (2) in the above equation (4). Note that the simulation results shown in Fig.
  • Figure 1 is a graph showing the simulation results for the average value of the measured SIR.
  • FIG. 2 is a graph showing a simulation result of the average value of the SIR measured according to the equation (4).
  • FIG. 3 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 1 of the present invention.
  • FIG. 4 shows a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram showing another configuration of the desired-to-interference-wave power ratio measuring circuit according to Embodiment 3 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 4 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 5 of the present invention.
  • FIG. 9 is a block diagram showing another configuration of the desired-to-interference-wave power ratio measuring circuit according to Embodiment 5 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 6 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 7 of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 8 of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 1 of the present invention.
  • the desired-wave power measuring unit 101 measures the power of the desired-wave component of the received signal and calculates an average value of the desired-wave power in a predetermined section. I do.
  • the interference wave power measurement unit 102 The average power of the interference wave power in a predetermined section is calculated by measuring the power of the interference.
  • the low SIR region correction section 103 is composed of a multiplier 103 and an adder 103, and corrects a bias error in the low SIR region.
  • SIR calculation section 104 calculates a ratio between the value calculated by low S region correction section 103 and the value calculated by interference wave power measurement section 102.
  • the desired wave power measuring unit 101 calculates an average value of the desired wave power in a predetermined section, and outputs the calculated average value to the adder 103. Further, an interference wave power measurement unit 102 calculates an average value of the interference wave power in a predetermined section, and outputs the average value to the multiplier 1031 and the SIR calculation unit 104.
  • the average value of the desired wave power output from the desired wave power measurement unit 101 corresponds to 'S' in the above equation (1)
  • the interference wave power output from the interference wave power measurement unit 102 Is equivalent to 'I' in the above equation (1).
  • the predetermined section at the time of calculating the average value is appropriately set according to the purpose of use of the SIR. For example, when SIR is used for transmission power control in mobile communication, etc., it is set to a range of several symbols to several tens of symbols, and when it is used for grasping the line status in mobile communication, etc. Is set in the range of several hundred to several thousand symbols.
  • the multiplier 103 multiplies the average value of the interference wave power by the correction coefficient a and outputs the result to the adder 103.
  • This correction coefficient a corresponds to 'a' in the above equation (1).
  • the average value of the interference wave power after multiplication by the correction coefficient a is subtracted from the average value of the desired wave power. That is, the low SIR region correction unit 103 performs an operation corresponding to the numerator of the above equation (1). Thereby, the interference wave component included in the average value of the desired wave power is removed. The average value of the desired wave power after removing the interference wave component is output to SIR calculation section 104.
  • the SIR calculating section 104 the average value of the desired wave power after removing the interference wave component is divided by the average value of the interference wave power. Therefore, from the SIR calculation unit 104, The SIR measured according to (1) is output. As a result, an average SIR in which the bias error in the low SIR region has been corrected is obtained.
  • the interference wave component included in the desired wave power is removed by the interference wave power multiplied by the correction coefficient, the interference wave component becomes relatively larger than the desired wave component. SIR bias error can be corrected in the low SIR region.
  • FIG. 4 is a block diagram showing a configuration of a desired wave to interference wave power ratio measurement circuit according to Embodiment 2 of the present invention.
  • the same components as in FIG. 3 are denoted by the same reference numerals as in FIG. 3, and detailed description thereof will be omitted.
  • the high-SIR region correction unit 105 includes a multiplier 1051 and an adder 1052, and corrects a bias error in the high-SIR region.
  • SIR calculation section 104 calculates a ratio between the value calculated by desired wave power measurement section 101 and the value calculated by high SIR area correction section 105.
  • the desired wave power measuring section 101 calculates an average value of the desired wave power in a predetermined section, and outputs the calculated average value to the multiplier 1051 and the SIR calculating section 104. Further, interference wave power measurement section 102 calculates an average value of the interference wave power in a predetermined section, and outputs the average value to adder 1052.
  • the average value of the desired signal power output from desired signal power measurement section 101 corresponds to 'S' in the above equation (2)
  • the average value of the interference signal power output from interference signal power measurement section 102 Is equivalent to 'I' in equation (2) above.
  • Multiplier 1051 multiplies the average value of the desired signal power by correction coefficient b and outputs the result to adder 1052.
  • This correction coefficient b corresponds to 'b' in the above equation (2).
  • the average value of the desired wave power after multiplication by the correction coefficient b is subtracted from the average value of the interference wave power. That is, the high SIR region correction unit 105 performs an operation corresponding to the denominator of the above equation (2). Thereby, the desired wave component included in the average value of the interference wave power is removed. The average value of the interference wave power after the removal of the desired wave component is output to the SIR calculator 104.
  • SIR calculation section 104 the average value of the desired wave power is divided by the average value of the interference wave power after removing the desired wave component. Accordingly, the SIR calculation section 104 outputs the SIR measured according to the above equation (2). As a result, an average SIR in which the bias error in the high SIR region is corrected is obtained.
  • the bias error in the high SIR region is considered to be caused by the influence of the frequency offset between wireless communication devices divided by the Doppler effect, in addition to the effect of the intersymbol interference component generated by the filter.
  • the correction coefficient b may be adaptively changed according to the magnitude of the Doppler frequency.
  • the desired wave component included in the interference wave power is removed by the desired wave power multiplied by the correction coefficient, so that the desired wave component becomes relatively larger than the interference wave component
  • the SIR bias error can be corrected in the high SIR region.
  • FIG. 5 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 3 of the present invention. It is a lock figure. However, the components in FIG. 5 that are the same as those in FIG. 3 or FIG. 4 are denoted by the same reference numerals as in FIG. 3 or FIG.
  • the interference wave component included in the average value of the desired wave power is removed.
  • the average value of the desired wave power after removing the interference wave component is output to multiplier 1051 of SIR calculation section 104 and high SIR area correction section 105.
  • the high SIR area correction unit 105 an operation corresponding to the denominator of the above equation (3) is performed.
  • the desired wave component included in the average value of the interference wave power is removed.
  • the desired wave component removed by the high SIR region correction unit 105 is already the desired wave component from which the interference wave component has been removed by the low SIR region correction unit 103.
  • the bias error in the high SIR region can be corrected more accurately than in the second embodiment.
  • the average value of the interference wave power after removing the desired wave component is output to SIR calculation section 104.
  • SIR calculation section 104 the average value of the desired wave power after removing the interference wave component is divided by the average value of the interference wave power after removing the desired wave component. Therefore, the SIR measured according to the above equation (3) is output from the 3111 calculation unit 104. As a result, an average SIR in which both the bias error in the low SIR region and the bias error in the high SIR region are corrected is obtained.
  • the bias error in the low SIR region is corrected first, and then the bias error in the high SIR region is corrected.
  • the error may be corrected, and then the bias error in the low SIR region may be corrected.
  • FIG. 6 is a block diagram showing another configuration of the desired-to-interference-wave power ratio measuring circuit according to Embodiment 3 of the present invention.
  • the same components as those in FIG. 5 are denoted by the same reference numerals as those in FIG. 5, and detailed description thereof will be omitted.
  • the high SIR area correction unit 105 an operation corresponding to the denominator of the above equation (3) is performed. As a result, the desired wave component included in the average value of the interference wave power is removed. It is. The average value of the interference wave power after removing the desired wave component is output to the multiplier 1031 of the SIR calculation section 104 and the low SIR area correction section 103.
  • the interference wave component included in the average value of the desired wave power is removed.
  • the interference wave component removed by the low SIR region correction unit 103 is already an interference wave component from which the desired wave component has been removed by the high SIR region correction unit 105.
  • the I region correction unit 103 can correct the bias error in the low SIR region more accurately than in the first embodiment.
  • the average value of the desired wave power after removing the interference wave component is output to SIR calculation section 104.
  • the SIR calculation section 104 the average value of the desired wave power after removing the interference wave component is divided by the average value of the interference wave power after removing the desired wave component. Therefore, the SIR measured according to the above equation (3) is output from the 8113 ⁇ 4 calculation unit 104. As a result, an average SIR in which both the bias error in the low SIR region and the bias error in the high SIR region are corrected is obtained.
  • the present embodiment it is possible to correct both the bias error in the low SIR region and the bias error in the high SIR region. Further, the bias error can be corrected with higher accuracy than in the first embodiment and the second embodiment. (Embodiment 4)
  • FIG. 7 is a block diagram illustrating a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 4 of the present invention.
  • the same components as those in FIG. 5 are denoted by the same reference numerals as in FIG. 5, and detailed description will be omitted.
  • S measured according to the above equation (3) is output.
  • the bias error in the low SIR region and the bias error in the high SIR region The average SIR with both errors corrected is output.
  • the fixed bias error correction section 106 multiplies the average SIR output from the SIR calculation section 104 by a correction coefficient c for correcting a fixed bias error existing over the entire SIR area. You. Therefore, the SIR measured according to the above equation (4) is output from the fixed bias error correction unit 106. As a result, an average SIR in which the bias error in the low SIR region, the bias error in the high SIR region, and the fixed bias error existing over the entire SIR region are corrected.
  • FIG. 8 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 5 of the present invention.
  • the components in FIG. 8 that are the same as those in FIG. 7 are given the same reference numerals as in FIG. 7, and detailed descriptions thereof are omitted.
  • the desired-wave power measuring unit 201 measures the power of the desired-wave components of the despread signals 1 to M and determines the desired-wave power in a predetermined section. Calculate the average value.
  • the calculated average value of the desired wave power is output to adder 1032.
  • a method of calculating the average value of the desired signal power a method of calculating the average value of the desired signal power in a predetermined section for each of the despread signals and then adding all the average values, or a method of calculating the despread signal Measured for each It is possible to adopt a method of adding all the desired powers obtained in a predetermined section and then averaging them.
  • the interference wave power measurement section 202 measures the power of the interference wave components of the despread signals 1 to M, and calculates the average value of the interference wave power in a predetermined section.
  • the calculated average value of the interference wave power is output to multiplier 1031 and adder 1052.
  • a method of calculating the average value of the interference wave power a method similar to the above-described method of calculating the average value of the desired wave power can be employed.
  • the correction coefficient a is multiplied by the number of despread signals used for measuring the S I.
  • the correction coefficient a after the multiplication of the number of despread signals is output to the multiplier 103. That is, the low SIR region correction unit 103 performs an operation corresponding to the numerator of the above equation (3) using the correction coefficient a after multiplication of the number of despread signals. As a result, the interference wave components included in the average value of the desired signal power are removed by the number of despread signals.
  • the correction coefficient b is multiplied by the number of despread signals used for measuring the SIR.
  • the correction coefficient b after multiplying the number of despread signals is output to the multiplier 105. That is, the high SIR area correction unit 105 performs an operation corresponding to the denominator of the above equation (3) using the correction coefficient b after multiplication of the number of despread signals. As a result, the desired wave component included in the average value of the interference wave power is removed by the number of despread signals.
  • the number of despread signals multiplied by the correction coefficient a and the correction coefficient b is a fixed value when the number of despread signals used for SIR measurement is predetermined, and is used for SIR measurement. If the number of despread signals changes from moment to moment, it is changed according to the change.
  • the number of despread signals used for SIR measurement changes every moment, it is also possible to use the number averaged in a predetermined section. By averaging the number of despread signals in this way, even when the number of received despread signals temporarily fluctuates temporarily, the correction coefficient a and the correction coefficient b do not fluctuate rapidly. It is possible to prevent the SIR from greatly fluctuating due to a temporary fluctuation in the number of despread signals.
  • correction coefficient a and correction coefficient b are determined according to the number of despread signals used for SIR measurement, the magnitude changes according to the number of despread signals.
  • the bias error can be corrected with high accuracy.
  • FIG. 9 is a block diagram showing another configuration of the desired-to-interference-wave power ratio measuring circuit according to Embodiment 5 of the present invention.
  • the same components as in FIG. 8 are denoted by the same reference numerals as in FIG. 8, and detailed description will be omitted.
  • RAKE combining section 301 RAKE combines despread signals 1 to M and outputs the result to desired wave power measuring section 302 and interference wave power measuring section 303.
  • Desired wave power measuring section 302 measures the power of the desired wave component of the signal after RAKE combining, and calculates an average value of the desired wave power in a predetermined section.
  • Interference wave power measurement section 303 measures the power of the interference wave component of the signal after RAKE combining, and calculates an average value of the interference wave power in a predetermined section.
  • the desired-to-interference-wave power ratio measuring circuit By using the configuration shown in FIG. 9 for the desired-to-interference-wave power ratio measuring circuit according to the present embodiment, even when measuring the SIR using the signal after RAKE combining, it is possible to measure the SIR according to the number of despread signals. It is possible to accurately correct a bias error whose magnitude changes.
  • FIG. 10 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 6 of the present invention. However, in FIG. 10, the same components as those in FIG. And a detailed description is omitted.
  • the desired-wave power measuring section 401 measures the power of the desired-wave component of the despread signal for each symbol, and determines the desired-wave power in a predetermined section. Calculate the average value.
  • the calculated average value of the desired wave power is output to adder 103.
  • the average value of the desired wave power is calculated by calculating the average value of a plurality of slots for the symbol located at the same position in each slot, and then adding all the average values. It is possible to adopt a method, a method of adding the measured desired wave powers for the symbols located at the same position in each slot for a plurality of slots, and averaging them.
  • Interference wave power measurement section 402 measures the power of the interference wave component of the despread signal for each symbol, and calculates the average value of the interference wave power in a predetermined section.
  • the calculated average value of the interference wave power is output to multiplier 1031 and adder 1052.
  • a method of calculating the average value of the interference wave power a method similar to the above-described method of calculating the average value of the desired wave power can be employed.
  • the correction coefficient a is multiplied by the number of symbols used for measuring the SIR.
  • the correction coefficient a after the symbol number multiplication is output to the multiplier 103. That is, the low SIR area correction unit 103 performs an operation corresponding to the numerator of the above equation (3) using the correction coefficient a after multiplication of the number of symbols. Thereby, the interference wave components included in the average value of the desired wave power are removed by the number of symbols.
  • the correction coefficient b is multiplied by the number of symbols used for measuring the SIR.
  • the correction coefficient b after multiplying the number of symbols is output to the multiplier 105. That is, the high SIR area correction unit 105 performs an operation corresponding to the denominator of the above equation (3) using the correction coefficient b after multiplication of the number of symbols. Thereby, the desired wave component included in the average value of the interference wave power is removed by the number of symbols.
  • the number of symbols multiplied by the correction coefficient a and the correction coefficient b is If the number of symbols used for measurement is predetermined, a fixed value is used. If the number of symbols used for SIR measurement changes, the value is changed according to the change.
  • correction coefficient a and correction coefficient b are determined according to the number of symbols used for SIR measurement, a bias error whose magnitude changes according to the number of symbols is accurately determined. Can be corrected.
  • FIG. 11 is a block diagram showing a configuration of a desired wave to interference wave power ratio measuring circuit according to Embodiment 7 of the present invention.
  • the same components as those in FIG. 8 are denoted by the same reference numerals as those in FIG. 8, and detailed description is omitted.
  • the desired-wave power measuring unit 501 measures the power of the desired-wave component of the signals received by the antennas 1 to N and calculates the desired-wave power. An average value in a predetermined section is calculated. The calculated average value of the desired wave power is output to adder 103. The average value of the desired signal power is calculated by obtaining the average value of the desired signal power in a predetermined section for each antenna and then adding all the average values, or by calculating the desired value measured for each antenna.
  • the interference power measurement unit 502 can measure the power of the interference components of the signals received by the antennas 1 to N. Then, the average value of the interference wave power in a predetermined section is calculated.
  • the calculated average value of the interference wave power is output to multiplier 1031 and adder 1052.
  • a method of calculating the average value of the interference wave power a method similar to the above-described method of calculating the average value of the desired wave power can be employed.
  • the multiplier 103 of the low SIR region correction unit 103 sets the correction coefficient a The number of teners is multiplied.
  • the correction coefficient a after multiplication by the number of reception antennas is output to the multiplier 103. That is, the low SIR area correction unit 103 performs an operation corresponding to the numerator of the above equation (3) using the correction coefficient a after multiplication by the number of receiving antennas.
  • the interference wave components included in the average value of the desired wave power are removed by the number of the reception antennas.
  • the correction coefficient b is multiplied by the number of receiving antennas.
  • the correction coefficient b after multiplying the number of reception antennas is output to the multiplier 105. That is, the high SI: region correction unit 105 performs an operation corresponding to the denominator of the above equation (3) using the correction coefficient b after multiplication of the number of reception antennas. As a result, the desired wave components included in the average value of the interference wave power are removed by the number of receiving antennas.
  • the correction coefficient a and the correction coefficient b are determined according to the number of receiving antennas, it is possible to accurately correct a bias error whose magnitude changes according to the number of receiving antennas. it can.
  • a highly accurate bias error is calculated from the SIR before bias error correction averaged over a long section (several hundred symbols to several thousand symbols section) and the SIR after bias error correction averaged over a long section.
  • the bias error is used to correct the SIR bias error averaged in a short section (about several symbols to several tens of symbols).
  • the average value is usually used in a short section from several symbols to several tens of symbols.
  • the desired signal power averaged in the short section and the interference signal power averaged in the short section have large dispersion, the subtraction result of the numerator in the above equation (1) and the denominator in the above equation (2) are negative. It may be.
  • the average S after the bias error correction becomes a negative value. In some cases, the SIR cannot be calculated.
  • a highly accurate bias error is calculated from a small variance SIR averaged over a long section of several hundred symbols to several thousand symbols, and the bias error is used to calculate a few symbols to several tens of symbols.
  • the bias error of SIR averaged in the short section of was corrected.
  • FIG. 12 is a block diagram showing a configuration of a desired-to-interference-wave power ratio measuring circuit according to Embodiment 8 of the present invention.
  • the same components as those in FIG. 7 are denoted by the same reference numerals as those in FIG. 7, and detailed description is omitted.
  • the short-period desired-wave power measuring section 6001 measures the power of the desired-wave component of the received signal and determines the short-term desired power (several symbols). Calculate the average value in the range of several tens of symbols. The calculated average value of the desired wave power in the short section is output to SIR calculation section 603 and long section average section 604.
  • the short-period interference wave power measurement unit 602 measures the power of the interference wave component of the received signal, and calculates an average value of the interference wave power in a short period.
  • the average value of the calculated interference power in the short section is output to SIR calculation section 603 and long section averaging section 605.
  • the SIR calculation section 603 calculates the ratio between the value obtained by the short section desired wave power measurement section 601 and the value obtained by the short section interference wave power measurement section 602. As a result, the short-term average SIR before bias error correction is calculated. The short-term average SIR before bias error correction is output to the bias error remover 608.
  • the long section averaging section 604 further averages the value obtained by the short section desired wave power measurement section 601 over a long section (about several hundred symbols to several thousand symbols).
  • the calculated average value of the desired wave power in the long section is output to SIR calculation section 606 and adder 103.
  • the long section averaging section 605 further averages the value obtained by the short section interference wave power measurement section 602 over a long section.
  • the average value of the calculated interference wave power in a long section is The signals are output to the SIR calculator 606, the multiplier 103 and the adder 105.
  • the SIR calculation section 606 calculates the ratio between the value obtained by the long section average section 604 and the value obtained by the long section average section 605. As a result, a long section average SIR before bias error correction is calculated. The long section average SIR before the bias error correction is output to the bias error calculation section 607.
  • the low SIR area correction unit 103 removes the interference wave component included in the average value of the desired signal power over a long section. Also, the high SIR region correction unit 105 removes the desired wave component included in the average value of the interference power over a long section.
  • the SIR calculation unit 104 calculates a long-term average SIR in which the bias error in the low SIR region and the bias error in the high SIR region are corrected.c.
  • the fixed bias error correction unit 106 calculates the entire SIR region. The fixed bias error that exists over the range is corrected. Thus, the fixed bias error correction unit 106 outputs a long-term average SIR in which all bias errors have been corrected.
  • the bias error calculator 607 consists of the long-term average S 11 13 ⁇ 4 after the bias error correction output from the fixed bias error corrector 106 and the bias error correction output before the bias error correction output from the IR calculator 606. By calculating the difference from the long-term average SIR, a highly accurate bias error is calculated.
  • the bias error removing unit 608 corrects the bias error of the short-term average SIR by subtracting the bias error calculated by the bias error calculating unit 607 from the short-term average SIR before bias error correction.
  • the short section is described as a section from several symbols to several tens of symbols
  • the long section is described as a section from several hundred symbols to several thousand symbols.
  • the present invention is not limited to this example. The same can be done if the section is shorter than the long section.
  • the desired wave to interference wave power ratio measuring circuits according to Embodiments 1 to 8 are mounted on a base station device used in a mobile communication system or a communication terminal device that performs wireless communication with the base station device. It is possible. When installed, it is possible to improve the accuracy of control (for example, transmission power control) performed by the base station apparatus and the communication terminal apparatus in accordance with the desired wave-to-interference wave power ratio. As described above, according to the present invention, it is possible to correct the bias error and improve the measurement accuracy of the desired-to-interference-wave power ratio. This description is based on Japanese Patent Application No. 2000-341648 filed on Nov. 9, 2000. All of this content is included here. Industrial applicability
  • the present invention is suitable for use in a base station device used in a mobile communication system, particularly a CDMA mobile communication system, and a communication terminal device that performs wireless communication with the base station device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

明 細 書 希望波対干渉波電力比測定回路および希望波対干渉波電力比測定方法 技術分野
本発明は、 希望波対干渉波電力比測定回路および希望波対干渉波電力比測 定方法に関する。 背景技術
従来、 希望波対干渉波電力比 S I Rの測定方法としては、 特閧平 11- 237419号公報に記載されているものがある。 この S I R測定方法では、 ま ず合成前の受信信号ごとに希望波電力および干渉波電力を求めておき、 次に 合成方法に応じて合成後の S I Rを算出するようにしている。 これにより、 精度の高い S I Rを簡単な演算で測定することができるとされている。
しかしながら、 本発明者が行ったシミュレーションにより、 上記従来の S I R測定方法で測定した S I Rには、 熱雑音、 希望波電力に含まれる干渉波 成分およぴ干渉波電力に含まれる希望波成分等により生じるバイアス誤差が 含まれていることが判明した。 つまり、 上記従来の S I R測定方法では、 正 確な S I Rを測定することができないということが判明した。
また、 バイアス誤差の大きさは、 S I R測定に使用する逆拡散信号数およ び逆拡散信号に含まれるシンボル数等に応じて変化するため、 それらの数を 考慮することなく S I Rを測定する上記従来の S I R測定方法では、 S I R の測定誤差が逆拡散信号数やシンボル数等に応じて大きくなつてしまうとい う問題がある。 発明の開示
本発明の目的は、 バイアス誤差を補正して希望波対干渉波電力比の測定精 度を向上させることができる希望波対干渉波電力比測定回路および希望波対 干渉波電力方法を提供することである。
図 1は、 本発明者が行つた測定 S I Rの平均値についてのシミュレ一ショ ン結果を示すグラフである。 すなわち、 図 1は、 正しい希望波対干渉波電力 比と実際に測定される希望波対干渉波電力比との差 (つまり、 バイアス誤 差) を示す希望波対干渉波電力比の特性図である。 なお、 測定 S IRの平均 値を算出するにあたっては、 数千シンボル区間の平均値を用いた。
本発明者がこのシミュレ一ション結果を解析したところ、 以下のことが判 明した。
(i) S I Rが比較的低い低 S I R領域では、 測定した希望波電力に含まれ る干渉波成分の影響により、 測定 S I Rの平均値は正しい S IRに比べて高 くなる。
(ii) S I Rが比較的高い高 S I R領域では、 測定した干渉波電力に含まれ る希望波成分の影響により、 測定 S I Rの平均値は正しい S IRに比べて低 くなる。
(iii) 希望波電力および干渉波電力の測定方法により、 S IRの全領域に渡 り各 S I R測定回路に固有の固定的なバイアス誤差が存在する。
そこで、 本発明者は以下の式に従って S IRを測定することにより、 上記 (i) 〜 (iii) に示したバイアス誤差を補正できることを見出した。 なお、' 以下の式 (1) 〜 (4) において、 'S I R'は測定 S I Rの平均値、 'S'は測 定した希望波電力の平均値、 'I'は測定した干渉波電力の平均値、 'a'は希望 波電力の補正係数、 'b'は干渉波電力の補正係数、 'c'は固定バイアス誤差の 補正係数である。
まず、 本発明者は、 以下の式 (1) に従って S IRを測定することにより、 上記 (i) に示したバイアス誤差を補正できることを見出した。 S-a-I
SIR- (1)
すなわち、 上式 (1) では、 干渉波電力の平均値 Iに補正係数 aを乗じた 値を希望波電力の平均値 Sから減ずることによって、 希望波電力に含まれる 干渉波成分を除去している。
次いで、 本発明者は、 以下の式 (2) に従って S IRを測定することによ り、 上記 (ii) に示したバイアス誤差を補正できることを見出した。 = T^ (2)
I -b'S すなわち、 上式 (2) では、 希望波電力の平均値 Sに補正係数 bを乗じた 値を干渉波電力の平均値 Iから減ずることによって、 干渉波電力に含まれる 希望波成分を除去している。
なお、 上式 ( 1) と上式 (2) とは適応領域が異なるため、 以下の式 (3) にまとめることができる。
S - α'Ι
SIR = T^ (3) さらに、 本発明者は、 以下の式 (4) に従って S IRを測定することによ り、 上記 (iii) に示したバイアス誤差を補正できることを見出した。
S-a-I
SIR= T -c (4)
I -b'S すなわち、 上式 (4) では、 上記 (i) および上記 (ii) に示したバイァ ス誤差が補正された S II こ補正係数 cを乗じることによって、 S IRの全 領域に渡って含まれる固定的なバイアス誤差を補正している。 ここで、 CDMA (Code Division Multiple Access) 方式の移動体通信シ ステムにおいて S I Rを測定する場合について考えると、 補正係数 aおよび 補正係数 bは、 S IRの測定に使用する逆拡散信号数や逆拡散信号に含まれ るシンボル数、 および受信アンテナ数に応じて決定するようにする。 また、 S IRの測定に使用する逆拡散信号数や逆拡散信号に含まれるシンボル数が 時々刻々変化する場合には、 それらの変化に応じて補正係数 aおよび補正係 数 bを適応的に変化させるようにする。
図 2は、 上式 (4) に従って測定した S IRの平均値についてのシミュレ ーシヨン結果を示すグラフである。 このグラフより、 上式 (4) に従って S I Rを測定することにより、 S IRの全領域に渡りバイアス誤差が補正され、 ほぼ正しい S IRが測定できることが判明した。 なお、 低 S IR領域におけ るバイアス誤差の補正は、 上式 (4) 中の上式 (1) に相当する部分による ものである。 また、 高 S I R領域におけるバイアス誤差の補正は、 上式 (4) 中の上式 (2) に相当する部分によるものである。 なお、 図 2に示し たシミュレーション結果は、 固定バイアス誤差補正係数 c = 1とした場合で あるため、 さらに固定バイアス誤差補正係数 cを適切な値に設定すれば、 全 領域において測定 S I Rの平均値を正しい S I Rにほぼ一致させることが可 能である。 図面の簡単な説明
図 1は、 測定 S IRの平均値についてのシミュレーション結果を示すグラ フである。
図 2は、 式 (4) に従って測定した S IRの平均値についてのシミュレ一 シヨン結果を示すグラフである。
図 3は、 本発明の実施の形態 1に係る希望波対干渉波電力比測定回路の構 成を示すプロック図である。
図 4は、 本発明の実施の形態 2に係る希望波対干渉波電力比測定回路の構 成を示すプロック図である。
図 5は、 本発明の実施の形態 3に係る希望波対干渉波電力比測定回路の構 成を示すブロック図である。
図 6は、 本発明の実施の形態 3に係る希望波対干渉波電力比測定回路の別 の構成を示すブロック図である。
図 7は、 本発明の実施の形態 4に係る希望波対干渉波電力比測定回路の構 成を示すブロック図である。
図 8は、 本発明の実施の形態 5に係る希望波対干渉波電力比測定回路の構 成を示すプロック図である。
図 9は、 本発明の実施の形態 5に係る希望波対干渉波電力比測定回路の別 の構成を示すプロック図である。
図 1 0は、 本発明の実施の形態 6に係る希望波対干渉波電力比測定回路の 構成を示すブロック図である。
図 1 1は、 本発明の実施の形態 7に係る希望波対干渉波電力比測定回路の 構成を示すプロック図である。
図 1 2は、 本発明の実施の形態 8に係る希望波対干渉波電力比測定回路の 構成を示すブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照して詳細に説明する。 (実施の形態 1 )
本実施の形態では、 低 S I R領域のバイアス誤差を補正する場合について 説明する。 図 3は、 本発明の実施の形態 1に係る希望波対干渉波電力比測定 回路の構成を示すプロック図である。
図 3に示す希望波対干渉波電力比測定回路において、 希望波電力測定部 1 0 1は、 受信信号の希望波成分の電力を測定して、 希望波電力の所定区間に おける平均値を算出する。 干渉波電力測定部 1 0 2は、 受信信号の干渉波成 分の電力を測定して、 干渉波電力の所定区間における平均値を算出する。 低 S I R領域補正部 1 0 3は、 乗算器 1 0 3 1と加算器 1 0 3 2とから構成さ れ、 低 S I R領域のバイアス誤差を補正する。 S I R算出部 1 0 4は、 低 S 領域補正部 1 0 3で求められた値と干渉波電力測定部 1 0 2で算出され た値との比を算出する。
次いで、 上記構成を有する希望波対干渉波電力比測定回路の動作について 説明する。 まず、 希望波電力測定部 1 0 1で、 希望波電力の所定区間におけ る平均値が算出され、 加算器 1 0 3 2に出力される。 また、 干渉波電力測定 部 1 0 2で、 干渉波電力の所定区間における平均値が算出され、 乗算器 1 0 3 1および S I R算出部 1 0 4に出力される。 ここで、 希望波電力測定部 1 0 1から出力される希望波電力の平均値は上式 ( 1 ) の' S 'に相当し、 干渉 波電力測定部 1 0 2から出力される干渉波電力の平均値は上式 ( 1 ) の' I ' に相当する。
また、 平均値算出時の所定区間は、 S I Rの使用目的に合わせて適宜設定 される。 例えば、 S I Rが移動体通信での送信電力制御等に使用される場合 には数シンボルから数十シンボル区間程度に設定され、 移動体通信での回線 状況の把握等のために使用される場合には数百シンボルから数千シンボル区 間程度に設定される。
乗算器 1 0 3 1では、 干渉波電力の平均値に補正係数 aが乗算され、 加算 器 1 0 3 2に出力される。 この補正係数 aは、 上式 ( 1 ) の' a 'に相当する。 加算器 1 0 3 2では、 希望波電力の平均値から補正係数 a乗算後の干渉波電 力の平均値が減算される。 つまり、 低 S I R領域補正部 1 0 3では、 上式 ( 1 ) の分子部分に相当する演算が行われる。 これにより、 希望波電力の平 均値に含まれる干渉波成分が除去される。 干渉波成分除去後の希望波電力の 平均値は S I R算出部 1 0 4に出力される。
S I R算出部 1 0 4では、 干渉波成分除去後の希望波電力の平均値が干渉 波電力の平均値で除算される。 よって、 S I R算出部 1 0 4からは上式 (1) に従って測定された S I Rが出力される。 これにより、 低 S IR領域 のバイアス誤差が補正された平均 S IRが得られる。
このように本実施の形態によれば、 希望波電力に含まれる干渉波成分を補 正係数を乗じた干渉波電力によって除去するため、 干渉波成分が希望波成分 に比べて相対的に大きくなる低 S IR領域において S IRのバイアス誤差を 補正することができる。
(実施の形態 2)
本実施の形態では、 高 S IR領域のバイアス誤差を補正する場合について 説明する。 図 4は、 本発明の実施の形態 2に係る希望波対干渉波電力比測定 回路の構成を示すブロック図である。 但し、 図 4において図 3と共通する構 成部分には図 3と同一符号を付し、 詳しい説明を省略する。
図 4に示す希望波対干渉波電力比測定回路において、 高 S IR領域補正部 105は、 乗算器 1051と加算器 1052とから構成され、 高 S IR領域 のバイアス誤差を補正する。 S IR算出部 104は、 希望波電力測定部 10 1で算出された値と高 S I R領域補正部 105で求められた値との比を算出 する。
次いで、 上記構成を有する希望波対干渉波電力比測定回路の動作について 説明する。 まず、 希望波電力測定部 101で、 希望波電力の所定区間におけ る平均値が算出され、 乗算器 1051および S IR算出部 104に出力され る。 また、 干渉波電力測定部 102で、 干渉波電力の所定区間における平均 値が算出され、 加算器 1052に出力される。 ここで、 希望波電力測定部 1 01から出力される希望波電力の平均値は上式 (2) の' S'に相当し、 干渉 波電力測定部 102から出力される干渉波電力の平均値は上式 (2) の' I' に相当する。
乗算器 1051では、 希望波電力の平均値に補正係数 bが乗算され、 加算 器 1052に出力される。 この補正係数 bは、 上式 (2) の' b'に相当する。 加算器 1 0 5 2では、 干渉波電力の平均値から補正係数 b乗算後の希望波電 力の平均値が減算される。 つまり、 高 S I R領域補正部 1 0 5では、 上式 ( 2 ) の分母部分に相当する演算が行われる。 これにより、 干渉波電力の平 均値に含まれる希望波成分が除去される。 希望波成分除去後の干渉波電力の 平均値は S I R算出部 1 0 4に出力される。
S I R算出部 1 0 4では、 希望波電力の平均値が希望波成分除去後の干渉 波電力の平均値で除算される。 よって、 S I R算出部 1 0 4からは上式 ( 2 ) に従って測定された S I Rが出力される。 これにより、 高 S I R領域 のバイアス誤差が補正された平均 S I Rが得られる。
ここで、 高 S I R領域のバイアス誤差は、 フィル夕により生じる符号間干 渉成分の影響以外にも、 無線通信装置間の周波数オフセットゃドップラー効 果の影響により生じるものと考えられるため、 周波数オフセット量ゃドッブ ラー周波数の大きさに応じて補正係数 bを適応的に変化させるようにしても よい。 このように補正係数 bを周波数オフセット量ゃドップラー周波数の大 きさに応じて決定することにより、 周波数オフセット量やドップラー周波数 の大きさに応じて大きさが変化する高 S I R領域のバイァス誤差を精度よく 補正することができる。
このように本実施の形態によれば、 干渉波電力に含まれる希望波成分を補 正係数を乗じた希望波電力によって除去するため、 希望波成分が干渉波成分 に比べて相対的に大きくなる高 S I R領域において S I Rのバイァス誤差を 補正することができる。
(実施の形態 3 )
本実施の形態では、 低 S I R領域のバイアス誤差および高 S I R領域のバ ィァス誤差の双方を補正する場合について説明する。 つまり、 上記実施の形 態 1と上記実施の形態 2とを組み合わせた場合について説明する。 図 5は、 本発明の実施の形態 3に係る希望波対干渉波電力比測定回路の構成を示すブ ロック図である。 但し、 図 5において図 3または図 4と共通する構成部分に は図 3または図 4と同一符号を付し、 詳しい説明を省略する。
低 S IR領域補正部 103では、 上式 (3) の分子部分に相当する演算が 行われる。 これにより、 希望波電力の平均値に含まれる干渉波成分が除去さ れる。 干渉波成分除去後の希望波電力の平均値は、 S I R算出部 104およ び高 S IR領域補正部 105の乗算器 1051に出力される。
高 S IR領域補正部 105では、 上式 (3) の分母部分に相当する演算が 行われる。 これにより、 干渉波電力の平均値に含まれる希望波成分が除去さ れる。 ここで、 高 S IR領域補正部 105で除去される希望波成分は、 すで に低 SIR領域補正部 103で干渉波成分が除去された希望波成分となって いるため、 高 S IR領域補正部 105では、 上記実施の形態 2に比べさらに 精度よく高 S IR領域のバイアス誤差を補正することができる。 希望波成分 除去後の干渉波電力の平均値は、 S I R算出部 104に出力される。
S I R算出部 104では、 干渉波成分除去後の希望波電力の平均値が希望 波成分除去後の干渉波電力の平均値で除算される。 よって、 3111算出部1 04からは上式 (3) に従って測定された S IRが出力される。 これにより、 低 S I R領域のバイアス誤差および高 S I R領域のバイァス誤差の双方が補 正された平均 S IRが得られる。
なお、 上記構成では、 まず低 S IR領域のバイアス誤差を補正して、 次に 高 S IR領域のバイアス誤差を補正するようにしたが、 以下に示す構成にし て、 まず高 S IR領域のバイアス誤差を補正して、 次に低 S IR領域のバイ ァス誤差を補正するようにしてもよい。
図 6は、 本発明の実施の形態 3に係る希望波対干渉波電力比測定回路の別 の構成を示すブロック図である。 但し、 図 6において図 5と共通する構成部 分には図 5と同一符号を付し、 詳しい説明を省略する。
高 S IR領域補正部 105では、 上式 (3) の分母部分に相当する演算が 行われる。 これにより、 干渉波電力の平均値に含まれる希望波成分が除去さ れる。 希望波成分除去後の干渉波電力の平均値は、 S I R算出部 1 0 4およ ぴ低 S I R領域補正部 1 0 3の乗算器 1 0 3 1に出力される。
低 S I R領域補正部 1 0 3では、 上式 (3 ) の分子部分に相当する演算が 行われる。 これにより、 希望波電力の平均値に含まれる干渉波成分が除去さ れる。 ここで、 低 S I R領域補正部 1 0 3で除去される干渉波成分は、 すで に高 S I R領域補正部 1 0 5で希望波成分が除去された干渉波成分となって いるため、 低 Sェ I領域補正部 1 0 3では、 上記実施の形態 1に比べさらに 精度よく低 S I R領域のバイアス誤差を補正することができる。 干渉波成分 除去後の希望波電力の平均値は、 S I R算出部 1 0 4に出力される。
S I R算出部 1 0 4では、 干渉波成分除去後の希望波電力の平均値が希望 波成分除去後の干渉波電力の平均値で除算される。 よって、 8 1 1¾算出部1 0 4からは上式 (3 ) に従って測定された S I Rが出力される。 これにより、 低 S I R領域のバイアス誤差および高 S I R領域のバイァス誤差の双方が補 正された平均 S I Rが得られる。
このように本実施の形態によれば、 低 S I R領域のバイアス誤差および高 S I R領域のバイアス誤差の双方を補正することができる。 また、 上記実施 の形態 1および上記実施の形態 2に比べさらに精度よくバイァス誤差を補正 することができる。 (実施の形態 4 )
本実施の形態では、 S の全領域に渡って存在する自回路に固有の固定 的なバイアス誤差を補正する場合について説明する。 図 7は、 本発明の実施 の形態 4に係る希望波対干渉波電力比測定回路の構成を示すプロック図であ る。 但し、 図 7において図 5と共通する構成部分には図 5と同一符号を付し、 詳しい説明を省略する。
S I R算出部 1 0 4からは、 上式 (3 ) に従って測定された S が出力 される。 つまり、 低 S I R領域のバイアス誤差および高 S I R領域のバイァ ス誤差の双方が補正された平均 S I Rが出力される。
固定バイアス誤差補正部 1 0 6では、 S I R算出部 1 0 4から出力された 平均 S I Rに、 S I Rの全領域に渡って存在する固定的なバイアス誤差を補 正するための補正係数 cが乗算される。 よって、 固定バイアス誤差補正部 1 0 6からは上式 (4 ) に従って測定された S I Rが出力される。 これにより、 低 S I R領域のバイアス誤差、 高 S I R領域のバイアス誤差、 および S I R の全領域に渡って存在する固定的なバイァス誤差が補正された平均 S I Rが 得られる。
このように本実施の形態によれば、 S I Rの全領域に渡って存在する自回 路に固有の固定的なバイアス誤差を補正することができる。
(実施の形態 5 )
C D M A方式の移動体通信システムにおいて S I Rを測定する場合につい て考えると、 低 S I R領域のバイアス誤差の大きさおよび高 S I R領域のバ ィァス誤差の大きさは、 S I Rの測定に使用する逆拡散信号数やその逆拡散 信号に含まれるシンボル数、 および受信アンテナ数に応じて変化する。 そこ で、 まず本実施の形態では、 逆拡散信号数に応じて補正係数 aおよび補正係 数 bを決定する場合について説明する。 図 8は、 本発明の実施の形態 5に係 る希望波対干渉波電力比測定回路の構成を示すブロック図である。 但し、 図 8において図 7と共通する構成部分には図 7と同一符号を付し、 詳しい説明 を省略する。
図 8に示す希望波対干渉波電力比測定回路において、 希望波電力測定部 2 0 1は、 逆拡散信号 1〜Mの希望波成分の電力を測定して、 希望波電力の所 定区間における平均値を算出する。 算出された希望波電力の平均値は、 加算 器 1 0 3 2に出力される。 なお、 希望波電力の平均値の算出方法としてほ、 逆拡散信号の各々について希望波電力の所定区間における平均値を求めた後 それらの平均値をすベて加算する方法や、 逆拡散信号の各々について測定さ れた希望波電力を所定区間においてすベて加算した後平均する方法等を採る ことができる。
干渉波電力測定部 2 0 2は、 逆拡散信号 1〜Mの干渉波成分の電力を測定 して、 干渉波電力の所定区間における平均値を算出する。 算出された干渉波 電力の平均値は、 乗算器 1 0 3 1および加算器 1 0 5 2に出力される。 なお、 干渉波電力の平均値の算出方法としては、 上述した希望波電力の平均値の算 出方法と同様の方法を採ることができる。
低 S I R領域補正部 1 0 3の乗算器 1 0 3 3では、 補正係数 aに S I の 測定に使用される逆拡散信号数が乗算される。 逆拡散信号数乗算後の補正係 数 aは、 乗算器 1 0 3 1に出力される。 つまり、 低 S I R領域補正部 1 0 3 では、 逆拡散信号数乗算後の補正係数 aを用いて上式 (3 ) の分子部分に相 当する演算が行われる。 これにより、 希望波電力の平均値に含まれる干渉波 成分が、 逆拡散信号数分除去される。
また、 高 S I R領域補正部 1 0 5の乗算器 1 0 5 3では、 補正係数 bに S I Rの測定に使用される逆拡散信号数が乗算される。 逆拡散信号数乗算後の 補正係数 bは、 乗算器 1 0 5 1に出力される。 つまり、 高 S I R領域補正部 1 0 5では、 逆拡散信号数乗算後の補正係数 bを用いて上式 (3 ) の分母部 分に相当する演算が行われる。 これにより、 干渉波電力の平均値に含まれる 希望波成分が、 逆拡散信号数分除去される。
なお、 補正係数 aおよび補正係数 bに乗算される逆拡散信号数は、 S I R の測定に使用される逆拡散信号数が予め定まっている場合には固定値とし、 また、 S I Rの測定に使用される逆拡散信号数が時々刻々変化する場合には その変化に合わせて変化させる。
また、 S I Rの測定に使用される逆拡散信号数が時々刻々変化する場合に は、 所定区間で平均化した数を用いることも可能である。 このように逆拡散 信号数を平均化することにより、 受信される逆拡散信号数が一時的に急激に 変動した場合でも、 補正係数 aおよび補正係数 bは急激に変動しないため、 逆拡散信号数の一時的な変動により S IRが大きく変動してしまうことを防 止することができる。
このように本実施の形態によれば、 S I Rの測定に使用される逆拡散信号 数に応じて補正係数 aおよび補正係数 bを決定するため、 逆拡散信号数に応 じて大きさが変化するバイアス誤差を精度よく補正することができる。
なお、 本実施の形態では、 図 9に示す構成を採ることにより RAKE合成 後の信号を用いて S I Rを測定することも可能である。 図 9は、 本発明の実 施の形態 5に係る希望波対干渉波電力比測定回路の別の構成を示すプロック 図である。 但し、 図 9において図 8と共通する構成部分には図 8と同一符号 を付し、 詳しい説明を省略する。
図 9に示す希望波対干渉波電力比測定回路において、 RAKE合成部 30 1は、 逆拡散信号 1〜Mを RAKE合成して希望波電力測定部 302および 干渉波電力測定部 303に出力する。 希望波電力測定部 302は、 RAKE 合成後の信号の希望波成分の電力を測定して、 希望波電力の所定区間におけ る平均値を算出する。 干渉波電力測定部 303は、 RAKE合成後の信号の 干渉波成分の電力を測定して、 干渉波電力の所定区間における平均値を算出 する。
本実施の形態に係る希望波対干渉波電力比測定回路を図 9に示す構成とす ることにより、 RAKE合成後の信号を用いて S I Rを測定する場合にも、 逆拡散信号数に応じて大きさが変化するバイアス誤差を精度よく補正するこ とができる。
(実施の形態 6)
本実施の形態では、 S I Rの測定に使用するシンボル数に応じて補正係数 aおよび補正係数 bを決定する場合について説明する。 図 10は、 本発明の 実施の形態 6に係る希望波対干渉波電力比測定回路の構成を示すプロック図 である。 但し、 図 10において図 8と共通する構成部分には図 8と同一符号 を付し、 詳しい説明を省略する。
図 1 0に示す希望波対干渉波電力比測定回路において、 希望波電力測定部 4 0 1は、 逆拡散信号の希望波成分の電力をシンボル毎に測定して、 希望波 電力の所定区間における平均値を算出する。 算出された希望波電力の平均値 は、 加算器 1 0 3 2に出力される。 なお、 希望波電力の平均値の算出方法と しては、 各スロヅ ト内の同一箇所に位置するシンボルについて複数スロヅ 卜 分の平均値をそれぞれ求めた後それらの平均値をすベて加算する方法や、 各 スロット内の同一箇所に位置するシンボルについて各々測定された希望波電 力を複数スロット分加算した後平均する方法等を採ることができる。
干渉波電力測定部 4 0 2は、 逆拡散信号の干渉波成分の電力をシンボル毎 に測定して、 干渉波電力の所定区間における平均値を算出する。 算出された 干渉波電力の平均値は、 乗算器 1 0 3 1および加算器 1 0 5 2に出力される。 なお、 干渉波電力の平均値の算出方法としては、 上述した希望波電力の平均 値の算出方法と同様の方法を採ることができる。
低 S I R領域補正部 1 0 3の乗算器 1 0 3 3では、 補正係数 aに S I Rの 測定に使用されるシンボル数が乗算される。 シンボル数乗算後の補正係数 a は、 乗算器 1 0 3 1に出力される。 つまり、 低 S I R領域補正部 1 0 3では、 シンボル数乗算後の補正係数 aを用いて上式 (3 ) の分子部分に相当する演 算が行われる。 これにより、 希望波電力の平均値に含まれる干渉波成分が、 シンボル数分除去される。
また、 高 S I R領域補正部 1 0 5の乗算器 1 0 5 3では、 補正係数 bに S I Rの測定に使用されるシンボル数が乗算される。 シンボル数乗算後の補正 係数 bは、 乗算器 1 0 5 1に出力される。 つまり、 高 S I R領域補正部 1 0 5では、 シンボル数乗算後の補正係数 bを用いて上式 (3 ) の分母部分に相 当する演算が行われる。 これにより、 干渉波電力の平均値に含まれる希望波 成分が、 シンボル数分除去される。
なお、 補正係数 aおよび補正係数 bに乗算されるシンボル数は、 S I Rの 測定に使用されるシンボル数が予め定まっている場合には固定値とし、 また、 S I Rの測定に使用されるシンボル数が変化する場合にはその変化に合わせ て変化させる。
このように本実施の形態によれば、 S I Rの測定に使用されるシンボル数 に応じて補正係数 aおよび補正係数 bを決定するため、 シンボル数に応じて 大きさが変化するバイアス誤差を精度よく補正することができる。
(実施の形態 7 )
本実施の形態では、 受信アンテナ数に応じて補正係数 aおよび補正係数 b を決定する場合について説明する。 図 1 1は、 本発明の実施の形態 7に係る 希望波対干渉波電力比測定回路の構成を示すブロック図である。 但し、 図 1 1において図 8と共通する構成部分には図 8と同一符号を付し、 詳しい説明 を省略する。
図 1 1に示す希望波対干渉波電力比測定回路において、 希望波電力測定部 5 0 1は、 アンテナ 1〜Nで受信された信号の希望波成分の電力を測定して、 希望波電力の所定区間における平均値を算出する。 算出された希望波電力の 平均値は、 加算器 1 0 3 2に出力される。 なお、 希望波電力の平均値の算出 方法としては、 アンテナ毎に希望波電力の所定区間における平均値を求めた 後それらの平均値をすベて加算する方法や、 アンテナ毎に測定された希望波 電力を所定区間においてすベて加算した後平均する方法等を採ることができ 干渉波電力測定部 5 0 2は、 アンテナ 1〜Nで受信された信号の干渉波成 分の電力を測定して、 干渉波電力の所定区間における平均値を算出する。 算 出された干渉波電力の平均値は、 乗算器 1 0 3 1および加算器 1 0 5 2に出 力される。 なお、 干渉波電力の平均値の算出方法としては、 上述した希望波 電力の平均値の算出方法と同様の方法を採ることができる。
低 S I R領域補正部 1 0 3の乗算器 1 0 3 3では、 補正係数 aに受信アン テナ数が乗算される。 受信アンテナ数乗算後の補正係数 aは、 乗算器 1 0 3 1に出力される。 つまり、 低 S I R領域補正部 1 0 3では、 受信アンテナ数 乗算後の補正係数 aを用いて上式 (3 ) の分子部分に相当する演算が行われ る。 これにより、 希望波電力の平均値に含まれる干渉波成分が、 受信アンテ ナ数分除去される。
また、 高 S I R領域補正部 1 0 5の乗算器 1 0 5 3では、 補正係数 bに受 信アンテナ数が乗算される。 受信アンテナ数乗算後の補正係数 bは、 乗算器 1 0 5 1に出力される。 つまり、 高 S I: 領域補正部 1 0 5では、 受信アン テナ数乗算後の補正係数 bを用いて上式 (3 ) の分母部分に相当する演算が 行われる。 これにより、 干渉波電力の平均値に含まれる希望波成分が、 受信 アンテナ数分除去される。
このように本実施の形態によれば、 受信アンテナ数に応じて補正係数 aお よび補正係数 bを決定するため、 受信アンテナ数に応じて大きさが変化する バイァス誤差を精度よく補正することができる。
(実施の形態 8 )
本実施形態では、 長区間 (数百シンボルから数千シンボル区間程度) で平 均したバイアス誤差補正前の S I Rと長区間で平均したバイアス誤差補正後 の S I Rとから精度の高いバイアス誤差を算出し、 そのバイアス誤差を用い て短区間 (数シンボルから数十シンボル区間程度) で平均した S I Rのバイ ァス誤差を補正する場合について説明する。
移動体通信での送信電力制御等に使用される S I Rは、 通常数シンボルか ら数十シンボル区間程度の短区間での平均値が使用される。 しかし、 短区間 で平均された希望波電力および短区間で平均された干渉波電力は分散が大き いため、 上式 (1 ) における分子の減算結果および上式 (2 ) における分母 の減算結果が負になることがある。 このため、 上記実施の形態 1〜7のバイ ァス誤差補正方法では、 バイアス誤差補正後の平均 S が負の値となって しまうことがあり、 S I Rを算出することができない場合が生じることがあ る。 そこで本実施の形態では、 数百シンボルから数千シンボル区間程度の長 区間で平均した分散の小さい S I Rから精度の高いバイァス誤差を算出し、 そのバイアス誤差を用いて数シンボルから数十シンボル区間程度の短区間で 平均した S I Rのバイアス誤差を補正するようにした。
図 1 2は、 本発明の実施の形態 8に係る希望波対干渉波電力比測定回路の 構成を示すブロック図である。 但し、 図 1 2において図 7と共通する構成部 分には図 7と同一符号を付し、 詳しい説明を省略する。
図 1 2に示す希望波対干渉波電力比測定回路において、 短区間希望波電力 測定部 6 0 1は、 受信信号の希望波成分の電力を測定して、 希望波電力の短 区間 (数シンボルから数十シンボル区間程度) における平均値を算出する。 算出された希望波電力の短区間における平均値は、 S I R算出部 6 0 3およ ぴ長区間平均部 6 0 4に出力される。
短区間干渉波電力測定部 6 0 2は、 受信信号の干渉波成分の電力を測定し て、 干渉波電力の短区間における平均値を算出する。 算出された干渉波電力 の短区間における平均値は、 S I R算出部 6 0 3および長区間平均部 6 0 5 に出力される。
S I R算出部 6 0 3は、 短区間希望波電力測定部 6 0 1で求められた値と 短区間干渉波電力測定部 6 0 2で求められた値との比を算出する。 これによ り、 バイアス誤差補正前の短区間平均 S I Rが算出される。 バイアス誤差補 正前の短区間平均 S I Rは、 バイアス誤差除去部 6 0 8に出力される。
長区間平均部 6 0 4は、 短区間希望波電力測定部 6 0 1で求められた値を さらに長区間 (数百シンボルから数千シンボル区間程度) 平均する。 算出さ れた希望波電力の長区間における平均値は、 S I R算出部 6 0 6および加算 器 1 0 3 2に出力される。
長区間平均部 6 0 5は、 短区間干渉波電力測定部 6 0 2で求められた値を さらに長区間平均する。 算出された干渉波電力の長区間における平均値は、 S I R算出部 6 0 6、 乗算器 1 0 3 1および加算器 1 0 5 2に出力される。
S I R算出部 6 0 6は、 長区間平均部 6 0 4で求められた値と長区間平均 部 6 0 5で求められた値との比を算出する。 これにより、 バイアス誤差補正 前の長区間平均 S I Rが算出される。 バイアス誤差補正前の長区間平均 S I Rは、 バイアス誤差算出部 6 0 7に出力される。
低 S I R領域補正部 1 0 3では、 希望波電力の長区間における平均値に含 まれる干渉波成分が除去される。 また、 高 S I R領域補正部 1 0 5では、 干 渉波電力の長区間における平均値に含まれる希望波成分が除去される。
S I R算出部 1 0 4では、 低 S I R領域におけるバイアス誤差および高 S I R領域におけるバイァス誤差が補正された長区間平均 S I Rが算出される c そして、 固定バイアス誤差補正部 1 0 6では、 S I Rの全領域に渡って存在 する固定的なバイアス誤差が補正される。 よって、 固定バイアス誤差補正部 1 0 6からは、 すべてのバイアス誤差が補正された長区間平均 S I Rが出力 される。
バイアス誤差算出部 6 0 7は、 固定バイアス誤差補正部 1 0 6から出力さ れたバイアス誤差補正後の長区間平均 S 1 1¾と3 I R算出部 6 0 6から出力 されたバイアス誤差補正前の長区間平均 S I Rとの差を算出することにより、 精度の高いバイァス誤差を算出する。
バイアス誤差除去部 6 0 8は、 バイアス誤差補正前の短区間平均 S I Rか らバイアス誤差算出部 6 0 7で算出されたバイアス誤差を減ずることにより 短区間平均 S I Rのバイアス誤差を補正する。
なお、 上記説明では一例として、 短区間を数シンボルから数十シンボル区 間とし、 長区間を数百シンボルから数千シンボル区間として説明したが、 こ の例に限られるものではなく、 短区間が長区間よりも短い区間でさえあれば 同様に実施可能である。
このように本実施の形態によれば、 長区間で平均したバイアス誤差補正前 の S I Rと長区間で平均したバイアス誤差補正後の S I Rとから精度の高い バイアス誤差を算出し、 そのバイアス誤差を用いて短区間で平均した S I R のバイアス誤差を補正するため、 短区間で平均する S I Rの測定精度を向上 させることができる。 なお、 上記実施の形態 1〜 8は適宜組み合わせて実施することも可能であ る。
また、 上記実施の形態 1〜 8に係る希望波対干渉波電力比測定回路を移動 体通信システムにおいて使用される基地局装置や、 この基地局装置と無線通 信を行う通信端末装置に搭載することが可能である。 搭載された場合には、 基地局装置や通信端末装置が希望波対干渉波電力比に従って行う制御 (例え ば、 送信電力制御) の精度を向上させることができる。 以上説明したように、 本発明によれば、 バイアス誤差を補正して希望波対 干渉波電力比の測定精度を向上させることができる。 本明細書は、 2000年 11月 9日出願の特願 2000— 341648に 基づくものである。 この内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 移動体通信システム、 特に CDMA方式の移動体通信システム において使用される基地局装置や、 この基地局装置と無線通信を行う通信端 末装置に用いて好適である。

Claims

請求の範囲
1 . 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 補正係数を用いて前記希望波対干渉波電力比に含まれるバイアス誤差を補 正する補正器と、
を具備する希望波対干渉波電力比測定回路。
2 . 補正係数は、
正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す予め求められた希望波対干渉波電力比の特性図から決定される、 請求項 1記載の希望波対干渉波電力比測定回路。
3 . 補正器は、
予め求められた希望波対干渉波電力比の特性図から決定された第一補正係 数を第二測定器で測定された干渉波電力に乗算した値を、 第一測定器で測定 された希望波電力から減算して前記希望波電力に含まれる干渉波成分を除去 することにより、 希望波対干渉波電力比算出器で算出される希望波対干渉波 電力比が正しい希望波対干渉波電力比よりも高い値となる領域でのバイァス 誤差を補正する、
請求項 1記載の希望波対干渉波電力比測定回路。
4 . 補正器は、
第一補正係数を希望波成分除去後の干渉波電力に乗算する、
請求項 3記載の希望波対干渉波電力比測定回路。
5 . 第一補正係数は、
希望波対干渉波電力比の測定に使用する受信信号数に応じて決定される、 請求項 3記載の希望波対干渉波電力比測定回路。
6 . 第一補正係数は、
希望波対干渉波電力比の測定に使用するシンボル数に応じて決定される、 請求項 3記載の希望波対干渉波電力比測定回路。
7 . 第一補正係数は、
受信アンテナ数に応じて決定される、
請求項 3記載の希望波対干渉波電力比測定回路。
8 . 補正器は、
予め求められた希望波対干渉波電力比の特性図から決定された第二補正係 数を第一測定器で測定された希望波電力に乗算した値、 を第二測定器で測定 された干渉波電力から減算して前記干渉波電力に含まれる希望波成分を除去 することにより、 希望波対干渉波電力比算出器で算出される希望波対干渉波 電力比が正しい希望波対干渉波電力比よりも低い値となる領域でのバイアス 誤差を補正する、
請求項 1記載の希望波対干渉波電力比測定回路。
9 . 補正器は、
第二補正係数を干渉波成分除去後の希望波電力に乗算する、
請求項 8記載の希望波対干渉波電力比測定回路。
1 0 . 第二補正係数は、
希望波対干渉波電力比の測定に使用する受信信号数に応じて決定される、 請求項 8記載の希望波対干渉波電力比測定回路。
1 1 . 第二補正係数は、
希望波対干渉波電力比の測定に使用するシンボル数に応じて決定される、 請求項 8記載の希望波対干渉波電力比測定回路。
1 2 . 第二補正係数は、
受信アンテナ数に応じて決定される、
請求項 8記載の希望波対干渉波電力比測定回路。
1 3 . 第二補正係数は、
ドップラー周波数の大きさに応じて決定される、
請求項 8記載の希望波対干渉波電力比測定回路。
1 4 . 第二補正係数は、
無線通信装置間の周波数オフセット量に応じて決定される、
請求項 8記載の希望波対干渉波電力比測定回路。
1 5 . 補正器は、
希望波対干渉波電力比算出器で算出された希望波対干渉波電力比に第三補 正係数を乗算することにより自回路に固有のバイァス誤差を補正する、 請求項 1記載の希望波対干渉波電力比測定回路。
1 6 . 第一区間において平均した第一希望波対干渉波電力比を測定する第 三測定器と、
前記第一区間より短い第二区間において平均した第二希望波対干渉波電力 比を測定する第四測定器と、
前記第一希望波対干渉波電力比と、 補正器によりバイァス誤差が補正され た第一希望波対干渉波電力比とから、 前記第一区間において平均したバイァ ス誤差を算出するバイァス誤差算出器と、
前記第一区間において平均したバイアス誤差を用いて、 前記第二希望波対 干渉波電力比に含まれるバイァス誤差を除去する除去器と、
をさらに具備する請求項 1記載の希望波対干渉波電力比測定回路。
1 7 . 希望波対干渉波電力比測定回路を搭載する基地局装置であって、 前記希望波対干渉波電力比測定回路は、
受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 補正係数を用いて前記希望波対干渉波電力比に含まれるバイアス誤差を補 正する補正器と、
を具備する。
1 8 . 希望波対干渉波電力比測定回路を搭載する通信端末装置であって、 前記希望波対干渉波電力比測定回路は、 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 補正係数を用いて前記希望波対干渉波電力比に含まれるバイアス誤差を補 正する補正器と、
を具備する。
1 9 . 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する算出工程と、
補正係数を用いて前記希望波対干渉波電力比に含まれるバイァス誤差を補 正する補正工程と、
を具備する希望波対干渉波電力比測定方法。
2 0 . 補正係数は、
正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す予め求められた希望波対干渉波電力比の特性図から決定される、 請求項 1 9記載の希望波対干渉波電力比測定方法。
補正書の請求の範囲
: 2 0 0 2年 3月 2 9日 (2 9 . 0 3 . 0 2 ) 国際事務局受理:出願当初の請求の範囲
1—3及び 8— 2 0は補正された;新しい請求の範囲 2 1 - 3 1が加えられた;
他の請求の範囲は変更なし。 (1 1頁) ]
1 . (補正後) 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される補正係数を用いて 前記希望波対干渉波電力比に含まれるバイアス誤差を補正する補正器と、 を具備する希望波対干渉波電力比測定回路。
2 . (補正後) 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 前記干渉波電力を前記希望波電力から減算して前記希望波電力に含まれる 干渉波成分を除去することにより前記希望波対干渉波電力比に含まれるバイ ァス誤差を補正する補正器と、
を具備する希望波対干渉波電力比測定回路。
3 . (補正後) 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される第一補正係数を前 記干渉波電力に乗算した値を前記希望波電力から減算して前記希望波電力に 含まれる干渉波成分を除去することにより、 前記希望波対干渉波電力比が正 しい希望波対干渉波電力比よりも高い値となる領域でのバイアス誤差を補正 する補正器と、
を具備する希望波対干渉波電力比測定回路。
4 . 補正器は、
第一補正係数を希望波成分除去後の干渉波電力に乗算する、 纏正された用紙 (条約第 条》 請求項 3記載の希望波対干渉波電力比測定回路。
5 . 第一補正係数は、
希望波対干渉波電力比の測定に使用する受信信号数に応じて決定される、 請求項 3記載の希望波対干渉波電力比測定回路。
6 . 第一補正係数は、
希望波対干渉波電力比の測定に使用するシンボル数に応じて決定される、
纏正された用紙 (条約第 19条》 請求項 3記載の希望波対干渉波電力比測定回路。
7 . 第一補正係数は、
受信アンテナ数に応じて決定される、
請求項 3記載の希望波対干渉波電力比測定回路。
8 . (補正後) 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 前記希望波電力を前記干渉波電力から減算して前記干渉波電力に含まれる 希望波成分を除去することにより前記希望波対干渉波電力比にに含まれるバ ィァス誤差を補正する補正器と、
を具備する希望波対干渉波電力比測定回路。
9 . (補正後) 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される第二補正係数を前 記希望波電力に乗算した値を前記干渉波電力から減算して前記干渉波電力に 含まれる希望波成分を除去することにより、 前記希望波対干渉波電力比が正 しい希望波対干渉波電力比よりも低い値となる領域でのバイァス誤差を補正 する補正器と、
を具備する希望波対干渉波電力比測定回路。
1 0 . (補正後) 補正器は、
第二補正係数を干渉波成分除去後の希望波電力に乗算する、
請求項 9記載の希望波対干渉波電力比測定回路。
1 1 . (補正後) 第二補正係数は、
希望波対干渉波電力比の測定に使用する受信信号数に応じて決定される、 請求項 9記載の希望波対干渉波電力比測定回路。
@正された用紙 (条約第 1§
1 2 . (補正後) 第二補正係数は、
希望波対干渉波電力比の測定に使用するシンボル数に応じて決定される、 請求項 9記載の希望波対干渉波電力比測定回路。
1 3 . (補正後) 第二補正係数は、
受信アンテナ数に応じて決定される、
請求項 9記載の希望波対干渉波電力比測定回路。
隨正された用紙 (条約第 19条》
1 4 . (補正後) 第二補正係数は、
ドッブラ一周波数の大きさに応じて決定される、
請求項 9記載の希望波対干渉波電力比測定回路。
1 5 . (補正後) 第二補正係数は、
無線通信装置間の周波数オフセット量に応じて決定される、
請求項 9記載の希望波対干渉波電力比測定回路。
1 6 . (補正後) 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 前記希望波対干渉波電力比に第三補正係数を乗算することにより自回路に 固有のバイァス誤差を補正する補正器と、
を具備する希望波対干渉波電力比測定回路。
1 7 . (補正後) 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 補正係数を用いて前記希望波対干渉波電力比に含まれるバイアス誤差を補 正する補正器と、
第一区間において平均した第一希望波対干渉波電力比を測定する第三測定 器と、
前記第一区間より短い第二区間において平均した第二希望波対干渉波電力 比を測定する第四測定器と、
前記第一希望波対干渉波電力比と、 補正器によりバイアス誤差が補正され た第一希望波対干渉波電力比とから、 前記第一区間において平均したバイァ ス誤差を算出するバイァス誤差算出器と、
前記第一区間において平均したバイアス誤差を用いて、 前記第二希望波対 干渉波電力比に含まれるバイァス誤差を除去する除去器と、
を具備する希望波対干渉波電力比測定回路。 纏正された用紙 (条約第 19条》
18. (補正後) 希望波対干渉波電力比測定回路を搭載する無線通信装置で あって、 前記希望波対干渉波電力比測定回路は、
纏正された用紙 (条約第 19条》 受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される補正係数を用いて 前記希望波対干渉波電力比に含まれるバイアス誤差を補正する補正器と、 を具備する。
1 9 . (補正後) 希望波対干渉波電力比測定回路を搭載する無線通信装置で あって、 前記希望波対干渉波電力比測定回路は、
受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 前記干渉波電力を前記希望波電力から減算して前記希望波電力に含まれる 干渉波成分を除去することにより前記希望波対干渉波電力比に含まれるバイ ァス誤差を補正する補正器と、
を具備する。
2 0 . (補正後) 希望波対干渉波電力比測定回路を搭載する無線通信装置で あって、 前記希望波対干渉波電力比測定回路は、
受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される第一補正係数を前 記干渉波電力に乗算した値を前記希望波電力から減算して前記希望波電力に 含まれる干渉波成分を除去することにより、 前記希望波対干渉波電力比が正 しい希望波対干渉波電力比よりも高い値となる領域でのバイアス誤差を補正 する補正器と、 纏正された用紙 (条約第 19条》 を具備する。
2 1 . (追加) 希望波対干渉波電力比測定回路を搭載する無線通信装置であ つて、 前記希望波対干渉波電力比測定回路は、
受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 前記希望波電力を前記干渉波電力から減算して前記干渉波電力に含まれる 希望波成分を除去することにより前記希望波対干渉波電力比にに含まれるバ ィァス誤差を補正する補正器と、
を具備する。
2 2 . (追加) 希望波対干渉波電力比測定回路を搭載する無線通信装置であ つて、 前記希望波対干渉波電力比測定回路は、
受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される第二補正係数を前 記希望波電力に乗算した値を前記干渉波電力から減算して前記干渉波電力に 含まれる希望波成分を除去することにより、 前記希望波対干渉波電力比が正 しい希望波対干渉波電力比よりも低い値となる領域でのバイアス誤差を補正 する補正器と、
を具備する。
2 3 . (追加) 希望波対干渉波電力比測定回路を搭載する無線通信装置であ つて、 前記希望波対干渉波電力比測定回路は、
受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 纏正された用紙 (条約第 19条》 前記希望波対干渉波電力比に第三補正係数を乗算することにより自回路に 固有のバイァス誤差を補正する補正器と、
を具備する。
2 4 . (追加) 希望波対干渉波電力比測定回路を搭載する無線通信装置であ つて、 前記希望波対干渉波電力比測定回路は、
受信信号の希望波電力を測定する第一測定器と、
前記受信信号の干渉波電力を測定する第二測定器と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出器と、 補正係数を用いて前記希望波対干渉波電力比に含まれるバイアス誤差を補 正する補正器と、
第一区間において平均した第一希望波対干渉波電力比を測定する第三測定 器と、
前記第一区間より短い第二区間において平均した第二希望波対干渉波電力 比を測定する第四測定器と、
前記第一希望波対干渉波電力比と、 補正器によりバイアス誤差が補正され た第一希望波対干渉波電力比とから、 前記第一区間において平均したバイァ ス誤差を算出するバイァス誤差算出器と、
前記第一区間において平均したバイアス誤差を用いて、 前記第二希望波対 干渉波電力比に含まれるバイアス誤差を除去する除去器と、
を具備する。
2 5 . (追加) 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出工程と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される補正係数を用いて 前記希望波対干渉波電力比に含まれるバイアス誤差を補正する補正工程と、 を具備する希望波対干渉波電力比測定方法。 纏正された用紙 (条約第
2 6 . (追加) 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出工程と、 前記干渉波電力を前記希望波電力から減算して前記希望波電力に含まれる 干渉波成分を除去することにより前記希望波対干渉波電力比に含まれるバイ ァス誤差を補正する補正工程と、
を具備する希望波対干渉波電力比測定方法。
2 7 . (追加) 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出工程と、 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される第一補正係数を前 記干渉波電力に乗算した値を前記希望波電力から減算して前記希望波電力に 含まれる干渉波成分を除去することにより、 前記希望波対干渉波電力比が正 しい希望波対干渉波電力比よりも高い値となる領域でのバイァス誤差を補正 する補正工程と、
を具備する希望波対干渉波電力比測定方法。
2 8 . (追加) 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出工程と、 前記希望波電力を前記干渉波電力から減算して前記干渉波電力に含まれる 希望波成分を除去することにより前記希望波対干渉波電力比にに含まれるバ ィァス誤差を補正する補正工程と、
を具備する希望波対干渉波電力比測定方法。
2 9 . (追加) 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出工程と、 纏正された用紙 (条約第 19籍 正しい希望波対干渉波電力比と実際に測定される希望波対干渉波電力比と の差を示す希望波対干渉波電力比の特性図から決定される第二補正係数を前 記希望波電力に乗算した値を前記干渉波電力から減算して前記干渉波電力に 含まれる希望波成分を除去することにより、 前記希望波対干渉波電力比が正 しい希望波対干渉波電力比よりも低い値となる領域でのバイアス誤差を補正 する補正工程と、
を具備する希望波対干渉波電力比測定方法。
3 0 . (追加) 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出工程と、 前記希望波対干渉波電力比に第三補正係数を乗算することにより自回路に 固有のバイァス誤差を補正する補正工程と、
を具備する希望波対干渉波電力比測定方法。
3 1 . (追加) 受信信号の希望波電力を測定する第一測定工程と、
前記受信信号の干渉波電力を測定する第二測定工程と、
希望波対干渉波電力比を算出する希望波対干渉波電力比算出工程と、 補正係数を用いて前記希望波対干渉波電力比に含まれるバイアス誤差を補 正する補正工程と、
第一区間において平均した第一希望波対干渉波電力比を測定する第三測定 工程と、
前記第一区間より短い第二区間において平均した第二希望波対干渉波電力 比を測定する第四測定工程と、
前記第一希望波対干渉波電力比と、 補正工程によりバイアス誤差が補正さ れた第一希望波対干渉波電力比とから、 前記第一区間において平均したバイ ァス誤差を算出するバイァス誤差算出工程と、
前記第一区間において平均したバイアス誤差を用いて、 前記第二希望波対 干渉波電力比に含まれるバイァス誤差を除去する除去工程と、
を具備する希望波対干渉波電力比測定方法。 纏正された用紙 (条約第 19条》
PCT/JP2001/009817 2000-11-09 2001-11-09 Circuit et methode de mesure du rapport onde desiree/puissance des parasites WO2002039626A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002212744A AU2002212744A1 (en) 2000-11-09 2001-11-09 Desired wave/interference power ratio measuring circuit and desired wave/interference power ratio measuring method
KR1020027008806A KR20020073160A (ko) 2000-11-09 2001-11-09 희망파 대 간섭파 전력비 측정 회로, 희망파 대 간섭파 전력비 측정 방법 및 무선 통신 장치
EP01981046A EP1239615A1 (en) 2000-11-09 2001-11-09 Desired wave/interference power ratio measuring circuit and desired wave/interference power ratio measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000341648A JP3559237B2 (ja) 2000-11-09 2000-11-09 希望波対干渉波電力比測定回路および希望波対干渉波電力比測定方法
JP2000-341648 2000-11-09

Publications (1)

Publication Number Publication Date
WO2002039626A1 true WO2002039626A1 (fr) 2002-05-16

Family

ID=18816358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009817 WO2002039626A1 (fr) 2000-11-09 2001-11-09 Circuit et methode de mesure du rapport onde desiree/puissance des parasites

Country Status (7)

Country Link
US (1) US20020196879A1 (ja)
EP (1) EP1239615A1 (ja)
JP (1) JP3559237B2 (ja)
KR (1) KR20020073160A (ja)
CN (2) CN1186891C (ja)
AU (1) AU2002212744A1 (ja)
WO (1) WO2002039626A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588087B2 (ja) * 2002-04-19 2004-11-10 松下電器産業株式会社 Sir測定装置および方法
US20040110508A1 (en) * 2002-09-20 2004-06-10 Jacobus Haartsen Methods and electronic devices for wireless ad-hoc network communications using receiver determined channels and transmitted reference signals
TWI234945B (en) * 2002-11-26 2005-06-21 Interdigital Tech Corp Bias error compensated initial transmission power control for data services
US7149538B2 (en) * 2003-02-13 2006-12-12 Telefonaktiebolaget Lm Ericsson (Publ) Wireless transceivers, methods, and computer program products for restricting transmission power based on signal-to-interference ratios
US7200190B2 (en) * 2003-06-30 2007-04-03 Motorola, Inc. Unbiased signal to interference ratio in wireless communications devices and methods therefor
US8599972B2 (en) * 2004-06-16 2013-12-03 Telefonaktiebolaget L M Ericsson (Publ) SIR estimation in a wireless receiver
US7773950B2 (en) 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
US8503328B2 (en) 2004-09-01 2013-08-06 Qualcomm Incorporated Methods and apparatus for transmission of configuration information in a wireless communication network
AU2006200651A1 (en) 2005-02-21 2006-09-07 Nec Australia Pty Ltd Measuring signal quality
JP4557762B2 (ja) * 2005-03-17 2010-10-06 富士通株式会社 移動局の通信環境測定方法及び移動局
US7421045B2 (en) * 2005-03-18 2008-09-02 Interdigital Technology Corporation Method and apparatus for computing SIR of time varying signals in a wireless communication system
US7610025B2 (en) 2005-03-29 2009-10-27 Qualcomm Incorporated Antenna array pattern distortion mitigation
US7558576B2 (en) * 2005-03-29 2009-07-07 Qualcomm Incorporated Employing frequency offset to compensate for Doppler shift
JP4226641B2 (ja) * 2005-07-27 2009-02-18 三菱電機株式会社 Sir検出装置および無線通信装置
US8229708B2 (en) * 2006-11-27 2012-07-24 Qualcomm Incorporated Methods and apparatus for signal and interference energy estimation in a communication system
US7671798B2 (en) * 2007-02-28 2010-03-02 Alcatel-Lucent Usa Inc. Method and apparatus for optimal combining of noisy measurements
JP2010528525A (ja) * 2007-05-24 2010-08-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) チャンネル品質を報告する方法及び装置
US9209858B2 (en) * 2011-04-12 2015-12-08 Alcatel Lucent Method and apparatus for determining uplink noise power in a wireless communication system
US8767799B2 (en) 2011-04-12 2014-07-01 Alcatel Lucent Method and apparatus for determining signal-to-noise ratio
CN114598337B (zh) * 2020-12-03 2023-12-12 海能达通信股份有限公司 零中频终端的抗干扰方法、终端和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013364A (ja) * 1996-06-24 1998-01-16 N T T Ido Tsushinmo Kk 受信sir測定方法,装置および送信電力制御装置
JPH10190497A (ja) * 1996-12-27 1998-07-21 Fujitsu Ltd Sir測定装置
WO1999046869A1 (en) * 1998-03-11 1999-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Correction of signal-interference ratio measurements
JP2000252926A (ja) * 1999-02-26 2000-09-14 Mitsubishi Electric Corp 検波信号の希望波電力対干渉波電力比測定装置およびその方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3886107T2 (de) * 1987-06-23 1994-05-26 Nec Corp Träger/Rausch-Detektor für digitale Übertragungssysteme.
JP3131055B2 (ja) * 1992-12-15 2001-01-31 富士通株式会社 データ通信用モデムのタイミング位相判定装置及び方法
CA2230589C (en) * 1998-02-25 2004-02-10 Wen Tong Determining sir in a communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013364A (ja) * 1996-06-24 1998-01-16 N T T Ido Tsushinmo Kk 受信sir測定方法,装置および送信電力制御装置
JPH10190497A (ja) * 1996-12-27 1998-07-21 Fujitsu Ltd Sir測定装置
WO1999046869A1 (en) * 1998-03-11 1999-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Correction of signal-interference ratio measurements
JP2000252926A (ja) * 1999-02-26 2000-09-14 Mitsubishi Electric Corp 検波信号の希望波電力対干渉波電力比測定装置およびその方法

Also Published As

Publication number Publication date
CN1394401A (zh) 2003-01-29
EP1239615A1 (en) 2002-09-11
CN1186891C (zh) 2005-01-26
KR20020073160A (ko) 2002-09-19
AU2002212744A1 (en) 2002-05-21
CN1553599A (zh) 2004-12-08
JP2002152147A (ja) 2002-05-24
JP3559237B2 (ja) 2004-08-25
US20020196879A1 (en) 2002-12-26

Similar Documents

Publication Publication Date Title
WO2002039626A1 (fr) Circuit et methode de mesure du rapport onde desiree/puissance des parasites
JP4206090B2 (ja) 送信機および送信方法
US7555058B2 (en) Delay locked loop circuit, digital predistortion type transmitter using same, and wireless base station
US7986930B2 (en) IQ imbalance image suppression in presence of unknown phase shift
JPH09199961A (ja) Agc装置
US7974365B2 (en) Method and apparatus for computing SIR of time varying signals in a wireless communication system
JP4813723B2 (ja) パイロットシンボルからのビット誤り率の推定
US8712345B2 (en) Distortion compensation device, distortion compensation method, and radio transmitter
WO2004036782A1 (ja) 無線受信装置及びsir算出方法
JP3308962B2 (ja) 無線受信装置および無線受信方法
JP3642040B2 (ja) 歪補償回路および歪補償方法
JP3237628B2 (ja) 伝搬路特性推定器
WO2001017149A1 (fr) Appareil de communication ofdm et procede d'estimation du chemin de propagation
US20050272373A1 (en) Sir measurement device and sir measurement method
US20050069065A1 (en) Device and method for measuring a received signal power in a mobile communication system
US20060083330A1 (en) Distortion compensation table creation method and distortion compensation method
JP2004317210A (ja) Sir測定装置
JP2006005614A (ja) 通信装置およびsir測定方法
JP2000252897A (ja) 受信装置
JP2007129466A (ja) Dcオフセット除去装置及びdcオフセット除去方法
JPH06216717A (ja) 適応ディジタルフィルタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10169161

Country of ref document: US

Ref document number: IN/PCT/2002/877/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001981046

Country of ref document: EP

Ref document number: 018035116

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027008806

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001981046

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027008806

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1020027008806

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001981046

Country of ref document: EP