WO2002036803A1 - Procede de production de la d-serine - Google Patents

Procede de production de la d-serine Download PDF

Info

Publication number
WO2002036803A1
WO2002036803A1 PCT/JP2001/009482 JP0109482W WO0236803A1 WO 2002036803 A1 WO2002036803 A1 WO 2002036803A1 JP 0109482 W JP0109482 W JP 0109482W WO 0236803 A1 WO0236803 A1 WO 0236803A1
Authority
WO
WIPO (PCT)
Prior art keywords
serine
microorganism
escherichia
deaminase activity
modified
Prior art date
Application number
PCT/JP2001/009482
Other languages
English (en)
French (fr)
Inventor
Hajime Ikeda
Yoshiyuki Yonetani
Shin-Ichi Hashimoto
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to JP2002539546A priority Critical patent/JP4308521B2/ja
Priority to US10/415,107 priority patent/US7186532B2/en
Priority to AU2002212690A priority patent/AU2002212690A1/en
Priority to AT01980931T priority patent/ATE518962T1/de
Priority to EP01980931A priority patent/EP1331274B1/en
Priority to KR1020037006087A priority patent/KR100815085B1/ko
Publication of WO2002036803A1 publication Critical patent/WO2002036803A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/001Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by metabolizing one of the enantiomers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • the present invention relates to a microorganism cell modified to have an L-serine deminase activity higher than that of an Escherichia DH5 strain, a culture of the cell, or a culture thereof.
  • Producing D-serine by contacting DL-serine in a medium containing DL-serine to decompose L-serine and collecting remaining D-serine from the medium.
  • the present invention relates to a method and a microorganism according to the production method.
  • D-serine is a compound useful as a synthetic intermediate for useful drugs such as D-cycloserine.
  • Escherichia coli has an L-serine deaminase activity that degrades L-serine into ammonia, pyruvate and water (J. Bacteriol., Hi, 5095-5102 (1989), Eur. J. Biochem., 211, 777-784 (1993)].
  • the enzyme extracted from Escherichia coli and E. coli requires complicated conditions such as addition of iron and a reducing agent during the reaction.
  • Bacteriol., M, 1270-1275 (1985)] It is not practical to use the purified enzyme for D-serine production.
  • Escherichia coli has D-serine deaminase activity to degrade D-serine [J. Bacteriol., 121, 1092-1101 (1975)]. Therefore, using Escherichia coli and L-serine deaminase, Produced from phosphorus!-Serine was degraded by the D-serine deaminase, and production efficiency was sometimes reduced.
  • An object of the present invention is to provide an industrially advantageous method for producing D-serine.
  • the present inventors have determined from Escherichia coli which has been modified to have a higher L-serine deaminase activity as compared to the Escherichia mli DH 5 cc strain without extracting or purifying L-serine deaminase.
  • L-serine can be rapidly degraded and eliminated to below the detection limit with little or no surprising decrease in D-serine.
  • the present invention relates to the following (1) to (12).
  • Microbial cells modified to have a higher L-serine deaminase activity than the L-serine deaminase activity of Escherichia coli DH5 strain, cultures of the cells, or processed products thereof,
  • a method for producing D-serine comprising contacting DL-serine in a medium containing DL-serine to decompose L-serine, and collecting remaining D-serine from the medium.
  • a microorganism modified to have a higher L-serine deaminase activity than the L-serine deaminase activity of the Escherichia mli DH5 strain is cultured on a medium containing DL-serine. L-serine is degraded, and the remaining D-serine is collected from the culture] .— A method for producing serine. '
  • the modified microorganism is Escherichia coli DH5 / pHTB, Escherichia NM522 / pHIAl, Escherichia coli MM294 / pHIAl, Escherichia coli MM294 / pHIA2, Escherichia coli ⁇ 29
  • a microorganism modified so as to have a higher L-serine deaminase activity than Escherichia mli DH5 strain (manufactured by Toyobo Co., Ltd., the same applies hereinafter) used in the present invention (hereinafter referred to as a modified microorganism). Can be obtained by the method described below.
  • the microorganism to be modified (hereinafter referred to as parent strain) may be a microorganism having L-serine deaminase activity or a microorganism having no L-serine deaminase activity.
  • a modified microorganism can be obtained by the method described in the following (1) or (2).
  • a modified microorganism can be obtained by the method described in (2) below.
  • D-serine can be produced in high yield. Therefore, even if D-serine is degraded by D-serine deaminase, D-serine can be produced in high yield. Can be manufactured.
  • the parent strain may or may not have D-serine deaminase activity.
  • the modified microorganism can be obtained from a microorganism obtained by subjecting a parent strain to a mutation treatment and causing a mutation (hereinafter abbreviated as a mutant microorganism).
  • the mutation treatment method may be any method that is commonly used. For example, a method using a mutation treating agent, an ultraviolet irradiation method and the like can be mentioned.
  • N- methyl -N 3 - nitro - N- Nitorosogua A method using Nijin (NTG) (Microbial Experiment Manual, page 131, 1986, Kodansha Scientific) is preferably used.
  • the mutated microorganism is cultured by the method described below, and a modified microorganism is obtained by selecting a microorganism having an improved L-serine deaminase activity from the Escherichia mli DH5 strain. be able to.
  • the L-serine deaminase activity should be at least higher than the L-serine deaminase activity of Escherichia coli DH5 strain, preferably at least two times, more preferably at least five times. Is desirable.
  • L-serine deaminase activity can be performed according to the method described in Meth. Enzymol., M, 346 (1971), Meth. Enzymol., M, 351 (1971) and the like. In addition, the following methods can be given as a simple method.
  • the modified microorganism is brought into contact with DL-serine, the amount of L-serine remaining in the reaction solution is measured, and the amount of L-serine reduced per unit time is measured. it can.
  • the amount of degraded L-serine from the start of the reaction to a certain time during the reaction is measured, and the obtained degraded value is divided by the reaction time to determine the degraded amount of L-serine per unit time
  • the calculated value can be used as the L-serine deaminase activity.
  • the obtained mutant microorganism is cultured at 30 ° C for 1 day, and the culture solution obtained is centrifuged to obtain cells.
  • the medium any medium can be used as long as the mutant microorganism can be cultured.
  • the cells are suspended in a 50 mmol / L phosphate buffer (pH 7.5), and the cells obtained by centrifugation (wet cell weight about 2 g) are used for the reaction.
  • the obtained cells are suspended in a phosphate buffer (pH 7.5) containing 50 g / L of DL-serine, and the mixture is reacted at 37 ° C for 10 to 22 hours. After the reaction is completed, the concentrations of D-serine and L-serine are quantified by HPLC, and the content in the buffer is calculated.
  • a phosphate buffer pH 7.5
  • a modified microorganism can be obtained by obtaining an L-serine deaminase gene by the method described below and incorporating the gene into a host cell.
  • the method for obtaining the L-serine deaminase genes sdaA and sdaB of Escherichia coli (Rscherichi coli) will be described below as an example.
  • the source of the L-serine deaminase gene is a microorganism having L-serine deaminase activity. However, it is not limited to Escherichia coli. 'For example, it can be obtained by the following method.
  • Escherichia coli for example, Escherichia il W3110 strain
  • a medium suitable for culture for example, LB medium (medium adjusted to pH 7.2 containing 10 g of pact tribton (manufactured by Difco), 5 g of yeast ex (manufactured by Difco) and 5 g of NaCl in 1 liter of water)
  • LB medium medium adjusted to pH 7.2 containing 10 g of pact tribton (manufactured by Difco), 5 g of yeast ex (manufactured by Difco) and 5 g of NaCl in 1 liter of water
  • LB medium medium adjusted to pH 7.2 containing 10 g of pact tribton (manufactured by Difco), 5 g of yeast ex (manufactured by Difco) and 5 g of NaCl in 1 liter of water)
  • LB medium medium adjusted to pH 7.2 containing 10 g of pac
  • a DNA fragment is amplified by PCR.
  • an appropriate restriction enzyme site for example, a restriction enzyme site such as l
  • examples of the combination of the sense primer and the acid sense primer include, for example, a combination of two types of primers having the nucleotide sequences of SEQ ID NOS: 1 and 2 and a combination of two types of nucleotides having the nucleotide sequences of SEQ ID NOS: 1 and 3.
  • Examples include a combination of primers (for sdaA) and a combination of two types of primers having the nucleotide sequences of SEQ ID NOs: 4 and 5 (for sdaB).
  • the PCR conditions consist of 30 seconds at 94 ° C, 30 seconds to 1 minute at 55 ° C, and 2 'minutes at 72 ° C if the above primer is a DNA fragment of 2 kb or less.
  • the reaction process is one cycle, and for DNA fragments larger than 2 kb, the reaction process is performed at 98 ° C for 20 seconds and at 68 ° C for 3 minutes. After that, the conditions for reacting at 72 ° C for 7 minutes can be raised.
  • the DNA fragment amplified by PCR and a vector that can be amplified in Escherichia coli are cut with restriction enzymes at the same site as the restriction enzyme site added with the primers above, followed by agarose gel electrophoresis and sucrose density gradient ultracentrifugation. Separate and recover the DNA fragment.
  • any phage vector or plasmid vector can be used as long as it can autonomously replicate in the Escherichia coli K12 strain.
  • An expression vector for Escherichia coli may be used as a closing vector. Specifically, ZAP Express CStratagene, Strategies,, 58 (1992)], pBluescript II SK (+) CNucleic Acids Research, II, 9494 (1989)], Lambda ZAP II (Stratagene), human gtlO, Agtll Cloning, A Practical Approach, Top, 49 (1985)), E TriplEx (Clontech), AExCell
  • a plasmid containing the gene of interest can be obtained by a conventional method, for example, molecular cloning, 3rd edition, current 'Protocols' in Molecula 1' biology supplement, DNA Clonin 1 : Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995), etc.
  • plasmid containing a gene encoding a protein having L-serine deaminase activity can be obtained.
  • examples of the plasmid include ⁇ 1, pHIA2, and pHIB shown in Examples.
  • an L-serine deminase gene can be obtained from an organism whose genome DNA base sequence is known.
  • a chromosomal DNA library is prepared using Escherichia coli as a host using an appropriate vector, and L-serine DNA is prepared for each strain in this library.
  • a plasmid containing a DNA encoding a protein having L-serine deaminase activity can be obtained.
  • the DNA encoding the desired L-serine deaminase is digested with restriction enzymes.
  • the DNA fragment is cleaved with a DNA degrading enzyme to obtain a DNA fragment having an appropriate length containing a coding region, and then the DNA fragment is inserted downstream of a promoter in an expression vector, and then the DNA is inserted.
  • the expression vector is introduced into a host cell suitable for the expression vector.
  • any prokaryote, yeast, animal cell, insect cell and the like that can express the gene of interest can be used.
  • the above-mentioned host cell is capable of autonomous replication or integration into a chromosome, and contains a promoter at a position capable of transcribing the above-mentioned DNA. Is used.
  • the expression vector for expressing the DNA is capable of autonomous replication in the prokaryote, and at the same time, a promoter and a ribosome binding sequence. It is preferably a recombinant vector composed of the above DNA and a transcription termination sequence. A gene that controls a promoter may be included.
  • expression vectors include, for example, pBTrp2, pBTacl N pBTac2 (both from Boehringer Mannheim), pKK233-2 (Pharmacia), SE280 (Invitrogen), pGEMEX-1
  • any promoter can be used as long as it can be expressed in a host cell.
  • trp pro ⁇ Isseki one P trp
  • lac promoter one P lac
  • P L promoter one evening one Pa promoter
  • P SE promoter Isseki promoters derived from Eshierihia 'coli Ya phage, etc.
  • SP01 promoter, SP02 promoter penP promoter overnight, and the like.
  • trp two serially allowed promoter P trp x 2
  • tac promoter tac promoter
  • Letl promoter can also be used such as artificially designed modified variant promoter in which like lacT7 promoter.
  • the xylA promoter for expression in Bacillus bacteria and the P54-1 promoter for expression in Corynebacterium bacteria can be used. '
  • the ribosome binding sequence may be any as long as it can be expressed in the host cell, but a suitable distance between the Shine-Daigarno sequence and the initiation codon (eg, 6 to 18) Base) is preferably used.
  • a suitable distance between the Shine-Daigarno sequence and the initiation codon eg, 6 to 18 Base
  • expression of a protein having the L-serine deaminase activity and fusion of the N-terminal part of the protein encoded by the expression vector and the N-terminal part of the protein encoding the expression vector May be.
  • a transcription termination sequence is not always necessary for expression of a target protein, it is desirable to arrange a transcription termination sequence immediately below a structural gene.
  • Host cells include the genus Kschorichia, Corynebacterium Genus, genus Brevipacterium (revibacrium), Bacillus
  • Rhobacter Genus, Chromatium, Erwinia, Methylobacterium f ethylobacterium, Hormidium (Phormi4iuni), Rhodobacter sp., Rhodobac sp., RhodoP3eudoniona3 Rhodospirillum), genus Scenedesmug (gcenedegmug), genus Streptomyces iStreptomyces, genus Synechococcus (Zymomonas)
  • Rscherichia coli Bacillus subtil is, Brevibacteriuw imma iop ilufflN Brevi bacterium sacc arolyticum, Brevihacterium fl so-called ffl, Brevi acterium
  • Methylobacterium extorq brains Phormidi iii sp., Rhodobacter splmeroi (3 ⁇ 4e3, odospirilhim rubr, Streptomyces aureofaciens, Streptomyces griseus, Zymooma mohilia, etc.).
  • Escherichia coli XL1-Blue manufactured by Stratagene
  • Escherichia coli XL2-Blue manufactured by Stratagene
  • Escherichia coli PHI Molecular Cloning 2nd edition, p505
  • Escherichia coli ⁇ 5 Toyobo Co., Ltd.
  • Escherichia coli MC1000 [Mol.
  • Rrftvibac ftrnim fl a flat ATCCi4067, Rrevi ' ⁇ .'i] m lac oferniftn iim ATCCi3869, Corynebao erium gli3ta.micnm ATCC 3032. Corynebacterium gliitami om ATCC 297. mar escens ATCC13880 ⁇ Agrohac erfnm rhfzogfines ATCG11325s Arthrobacter a.nrfisp.ens ATCC13344 N Ar hroha.p.
  • microorganism having a low D-serine deaminase activity or a microorganism lacking the D-serine deaminase activity examples include Mmridiiacoli ME5386 strain (available from the National Institute of Genetics).
  • any method for introducing the recombinant vector into a host cell any method can be used as long as it is a method for introducing DNA into a host cell.
  • a method using calcium ion [Pro Natl. Acad. Sci. USA, fi £, 2110 972)]
  • a protoplast method JP-A-63-248394
  • yeast If yeast is used as the host cell, use YEpl3 as an expression vector.
  • Any promoter can be used as long as it can be expressed in yeast.
  • PH05 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, human shock protein Promoters such as Promoter, MM1 promoter and CUP1 Promoter can be listed.
  • Host cells include the genus Saccharomyces and Schizocalomyces
  • Microorganisms belonging to the genus (Schi zosaccharomyces) ⁇ genus Cryperomyces (hiyveromycfts) ⁇ genus Trichosporon, genus Schwarmiomyces ⁇ , genus Pichia, genus Candida, for example, Saccharomyces ′ (Saocha.romyces cerevisi e), Shizosaccharomyces bomb
  • any method for introducing DNA into yeast can be used.
  • an electroporation method [Methods in Enzymol., 1M, 182 (1990), spheroplast] USA, 929, 1929 (1978)), lithium acetate method (J. Bacteriol., 163 (1983)), Proc. Natl. Acad. Sci. USA, 1929 (1978). The method described above can be used.
  • examples of expression vectors include pcDNAI, pcDM8 (Funakoshi), pAGE107 (Japanese Patent Laid-Open No. 3-22979; Cytotechnology, 2., 133, (1990)), PAS3-3 ( JP-A-2-27075), pCDM8 (Nature, 840, (1987)), pcDNAI / Amp (Invitrogen), pREP4 (Invitrogen), pAGE103 (J. Biochem. 5 mi, 1307 (1987)) , PAGE210, and the like.
  • any promoter can be used as long as it can be expressed in animal cells.
  • the promoter of the IE (immediate early) gene of cytomegalovirus (human CMV) the early promoter of SV40 And retrovirus promoters, meta-mouth thionein promoter, heat shock promoter, SR promoter and the like.
  • the enhancer of the IE gene of human CMV may be used together with the promoter.
  • Examples of the host cell include Namalba cell, HBT5637 (JP-A-63-000299), C0S1 cell, C0S7 cell, CH0 cell and the like.
  • the transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-2577891.
  • insect cells When insect cells are used as host cells, for example, Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company, New York (1992), Current Protocols in 'Molecular Biology Supplements, Bio / Technology, £, 47 (1988) and the like, and the protein can be expressed. That is, after the recombinant gene transfer vector and paculovirus are co-transfected into insect cells to obtain the recombinant virus in the culture supernatant of the insect cells, the recombinant virus is further infected to the insect cells to express the protein. be able to.
  • Examples of the gene transfer vector used in the method include pVL1392, PVL1393, pBlueBacI II (all manufactured by Invitrogen) and the like.
  • baculovirus for example, autographa californica nuclear polyhedrosis virus j, which is a virus that infects night insects belonging to the family Rothaceae, can be used.
  • Sf9 As insect cells, Sf9, Sf21, which are nest cells of Spodoptera frugiperda.
  • Methods for co-transfection of the above-mentioned recombinant gene transfer vector and the above baculovirus into insect cells for preparing a recombinant virus include, for example, the calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), the ribofusion method [Proc. Natl. Acad. Sci. USA, M, 7413 (1987)].
  • a sugar or sugar chain-added protein When expressed by yeast, animal cells, or bizoa cells, a sugar or sugar chain-added protein can be obtained.
  • the method for culturing the modified microorganism of the present invention obtained in the above 1 in a medium can be performed according to a usual method used for culturing host cells.
  • a medium for culturing these microorganisms may be a carbon source or nitrogen which can be assimilated by the microorganism. Sources, inorganic salts, etc., as long as the medium can be used for efficient culture of transformants. Either may be used.
  • Any carbon source can be used as long as the modified microorganism can assimilate it; glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolyzate, acetic acid, propionic acid And organic alcohols such as ethanol and propanol.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., ammonium salts of various inorganic and organic acids, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn. Stepulika, casein hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented bacterial cells and their digested products are used.
  • potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used as the inorganic salt.
  • the culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably 15 to 50 ° C, and the culture time is usually 16 hours to 7 days.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like.
  • an antibiotic such as ampicillin-tetracycline may be added to the medium during the culture.
  • an inducer may be added to the medium, if necessary.
  • an inducer For example, when culturing a microorganism transformed with an expression vector using the lac promoter, isopropyl-/?-: D-thiogalactoviranoside (IPTG) was transformed with an expression vector using the trp promoter.
  • IPTG isopropyl-/?-: D-thiogalactoviranoside
  • IAA indole acrylic acid
  • xylose may be added to the medium.
  • a medium for culturing the modified animal cell may be a commonly used RPMI 1640 medium [The Journal of the American Medical Association, ⁇ , 519 (1967) Eagle's MEM medium (Science, 1 ⁇ , 501 (1952)), DMEM medium CVirology, S, 396 (1959)), 199 medium (proceeding of the Society for the Biological Medicine, ⁇ , 1 (1950)) or these A medium or the like obtained by adding fetal bovine serum or the like to the medium is used.
  • Culture is usually pH6 ⁇ 8, 30 ⁇ 40 ° C, C0 2 present I ⁇ 7_nichikan'okonau under such lower.
  • an antibiotic such as kanamycin or penicillin may be added to the medium during the culture.
  • the modified microorganism of the present invention is an insect cell
  • a medium for culturing the modified insect cell a commonly used TNM-FH medium (manufactured by Phar * Miiigeii), an Sf-900 II SFM medium (GIBC0 BRL), ExCell 400, ExCell405 (all manufactured by JRH Biosciences), Grace's Insect Medium (Grace, TCC, Nature, 788 (1962)), etc.
  • a commonly used TNM-FH medium manufactured by Phar * Miiigeii
  • Sf-900 II SFM medium GIBC0 BRL
  • ExCell 400 ExCell405
  • ExCell405 all manufactured by JRH Biosciences
  • Grace's Insect Medium Grace, TCC, Nature, 788 (1962)
  • Cultivation is usually carried out under conditions of pH 6 to 7, 25 to 30 ° C, etc. for 1 to 5 days.
  • an antibiotic such as genyumycin may be added to the medium during the culture.
  • a modified microorganism is brought into contact with D-serine to decompose L-serine, and D-serine can be produced by collecting the remaining D-serine from the medium.
  • the degree of enhancement of L-serine T-minase activity in transformants and mutant microorganisms needs to be enhanced as compared to Escherichia coli (chericMa. CQJ1) DH5 ⁇ strain, and Escherichia £ nli ) It may be stronger than the L-serine deaminase activity of the DH5a strain, but is preferably at least 2 times, more preferably at least 5 times.
  • the efficiency of D-serine production can be increased by using a strain having low or no D-serine deaminase activity.
  • Production of D-serine using these microorganisms can be performed by the following method. That is, the cells of the modified microorganism obtained by the above method, a culture of the cells or a processed product thereof (hereinafter referred to as an enzyme source) are brought into contact with DL-serine in a medium.
  • cells or processed cells include dried cells, freeze-dried cells, surfactant-treated substances, enzyme-treated substances, ultrasonically crushed substances, mechanically crushed substances, cell-treated substances such as solvent-treated substances, and culture.
  • Cultured products such as product concentrates and dried products, protein fractions of cells, immobilized products of cells and processed products, and purified enzymes obtained from cells.
  • the contact between the modified microorganism and DL-serine may be carried out by adding DL-serine to the culture medium in which the modified microorganism is cultured, or by adding DL-serine during the culture. May be used. Further, an enzyme source obtained by culturing the modified microorganism may be added to a medium containing DL-serine.
  • DL-serine When DL-serine is added to the medium in which the modified microorganism is cultured, 1 to 300 mg, preferably 30 to; 100 mg of DL-serine is added per 1 ml of the medium at the start of or during the culture.
  • the culture can be performed under the conditions described in (2) above.
  • the amount of the enzyme source varies depending on the specific activity of the enzyme source. For example, when cells of the modified microorganism are used as the enzyme source, 5-1000 mg, preferably 10-400 mg, of wet cells are added per mg of DL-serine.
  • the contact reaction is preferably carried out at 20 to 50 ° C., particularly preferably at 25 ° C. to 37 ° C.
  • the reaction time varies depending on the amount of enzyme source used, the specific activity and the like, but is usually 2 to 150 hours, preferably 5 to 60 hours.
  • the medium may be water or aqueous medium, organic solvent or water or aqueous medium and organic A mixture of solvents is used.
  • aqueous medium include a buffer such as a phosphate buffer, a HEPES (N-2-hydroxyethylpiperazine-N-ethanesulfonic acid) buffer, and a buffer such as Tris [tris (trimethyloxymethyl) aminomethane] hydrochloride buffer. Used. Any organic solvent may be used as long as it does not inhibit the reaction, and examples thereof include acetone, ethyl acetate, dimethyl sulfoxide, xylene, methyl alcohol, ethyl alcohol, and vinyl alcohol.
  • DL-serine When DL-serine is added to the medium, it can be dissolved in water or an aqueous medium, an organic solvent, or a mixture of water or an aqueous medium and an organic solvent capable of dissolving DL-serine; It may be added, or may be added in the form of powder or fine granules.
  • D-serine can be collected from the reaction medium by a method used in ordinary organic synthetic chemistry, for example, extraction with an organic solvent, crystallization, thin-layer chromatography, high-performance liquid chromatography, or the like.
  • any method can be used as long as D-serine can be confirmed or quantified.
  • 13 C-NMR spectrum, 3 ⁇ 4-NMR It can be carried out by a method such as spectrum, mass spectrum, high performance liquid chromatography (HPLC) and the like.
  • Escherichia, noli W3] (ATCC14948) was inoculated into 10 mL of a loop loop and 10 mL of LB medium, and cultured overnight at 30 ° C. After the culture, cells were obtained from the resulting culture by centrifugation (3,000 rpm, 10 minutes). Chromosomal DNA was isolated and purified from the cells according to a conventional method (the method described in Molecular Cloning, Second Edition).
  • sdaA J. Bacteriol., 171, 5095-5102h 989
  • SEQ ID NOS: 1 and 2 which are combinations of a sense primer and an antisense primer
  • Two types of primers having the nucleotide sequences of SEQ ID NOS: 1 and 3 and sdaB which is a gene encoding L-serine deaminase similar to sdaA Eur.J. Biochem. , 2A1, 777-784 (1993)
  • two types of primers having the nucleotide sequences of SEQ ID NOs: 4 and 5 were synthesized using a DN II synthesizer.
  • PCR was performed using DNAd Thermal Cycler (Perkin Elmer Japan) using cloned (Stratagene) and pfu polymerase 10X Reaction Buffer (standard buffer).
  • the PGR consists of a reaction process consisting of 94 ° C for 30 seconds, 55 ° C for 30 seconds to 1 minute, and 72 ° C for 2 minutes. After 30 cycles, the reaction was carried out at 72 ° C. for 7 minutes. All the DNA fragments amplified by PCR were treated with the restriction enzymes Hindlll and l. After the treatment, these restriction enzyme-treated DNA fragments were subjected to a gelose gel electrophoresis to obtain DNA fragments treated with each restriction enzyme.
  • a vector plasmid pTrS30 containing the ampicillin resistance gene and the Trp promoter was digested with Hindlll and MHI, followed by agarose gel electrophoresis to obtain a Hindlll-MI-treated pTrS30 fragment. .
  • the recombinant DNA was obtained by performing a ligation reaction.
  • Escherichia, coli DH5 manufactured by Toyobo Co., Ltd.
  • Escherichia, coli DH5 manufactured by Toyobo Co., Ltd.
  • the transformant is transformed into an LB agar medium containing 100 zg / mL of ampicillin [Pacto Tributone (Difco 10 g, yeast extract (Difco) 5 g, and NaCl 5 g in 1 liter of water, adjusted to PH 7.2, agar-agar-added to 5%, and applied to 30% C for 1 day.
  • the cells were obtained by centrifuging the obtained culture solution.
  • a plasmid was isolated from the cells according to a conventional method.
  • the Hindi II-l treated DNA fragment (the DNA fragment obtained by PCR amplification using a combination of two primers having the nucleotide sequences of SEQ ID NOs: 1 and 2) and the Hindi II-l treated pTi> S30 fragment
  • the plasmid obtained by the ligation was treated with pHIAl and Hindlll-BamHI-treated DNA fragment (a DNA fragment obtained by PCR amplification using a combination of two types of primers having the nucleotide sequences of SEQ ID NOS: 1 and 3) and Hindi
  • the plasmid obtained by ligating the II-I-treated pTrS30 fragment was subjected to PCR amplification using pHIA2 and Hindi II-I-treated DNA fragment (a combination of two types of primers having the nucleotide sequences of SEQ ID NOs: 4 and 5).
  • the plasmid obtained by ligating the DNA fragment) and Hidlll-BMHI-treated pTrS30 fragment was named pHIBl
  • the plasmid thus obtained was subjected to sc richi'a, ooll
  • NM522 manufactured by Stratagene
  • Ksnhericia £ oii MM294 (ATCC33625)
  • Eschen'cMacoli ME5386 strain deficient in D-serine deaminase activity obtained from National Institute of Genetics.
  • the Escherichia coli DH5 strain / pTrS30 strain having the transformant obtained above and the plasmid pTrS30 »containing no L-serine deaminase gene was transformed into 100 mL of LB medium containing ampicillin mLg / mL
  • the cells were cultured at 30 ° C for one day.
  • the obtained culture is centrifuged to obtain cells, which are resuspended in 50 imol / L phosphate buffer (pH 7.5) and centrifuged to obtain cells (wet cell weight about 2 g).
  • 50 imol / L phosphate buffer pH 7.5
  • the above cells were suspended in a phosphate buffer (pH 7.5) containing 50 g / L of DL-serine, and reacted at 37 ° C for 10 to 22 hours.
  • a phosphate buffer pH 7.5
  • HPLC conditions are as follows.
  • Bost column derivatization method using orthophthalaldehyde (0PA) [Chromatogr., 353-355 (1973)] was used.
  • the L-serine concentration in the reaction solution was determined 10, 11, or 12 hours after the start of the reaction, and the difference from the L-serine concentration in the reaction solution at the start of the reaction was shown as the total amount of L-serine decomposed.
  • the value obtained by dividing the total amount of L-serine degradation by the time from the start of the reaction (10, 11 or 12 hours) is defined as L-serine deaminase activity, and the L-serine deaminase activity of Escherichia mii DH5a / pTrS30 is set to 1.0.
  • the activity of each strain in this case was shown as a relative activity.
  • D-serine useful as an intermediate in the synthesis of useful drugs such as D-cycloserine can be efficiently produced from DL-serine.
  • Sequence free text SEQ ID NO: 1 Synthetic DNA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

D—セリンの製造法
技術分野
本発明は、 ェシエリヒア · (Escherichia £oli)D H 5ひ株の有する L -セリ ンデァミナ一ゼ活性より高い L—セリンデァミナ一ゼ活性を有するように改変され た微生物の細胞、 該細胞の培養物またはそれらの処理物を、 D L—セリンを含有す る媒体中、 D L—セリンに接触させて Lーセリンを分解させ、 残存する D—セリン を該媒体中から採取することを特徴とする D—セリンの製造法および該製造法に係 る微生物に関する。 D—セリンは D—サイクロセリン等の有用医薬品の合成中間体 として有用な化合物である。
昔景抟術 '
D—セリンに関しては、 以下の製造法が知られている。
(i ) D L—ヒドロキシメチルヒダントインを微生物によって N—力ルバミル一 D ーセリンとした後、 加水分解して; D—セリンを得る方法(特開昭 61- 152291)。 ·
(ii) D L—セリンを含有する培地中でキャンディダ属、 トルロブシス属、 クリプ トコヅカス属、 サヅカロマイコプシス属、 ハンゼヌラ属、 ェヅシエリヒア属、 クレ ブシエラ属、 プロビデンシァ属、 ミクロバクテリウム属、 またはセラチア属に属し Lーセリンを資化し!)—セリンを実質的に資化しない微生物を培養し、 培養液中か ら D—セリンを単離する方法 (特開昭 64- 2594)。
(iii) チロシナーゼ活性を有する微生物を D L—セリンとフヱノールを含有する 反応液に作用させ、 L—セリンを Lーチロシンに変換し、 残存した!)ーセリンを採 取する方法 (特開平 5-91895)。
これらの製造法はいずれも工業的な; D—セリンの製法として用いるには難点があ る。即ち、 (i )の方法では、 D L—ヒドロキシメチルヒダントインからの N—力ルバ ミル—D—セリンの収率が 40%と低い上、触媒用に多量の菌体を必要とする点、(ii ) の方法では、 反応終了後も Lーセリンが残存しており、 結局 D L—セリンの分割を 要する点、 (iii )の方法では、基質濃度が 1%と低い上、有害なフヱノールを反応に必 要とする点、 などがこれら製造法の工業的利用を難しくしている。
ェシエリヒア 'コリが、 Lーセリンをアンモニアとピルビン酸と水に分解する L ーセリンデアミナーゼ活性を有していることは知られている 〔J. Bacteriol . , Hi, 5095-5102 (1989)、 Eur. J. Biochem. , 211, 777-784 (1993)〕 。 しかし、 ェシエリ ヒア,コリより抽出された該酵素は反応時に鉄や還元剤の添加など複雑な条件を必 要とすることが報告されており . Bacteriol . , m, 1270-1275 (1985)〕 、 該精 製酵素を D—セリン製造に用いることは実用的ではない。
またェシエリヒア 'コリは D—セリンを分解する D—セリンデアミナーゼ活性も 有していることが知られている 〔J. Bacteriol . , 121, 1092-1101 (1975)〕 。 した がって、 ェシエリヒア 'コリを用いて、 Lーセリンデアミナ一ゼにより、 D L—セ リンから生産された!)ーセリンは、 該 D—セリンデアミナ一ゼにより分解されてし まい、 生産効率が低下することがあった。
以上、 従来公知の方法においては、 DL—セリンから D—セリンを効率よく生産 する方法は確立されていない。 胡の闘示
本発明の目的は、 工業的に有利な D—セリンの製造法を提供することにある。 本発明者は、 ェシエリヒア 'コ (Escherichia mli)D H 5 cc株に比べて高い L ーセリンデアミナーゼ活性を有するように改変されたェシエリヒア ·コリから: L— セリンデアミナ一ゼの抽出または精製を行うことなく、 該菌体または菌体処理物を DL—セリンに接触させることによって、 意外にも D—セリ,ンをほとんど減じるこ となく迅速に Lーセリンを検出限界以下にまで分解消去でき、 D—セリンを工業的 に製造できることを見出し、 本発明を完成するに至った。
本発明は以下 ( 1 ) 〜( 12 )に関する。
(1) ェシエリヒア ·コリ(Escherichia coli)D H 5 株の有する L—セリン デアミナーゼ活性より高い Lーセリンデアミナーゼ活性を有するように改変された 微生物の細胞、 該細胞の培養物またはそれらの処理物を、 DL—セリンを含有する 媒体中、 DL—セリンに接触させて L—セリンを分解させ、 残存する D—セリンを 該媒体中から採取することを特徴とする D—セリンの製造法。
(2) ェシエリヒア 'コ U (Escherichia mli)DH5ひ株の有する L—セリン デァミナーゼ活性より高い Lーセリンデァミナーゼ活性を有するように改変された 微生物を、 DL—セリンを含有する培地に培養し、 Lーセリンを分解させ、 該培養 物よ,り残存する D—セリンを採取することを特徴とする] —セリンの製造法。 '
(3) 改変された微生物が、 L—セリンデアミナーゼ活性を有する微生物を変 異処理して得られる変異微生物である上記 (1) または (2) の D—セリンの製造 法。
(4) 改^された微生物が、 Lーセリンデアミナーゼ遺伝子を微生物に組み込 んで得られる形質転換体である上記 (1) または (2) の D—セリンの製造法。
(5) 改変された微生物の L—セ,リンデアミナ一ゼ活性が、 ェシヱリヒア 'コ (Escherichia H 5 株の有する Lーセリンデァミナ一ゼ活性に比べて 2 倍以上である上記 (1) 〜 (4) いずれか 1つの D—セリンの製造法。
(6)改変された微生物の L—セリンデアミナ一ゼ活性が、 ェシエリヒア 'コリ (Escherichia mli)D H 5 株の有する L—セリンデアミナ一ゼ活性に比べて 5倍 以上である上記 (1)〜 (4) いずれか 1つの; D—セリンの製造法。
( 7 ) Lーセリンデァミナーゼ遺伝子が、 ェシエリヒア 'コリ由来の sdaA遺伝 子または sdaB遺伝子である上記 (4) の: D—セリンの製造法。
( 8 ) 改変された微生物が、ェシエリヒア'コリに属する微生物である上記( 1 ) 〜 7 ) いずれか 1つの D—セリンの製造法。
(9) 改変された微生物が、 Escherichia coli DH5ひ/ pHTB、 Escherichia NM522/pHIAl、 Escherichia coli MM294/pHIAl、 Escherichia coli MM294/pHIA2, Escherichia coli 丽 29 JpHIBおよび Escherichia mli ME5386/pHIA2からなる群か ら選ばれる微生物である上記 (1 ) 〜 (8 ) いずれか 1つの D—セリンの製造法。
( 1 0 ) 改変された微生物が、 D—セリンデアミナ一ゼ活性の低い、 もしくは 活性を有しない微生物である上記 (1 ) 〜 (9 ) いずれか 1つの D—セリンの製造 法。
( 1 1 ) ェシエリヒア 'コリ (Escherichia coli) に属し、 ェシエリヒア ·コ リ (Escherichia £oli)D H 5 株の有する Lーセリンデアミナーゼ活性より高い L —セリンデアミナーゼ活性を有するように改変された微生物。
( 1 2 ) 微牛物が、 Escherichia col f DH5 / pHIB、 Escherichia coli NM522/pHIAL Escherichia coli腿 94/pHIAl、 Escherichia, coli MM294/pHIA2, Escherichia coli 爾 294/pHTBおよび Ksche cMa col i ME5386/pHIA2からなる群から選ばれる微生物で ある上記 (1 1 ) の微生物。 以下、 本発明を詳細に説明する。
1 . ェシエリヒア ·コリ(Escherichia coli) D H 5ひ跌に比べて萵ぃ L—セリンデ ァミナーゼ活性を有するように改変された微生物の取得
本発明で用いる、 ェシヱリヒア 'コリ (Escherichia mli)D H 5 ひ株 (東洋紡社 製、 以下すべておなじ) に比べて高い Lーセリンデアミナ一ゼ活性を有するように 改変された微生物 (以下、 改変された微生物と略す) は以下に述べる方法で取得す ることができる。
改変される微生物 (以下、 親株という) は Lーセリンデアミナーゼ活性を有する 微生物であっても、 L—セリンデアミナーゼ活性を有していない微生物であっても いずれでもよい。
親株が、 Lーセリンデアミナ一ゼ活性を有している場合は、 以下に述べる (1 ) または (2 ) 記載の方法により、 改変された微生物を得ることができる。
該親株が Lーセリンデアミナーゼ活性を有していない場合には、 以下に述べる ( 2 ) 記載の方法により、 改変された微生物を得ることができる。
なお、 本発明の製造法では、 高収率で D—セリンを製造することができるので、 D—セリンデアミナーゼによる D—セリンの分解があつたとしても、 なお、 高収率 で D—セリンを製造することができる。
したがって、 親株の D—セリンデアミナーゼ活性はあつてもなくてもいずれでも よい。
( 1 ) 変異処理法による取得
改変された微生物は、 親株に変異処理を行い、 突然変異を生じさせることにより 得られる微生物 (以下、 変異微生物と略す) より得ることができる。
変異処理法は、 通常用いられる方法であればいずれの方法でもよい。 例えば、 変 異処理剤を用いる方法、 紫外線照射法などがあげられる。
変異処理剤を用いる方法としては、例えば、 N-メチル -N3 -ニトロ- N-ニトロソグァ 二ジン(NTG)を用いる方法 (微生物実験マニュアル、 131頁、 1986年、 講談社サイェ ンティフィック社) が好ましく用いられる。
変異処理された微生物を下記に述べる方法で培養し、 Lーセリンデァミナーゼ活 性がェシヱリヒア ·コ ij (Escherichia mli)D H 5 株より向上した微生物を選択 することにより、 改変された微生物を得ることができる。
L—セリンデアミナーゼ活性は少なくともェシエリヒア ·コリ(Escherichia coli) DH5ひ株の有する L—セリンデアミナ一ゼ活性より向上していればよく、好 ましくは 2倍以上、 さらに好ましくは 5倍以上向上していることが望ましい。
L—セリンデアミナーゼ活性の測定は、 Meth. Enzymol., m, 346(1971)、 Meth. Enzymol., m, 351 (1971)等に記載されている方法に準じて行うことができる。 ま た、 簡便法と て、 下記に述べる方法をあげることができる。
すなわち、 改変された微生物を DL—セリンと接触させた後に、 反応液中に残存 する Lーセリンの量を測定し、 単位時間あたりに減少した L—セリンの量を 出す ることで測定することができる。
例えば、 反応開始から反応中のある時間までの Lーセリンの減少量すなわち分解 量を測定し、 得られた分解量の値を反応時間で割ることにより、 単位時間当たりの L—セリンの分解量を算定し、 得られた値を L—セリンデアミナ一ゼ活性とするこ とができる。
具体的には、 得られた変異微生物を 30°Cで 1日間培養して得られる培養液を遠 心分離して菌体を取得する。 培地は、 該変異微生物を培養できる培地であればいず れの培地も用いることができる。該菌体を 50mmol/Lのリン酸バッファ一(pH7.5)に 懸濁し、 遠心分離して得られる菌体 (湿菌体重量約 2 g) を反応に用いる。
D L—セリンを 50g/L含むリン酸バヅファー (pH7.5) ,に得られた菌体を懸濁し、 37°Cで 10時間〜 22時間反応を行う。反応終了後、 D—セリンおよび L—セリンの濃 度を HPLCにより定量し、 バッファー中の含量を算定する。
(2) 遺伝子組換えによる方法
以下に述べる方法で、 Lーセリンデアミナーゼ遺伝子を取得し、 該遺伝子を宿主 細胞に組み込むことにより、 改変された微生物を得ることができる。
(a) L—セリンデアミナーゼ遺伝子の取得
公知のェシエリヒア 'コリ (E.schftrichia coli) の Lーセリンデアミナーゼ遺伝 子配列 J. Bacteriol., i l, 5095-5102 (1989)、 Eur. J. Biochem., 212, 777-784 (1993)〕 をもとに、 L—セリンデアミナ一ゼ遺伝子をクローニングすることができ る。 以下に、 ェシエリヒア 'コリ (: Rscherichi coli) の L—セリンデアミナ一ゼ 遺伝子 sdaA、 sdaBの取得法を例に説明するが、 Lーセリンデアミナーゼ遺伝子の取 得源は、 Lーセリンデアミナ一ゼ活性を有する微生物であればェシエリヒア ·コリ に限定されない。 ' 例えば、 以下の方法により取得することができる。
ェシェリヒア 'コリ、 例 ば Escherichia il W3110株をェシエリヒア 'コリの 培養に適した培地、 例えば LB培地 〔パクト トリブトン(Difco社製) 10g、 酵母ェキ ス(Difco社製) 5g、 NaCl 5gを水 1リットルに含み pH7.2に調整した培地〕 を用い、 常 法に従って培養する。 培養後、 培養物より遠心分離により菌体を取得する。
取得した菌体より公知の方法〔例えば、 Sambrook, J. et al .5 Molecular Cloning: A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press(2001)、 以下、 モレキュラー 'クローニング 第 3版という〕 に従い染色体 D N Aを単離す る。
J. Bacteriol . , Hi, 5095-5102 (1989)または Eur. J. Biochem. , 2A1, 777-784 (1993)に記載された Lーセリンデアミナ一ゼ遺伝子の塩基配列情報を利用し、 sdaA 遺伝子または sdaB遺伝子に対応する塩基配列を含有するセンスプライマーおよびァ ンチセンスプライマーを D N A合成機を用いて合成する。
得られたセンスプライマ一およびアンチセンスプライマーおよび染色体: D N Aを 用いて PCR法にて D N A断片を増幅する。該増幅 D N A断片をプラスミドに導入可能 とするために、 センスプライマーおよびアンチセンスプライマ一の 5,末端には適切 な制限酵素サイト、 例えば l等の制限酵素サイ トを付加させることが好ましい。 該センスプライマ一とァシチセンスプライマーの組み合わせとしては、 例えば、 配列番号 1および 2記載の塩基配列を有する 2種類のプライマーの組み合わせと配 列番号 1およ 3記載の塩基配列を有する 2種類のプライマ一の組み合わせ(sdaA 用)、配列番号 4および 5記載の塩基配列を有する 2種類のプライマーの組み合わせ (sdaB用)等をあげることができる。
染色体 D NAを錶型として、 これらプライマ一、 TaKaRa LA-PCR TM Kit Ver.2 (宝 酒造社製)または Expand TM High-Fidelity PCR System(Boehringer Mannheim社製) を用い、 DNA THermal Cycler(Perkin Elmer Japan社製)で PCRを行う。
PCRの条件として、上記ブライマ一が 2 k b以下の D N A断片の場合には 9 4 °Cで 3 0秒間、 5 5 °Cで 3 0秒〜 1分間、 7 2 °Cで 2'分間からなる反応工程を 1サイク ルとして、 2 k bを超える D N A断片の場合には 9 8 °Cで 2 0秒間、 6 8 °Cで 3分 間からなる反応工程を 1サイクルとして、 いずれも 3 0サイクル行った後、 7 2 °C で 7分間反応させる条件をあげることができる。
PCRにより増幅された D N A断片とェシヱリヒア'コリで増幅可能なベクタ一とを、 制限酵素を用い、上記プライマーで付与した制限酵素サイトと同じサイ トで切断後、 ァガロースゲル電気泳動、 シユークロース密度勾配超遠心分離等を行い D N A断片 を回収する。
回収した D N A断片を用い、常法、例えば、モレキュラー 'クローニング 第 2 版、 Current Protocols in Molecular Biology, Supplement 1〜38, John Wi ley & Sons (1987-1997):以下、 カレント 'プロトコールズ ·ィン 'モレキュラー ·バイオロジ ― サプルメン卜と略す、 DNA Cloning 1 : Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法により、 あ るいは市販のキヅ ト、 例えば Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (Life Techcologies社製) ZAP-cDNA Synthesis Kit CStratagene 社製〕 を用いクローニングベクターを作製し、 作製したクローニングベクターを用 い、 ェシヱリヒア 'コリ、 例えば Escherichia cali DH5 株 (東洋紡社製) を形質 転換する。
ェシェリヒア 'コリを形質転換するためのクローニングベクターとしては、 ェシ エリヒア ·コリ K12株中で自律複製できるものであれば、 ファージぺクタ一、 プラス ミ ドぺクタ一等いずれでも使用できる。 ェシエリヒア ·コリ用の発現ベクターをク 口一ニングベクターとして用いてもよい。 具体的には、 ZAP Express CStratagene 社、 Strategies, , 58 (1992)〕、 pBluescript II SK (+) CNucleic Acids Research, II, 9494 (1989)〕、 Lambda ZAP II (Stratagene社製)、 人 gtlO、 Agtll師 Cloning, A Practical Approach, 上, 49 (1985)〕 、 え TriplEx (Clontech社製) 、 AExCell
(Pharmacia社製) 、 pT7T318U (Pharmacia社製) 、 cD2 〔Mol . Cell. Biol . , 280 (1983)〕、 pMW218 (和光純薬工業社製) 、 pUC118、 pSTV28 (宝酒造社製) 、 PEG400
CJ. Bacteriol. , 112, 2392 (1990)〕、 pHMV1520 (MoBiTec社製) 、 QE-30 (QIAGEN 社製) 等をあげることができる。
得られた形質転換株より、 目的とする遺伝子を含有するフ'ラスミドを常法、 例え ば、 モレキュラー ·クローニング 第 3版、 カレント 'プロトコールズ 'イン ·モ レキユラ一 'バイオロジー サプルメント、 DNA Clonin 1 : Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載 された方法により取得することができる。
上記方法により Lーセリンデアミナーゼ活性を有する蛋白質をコードする遺伝子 を含むプラスミ ドを取得することができる。 該プラスミドとして、 例えば、 実施例 に示す ρΗΙΑ1、 pHIA2、 pHIBをあげることができる。
同様な方法で、 ゲノムの D N A塩基配列が公知な生物から Lーセリンデァミナー ゼ遺伝子を取得することができる。 また、 ゲノムの D N A塩基配列が知られていな い生物であっても、 適当なベクターを用いてェシエリヒア ·コリを宿主として染色 体 D N Aライブラリ一を作成し、 このライブラリ一の各株について L—セリンデァ ミナーゼ活性を調べることによって、 Lーセリンデアミナ一ゼ活性を有する蛋白質 をコードする D N Aを含むプラスミ ドを取得することができる。
( b ) Lーセリンデアミナ一ゼ遺伝子の発現方法
上記のようにして得られた L—セリンデアミナーゼをコ一ドする D N Aを宿主細 胞中で発現させるためには、 まず、 目的とする L—セリンデアミナ一ゼをコードす る D N Aを、 制限酵素類あるいは D N A分解酵素類で切断して、 コード領域を含む 適当な長さの D N A断片とした後に、 該 D N A断片を発現べクタ一中のプロモー夕 一の下流に挿入し、 次いで該 D N Aを挿入した発現ベクターを、 発現ぺク夕一に適 合した宿主細胞中に導入する。
宿主細胞としては、 原核生物、 酵母、 動物細胞、 昆虫細胞等、 目的とする遺伝子 を発現できるものは全て用いることができる。
発現べクタ一としては、 上記宿主細胞において自立複製可能ないしは染色体中へ の組込みが可能で、 上記目的とする D NAを転写できる位置にプロモーターを含有 しているものが用いられる。
細菌、 放線菌等の原核生物を宿主細胞として用いる場合は、 上記 D N Aを発現さ せるための発現ぺク夕一は該原核生物中で自立複製可能であると同時に、 プロモー 夕一、 リボソーム結合配列、 上記 D N Aおよび転写終結配列より構成された組換え ベクタ一であることが好ましい。 プロモーターを制御する遺伝子が含まれていても よい。
発現ベクターとしては、 例え,ば、 pBTrp2、 pBTaclN pBTac2 (いずれも Boehringer Mannheim社製)、 pKK233-2 (Pharmacia社製)、 SE280 (Invitrogen社製)、 pGEMEX-1
(Promega社製) 、 pQE-8 (QIAGEN社製) 、 pQE-30 (QIAGEN社製) 、 KYPIO (特開昭 58-110600)、 pKYP200 CAgric. Biol . Chem. , 669 (1984)〕、 pLSAl CAgric. Biol . Chem. , i, 277 (1989)〕、 pGELl 〔Proc. Natl . Acad. Sci . USA,_S2, 4306 (1985)〕 、 pBluescriptl l SK+ヽ pBluescriptll SK (-) (Stratagene社製)、 pTrS30(FERM BP-5407)、 pTrS32(FERM BP- 5408)、 pGEX (Pharmacia社製)、 pET-3 (Novagen社製) 、 pTera2(USP468619K USP4939094, USP5160735), pSupex pUBllO, pTP5、 pC194、 pUC18
CGene, 103 (1985)〕、 pUC19 〔Gene, 3Ά, 103 (1985)〕、 pSTV28(宝酒造社製)、 PSTV29 (宝酒造社製) 、 UC118 (宝酒造社製) 、 pPAl (特開昭 63- 233798)、 p翻 0
CJ. Bacteriol . , Ill, 2392(1990)〕、 pQE-30 (QIAGEN社製) 、 PHY300(宝酒社 製), PHW1520 (MoBiTec社製) 等を例示することができる。
プロモーターとしては、 宿主細胞中で発現できるものであればいかなるものでも よい。 例えば、 trpプロ乇一夕一 (P trp) 、 lacプロモータ一 (P lac) 、 PLプロモ一 夕一、 Paプロモーター、 PSEプロモ一夕一等の、 ェシエリヒア 'コリゃファージ等に 由来するプロモーター、 SP01プロモーター、 SP02プロモーター、 penPプロモ一夕一 等をあげることができる。 また; trpを 2つ直列させたプロモーター (P trpx 2 ) 、 tacプロモーター、 letlプロモーター、 lacT7プロモーターのように人為的に設計改 変されたプロモーター等も用いることができる。 さらにバチルス属細菌中で発現さ せるための xylAプロモ一夕一ゃコリネバクテリゥム属細菌中で発現させるための P54-1プロモーターなども用いることができる。 '
. リボソーム結合配列としては、 宿主細胞中で発現できるものであればいかなるも のでもよいが、 シャインーダルガノ (Shine-Daigarno) 配列と開始コドンとの間を 適当な距離 (例えば 6〜 1 8塩基)に調節したプラスミドを用いることが好ましい。 転写 ·翻訳を効率的に行なうため、 L—セリンデアミナーゼ活性を有する蛋白質 の N末端またはその一部を欠失した蛋白質と発現べクタ一のコードする蛋白質の N 末端部分を融合させた蛋白質を発現させてもよい。
目的とする蛋白質の発現には転写終結配列は必ずしも必要ではないが、 好適には 構造遺伝子直下に転写終結配列を配置することが望ましい。
宿主細胞としては、 ェヅシエリヒア (Kschorichia) 属、 コリネバクテリゥム
Figure imgf000008_0001
属、 ブレビパクテリゥム ( revibac rium) 属、 バチルス
(Baoi nils') 釋、 ミゥ πバウテリ ム (Mi crobacterium) 属、 セラチア (SeTratia) 属ヽ シュ一ドモナス
Figure imgf000008_0002
属、 ァグロパクテリゥム (Agrohacternim')属ヽ アリシクロバチルス (Alicyclobacillus 属、 アナバエナ (Ana.ba.ena) 属、 アナシ ステイス (Anacystis 属、 アースロバクタ一 (Arthrobacter)属、 ァゾパクター
(Azobacter) ,属、 クロマチゥム (Chromatium)属、 エルウイニァ (Erwinia)属、 メチロバクテリウム f ethylobacterium 属、 ホルミディゥム (Phormi4iuni)属、 口ドバクタ一 Rhodobacter 属、 口ドシュ一ドモナス (RhodoP3eudoniona3)属、 口 ドスピリルム (Rhodospirillum)属、 セネデスムス (gcenedegmug)属、 ス トレプト ミセス iStreptomyces) 属、 シネココッカス ( ynnechococcus) 属ヽ ザィモモナス
(Zymomonas) 属等に属する微生物をあげることができる。
例えば、 Rscherichia coli、 Bacillus subtil is、 Brevibacteriuw imma iop ilufflN Brevi bacterium sacc arolyticum, Brevihacterium fl謂 ffl、 Brevi acterium
1 actofermentum. Corynebacterium glutamicum. Corynebacterium acetoacidophi 1IM、 Microbacterium ammonia.phi lum. Serratia marcescens. Agrobacte ium rhizogenegs Arthrobacter aurescens, Arthrobac er nicotiana^ Art robacter sulfureusヽ Ar hrobacter urea.fa.ci ens. Erwinia caro'to暫 a、 Erwinia herbi col ¾s
Methylobacterium extorq腦 s、 Phormidi iii sp.、 Rhodobacter splmeroi(¾e3、 odospirilhim rubr職、 Streptomyces aureofaciens、 Streptomyces griseus、 Zymo oma mohilia等をあげることができる。
さらに具体的には、 Escherichia coli XL 1 -Blue (Stratagene社製)、 Escherichia coli XL2-Blue (Stratagene社製) 、 Escherichia coli PHI (モレキュラークロー二 ング 第 2版、 p505) 、 Escherichia coli ΡΗ5 (東洋紡社製) 、 Escherichia coli MC1000[Mol. Biol. ,Ι , 179-207 (1980)]、 Rscherichia coli W1485(ATCCi2435), Escherichia coli JM1Q9 (Stratagene社製)、 Rscherichia coli ΗΒίΟί (南洋紡ネ f製)、 Escherichia noli W3110(ATCC 948)、 RschfiHchia. coli NM522 (Stratagene社製)、 Bacillus si ilis ATCC33712, BaciUus sp. FERM BP-6030, Br evi acterium imman'ophilnni ATCC14068、 revibacterium saccharoJyticum ATCC14066、
Rrftvibac ftrnim fl a扁 ATCCi4067、 Rrevi '†. 'i]m lac oferniftn iim ATCCi3869、 Corynebao erium gli3ta.micnm ATCC 3032. Corynebacterium gliitami o m ATCC 297. Corynebaoteriiim aoftt.oacidnphi'liim ATCC 13870、 Microbacterium a雇 oniaphil避 ATCC15354 Smratia mar escens ATCC13880^ Agrohac erfnm rhfzogfines ATCG11325s Arthrobacter a.nrfisp.ens ATCC13344N Ar hroha.p. ftr nicot.ianae ATCC15236、 Arthrobacter s"lf"re"s ATCC19Q98, Art.hrnhaoter ureaf aoi ens ATCC7562. adnia ca.rotovn?a ATC 1 Fi390. rwinia. herbi ool a. ATCC21434.Met.hv1 ohaoternim fix orqiiftna DSM1337, Phormidium sp. ATCC29409、 hnriobap.er sphaeroides ATCC21286, Rhoriospirill iii nihr m ATCC11170、 St.rfiptomvces a.iireofaciens ATCC10762、 St.reptomvcfts grists ATCC 10137、 Zymomonas mobili¾ ATCC 10988等をあげることが できる。
Dーセリンデァミナ一ゼ活性の低い微生物または D—セリンデアミナ一ゼ活性の 欠損した微生物としては、 たとえば Mmridiiacoli ME5386株 (国立遺伝研から入 手可能) があげられる。 組換えべク夕一の宿主細胞への導入方法としては、 宿主細胞へ D N Aを導入する 方法であればいずれも用いることができる。 例えば、 カルシウムイオンを用いる方 法 〔Pro Natl. Acad. Sci . USA, fi£, 2110ひ972)〕 、 プロトプラスト法 (特開昭 63-248394) 、 エレクト口ポレーシヨン法または Gene, II, 107 (1982)や Molecular & General Genetics, 1M, 111 (1979)に記載の方法等をあげることができる。
酵母を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 YEpl3
(ATCC37115)、 YEp24 (ATCC37051)、 YCp50 (ATCC37419) 、 pHS19、 pHS15等を例示 することができる。 ' プロモーターとしては、酵母中で発現できるものであればいかなるものでもよく、 例えば、 PH05プロモータ一、 PGKプロモーター、 GAPプロモー夕一、 ADHプロモーター、 gal 1プロモータ一、 gal 10プロモータ一、ヒ一トショヅク蛋白質プロモー夕一、 MM1 プロモーター、 CUP1プロモー夕一等のプロモーターをあげることができる。
宿主細胞としては、 サヅカロミセス (Saccharomyces) 属、 シゾサヅカロミセス
(Schi zosaccharomyces) 属ヽ クリュイぺロミセス ( hiyveromycfts) 属ヽ トリコス ポロン(Trichosporon)属、シュヮニォミセス (Schwarmiomyces)厪、 ピヒア(Pi chia) 属、 キャンディダ (Candida)属等に属する微生物、 例えばサヅカロミセス 'セレビ シェ (Saocha.romyces cerevisi e ) 、 シゾサッカロミセス ·ボンべ
(Schi zosaccha,romyces pombe) 、 クリュイぺロミセス ·ラクチス ( l uvveromyces l acti s) 、 トリコスポロン 'プルランス (Trichosporon pul lulans) 、 シュヮニォ ミセス ·アルビウス ( Schwanni oniyces alluvius) ヽ キャンディダ ·ユーティリス
(Candida utilis) 等をあげることができる。
組換えベクターの導入方法としては、 酵母に D N Aを導入する方法であればいず れも用いることができ、例えば、エレクトロポレーシヨン法〔Methods in Enzymol . , lM, 182 (1990)、 スフエロプラスト法 〔Proc. Natl . Acad. Sci . USA, Ίί, 1929 (1978)〕 、 酢酸リチウム法 〔J. Bacteriol . , 163(1983)〕、 Proc. Natl . Acad. Sci . USA, 1929 ( 1978)に記載の方法等をあげることができる。
動物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、 pcDNAI、 pcDM8(フナコシ社製)、 pAGE107〔特開平 3-22979;Cytotechnology, 2., 133, (1990)〕、 PAS3-3 (特開平 2-227075)、 pCDM8〔Nature, , 840, (1987)〕、 pcDNAI/Amp (Inv rogen社製)、 pREP4 (Invitrogen社製)、 pAGE103〔J. Biochem. 5 mi, 1307 ( 1987)〕、 pAGE210等を例示することができる。
プロモータ一としては、 動物細胞中で発現できるものであればいずれも用いるこ とができ、例えば、 サイ トメガロウィルス (ヒト CM V)の I E (immediate early) 遺伝子のプロモーター、 S V 4 0の初期プロモーター、 レトロウイルスのプロモ一 夕一、 メタ口チォネインプロモーター、 ヒートショックプロモーター、 S Rひプロ モーター等をあげることができる。 また、 ヒト C MVの I E遺伝子のェンハンサー をプロモーターと共に用いてもよい。
宿主細胞としては、 ナマルバ細胞、 HBT5637 (特開昭 63- 000299)、 C0S1細胞、 C0S7 細胞、 CH0細胞等をあげることができる。 ' 動物細胞への組換えべクタ一の導入法としては、 動物細胞に; D NAを導入できる 方法であればいずれも用いることができ、 例えば、 エレクト口ポーレーシヨン法 CCytotechnology5_a, 133 ( 1990)〕 、 リン酸カルシウム法 (特開平 2- 227075) 、 リ ポフエクシヨン法 Proc. Natl . Acad. Sci . , USA, M, 7413 (1987)〕、 Virology, 51, 56 (1973)に記載の方法等を用いることができる。 形質転換体の取得および培 養は、 特開平 2-227075号公報あるいは特開平 2- 257891号公報に記載されている方法 に準じて行なうことができる。
昆虫細胞を宿主細胞として用いる場合には、 例えば Baculovirus Expression Vectors, A Laboratory Manual , W. H. Freeman and Company, New York ( 1992)、 カレント ·プロトコールズ ·イン 'モレキュラー ·バイオロジー サプルメント、 Bio/Technology, £, 47 (1988)等に記載された方法によって、 蛋白質を発現するこ とができる。 即ち、 組換え遺伝子導入ベクターおよびパキュロウィルスを昆虫細胞 に共導入して昆虫細胞培養上清中に組換えウィルスを得た後、 さらに組換えウィル スを昆虫細胞に感染させ、 蛋白質を発現させることができる。
該方法において用いられる遺伝子導入ベクターとしては、 例えば、 pVL1392、 PVL1393, pBlueBacI II (ともに Invitrogen社製) 等をあげることができる。
バキュロウィルスとしては、 例えば、 夜盗蛾科昆虫に感染するウィルスであるァ ゥトグラファ ·カリフオル二力 ·ヌクレア一 ·ポリへドロシス 'ウィルス (Autographa californica nuclear polyhedrosis virus j等を用いることができる。
昆虫細胞としては、 Spodoptera frugiperda.の ϋΐ巣細胞である Sf 9、 Sf 21
CBaculovirus Expression Vectors, A Laboratory Manual , W. H. Freeman and Company, New York (1992)〕、 Trichoplusia. niの卵巣細胞である High5 (Invitrogen 社製) 等を用いることができる。
組換えウィルスを調製するための、 昆虫細胞への上記組換え遺伝子導入べクタ一 と上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシウム法 (特 開平 2-227075)、リボフヱクシヨン法〔Proc. Natl . Acad. Sci . USA, M, 7413 (1987)〕 等をあげることができる。
遺伝子の発現方法としては、 直接発現以外に、 モレキュラー■ クローニング 第 2版に記載されている方法等に準じて、 分泌生産、 融合蛋白質発現等を行うことが できる。
酵母、 動物細胞または毘虫細胞により発現させた場合には、 糖あるいは糖鎖が付 加された蛋白質を得ることができる。
2 . 改変された微生物の培養
上記 1で得られる本発明の改変された微生物を培地に培養する方法は、 宿主細胞 の培養に用いられる通常の方法に従って行うことができる。 本発明の改変された微 生物がェシ リヒア ·コリ等の原核微生物、 酵母菌等の真核微生物である場合、 こ れら微生物を培養する培地は、 該微生物が資化し得る炭素源、 窒素源、 無機塩類等 を含有し、 形質転換体の培養を効率的に行える培地であれば天然培地、 合成培地の いずれでもよい。
炭素源としては、 それそれの改変された微生物が資化し得るものであればよく、 グルコース、 フラクトース、 スクロース、 これらを含有する糖蜜、 デンプンあるい はデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、 プロパノールなどのアルコール類が用いられる。
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸アン モニゥム、 リン酸アンモニゥム、 等の各種無機酸や有機酸のアンモニゥム塩、 その 他含窒素化合物、 並びに、 ペプトン、 肉エキス、 酵母エキス、 コーンスチープリカ 一、 カゼイン加水分解物、 大豆粕、 大豆粕加水分解物、 各種発酵菌体およびその消 化物等が用いられる。
無機塩としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシゥ ム、 硫酸マグネシウム、 塩化ナトリウム、 硫酸第一鉄、 硫酸マンガン、 硫酸銅、 炭 酸カルシウム等が用いられる。
培養は、 振盪培養または深部通気攪拌培養などの好気的条件下で行う。 培養温度 は 15〜50°Cがよく、 培養時間は、 通常 16時間〜 7日間である。 培養中 p Hは、 3.0〜 9.0に保持する。 p Hの調整は、 無機あるいは有機の酸、 アルカリ溶液、 尿素、 炭酸 カルシウム、 アンモニアなどを用いて行う。
また培養中必要に応じて、 アンピシリンゃテトラサイクリン等の抗生物質を培地 に添加してもよい。
プロモーターとして誘導性のプロモ一ターを用いた発現べクタ一で形質転換した 微生物を培養するときには、必要に応じてィンデューサ一を培地に添加してもよい。 例えば、 lacプロモーターを用いた発現ベクターで形質転換した微生物を培養すると きにはィソプロピル- /? -: D -チォガラクトビラノシド(IPTG)等を、 trpプロモーター を用いた発現ベクターで形質転換した微生物を培養するときにはィンドールァクリ ル酸(IAA)等を、 xylAプロモ一夕一を用いた発現ベクターで形質転換した微生物を培 養する時にはキシロースを、 それそれ培地に添加してもよい。
本発明の改変された微生物が動物細胞である場合、 該改変された動物細胞を培養 する培地としては、 一般に使用されている RPMI 1640培地 〔The Journal of the American Medical Association, ΪΜ, 519 (1967)〕、 Eagleの MEM培地〔Science, 1ΖΆ, 501 (1952)〕、 DMEM培地 CVirology, S, 396 (1959)〕、 199培地 [proceeding of the Society for the Biological Medicine, ΊΆ, 1(1950)〕 またはこれら培地に牛胎児 血清等を添加した培地等が用いられる。
培養は、 通常 pH6〜8、 30〜40°C、 C02存在下等の条件下で i〜7日間行う。
また、 培養中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質を培地に添 加してもよい。
本発明の改変された微生物が昆虫細胞である場合、 該改変された昆虫細胞を培養 する培地としては、一般に使用されている TNM- FH培地〔Phar*Miiigeii社製〕、 Sf-900 II SFM培地(GIBC0 BRL社製)、 ExCel l400、 ExCell405〔いずれも JRH Biosciences社製〕、 Grace' s Insect Medium (Grace, T.C.C. , Nature, 788 (1962)〕 等を用いるこ とができる。
培養は、 通常 pH6〜7、 25〜30°C等の条件下で、 1〜5日間行う。
また、 培養中必要に応じて、 ゲン夕マイシン等の抗生物質を培地に添加してもよ い。
3 . D—セリンの製造 '
D Lーセリンを含有する媒体中、 改変された微生物を D L—セリンに接触させて Lーセリンを分解させ、 残存した D—セリンを該媒体中から採取することにより D —セリンを製造することができる。
形質転換体および変異微生物における Lーセリンデ Tミナ一ゼ活性増強の程度は、 ェシエリヒア 'コリ( chericMa. CQJ1) D H 5 α株に比較して増強されている必要 があり、 ェシエリヒア 'コ (Escherichia £nli)D H 5 a株の有する Lーセリンデ アミナーゼ活性より強ければよいが、 好ましくは 2倍以上、 さらに好ましくは 5倍 以上であることが望ましい。
また、 D—セリンデアミナ一ゼ活性の低い、 または該活性を有しない株を用いる ことにより、 D—セリンの製造の効率を上げることができる。
L -セリンデアミナーゼ活性の測定は上記 1 . ( 1 ) で述べたとおりである。
これらの微生物を用いた D—セリンの製造は、 以下の方法で行うことができる。 すなわち、 上記方法で得られる改変された微生物の細胞、 該細胞の培養物または それらの処理物 (以下、 酵素源という) を、 媒体中で D L—セリンに接触させる。 細胞または該細胞の処理物としては、 細胞の乾燥物、 凍結乾燥物、 界面活性剤処 理物、 酵素処理物、 超音波破砕物、 機械的摩砕物、 溶媒処理物などの細胞処理物、 培養物の濃縮物、 乾燥物などの培養処理物、 細胞の蛋白質分画物、 細胞および細胞 処理物の固定化物、 あるいは細胞より得られる精製酵素等があげられる。
改変された微生物と D L—セリンとの接触は、 該改変された微生物を培養する培 地にあらかじめ D L—セリンを添加する方法を用いてもよいし、 培養中に D L—セ リンを添加する方法を用いてもよい。 また、 該改変された微生物を培養して得られ た酵素源を、 D L—セリンを含有する媒体に添加してもよい。
改変された微生物を培養する培地中に D L—セリンを添加する場合、 D L—セリ ンは培地 lmlあたり l〜300mg、 好ましくは 30〜; lOOmgを培養の開始時または途中に添 加する。 培養は上記 (2 ) で述べた条件下で行うことができる。
改変された微生物より得られる酵素源と D L—セリンを媒体中で接触させる場合 は、 該酵素源の量は、 当該酵素源の比活性等により異なる。 例えば、 酵素源として 該改変された微生物の細胞を用いる場合は、 D L—セリン lmgあたり湿菌体として 5 〜1000m g、 好ましくは 10〜400m g添加する。
接触反応は 20〜50°Cで行なうことが好ましく、 特に 25°C:〜 37°Cで行なうことが好 ましい。反応時間は用いる酵素源の量および比活性等により異なるが、通常 2 ~150 時間、 好ましくは 5〜60時間である。
媒体としては、 水もしくは水性媒体、 有機溶媒または水もしくは水性媒体と有機 溶媒の混合液が用いられる。水性媒体としては、 例えばリン酸緩衝液、 HEPES (N-2- ヒドロキシェチルピペラジン- N-エタンスルホン酸) 緩衝液、 トリス [トリス(ヒド 口キシメチル)アミノメタン]塩酸緩衝液等の緩衝液が用いられる。有機溶媒として は反応を阻害しないものであればいずれでもよく、例えば、ァセトン、酢酸ェチル、 ジメチルスルホキシド、 キシレン、 メチルアルコール、 エチルアルコール、 ブ夕ノ ール等が用いられる。
D L—セリンを媒体中に添加する場合、 D L—セリンを溶解することのできる水 もしくは水性媒体、 有機溶媒、 または水もしくは水性媒体と有機溶媒の混合液に; D Lーセリンを溶解し、 媒体中に添加してもよいし、 粉末または細粒状のまま添加し てもよい。
反応媒体からの D—セリンの採取は、 通常の有機合成化学で用いられる方法、 例 えば、 有機溶媒による抽出、 結晶化、 薄層クロマトグラフィー、 高速液体クロマト グラフィ一等により行うことができる。
本発明により得られる D—セリンの確認または定量方法は、 D—セリンを確認ま たは定量できる方法であればいずれの方法も用いることができるが、 例えば、 13C - NMRスペクトル、 ¾-NMRスペクトル、 マススペクトル、 高速液体クロマトグラフ ィ一 (HPLC )等の方法により行うことができる。
以下に本発明の実施例を示すが、 本発明はこれらの実施例に限定されるものでは ない。 昍》 施する めの暴 の形熊
実施例 1
1 ) ,Lーセリンデァミナーゼ遺伝子の取得
Escherichi a, nol i W3]譲 (ATCC14948) を 1白金耳、 lOmLの LB培地に植菌し、 30°Cで一晩培養した。 培養後、 得られた培養液より遠心分離 (3, 000rpm、 10分間) により菌体を取得した。 該菌体より、 常法 (モレキュラー ·クローニング 第 2版 に記載の方法) に従い染色体 D N Aを単離精製した。
L—セリンデアミナーゼをコードする遺伝子である sdaA 〔J. Bacteriol . , 171 , 5095-5102 ひ989)〕 の有する塩基配列情報をもとにセンスプライマーとアンチセン スブラィマーの組み合わせである配列番号 1および 2記載の塩基配列を有する 2種 類のプライマー、配列番号 1および 3記載の塩基配列を有する 2種類のプライマー、 および sdaAと同様に Lーセリンデアミナーゼをコードする遺伝子である sdaB 〔Eur . J. Biochem. , 2A1, 777-784 ( 1993)〕 ,の有する塩基配列情報をもとに配列番号 4お よび 5記載の塩基配列を有する 2種類のプライマ一をそれそれ D N Α合成機を用い て合成した。
染色体 D NAを鎵型として、 これらプライマー、 pfu polymerase
cloned(Stratagene社製)および pfu polymerase 10 X Reaction Buffer (standard buffer)を用い、 DNA Thermal Cycler(Perkin Elmer Japan社製)で PCRを行った。
PGRは 94°Cで 30秒間、 55°Cで 30秒〜 1分間、 72°Cで 2分間からなる反応工程を 1サイ クルとして、 30サイクル行った後、 72°Cで 7分間反応させる条件で行った。 PCRで増 幅された DNA断片は、 いずれも制限酵素 Hindlllと制限酵素 lで処理した。 処 理後これらの制限酵素処理 DNA断片を ガロースゲル電気泳動にかけ、 各制限酵 素で処理された DN A断片を取得した。
2)組換え体 DN Aの製造
アンピシリン耐性遺伝子と Trpプロモータを有するベクタープラスミ ド pTrS30 (FERM BP-5407より常法により抽出)を制限酵素 Hindlllおよび MHIで消化後、 ァガ ロースゲル電気泳動を行い、 Hindlll -MI処理 pTrS30断片を取得した。
上記で取得された Hindl'II -EMHI処理 D 八断片と11[11(1111 -«1処理 11 30断 片を混合した後、ライゲ一シヨン反応を行うことにより組換え体 DN Aを取得した。 該組換え体 DNAを用い、 Escherichia, coli DH5 被 (東洋紡社製) を常法に従 つて形質転換後、 該形質転換体を、 アンピシリン 100 zg/mLを含む LB寒天培地 [パク トトリブトン(Difco社製) 10g、 酵母エキス(Difco社製) 5g、 NaCl 5gを水 1リヅトル に含み、 PH7.2に調整され、寒天をし 5%になるように添加された培地]に塗布し、 30 °C で 1日間培養した。
該培地上で生育した形質転換体のコロニー数個ずつを、アンピシリン 100〃g/mL を含む LB培地 10mLで 30°Cで 1日間培養した。
得られた培養液を遠心分離することにより菌体を取得した。 該菌体より常法に従 つてプラスミドを単離した。
Hindi II - l処理 DN A断片 (配列番号 1および 2記載の塩基配列を有する 2 種類のプライマーの組み合わせで PCR増幅して得られた DN A断片) と Hindi II - l処理 pTi>S30断片とを連結して得られたプラスミ ドを pHIAl、 Hindlll -BamHI 処理 D N A断片 (配列番号 1および 3記載の塩基配列を有する 2種類のブライマ一 の組み合わせで PCR増幅して得られた DN A断片) と Hindi II - I処理 pTrS30断 片とを連結して得られたプラスミ ドを pHIA2、 Hindi II - I処理 DNA断片 (配 列番号 4および 5記載の塩基配列を有する 2種類のブラィマーの組み合わせで PCR 増幅して得られた; DNA断片)と Hi dlll -BMHI処理 pTrS30断片とを連結して得ら れたプラスミ ドを pHIBlとそれそれ命名した。
3 ) 形質転換体の製造
このようにして得られたプラスミドを常法に従って sc richi'a, ooll
NM522(Stratagene社製)、 Ksnheric ia. £oii MM294(ATCC33625)および D—セリンデ ァミナーゼ活性を欠損した Eschen'cMa col i ME5386株(国立遺伝研より入手)に導入 した。
これらの菌株のうち、 pHIAlを保有する Es£hail£liia fiiili ΜΜ294/ρΗΙΑ1、 pHIA2を 保有する Esdien'cMa ^oli MM294/pHIA2、 および PHIB »保有する Esche ' ohi a. mil MM294/pHIBは、 ブタペスト条約に基づき、 それぞれ FERM BP-7309、 FERM BP- 7310、 FERM BP- 7311として独立行政法人 産業技術総合研究所 特許生物寄託センタ一: 日 本国茨城県つくば巿東 1丁目 1番地 1中央第 6 (旧 : 業技術院生命工学工業技術 研究所: 日本国茨城県つくば巿東 1丁目 1番 3号) に平成 12年 9月 28日付けで 寄託されている, 実施例 2 L—セリンデアミナーゼの発現および D—セリンの製造
上記のようにして得られた形質転換体および L—セリンデァミナーゼ遺伝子を含 まないプラスミ ド pTrS30»有する Escherichia coli DH5ひ/ pTrS30株を、 アンピシリ ン ΙΟΟ g/mL·を含む LB培地 lOOmLで 30°C、 1日間培養した。 得られた培養液を遠心分 離して菌体を取得し、 これを 50imol/Lのリン酸バヅファー (pH7.5) に再び懸濁し、 遠心 離して得られる菌体 (湿菌体重量約 2g) を反応に用いた。
D L—セリンを 50g/L含むリン酸バヅファ一(pH7.5)に上記の菌体を懸濁し、 37°C で 10時間〜 22時間反応を行った。
反応開始時、 反応中および反応終了後に反応液中の!)ーセリンおよび Lーセリン の濃度を HPLCにより定量した。 '
HPLCの条件は以下のとおりである。
カラム; CRAWNPAK CR (+) (Daicel Chemical Industries, Ltd. )
移動層:過塩素酸水溶液 (PH 1.0) ' 流速: 0.2mL/分
カラム温度: 2°C
検出はオルトフタルアルデヒド(0PA)を用いたボストカラム誘導体化法 〔 Chromatogr. , , 353-355 (1973)〕 を用いた。
第 1表に結果を示した。
第 1 表
L—セリン
量 D—セリン Lーセリン
菌株 プラスミド 反応時間総分解 相対活性
(時間) (g/Ί) 濃度 (gZI) 濃度 (g/Ί)
DH5 0? pTrS30 1 2 1 . 4 1 . 0
―….2.1 ……- .3… Z…-… ·
DH5び pHIB 1 2 1 9. 8 14. 1
21 24. 9 0. 0
NM522 pHIA1 1 1 21 . 6 16. 8
21 23. 7 0. 0
ME5386. DHIA2 1 -.… ·., ……- .2.5.....S. "…… Q, 0 16. 8
MM294 pHIA1 10 20. 3 17. 4
22
pHIA2 10 1 9. 4 1 6. 6
22 24. 3 0. 0
pHIB 1 0 8. 5 7. 3
22
反応開始後 10、 11または 12時間目の反応液中の Lーセリン濃度を求め、 反応開始 時の反応液中の L—セリン濃度との差を Lーセリンの総分解量として示した。 Lーセリンの総分解量を反応開始からの時間 (10、 11または 12時間) で割った値 を L—セリンデアミナーゼ活性として、 Escherichia mii DH5 a /pTrS30株の Lーセ リンデアミナ一ゼ活性を 1.0とした場合の各菌株の活性を相対活性として示した。 , 第 1表から明らかなように、 Escherichia coliME5386/pHIA2株について反 閲始 後 12時間目、 Escherichia mil DH5 a /ρΗΙΒ株およ 7 Esehen' ohia mil NM522/pHIAl 株について反応開始後 21時間目、 Escherichia mil ΝΜ294/ρΗΙΑ2株について反応開 始後 22時間目の: Lーセリン濃度および D—セリン濃度を測定したところ、 反応液中 の Lーセリン残量はゼロであり、 D—セリンのみが残存していた。 庠業卜の利用可能件
本発明により、 DL—セリンから、 D—サイクロセリン等の有用医薬品の合成中 間体等として有用な D—セリンを効率よく生産することができる。 配列恚フリーテキス ト 配列番号 1 合成 DNA
配列番号 1 合成 DNA
配列番号 3 合成 DNA
配列番号 4 合成 DNA
配列番号 5 合成 DNA

Claims

請求の節開 i. ェシエリヒア'コリ(Escherichia coli)DH 5 株の有する Lーセリンデ ァミナ一ゼ活性より高い L—セリンデアミナーゼ活性を有するように改変された微 生物の細胞、 該細胞の培養物またはそれらの処理物を、 DL—セリンを含有する媒 体中、 D L—セリンに接触させて Lーセリンを分解させ、 残存する D—セリンを該 媒体中から採取することを特徴とする D—セリンの製造法。
2. ェシエリヒア ·コ U (Escherichia. mii)DH 5 α株の有する Lーセリンデ ァミナーゼ活性より高い L—セリンデァミナーゼ活性を有するように改変された微 生物を、 DL—セリンを含有する培地に培養し、 Lーセリンを分解させ、 該培養物 より残存する D—セリンを採取することを特徴とする!)ーセリンの製造法。
3. 改変された微生物が、 Lーセリンデアミナーゼ活性を有する微生物を変異 処理して得られる変異微生物である請求項 1または 2記載の D—セリンの製造法。
4. 改変された微生物が、 L—セリンデアミナ一ゼ遺伝子を微生物に組み込ん で得られる形質転換体である請求項 1または 2記載の D—セリンの製造法。
5. 改変された微生物の Lーセリンデアミナ一ゼ活性が、ェシヱリヒア'コリ (Escherichia. mli)D H 5ひ株の有する Lーセリンデアミナ一ゼ活性に比べて 2倍 以上である請求項 1〜 4いずれか 1項に記載の D—セリンの製造法。
6. 改変された微生物の Lーセリンデアミナ一ゼ活性が、 ェシエリヒア'コリ (Escherichia. mli)D H 5ひ株の有する Lーセリンデァミナ一ゼ活性に比べて 5倍 以上である請求項 1〜 4いずれか 1項に記載の D—セリンの製造法。
' 7. Lーセリンデァミナ一ゼ遺伝子が、 ェシエリヒア .コリ由来の sdaA遺伝子 または sdaB遺伝子である請求項 4記載の D—セリンの製造法。
8. 改変された微生物が、 ェシヱリヒア 'コリに属する微生物である請求項 1 〜 7いずれか 1項に記載の])ーセリンの製造法 ό
9. 改変された微生物が、 Escherichia mil DH5ひ/ pHIB、 Escherichia.
NM522/pHIAU Ksohenchia QQII MM294/pHIAls Escherichia il MM294/pHIA2, Rsohftrinhia. il MM294/pHIBおよび Escherichia, mli ME5386/pHIA2からなる群か ら選ばれる微生物である請求項 1〜 8いずれか 1項に記譃の D—セリンの製造法。
10. 改変された微生物が、 D—セリンデアミナーゼ活性の低い、 もしくは活 性を有しない微生物である請求項 1〜 9いずれか 1項に記載の D—セリンの製造法。
11. ェシエリヒア 'コリ (EalmLkliia coll) に属し、 ェシエリヒア ·コリ (Esc eHctii £ali)DH 5 α株の有する Lーセリンデアミナ一ゼ活性より高い L一 セリンデアミナーゼ活性を有するように改変された微生物。
12. 微 Φ物が、 Escherichia. coHDH5o:/pHIB、Eschen'pJiia eoli' Μ522/ρΗΙΑ1、 Escheriobia coli MM294/pHIAU Es herichi mil MM294/pHIA2 Ksoheriohia c ll ΜΜ294/ρΗϊΒおよ 7J ¾chen'cMa p.oli ME5386/PHIA2からなる群から選ばれる微生物で ある請求項 1 1記載の微生物。
PCT/JP2001/009482 2000-11-01 2001-10-29 Procede de production de la d-serine WO2002036803A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002539546A JP4308521B2 (ja) 2000-11-01 2001-10-29 D−セリンの製造法
US10/415,107 US7186532B2 (en) 2000-11-01 2001-10-29 Process for producing D-serine
AU2002212690A AU2002212690A1 (en) 2000-11-01 2001-10-29 Process for producing d-serine
AT01980931T ATE518962T1 (de) 2000-11-01 2001-10-29 Verfahren zur herstellung von d-serin
EP01980931A EP1331274B1 (en) 2000-11-01 2001-10-29 Process for producing d-serine
KR1020037006087A KR100815085B1 (ko) 2000-11-01 2001-10-29 D-세린의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000334751 2000-11-01
JP2000-334751 2000-11-01

Publications (1)

Publication Number Publication Date
WO2002036803A1 true WO2002036803A1 (fr) 2002-05-10

Family

ID=18810608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009482 WO2002036803A1 (fr) 2000-11-01 2001-10-29 Procede de production de la d-serine

Country Status (8)

Country Link
US (1) US7186532B2 (ja)
EP (1) EP1331274B1 (ja)
JP (1) JP4308521B2 (ja)
KR (1) KR100815085B1 (ja)
CN (1) CN1280424C (ja)
AT (1) ATE518962T1 (ja)
AU (1) AU2002212690A1 (ja)
WO (1) WO2002036803A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602319B1 (en) 2004-10-13 2016-12-07 Mitsui Chemicals, Inc. DNA encoding novel enzyme having D-serine synthase activity, method of producing the enzyme and method of producing D-serine by using the same
WO2007063866A1 (ja) 2005-11-29 2007-06-07 Kyowa Hakko Kogyo Co., Ltd. 新規蛋白質および該蛋白質をコードするdna
CN101168513B (zh) * 2007-11-28 2012-06-27 上海化学试剂研究所 Dl-丝氨酸的制备方法
DE102010025124A1 (de) 2010-06-25 2011-12-29 Forschungszentrum Jülich GmbH Verfahren zur Herstellung von D-Aminosäuren, Mikroorganismus, sowie Vektor
CN117736959B (zh) * 2024-01-26 2024-05-14 湖北大学 运动发酵单胞菌的工程菌株、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591895A (ja) 1991-08-12 1993-04-16 Mitsubishi Petrochem Co Ltd D−セリンの製造法
WO1998014602A2 (en) * 1996-09-30 1998-04-09 Nsc Technologies Llc Preparation of d-amino acids by direct fermentative means

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591895A (ja) 1991-08-12 1993-04-16 Mitsubishi Petrochem Co Ltd D−セリンの製造法
WO1998014602A2 (en) * 1996-09-30 1998-04-09 Nsc Technologies Llc Preparation of d-amino acids by direct fermentative means

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGSHENG SU ET AL.: "L-serine degradation in escherichia coli K-12: cloning and sequencing of the sdaA gene", JOURNAL OF BACTERIOLOGY, vol. 171, no. 9, September 1989 (1989-09-01), pages 5095 - 5102, XP002907878 *

Also Published As

Publication number Publication date
KR100815085B1 (ko) 2008-03-20
AU2002212690A1 (en) 2002-05-15
JP4308521B2 (ja) 2009-08-05
US7186532B2 (en) 2007-03-06
US20040072308A1 (en) 2004-04-15
EP1331274B1 (en) 2011-08-03
ATE518962T1 (de) 2011-08-15
EP1331274A4 (en) 2005-08-10
KR20030066648A (ko) 2003-08-09
CN1280424C (zh) 2006-10-18
EP1331274A1 (en) 2003-07-30
CN1531599A (zh) 2004-09-22
JPWO2002036803A1 (ja) 2004-03-11

Similar Documents

Publication Publication Date Title
KR100724004B1 (ko) 항균 또는 제초 활성을 갖는 물질의 탐색 방법
JP6993227B2 (ja) 希少糖の製造法
US20110262977A1 (en) Process for production of optically active amine derivative
JP2011055722A (ja) イノシトールの製造方法
WO2009139365A1 (ja) シス-4-ヒドロキシ-l-プロリン製造方法
CN111560410A (zh) 咪唑二肽的制备方法
WO2002036803A1 (fr) Procede de production de la d-serine
US7897370B2 (en) Process for producing HMG-CoA reductase inhibitor
JP2009213392A (ja) 改良型没食子酸合成酵素および没食子酸の製造法
JP4745753B2 (ja) コリネ型細菌を用いる還元条件でのアミノ酸の製造方法
JP2014236713A (ja) ピペコリン酸水酸化酵素
WO2008013262A1 (fr) L-leucine hydroxylase et adn codant pour l'enzyme
KR20010102019A (ko) N-아세틸글루코사민 2-에피머라아제 및 이 효소를코딩하는 dna
KR20200009926A (ko) 이산화탄소 환원 활성이 증가된 포메이트 탈수소화 효소 스크리닝 시스템과 이의 용도
JP5631534B2 (ja) 新規蛋白質および該蛋白質をコードするdna
US8703447B2 (en) Process for production of L-glutamine or L-glutamic acid
KR100707989B1 (ko) 남세균 시네코시스티스 속의 이소코리스메이트 합성효소 유전자를 이용하여 코리스메이트로부터 이소코리스메이트를 생합성하는 방법
WO2024122636A1 (ja) ポリエチレンテレフタレート分解活性を有する蛋白質及びポリエチレンテレフタレートを分解する方法
WO2023210244A1 (ja) Nampt活性を有する蛋白質およびnmnの製造方法
JPH11285385A (ja) ビオチン活性物質の製造法
JPH11155572A (ja) 4(r)−ヒドロキシ−2−ケトグルタル酸アルドラーゼおよび該酵素をコードするdna
JP2006020641A (ja) トランス−4−ヒドロキシ−l−プロリンの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002539546

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037006087

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001980931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018216250

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001980931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037006087

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10415107

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642