WO2002036544A1 - Procede pour separer des isomeres optiques d'un derive d'acide amine - Google Patents

Procede pour separer des isomeres optiques d'un derive d'acide amine Download PDF

Info

Publication number
WO2002036544A1
WO2002036544A1 PCT/JP2001/009384 JP0109384W WO0236544A1 WO 2002036544 A1 WO2002036544 A1 WO 2002036544A1 JP 0109384 W JP0109384 W JP 0109384W WO 0236544 A1 WO0236544 A1 WO 0236544A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amino acid
substituted
acid derivative
separation
Prior art date
Application number
PCT/JP2001/009384
Other languages
English (en)
French (fr)
Inventor
Shin Watanabe
Mizue Kawahara
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to EP01980906A priority Critical patent/EP1338588B1/en
Priority to DE60130674T priority patent/DE60130674T2/de
Priority to US10/415,559 priority patent/US7199264B2/en
Priority to KR1020037004754A priority patent/KR100790507B1/ko
Publication of WO2002036544A1 publication Critical patent/WO2002036544A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/08Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/16Preparation of optical isomers
    • C07C231/20Preparation of optical isomers by separation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a method for mutually separating isomers from a mixture of a pair of optical isomers of an amino acid derivative.
  • a hydrogen atom in the amino group of the amic acid is an alkoxycarbonyl group such as a tert-butoxycarbonyl group, an aralkyloxycarbonyl group, an aryloxycarbonyl group, an alkenyloxycarbonyl group, or an acyl group.
  • Amino acid derivatives substituted and protected with groups are important compounds as pharmaceuticals or pharmaceutical intermediates. It is widely known that optical isomers often exist in these amino acid derivatives, and that there is often a large difference in the physiological activity and toxicity between these optical isomers. Therefore, for amino acid derivatives used in such fields, it is very important to produce high optical purity ones, and to confirm the optical purity prior to use.
  • optical isomers In general, the separation and purification of optical isomers can be performed using liquid chromatography, and various columns for separation of optical isomers, in which polysaccharides, amino acid derivatives and the like are supported on silica gel, have been developed.
  • 4 0 9-4 15 describes examples of the use of monocyclodextrin and / or -cyclodextrin as mobile phase components for the separation of racemic mandelic acid and racemic mandelic acid derivatives, and high performance (or Cyclodextrin-bound phase for high-speed liquid chromatography (HPLC) Is applied to the separation of optical isomers, isomers and structural isomers.
  • HPLC high-speed liquid chromatography
  • the authors report the enantiomeric separation of dansyl amino acids by micro-HPLC using ⁇ -cyclodextrin as the mobile phase component.
  • the separation method described in this document utilizes the property that /?-Cyclodextrin is easy to form a complex (inclusion complex) with a low molecular weight compound having naphthalene ⁇ constituting a dansyl group, This separation method cannot be applied as it is for the optical isomer separation of an amino acid derivative having no naphthalene ring.
  • the above literature describes that the separation factor tends to increase as the pH of the mobile phase increases, and that pH around 6 is most preferable. In the pH region, for example, the optical isomers of the amino acid derivative having tert-butoxycarbonyl or the like as described above cannot be separated.
  • Optical isomers of amino acid derivatives in which a dansyl group has been introduced into the amino group of an amino acid can be separated by the method of Takeuchi et al. Above, but it is necessary to remove the dansyl group and return it to the original amino acid. It may not always be easy. Therefore, it can be used as an intermediate in the synthesis of pharmaceuticals, for example, bioactive peptides, and the group introduced for such use and / or separation can be easily used after the intended purpose has been achieved. There is still a strong demand for providing a method for separating an amino acid derivative which is a group capable of leaving (for example, see the above tert-butoxycarpoxyl group).
  • the present inventors have proposed a pair of D-type and L-type If the amino acid derivative containing the isomer is present together with a hydrophilic compound having a different affinity for each optical isomer to express a difference in hydrophobicity between the two, then the difference is utilized to allow the two to be used.
  • Various investigations were conducted, considering that they could be separated. As a result, sufficient separation cannot be achieved simply by treating the above-mentioned amino acid derivative having a substituent such as a tert-butoxycarbonyl group with / ⁇ -cyclodextrin according to Takeuchi et al.
  • a pair of optical isomers of an amino acid derivative in which one of the hydrogen atoms of an amino acid or an imino group of an amino acid having at least one asymmetric carbon is ⁇ -substituted by an organic carbonyl group is used.
  • a method for separating each optical isomer from a contained mixture is used.
  • the present invention also provides a method for producing a high-purity optically active form of an amino acid or a derivative thereof using such a separation method, and the use of the separation method for efficiently performing such a production method. You.
  • the amino acid derivative to which the method of the present invention is applied has the effects and effects according to the present invention.
  • the amino acid derivative is formed between the optical isomers (or formed from each optical isomer) through the above-mentioned steps (B) and (C). Any derivative may be used as long as it makes a difference in the hydrophobicity of the complex.
  • the “pair of optical isomers” in the present invention means an optical isomer of a specific amino acid, for example, one L-type and one D-type.
  • each optical isomer can be separated from a pair of optical isomers by the following mechanism.
  • an amino acid derivative containing D-type and L-type optical isomers coexists with a hydrophilic compound having the above properties in an aqueous solution
  • the optical isomer having strong affinity for the hydrophilic compound Interact in some way to form a complex that is more hydrophilic than the other optical isomer (inclusion complex or molecular assembly that binds by other physical or chemical interactions).
  • inclusion complex or molecular assembly that binds by other physical or chemical interactions.
  • the carboxyl group of the amino acid derivative does not dissociate, so that the optical isomer having relatively high hydrophobicity (that is, forming a complex with the hydrophilic compound)
  • the optical isomer that is not present or is considered to form a more unstable complex than the above complex further increases the hydrophobicity, whereas the effect of the hydrophilic compound is large in the above complex. Since the hydrophilicity does not change much, it is thought that the equilibrium partition ratio of both to the hydrophobic substance changed, and as a result, it became possible to separate the optical isomers efficiently.
  • each of the configurations of the present invention described in detail below is preferably selected to exhibit the above-described functions.
  • N-substituted amino acid derivative used or treated in the method of the present invention has a general formula (I): ',
  • each group in the above formula is a typical group included in relation to each definition.
  • the following is an example of a typical amino acid, which is commonly used and written in rikko.
  • R 1 represents an unsubstituted or substituted C i -e alkyl group, and when substituted, the substituents are hydroxy (serine, threonine), mercapto (cystine), methylthio (methionine), and amino (lysine) , mono- mono- or Jimechiruamino, d - 6 alkyl, C i - 6 alkylcarbonyl Amino, C 6 alkyl O alkoxycarbonyl, Amijinoamino (arginine), carboxy (glutamic acid, Asuparagin acid), d - 6 alkyl O alkoxycarbonyl
  • the substituents for unsubstituted or substituted fuunyl (unsubstituted phenyl (funinylalanine), and substituted phenyl are the same or different; 1-3 Halogen atoms, hydroxy (tyrosine), mercapto, methyl, trif It can be a O
  • typical starting amino acids include alanine, isoleucine, leucine, and valine.
  • R 2 and R 3 is a hydrogen atom and the other represents alkoxycarbonyl, aralkyloxycarbonyl, aryloxycarbonyl, alkenyloxycarbonyl or acyl, or R 2 and R 3
  • the group representing a hydrogen atom is, instead of a hydrogen atom, a group consisting of propane-1,3-diyl (proline), which can form a five-membered ring through a nitrogen atom to which they are bonded together with R 1 .
  • 2-hydroxypropane-1, 3-diyl or 1-hydr Roxypropane represents 1,3-zil.
  • amino acid derivatives identified in this way are, among others, those derived from alanine, proline, leucine, isoleucine, norin, tryptophan, phenylalanine, tyrosine, serine, methionine, glutamine, glutamic acid and lysine.
  • the method of the invention is preferably used.
  • the alkyl described in the present specification and the alkyl in the alkoxy or alkyloxy, alkoxycarbonyl and alkylcarbonyl groups each have the stated number of carbon atoms.
  • Cl-4 alkylene as referred to in aralkyl, preferably phenyl-1-d-4alkylene, includes methylene, ethylene, propylene, 2-methylpropylene and butylene.
  • alkenyl referred to alkenyl O carboxymethyl carbonylation Le is, C 3 9 alkenyl is preferable, but not limited to, 1-butene, 2-butene, and the like.
  • substituents may be present on the benzene ring included in aralkyloxycarbonyl, aryloxycarbonylaryl, and benzoyl described in this specification.
  • substituents include, but are not limited to, a halogen atom (fluorine, chlorine, bromine, iodine), hydroxy, mercapto, methyl, trifluoromethyl, amino, dinitro, and the like.
  • the amino group of the amino acid A pair of optical isomers of an amino acid derivative in which at least one of the hydrogen atoms has been substituted with an alkoxycarbonyl group, an aralkyloxycarbonyl group, an aryloxycarbonyl group, an alkenyloxy group, or an acyl group;
  • the body mixture is processed.
  • the D-form or L-form is separated from an amino acid derivative in which D-form and L-form optical isomers of a certain amino acid derivative (hereinafter, also simply referred to as D-form and L-form, respectively) are mixed.
  • D-form and L-form may be mixed in equal amounts in the racemic mixture.
  • the separation method of the present invention can be applied to the separation of optical isomers of amino acid derivatives having two or more asymmetric carbon atoms. It is preferable to use it for an amino acid derivative which has two types of optical isomers due to its presence.
  • each of the groups is as follows. That is, the alkoxycarbonyl group is a total carbon atom such as a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, a tert-butoxycarbonyl group, an isobutoxycarbonyl group, and a tert-amyloxycarbonyl group. It is preferably a group having the number of 2 to 10.
  • aralkyloxycarbonyl includes total carbon atoms such as benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, and 9-fluorenylmethoxycarbonyl.
  • the aryloxycarbonyl group is a phenyloxycarbonyl group, Trophenyloxycarbonyl group, p-methylphenyloxycarbonyl group, m-methylphenyloxycarbonyl group, 2,4-dimethylphenyloxycarbonyl group, 2,4,6-trimethylphenyl It is preferably a group having a total number of carbon atoms of 7 to 10 such as a dioxycarbonyl group, and the alkenyloxycarbonyl group is a group having a total number of 1-buteneoxycarbonyl group, 2-buteneoxycarbonyl group and the like.
  • the acryl group is a group having a total carbon number of 1 to 7 such as a formyl group, an acetyl group, a propanol group, a butanol group, a benzoyl group and the like. It is suitable.
  • substituents particularly high separation is expected, and methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group, tert-amyloxycarbonyl group, benzyloxycarbonyl group, Particularly preferred are a phenyloxycarbonyl group, a formyl group, an acetyl group, a propanol group, or a benzoyl group.
  • the mixture containing a pair of optical isomers of the N-substituted amino acid derivative to be treated by the method of the present invention may be obtained by any method.
  • R 1 is the same as defined for the above general formula (I)
  • R 2 — a and R 3 — a are each independently a hydrogen atom, or Propane-1,3-diyl, 2-hydroxypropane-1,3-diyl or 1-hydroxypropane which can form a 5-membered ring via the nitrogen atom to which they are attached together with 1
  • An amino acid also referred to as a starting amino acid or a basic amino acid
  • represented by the general formula (III) can be represented by the general formula (III) in a solvent that does not adversely affect the reaction in the presence of a base.
  • A represents alkoxy, aralkyloxy, aryloxy, alkenyloxy, or alkyl or aryl
  • the product obtained by reacting with an active ester of an acid represented by the formula is treated by the method of the present invention (mixture of optical isomers or unseparated) Amino acid derivative).
  • an active ester of an acid represented by the formula for example, di-tert-butyl carbonate, chloroformate, acyl halide
  • Amino acid derivative mixture of optical isomers or unseparated
  • an amino acid derivative is synthesized using such an organic chemical synthesis reaction, even when a raw material having a high optical purity is used, a racemic or optically pure amino acid derivative is used. Degrees of 80-99% can be obtained.
  • a hydrophilic compound (hereinafter, also referred to as a chiral selector) having a different affinity for each optical isomer (D-form and L-form) contained in the unseparated amino acid derivative.
  • the unseparated amino acid derivative is mixed with an aqueous solution, and the resulting aqueous solution or aqueous suspension can be used as a counter ion for the amino acid derivative under conditions where the pH is 3.5 or less.
  • the aqueous solution or aqueous suspension is brought into contact with a hydrophobic substance under the coexistence of an ion containing a hydrophobic atomic group (by placing the ion at the same position), and the hydrophobicity between the optical isomers is changed.
  • chiral selector a known compound can be used without particular limitation as long as it is a hydrophilic compound having a different affinity for each optical isomer.
  • an optically active compound and a host compound having a chiral cleavage space therein are each optical isomer D-type isomer Since the affinity between the isomer and the L-isomer is different, hydrophilic compounds among such compounds can be suitably used as the chiral selector in the present invention.
  • hydrophilic means that the compound has a slight solubility in water. When the chiral selector is hydrophobic, the D-form and the L-form cannot be separated efficiently.
  • Compounds that can be used as chiral selectors in the present invention include polysaccharides and derivatives thereof, and natural optically active compounds of amino acids and derivatives thereof. Specific examples of these compounds include the following compounds. . That is, examples of polysaccharides include R-mylose, ⁇ -cyclodextrin, ⁇ -cyclodextrin, arcyclodextrin, and the like.
  • Polysaccharide derivatives include heptakis (2,6-0-dimethyl) - ⁇ -cyclodextrin, heptakis (2,3,6-0-trimethyl) — ⁇ _cyclodextrin, heptakis (2,6 — 0—Hydroxypropyl) — 3-Cyclodextrin, Heptakis (2,3,6_0—Hydroxypropyl) — ⁇ -Cyclodextrin, Heptakis (2,6—0—Methyl-3-0) (Acetyl) 1- ⁇ -cyclodextrin, hexakis (2,6-0-dimethyl) 1 ⁇ -cyclodextrin, hexakis (2,3,6-0-trimethyl) 1 / 3-cyclodextrin , Hexakis (2,6-10-hydroxypropyl) — ⁇ -cyclodextrin, hexakis (2,3,6-0 -hydroxypropyl) 1 / 3-cyclod
  • natural optically active compounds of amino acids include phenylalanine, tributofan, leucine, and the like. Further, these derivatives include ⁇ — (tert-butoxycarbonyl) -1-L-tryptophan and N— (tert-butoxycarbonyl) -1D— Tryptophan, N— (tert-butoxycarbonyl) 1 L-phenylalanine, N— (tert Examples thereof include 1-butoxycarbonyl) 1-D-phenylalanine, N- (tert-butoxycarbonyl) 1 L one-port isine, and N- (tert-butoxycarbonyl) 1 D-port isine. These compounds may be used alone or in combination of two or more.
  • cyclodextrins or derivatives thereof because of their high resolution among the chiral selectors.
  • a part of the hydroxyl group or hydrogen atom of cyclodextrin is replaced with a hydroxyxyl group, a hydroxypropyl group, or a trifluoroacetyl group. It is preferable to use cyclodextrin substituted with an acetyl group.
  • the amount of the chiral selector used in the present invention is such that the amount of the unseparated amino acid derivative used and the optical amount thereof are used so that the amount of the chiral selector is sufficient for the amount of the D-form or L-form having affinity.
  • the concentration may be determined as appropriate depending on the purity, etc., but from the viewpoint of obtaining a sufficient separation effect and preventing a decrease in operability due to excessive use and an increase in viscosity, the concentration in the aqueous solution is from 1 mM to 10 mM. It is preferred to use in the range of 0 mM.
  • the unseparated amino acid derivative and the chiral selector are Mix in aqueous solution.
  • the aqueous solution means a solution containing water, that is, water or a mixed solution of water and an organic compound having solubility in water, and is a D-form or an L-form in an unseparated amino acid derivative.
  • the organic compound used at this time is not particularly limited as long as it is miscible with water; nitrile compounds such as acetonitrile; methanol, isopropyl alcohol, propyl alcohol
  • -Aliphatic alcohols such as ethanol, butyl alcohol, tert-butyl alcohol and octanol; aromatic alcohols such as phenol; water-soluble polymers such as ethylene glycol, glycerol, polyethylene glycol, and polyvinyl alcohol.
  • acetonitrile, methanol, isopropyl alcohol, ethanol and the like having a low boiling point are preferably used from the viewpoint of easy removal after optical isomer separation.
  • the amount of the organic compound to be used is not particularly limited, but is 0.1 to 50% by mass, particularly 0.1 to 25% by mass, based on the total mass of water and the organic compound. Is preferred.
  • the method of mixing the unseparated amino acid derivative and the chiral selector in the aqueous solution is not particularly limited, and a predetermined amount of each of the unseparated amino acid derivative and the chiral selector is measured and added to the aqueous solution simultaneously or sequentially. What is necessary is just to stir and mix.
  • the quantitative ratio of the unseparated amino acid derivative to the chiral selector is such that the molar number of the chiral selector is at least larger than the molar number of the optical isomer having high affinity for the chiral selector in the unseparated amino acid derivative.
  • the ratio of the number of moles of the chiral selector to the number of moles of the unseparated amino acid derivative (that is, the sum of the D-form and the L-form) ⁇ from the number of moles of the chiral selector (Z + Mol number of L-form) ⁇ is preferably 100 to 1, particularly 100 to 5.
  • the aqueous solution or the aqueous suspension containing the unseparated amino acid derivative and the chiral selector prepared as described above is obtained by: Under the condition that the pH of the amino acid derivative becomes 3.5 or less, or in the coexistence of (il) an ion containing a hydrophobic atomic group (hereinafter also referred to as a hydrophobic counter ion) which can be a counter ion of the present amino acid derivative to be used. Need to be brought into contact with the hydrophobic substance. It is thought that if the contact is made with a hydrophobic substance without satisfying the above conditions (i) or (il), there is no effective difference in the hydrophobicity between the D-form and the L-form. No separation effect is obtained.
  • an ion containing a hydrophobic atomic group hereinafter also referred to as a hydrophobic counter ion
  • the pH of the aqueous solution or suspension may be adjusted to be 3.5 or less using a pH adjuster.
  • the pH adjusting agent that can be used at this time is not particularly limited as long as it can adjust the pH of the aqueous solution to 3.5 or less.
  • Mineral acids such as phosphoric acid, sulfuric acid, and hydrochloric acid; and formic acid, acetic acid, lactic acid, and propion Organic acids such as acids, cunic acid, maleic acid, and malonic acid can be used without limitation.
  • the concentration of these ⁇ adjusters is not particularly limited, but is generally used in the range of 1 to 10 OmM, preferably 1 to 3 OmM.
  • the pH of the aqueous solution or the aqueous suspension is preferably from 1 to 3, particularly preferably from 1.4 to 2.5.
  • the pH adjustment may be performed before contact with the hydrophobic substance, and may be performed before mixing the unseparated amino acid with the chiral selector.
  • Such mixing is not limited as long as it is a temperature at which the mixing is sufficiently performed, but generally, it is preferably performed at 10 ° C to 30 ° C.
  • the hydrophobic counter ion coexisting in the case of contacting with a hydrophobic substance under the condition (ii) is such that a site capable of forming an ion such as a carboxyl group in the present amino acid derivative is ionized in an aqueous solution. When it is converted, it is present as an ion having the opposite charge, and is not particularly limited as long as it forms an ion pair.
  • atomic groups only need to be hydrophobic as a whole, and some of them have functional groups such as a hydroxyl group and a nitro group, and halogen atoms such as fluorine, chlorine, bromine, and iodine. You may.
  • the hydrophobic counterion is used by being added to the aqueous solution in the form of a compound that forms a cation or anion by ionizing in the aqueous solution (hereinafter, also referred to as a hydrophobic counterion-forming compound).
  • a compound that forms a cation or anion by ionizing in the aqueous solution
  • a hydrophobic counterion-forming compound an amine compound, an ammonia compound, a boron compound, a phosphorus compound, a sulfonic acid compound, etc. having the above-mentioned hydrophobic atomic group can be used. Since the amine compound is neutral, it is necessary to add a hydrogen ion in an aqueous solution to exist as a cation.
  • the pH of the aqueous solution is set to be equal to or lower than the pKa of the amine compound to be used.
  • examples of the amide compound include trimethylamine, getylamine, triethylamine, triethanolamine, triisopropylamine, and diisopropylmethylethanol.
  • amines such as triamine, dibutylamine, dibutylamine, butylamine, octylamine, dioctylamine, trioctylamine, diphenylamine, triphenylamine, and the like.
  • ammonium compound examples include ammonium salts such as hydrochloride, bromate, and hydroxide of these amine compounds, tetramethylammonium chloride, tetramethylammonium bromide, and tetraethylammonium chloride. Tetrabutylammonium bromide, tetrabutylammonium phosphate, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium hydroxide, etc. .
  • Examples of the boron compound include ionic boron compounds such as sodium tetraphenylboron and sodium tetra (chlorophenyl) boron.
  • Examples of the phosphorus compound include tetraphenylphosphine chloride and tetraoctylphosphine chloride.
  • sulfonic acid compounds such as toluenesulfonic acid, octylsulfonic acid, and dodecylsulfonic acid.
  • triethylamine triethanolamine, triethanolamine, tributylamine, dibutylamine, triptylamine, tetrabutylamine, tetraamylamine, dodecylsulfonic acid, etc. are preferably used from the viewpoint of solubility in an aqueous solution.
  • the amount of the hydrophobic counter ion to be used is not particularly limited as long as it is a sufficient amount for the D-form or the L-form which is present in the unseparated amino acid derivative and has a low affinity for the chiral selector.
  • the optimal amount may be appropriately determined from the viewpoint of the separation effect according to the type and amount of the unseparated amino acid derivative, the type of the chiral selector, etc., and is usually represented by the concentration in the aqueous solution or aqueous suspension. It is preferable to use an amount in the range of 0.01 mM to 5 O mM, particularly 0.1 mM to 3 O mM.
  • the pH of the aqueous solution containing the hydrophobic counterion is particularly limited as long as the present amino acid derivative to be separated is ionized to form an ion pair with the hydrophobic counterion.
  • H 4 to 8
  • pH 4 to 7.
  • Salts such as sodium chloride, sodium hydrogen phosphate, potassium dihydrogen phosphate, etc., tris (hydroxymethyl) aminomethane, 4- (2-hydroxyxetyl) -11-piperazine diethanesulfonic acid, morpholinepropanesulfone Organic compounds for pH buffer such as acids can be used.
  • a compound that provides a hydrophobic counter ion and the pH adjustment performed as necessary may be performed before contact with the hydrophobic substance, and may be performed before mixing the unseparated amino acid with the chiral selector. Is also good.
  • the aqueous solution or the aqueous suspension that is brought into contact with the hydrophobic substance may contain, as an optional component, a salt for adjusting ionic strength, or when the separation method of the present invention is applied to an optical purity analysis method.
  • a "compound having an absorption spectrum in an ultraviolet region or a visible region" for facilitating the detection of the D-form and the L-form may also be added.
  • the salts sodium chloride, potassium chloride, calcium chloride, etc. can be used.
  • Examples of the “compound having an absorption spectrum in an ultraviolet region and a visible region” include toluenesulfonic acid, sodium toluenesulfonic acid, and sodium benzenesulfonate.
  • Organic compounds having aromatic compounds such as sodium naphthalene sulfonate, fluorescein, phenolphthalein, 21-blue, eosin and coumarin can be used.
  • the "aqueous solution or aqueous suspension containing an unseparated amino acid derivative and a chiral selector" is used under the conditions (i) or (il). Is contacted with a hydrophobic substance under the conditions satisfying the above conditions, and the D-form and the L-form are separated by utilizing the difference in affinity for the hydrophobic substance.
  • the hydrophobic substance used herein is a liquid or solid hydrophobic substance without particular limitation as long as it is a substance having a higher hydrophobicity than the aqueous solution and can be easily separated therefrom.
  • a liquid hydrophobic substance an organic solvent which is insoluble or hardly soluble in water, such as chloroform, dichloromethane, hexane and octanol, can be used.
  • the solid hydrophobic substance any solid having a hydrophobic surface can be used without particular limitation.
  • Such substances include compounds having a hydrophobic group having 1 or more carbon atoms such as octadecyl, octyl, butyl, methyl, phenyl, and cyanopropyl groups on the surface of inorganic fine particles such as silica and titania.
  • Hydrophobic polymer microparticle solid polymer having 1 or more carbon atoms such as octadecyl, octyl, butyl, butyl, methyl, phenyl, cyanopropyl, etc. on the surface of polymer microparticles such as polystyrene and polymethyl methacrylate
  • polymer microparticles such as polystyrene and polymethyl methacrylate
  • Examples thereof include a solid to which a compound having a hydrophobic group is bonded. If necessary, a compound having an ion exchange group such as a sulfonyl group, an amino group, or an ammonium group may be bonded to the surface of these solids to adjust the hydrophobicity.
  • a solid hydrophobic substance the larger the surface area is, the smaller the amount of the present amino acid derivative that can be separated at once becomes a dog. Therefore, it is preferable to use solid fine particles having a hydrophobic surface.
  • an unseparated amino acid derivative (of each optical isomer)
  • the method for separating the D-form and the L-form by bringing the aqueous solution or aqueous suspension containing the mixture) and the chiral selector into contact with a hydrophobic substance is not particularly limited, and can be suitably carried out by the following method. it can.
  • optical isomers can be separated by filling a hollow tube with a solid hydrophobic substance and using it as a chromatographic separation column.
  • an aqueous solution containing a chiral selector as a mobile phase and satisfying the conditions (i) or (11) is passed through a separation column, and an unseparated amino acid derivative is injected upstream of the separation column to perform liquid chromatography.
  • the unseparated amino acid derivative and the chiral selector are mixed in the aqueous solution in the column and come into contact with the hydrophobic substance, which is the packing material in the column, and after a certain period of time, each optical isomer from downstream of the separation column Spills with the body separated (in other words with different retention times).
  • the mobile phase flowing out can be monitored over time for ultraviolet absorption, electrical conductivity, refractive index, etc. at a specific wavelength, and a chromatogram can be obtained, and the outflow of the D-form or the L-form is detected from the chromatograph. Then, by fractionating this, the amino acid derivative of the present invention having improved optical purity can be obtained.
  • the method by liquid chromatography is a particularly preferable embodiment as the separation method of the present invention because the operation is simple and the separation performance is high.
  • an undiluted amino acid derivative and a chiral selector are previously mixed in an aqueous solution, and then an aqueous solution or aqueous suspension (hereinafter, referred to as an aqueous suspension) prepared so as to satisfy the above condition (i) or (11).
  • an aqueous suspension prepared so as to satisfy the above condition (i) or (11).
  • the D-form and the L-form can also be separated by contacting the aqueous solution or aqueous suspension prepared as described above simply with a hydrophobic substance.
  • the hydrophobic layer contains a large amount of optical isomers (or a complex thereof) with high hydrophobicity
  • the aqueous solution layer contains a large number of optical isomers (or a complex thereof) with a strong hydrophilicity. It is distributed at a ratio according to the characteristics of the chiral selector used, and the D-form or L-form is concentrated in each layer.
  • the liquid is removed from one of the layers separated and recovered by the above operation, for example, distillation under reduced pressure, and then the same separation operation is performed again. By repeating, a D-form or an L-form having high optical purity can be obtained.
  • the solid hydrophobic substance When a solid is used as the hydrophobic substance, the solid hydrophobic substance is put into the prepared aqueous solution and brought into contact by stirring, and after a certain period of time, the solid hydrophobic substance is removed by filtration, and the liquid It can be performed by recovering the components.
  • the filtrate contains many strongly hydrophilic optical isomers (or its complex). Become. If sufficient separation cannot be carried out by one operation, the filtrate is removed by vacuum distillation or the like in the same manner as described above, and then the same separation operation is repeated to obtain the D-isomer having high optical purity. Or L-form can be obtained.
  • optical isomer adsorbed on the solid hydrophobic substance is also washed with a hydrophobic organic solvent, the washing solution is recovered, and the other optical isomer is recovered by removing the solvent from the recovered liquid. It is possible. Also in this case, high purity can be achieved by repeating the operation.
  • the optical isomer separated by the separation method of the present invention as described above is generally obtained in the form of a solution or suspension containing contaminants (the chiral selector used in the separation, various salts, etc.), Of course, it is also possible to isolate amino acid derivatives having improved optical purity from these solutions and the like.
  • a liquid component is removed by distillation under reduced pressure, and then the amino acid derivative is dissolved but other contaminants are dissolved.
  • a method of dissolving only the amino acid derivative by adding a solvent that is not used, separating the solution by filtration or the like, and then removing the solvent.
  • the separation method is based on the chemical synthesis method as described above, or a reaction using an enzyme or a microorganism, and the amino acid derivative (ie, D-form and L-form) which has not been separated from the racemic or optically active basic amino acid.
  • This mixed amino acid derivative is obtained, and the unseparated amino acid is subjected to optical separation to produce a highly pure (high optically pure) D-form or L-form, which can be suitably employed as an optical separation step.
  • the amount of each of the D-form and the L-form contained in the unseparated amino acid derivative can be quantified in a state where they are separated from each other. It can also be suitably used as a method for analyzing the optical purity of an acid derivative.
  • the method using liquid chromatography described above is not only simple and has high separation performance, but also increases the respective amounts by using a calibration curve without isolating D-form and L-form. Since it can be obtained with high accuracy, it is an excellent optical purity analysis method (optical purity measurement method).
  • an unseparated amino acid derivative is obtained from a basic amino acid by the method described above, and the optical separation of the unseparated amino acid ( (Optical resolution) to produce a high-purity (high optical purity) D- or L-isomer.
  • optical separation method in addition to the separation method of the present invention, a method of physically separating using the crystal form of an optical isomer, a method based on the principle of separation of diastereomers, and specifically, Is converted to stable diastereomers (including molecular complexes), and then separated by operations such as crystal fractionation, chromatography, distillation, etc., Chiral adsorbent ⁇ Selective adsorption and extraction using chiral solvent
  • known optical resolution methods such as a method, an asymmetric conversion method and a method utilizing an asymmetric reaction can be employed.
  • ⁇ -cyclodextrin manufactured by Tokyo Chemical Industry Co., Ltd. 11.35 g was dissolved in 1 L of 0.1% phosphoric acid aqueous solution (volume ratio) to give a solution with a cyclodextrin concentration of 10 mM and pH2. And acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) at 10% (by volume) to prepare an aqueous solution.
  • the resolving power (R s) represents how well the two peaks are separated from each other, and is a value defined by the following equation. The larger this value is, the better the two peaks are separated. When R s is 0, it indicates that the two peaks are not separated at all, and when R s> 1, 2 This indicates that the peak is completely separated from the bottom.
  • t R1 in the above formula represents the retention time of peak 1 in the chromatogram obtained by separating the compound consisting of the two components
  • t R2 represents the retention time of peak 2
  • W 2 represents Indicates the bottom (time length) of mark 2.
  • Example 1 The separation column was changed to Inertsil PH (manufactured by GL Sciences) packed with a stationary phase in which fluorine groups were chemically bonded to the silica gel surface, and the ratio of acetonitrile was changed to 15% (by volume).
  • the apparatus used was the same as that used in Example 1, but the detection wavelength was 254 nm because of good sensitivity. At this time, R s was 1.56, and good separation was also achieved.
  • Example 8 Same as Example 6 except that triethylamine phosphate was replaced by tetrabutylammonium phosphate (GL Sciences), the ratio of acetonitrile was changed to 10% (by volume), and the detection wavelength was changed to 210 nm.
  • the pH was adjusted to 3.4 using 1 OmM sodium citrate, the amino acid derivative benzyloxycarbonyl-L-alanine was used as the chiral selector, and N-benzoyl-DL-valin ⁇ (D-form ZL form)
  • the molar ratio 1/2 ⁇ and high-performance liquid chromatography Ruffy analysis was performed.
  • the absorbance was monitored using a detection wavelength of 254 nm. As a result, Rs was 0.08, and separation was possible.
  • composition of aqueous solution (mobile phase composition)
  • the eluate from the column corresponding to each chromatographic peak was separately collected.
  • the eluate of the chromatographic peak eluted first was eluent 1
  • the eluate of the chromatographic peak eluted later was eluent 2.
  • the following operation was performed on the eluate 1 and the eluate 2, and the optical purity of the amino acid derivative contained in each eluate was measured.
  • Detection wavelength 210 nm.
  • N- (tert-butoxycarbonyl) -DL-alanine was separated in the same manner as in Example 1 except that 8-cyclodextrin was not added to the mobile phase. And L-type were not separated at all.
  • N- (tert-butoxycarbonyl) -DL-tributofan was separated and analyzed in the same manner as in Example 5 except that a mobile phase to which triethylamine as a compound generating a hydrophobic counter ion was not added was used.
  • a commercially available optical isomer separation column Sumichiral OA 7000 (separation column using a carrier in which ⁇ -cyclodextrin is immobilized on the surface of silica gel particles) is used as the packing, and 20% of acetonitrile is contained as the mobile phase with 20 mM KH 2 P0 4 aqueous solution (pH 2. 5) to, N - (tert-butoxycarbonyl) by injecting an DL- full
  • We two Ruaranin ⁇ (D body / L member) molar ratio 1/2 ⁇
  • High performance liquid chromatography was performed.
  • the equipment and conditions adopted at this time are as follows.
  • This aqueous solution and 50 ml of liquid mouth form i Oml, which is a liquid hydrophobic substance, were put into a liquid separating port, shaken for 3 minutes, and allowed to stand. Thereafter, 5 ml of the hydrophobic substance was taken out and distilled off under reduced pressure to remove the chromate form to obtain a white solid.
  • the obtained white solid was dissolved in 1 Om1 of an aqueous solution containing 10 mM of S-cyclodextrin as a chiral selector and adjusted to pH 2 using phosphoric acid to a concentration of 100 mM, and the solution was dissolved.
  • the mixture was brought into contact with 10 ml of black-mouthed form, separated, further removed, and a white solid was recovered.
  • the same separation operation was further repeated on the white solid so that the total number of separation operations was 5 to obtain a white solid.
  • the eluate of the white solid finally obtained in Example 11 was subjected to deprotection in the same manner as in the white solid obtained from 1, and then liquid using a commercially available column for separation of optical isomers of amino acids. Chromatography was performed. As a result, the (D-form / L-form) molar ratio in the white solid was 0.53.
  • the present invention provides a new method for separating the D-form and the L-form from the present amino acid derivative having a specific substituent in which the D-form and the L-form are mixed.
  • the separation ability is higher than that of the conventional separation method. For example, by employing the above-described method based on liquid chromatography, it is possible to completely and easily separate the D-form and the L-form.
  • the separation method of the present invention can be suitably used not only as an optical resolution method for producing the present amino acid derivative having high optical purity by optical resolution from the present amino acid derivative having low optical activity. It can be suitably used as a method for measuring optical purity. Furthermore, the present invention can be applied to process control when producing the present amino acid derivative having high optical purity by employing the conventional optical resolution method. Thus, the present invention can be used, for example, in the manufacturing industry of amino acid derivatives, the pharmaceutical manufacturing industry and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)
  • Indole Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

明 細 書
ァミノ酸誘導体の光学異性体の分離方法 技術分野
本発明はァミノ酸誘導体の一対の光学異性体からなる混合物から各異 性体を相互に分離する方法に関する。
背景技術
ァミ ノ酸のァミノ基における水素原子が t e r t —ブトキシカルボ二 ル基等のアルコキシカルボニル基、.ァラルキルォキシカルボニル基、 ァ リールォキシカルボニル基、 アルケニルォキシカルボニル基、 又はァシ ル基で置換 ·保護されたアミノ酸誘導体は、 医薬品または医薬中間体と して重要な化合物である。 これらァミノ酸誘導体においては光学異性体 が存在することが多く、 これら光学異性体間ではその生理活性や毒性に しばしば大きな差が有ることが広く知られている。 そのため、 このよう な分野で使用されるアミノ酸誘導体については、 光学純度の高いものを 製造することや、 使用 ίこ先立って光学純度を確認しておくこと、 等が非 常に重要である。
一般に、 光学異性体の分離精製は、 液体クロマトグラフィーを用いて 行なうことができ、 多糖類、 アミノ酸誘導体などをシリカゲルに担持し た光学異性体分離用のカラムも種々開発されている。
例えば、 Takeuchi et al. , Journal of Chromatography, 3 5 7 ( 1
9 8 6 ) 4 0 9— 4 1 5には、 ラセミマンデル酸及びラセミマンデル酸 誘導体の分離に際し、 移動相成分として 一シクロデキス 卜リン及び/? ーシクロデキストリンを使用した例や、 高性能 (もしくは高速) 液体ク 口マトグラフィ一 (H P L C ) 用にシクロデキストリンが結合された相 が光学異性体、 幾可異性体及び構造異性体の分離に応用されていること が紹介されている。
他方、 著者らは、 移動相成分として^ーシクロデキストリンを用いる ミクロ H P L Cによりダンシルアミノ酸の鏡像異性体分離について報告 している。 該文献に記載されている分離方法は/?ーシクロデキストリ ン がダンシル基を構成するナフタレン璟を有する低分子化合物と複合体 ( 包接錯体) を作り易いという性質を利用したものであり、 ナフタレン環 を有しないァミノ酸誘導体の光学異性体分離について該分離方法をその まま適用することはできない。 例えば、 上記文献には、 分離因子 (セパ レ一シヨンファクター) は、 移動相の p Hが高くなるほど増大する傾向 があり、 p H 6付近が最も好ましい旨が説明されているが、 このような p H領域で、 例えば前記の様な t e r t—ブトキシカルボ二ル等を有す るアミノ酸誘導体の光学異性体の分離を行なっても分離できない。
ァミ ノ酸のァミノ基にダンシル基を導入したアミノ酸誘導体の光学異 性体は、 上記 Takeuchi et al. の方法により分離できるものの、 ダン シル基を脱離してもとのァミノ酸にもどすのが必ずしも容易でない場合 がある。 したがって、 医薬品、 例えば、 生理活性ペプチドの合成中間と して使用することができ、 そしてかような使用のため及び/又は分離の ために導入した基が所定の目的が達成された後、 容易に脱離できるよう な基 (例、 前記 t e r t —ブトキシカルポ二ル基等参照) であるァミノ 酸誘導体の分離方法の提供には、 依然として強い要望が存在するであろ ラ o
発明の開示
本発明者らは前記の要望に応えるべく、 一対の D型及び L型光学異性 体を含む前記ァミノ酸誘導体を、 各光学異性体に対してそれぞれ異なる 親和性を有する親水性化合物と共存させることにより両者に疎水性の差 を発現させれば、 この差を利用して両者を分離できるのではないかと考 え、 種々検討を行なった。 その結果、 上記の t e r t —ブトキシカルボ 二ル基を初めとする置換基を有するァミノ酸誘導体を Takeuchi et al. に従って/ δ—シクロデキストリンで処理するだけでは十分な分離を行な うことはできなかったが、 光学異性体混合物を^ーシクロデキストリン を初めとし、 一対の各光学異性体に対してそれぞれ異なる親和性を有す る一定の親水性化合物の共存下に、 生成することが予測される複合体の 疎水性を高めるような特定の条件下で疎水性物質と接触させると各光学 異性体を相互に効率よく分離することができることを見出し、 本発明を 完成するに至った。 .
したがって、 本発明によれば、 不斉炭素を少なく とも一つ有するアミ ノ酸のァミノ基もしくはイミノ基の水素原子の一つが有機カルボニル基 により Ν—置換されたアミノ酸誘導体の一対の光学異性体を含有する混 合物からの各光学異性体の分離方法が提供され、 該分離方法は、
( Α ) 該混合物を用意し、
( Β ) 該混合物を、 それに含まれる各光学異性体に対してそれぞれ異 なる親和性を有する親水性化合物と水性溶液中で混合して複合 体を形成し、
( C ) 該複合体を含有する水性溶液又は水性懸濁液を、
( i ) p Hが 3 . 5以下となる条件下、 或いは
(ii) 該ァミノ酸誘導体の荷電性基に由来するイオンの対ィ オンとなりうる基及び疎水性の原子団を有する化合物 の共存下
に置くことにより、 各光学異性体間の疎水性に差違をもたらし、 そして
( D ) かような疎水性の差違を利用した各光学異性体を相互に分離す る、
工程を含んでなる。
また本発明によれば、 かような分離方法を用いるアミノ酸またはその 誘導体の高純度光学活性体の製造方法、 並びにそのような製造方法を効 率よく実施するための該分離方法の使用も提供される。
発明を実施するための最良の形態
本発明の方法が適用されるアミノ酸誘導体は、 本発明による作用効果、 一例としては、 上記工程 (B ) 及び(C ) を経た時、 各光学異性体間 (ま たは各光学異性体から形成された複合体間) の疎水性に差違をもたらす ものであれば、 いかなる誘導体であってもよい。 なお、 本発明にいう 「一 対の光学異性体」 とは、 ある特定のアミノ酸の、 例えば、 L型一と D型 一からなる光学異性体を意味している。
上記作用効果に関し、 理論に拘束されるものでないが、 本発明によれ ば、 次のような機構により一対の光学異性体から各光学異性体の分離が 可能になったものと思われる。 例えば、 D型及び L型の光学異性体を含 むアミノ酸誘導体が前記のような性質を有する親水性化合物と水性溶液 中で共存すると、 該親水性化合物に対して強い親和性を有する光学異性 体は何らかの形で相互作用を起こしてもう一方の光学異性体よりも親水 性の高い複合体 (包接錯体や、 その他の物理的もしくは化学的相互作用 で結合する分子集合体) となるが、 これらを疎水性物質と接触させたと しても両者の該疎水性物質に対する親和性 (例えば吸着力) の差が十分 ではないため両者を分離することはできない。 一方、 水性溶液の p Hを 3 . 5以下にしたときには、 アミノ酸誘導体のカルボキシル基が解離し なくなるため、 相対的に疎水性が高くなつている光学異性体 (すなわち 親水性化合物と複合体を形成していないか若しくは上記複合体より不安 定な複合体を形成していると思われる光学異性体) の疎水性が更に高ま るのに対し、 上記複合体においては親水性化合物の効果が大きくその親 水性はあまり変わらないため、 両者の疎水性物質へ対する平衡分配率が 変化し、 結果として光学異性体を効率良く分離することが可能になった ものと思われる。 また、 疎水性を有する原子団を含むイオンを含有させ た場合には、 相対的に疎水性が高くなつている光学異性体のカルボキシ ル基が解離したとしても該イオンとイオン対を形成するために疎水性は 高まるのに対し、 より安定な複合体の光学異性体はその近傍の親水性化 合物の存在によりこのようなイオン対を形成できず、 或いは、 対イオン の効果が弱められて上記と同様に疎水性物質への平衡分配率が変化し、 光学異性体の分離が可能になつたものと思われる。
たがって、 以下に詳述する本発明の各構成は、 上記のような作用を 奏する上で好適なものが選ばれる。
本発明方法で用いられるか又は処理の対象である N—置換されたァミ ノ酸誘導体は、 一般式 ( I ) : ' ,
Figure imgf000007_0001
で表され、 上式中の各基は、 それぞれの定義に関連して包含される典型 的なァミノ酸を慣用名で力ッコ内に併記しながら例示すると次のとおり である。
R 1は未置換もしくは置換された C i —eアルキル基を表し、 かつ、 置換 された場合の置換基はヒ ドロキシ (セリン、 スレオニン) 、 メルカプト (システィン) 、 メチルチオ (メチォニン) 、 ァミノ (リジン) 、 モノ 一もしくはジメチルァミノ、 d - 6アルキル、 C i - 6アルキルカルボニル ァミノ、 C 6アルキルォキシカルボニル、 アミジノアミノ (アルギニ ン) 、 カルボキシ (グルタミ ン酸、 ァスパラギン酸) 、 d - 6アルキル ォキシカルボニル、 力ルバモイル (ダルタミ ン、 ァスパラギン) 、 未置 換もしくは置換されたフユニル [未置換フ ニルの場合 (フニ二ルァラ ニン) 、 置換されたフ ニルの場合の置換基は同一もしくは異なり、 1 〜 3個のハロゲン原子、 ヒ ドロキシ (チロシン) 、 メルカプト、 メチル、 トリフルォロメチル又はァミノであることができる。 ] 、 環員窒素原子 を 1もしくは 2個有し、 ベンゼン環が縮合していてもよい 5員環式基 (ヒ スチジン、 トリブトファン) からなる群より選ばれる。
なお、 R 1が未置換 d— 6アルキルの場合の典型的な原料アミノ酸 (又 は基本アミノ酸ともいう) には、 ァラニン、 イソロイシン、 ロイシン、 バリンが包含される。
R 2及び R 3は一方が水素原子であり、 そして他方がアルコキシカルボ ニル、 ァラルキルォキシカルボニル、 ァリールォキシカルボニル、 アル ケニルォキシカルボニル又はァシルを表し、 或いは R 2及び R 3の水素原 子を表す基は、 水素原子に代わり、 R 1と一緒になつて、 それらが結合 する窒素原子を介して、 5員環を形成しうるプロパン一 1, 3—ジィル (プロリ ン) 、 2—ヒ ドロキシプロパン一 1, 3—ジィル又は 1ーヒ ド ロキシプロパン一 1, 3—ジィルを表す。
こうして特定されるアミノ酸誘導体は、 中でも、 ァラニン、 プロリ ン、 ロイシン、 イソロイシン、 ノ リ ン、 トリプトファン、 フヱ二ルァラニン、 チロシン、 セリン、 メチォニン、 グルタミン、 グルタミ ン酸及びリジン に由来するものに、 本発明の方法が好適に用いられる。
以上の一般式 ( I ) の化合物を初め、 本明細書に記載するアルキル並 びにアルコキシもしくはアルキルォキシ、 アルコキシカルボニル及ぴァ ルキルカルボニル基におけるアルキルは、 それぞれ記載された炭素原子 数をもつものであって、 直鎖又は分岐鎖のアルキルであることができ、 限定されるものでないが、 メチル、 ェチル、 プロピル、 i s o—プロピ ノレ、 n—ブチノレ、 s e c—ブチル、 i s o—ブチノレ、 t e r t—ブチノレ、 n—ペンチル、 ォクチル、 ドデシル、 ォクタデシル、 等から選ばれる。 他方、 ァラルキル、 好ましくはフヱニル一 d— 4アルキレンにいう、 C l— 4アルキレンには、 メチレン、 エチレン、 プロピレン、 2 _メチル プロピレン、 ブチレンが挙げられる。 また、 アルケニルォキシカルボ二 ルにいうアルケニルは、 C 3 9アルケニルが好ましく、 限定されるもの でないが、 1ーブテン、 2—ブテン、 等が挙げられる。
なお、 本明細書に記載のァラルキルォキシカルボニル、 ァリ一ルォキ シカルボニルァリール、 ベンゾィルに包含されるベンゼン環上には、 同 一もしくは異なる置換基が最高 3個まで存在することができ、 かような 置換基としては、 限定されるものでないが、 ハロゲン原子 (フッ素、 塩 素、 臭素、 ヨウ素) 、 ヒ ドロキシ、 メルカプト、 メチル、 トリフルォロ メチル、 ァミノ、 二トロ等を挙げることができる。
本発明の分離方法では、 上記のとおりのァミノ酸のアミノ基における 水素原子の少なく とも一つが、 アルコキシカルボニル基、 ァラルキルォ キシカルボニル基、 ァリールォキシカルボニル基、 アルケニルォキシ力 ルポ二ル基、 又はァシル基で置換されたァミノ酸誘導体のいずれか一対 の光学異性体混合物が処理される。 典型的にはあるアミノ酸誘導体の D 型及び L型の光学異性体 (以下、 単にそれぞれ D体及び L体ともいう。 ) が混在するアミノ酸誘導体から D体又は L体を分離する。 混在する D体 及び L体はいずれか一方が他方より著しく多い場合 (9 0〜9 9 . 9 %) や、 ラセミ混合物のょラに D体及び L体が等量ずつ混在してもよい。 な お、 本発明の分離方法は、 不斉炭素を 2以上有するアミノ酸誘導体の光 学異性体の分離についても適用可能であるが、 分離効果の高さの観点か ら、 不斉炭素を 1つ有することにより 2種類の光学異性体が存在するァ ミノ酸誘導体に用いるのが好適である。
本発明方法で処理される N—置換されたァミノ酸誘導体の N—置換基 の具体的なものとしては、 限定されるものでないが、 分離性およびアミ ノ酸誘導体それ自身の有用性の観点から、 それぞれ次のような基である のが好適である。 すなわち、 アルコキシカルボニル基は、 メ トキシカル ボニル基、 エトキシカルボニル基、 n—プロポキシカルボニル基、 イソ プロポキシカルボニル基、 t e r t —ブトキシカルボニル基、 イソブト キシカルボニル基、 t e r tーァミルォキシカルボニル基等の総炭素数 2〜1 0の基であるのが好適である。 また、 ァラルキルォキシカルボ二 ルは、 ベンジルォキシカルボニル基、 p—ニトロべンジルォキシカルボ ニル基、 p—メ トキシベンジルォキシカルボニル基、 9一フルォレニル メ トキシカルボニル基等の総炭素数 8〜1 5の基であるのが好適であり、 ァリールォキシカルボニル基は、 フヱニルォキシカルボニル基、 m—二 トロフヱニルォキシカルボニル基、 p—メチルフェニルォキシカルボ二 ル基、 m—メチルフヱニルォキシカルボニル基、 2, 4一ジメチルフヱ ニルォキシカルボニル基、. 2, 4, 6— トリメチルフヱニルォキシカル ボニル基等の総炭素数 7〜1 0の基であるのが好適であり、 アルケニル ォキシカルボニル基は、 1ーブテンォキシカルボニル基、 2—ブテンォ キシカルボニル基等の総炭素数 4〜1 0の基であるのが好適であり、 更 にァシル基は、 ホルミル基、 ァセチル基、 プロパノィル基、 ブタノィル 基、 ベンゾィル基等の総炭素数 1〜 7の基であるのが好適である。
これらの置換基の中でも特に高い分離が期待されることから、 メ トキ シカルボニル基、 エトキシカルボニル基、 t e r t —ブトキシカルボ二 ル基、 t e r t —アミルォキシカルボニル基、 ベンジルォキシカルボ二 ル基、 フヱニルォキシカルボニル基、 ホルミル甚、 ァセチル基、 プロパ ノィル基、 又はベンゾィル基が特に好ましい。
本発明の分離方法において好適に用いられる本ァミノ酸誘導体を具体 的に示せば、 N— ( t e r t —ブトキシカルボニル) ーァラニン、 N— ( t e r t —ブトキシカルボニル) 一プロリン、 N— ( t e r t —ブト キシカルボニル) 一口イシン、 N— ( t e r t—ブトキシカルボニル) —イソロイシン、 N— ( t e r t —ブトキシカルボニル) 一バリン、 N 一 ( t e r t _ブトキシカルボニル) 一 トリブトファン、 N— ( t e r t 一ブトキシカルボニル) 一フヱニルァラニン、 N— ( t e r t —ブト キシカルボニル) ーセリン、 N— ( t e r t 一ブトキシカルボニル) 一 メチォニン、 N— ( t e r t —ブトキシカルボニル) 一グルタミ ン、 N ― ( t e r t —ブトキシカルボニル) —グルタミ ン酸、 N— ( t e r t —ブトキシカルボニル) 一リジン、 N— ( t e r t —ブトキシカルボニ ル) 一チロシン等のアルコキシカルボニル基で置換されたアミノ酸誘導 体; N—ベンジルォキシカルボニル一ァラニン、 N—ベンジルォキシカ ルボニル一プロリ ン、 N—ベンジルォキンカルボニル一ロイシン、 N— ベンジルォキシカルボ二ルーィソロイシン、 N—ベンジルォキシカルボ 二ル一バリン、 N—ベンジルォキシカルボニル一 トリプトファン、 N— ベンジルォキシカルボ二ルーフヱ二ルァラニン、 N—ベンジルォキシカ ルボニルーセリ ン、 N—ベンジルォキシカルボ二ルーメチォニン、 N— ベンジルォキシカルボ二ルーグルタミ ン、 N—べンジルォキシカルボ二 ルーグルタミ ン酸、 N—ベンジルォキシカルボ二ルーリジン等のァラル キルカルボニル基で置換されたァミノ酸誘導体; N—フヱニルォキシカ ルボニル一ァラニン、 N—フヱニルォキシカルボニル一プロリン、 N— フヱニルォキシカルボ二ルーロイシン、 N—フヱニルォキシカルボニル 一イソロイシン、 N—フヱニルォキシカルボ二ル一バリ ン、 N—フエ二 ルォキシカルボ二ルー トリプトファン、 N—フヱニルォキシカルボニル 一フヱニルァラニン、 N—フエニルォキシカルボ二ルーセリン、 N—フエ ニルォキシカルボ二ルーメチォニン、 N—フヱニルォキシカルボ二ルー グルタミ ン、 N—フヱニルォキシカルボ二ルーグルタミ ン酸、 N—フエ ニルォキシカルボ二ルーリジン等のァリ一ルォキシカルボニル基で置換 されたアミノ酸誘導体、 N—ベンゾィル一ァラニン、 N—ベンゾィルー プロリン、 N—ベンゾィル一ロイシン、 N—べンゾィルーイソロイシン、 N—ベンゾィルーパ'リン、 N—べンゾィルー トリプトフアン、 N—ベン ゾィル一フエ二ルァラニン、 N—べンゾィルーセリン、 N—ベンゾィル 一メチォニン、 N—ベンゾィル一グルタミ ン、 N—べンゾィル一グルタ ミ ン酸、 N—べンゾィルーリジン等のァシル基で置換されたアミノ酸誘 導体等が挙げられる。 これらの中でも分子中における不斉炭素数が 1個 であるものが特に好適に用いられる。
本発明方法で処理する N—置換されたァミノ酸誘導体の一対の光学異 性体を含有する混合物は、 いかなる方法でもたらされたものであっても よい。 例えば、 一般式 ( I 一 a ) :
Figure imgf000013_0001
(上式中、 R 1は上記一般式 ( I ) についての定義と同じであり、 そし て R 2a及び R 3aは独立して水素原子であるか、 或いはいずれか一方が、 R 1と一緒になつてそれらが結合する窒素原子を介して 5員環を形成し うるプロパン一 1, 3 —ジィル、 2 —ヒ ドロキシプロパン一 1, 3 —ジィ ル又は 1 —ヒ ドロキシプロパン一 1, 3 —ジィルを表すことができる) で表されるアミノ酸 (原料アミノ酸又は基本アミノ酸ともいう) を、 反 応に悪影響を及ぼさない溶媒中、 塩基の存在下で、 一般式 (Π )
A— C O O H ( Π )
(上式中、 Aは、 アルコキシ、 ァラルキルォキシ、 ァリールォキシ、 ァ ルケニルォキシ又はアルキルもしくはァリールを表わす)
で表わされる酸の活性エステル (例えば、 ジー t e r t —プチルカ一ボ ネート、 クロロギ酸エステル、 ァシルハロゲン化物) と反応させること によって得られるものを、 本発明方法の処理対象 (光学異性体の混合物 又は未分離アミノ酸誘導体ともいう) とすることができる。 通常、 この ような有機化学的合成反応を用いてァミノ酸誘導体を合成した場合には 光学純度の高い原料ァミノ酸を使用したときでもラセミ体或いは光学純 度 8 0〜9 9 %のものが得られることがある。
本発明の分離方法においては、 未分離ァミノ酸誘導体に含まれる各光 学異性体 (D体及び L体) に対してそれぞれ異なる親和性を有する親水 性化合物 (以下、 キラルセレクタともいう。 ) と該未分離アミノ酸誘導 体とを水性溶液中で混合し、 次いで得られた水性溶液又は水性懸濁液を、 P Hが 3 . 5以下となる条件下、 又は前記ァミノ酸誘導体の対イオンと なり得る疎水性を有する原子団を含むイオンの共存下 (に置く ことで、 各光学異性体間の疎水性に差違がもたらされ、 そして) で疎水性物質と 接触させて該水性溶液又は水性懸濁液中に存在する各光学異性体 (D型 アミノ酸誘導体と L型アミノ酸誘導体) とを分離する。
キラルセレクタとしては、 各光学異性体に対してそれぞれ異なる親和 性を有する親水性化合物であれば公知の化合物が特に限定なく使用でき る。 一般に光学活性な化合物及び内部にキラルな裂講ゃ空間を有するホ スト化合物 (内部に他の化合物やイオン等を包接して包接化合物を形成 し得る化合物) は、 各光学異性体 D型異性体と L型異性体とに対する親 和性が異なるので、 このような化合物の中で親水性のものが、 本発明に おけるキラルセレクタとして好適に使用することができる。 なお、 本明 細書において親水性とは、 水に対して僅かでも溶解性を有することを意 味する。 キラルセレクタが疎水性の場合は、 D体と L体の分離を効率よ く行なうことができない。
本発明でキラルセレクタとして使用できる化合物としては、 多糖類及 びその誘導体、 並びにアミノ酸の天然光学活性化合物及びその誘導体が 挙げられ、 これら化合物を具体的に例示すれば次のような化合物が挙げ りれる。 即ち、 多糖類としては、 了ミロース、 α—シクロデキストリン、 β— シクロデキス トリ ン、 アーシクロデキストリン等が例示される。 また、 多糖類誘導体としては、 ヘプタキス (2、 6— 0—ジメチル) — β—シ クロデキストリ ン、 ヘプタキス (2、 3、 6— 0— トリメチル) — β _ シクロデキストリ ン、 ヘプタキス (2、 6— 0—ヒ ドロキシプロピル) — 3—シクロデキストリ ン、 ヘプタキス (2、 3、 6 _ 0—ヒ ドロキシ プロピル) — β—シクロデキストリン、 ヘプタキス (2、 6— 0—メチ ルー 3— 0—ァセチル) 一 β—シクロデキストリ ン、 へキサキス (2、 6— 0—ジメチル) 一 ^—シクロデキストリ ン、 へキサキス (2、 3、 6— 0— トリメチル) 一 /3—シクロデキストリ ン、 へキサキス (2、 6 一 0—ヒ ドロキシプロピル) — β—シクロデキストリン、 へキサキス (2 、 3、 6— 0—ヒ ドロキシプロピル) 一 /3—シクロデキストリン、 へキ サキス (2、 6— 0—メチルー 3— 0—ァセチル) 一 /S—シクロデキス トリン、 ォクタキス (2、 6— 0—ジメチル) 一^一シクロデキストリ ン、 ォクタキス (2、 3、 6— 0—トリメチル) _ 3—シクロデキス ト リン、 ォクタキス (2、 6— 0—ヒ ドロキシプロピル) 一 β—シク ロデ キストリン、 ォクタキス (2、 3、 6—0—ヒ ドロキシプロピル) — β ーシクロデキストリ ン、 ォクタキス (2、 6一 0—メチル一 3— 0—ァ セチル) 一 /?ーシクロデキストリン等のシクロデキストリン誘導体が例 示される。 また、 アミノ酸の天然光学活性化合物としては、 フヱニルァ ラニン、 トリブトファン、 ロイシン等が、 さらにこれらの誘導体として は Ν— ( t e r t —ブトキシカルボニル) 一 L一 トリプトファン、 N— ( t e r t —ブトキシカルポニル) 一 D— トリプトファン、 N— ( t e r tーブトキシカルボニル) 一 L—フヱ二ルァラニン、 N— ( t e r t 一ブトキシカルボニル) 一 D—フヱニルァラニン、 N— ( t e r t —ブ トキシカルボニル) 一 L一口イシン、 N— ( t e r t —ブトキシカルボ ニル) 一 D—口イシン等が例示される。 なお、 これら化合物は単独で用 いても 2種類以上を併用してもかまわない。
本発明においては、 上記キラルセレクタの中でも分離能が高いことか ら、 各種シクロデキストリ ン又はその誘導体を用いるのが好適である。 また、 シクロデキストリ ン誘導体としては、 入手の容易さ、 水に対する 溶解度、 分離能の点から、 シクロデキストリンの水酸基あるいは水素原 子の一部がヒ ドロキシェチル基、 ヒ ドロキシプロピル基、 トリフルォロ ァセチル基、 ァセチル基で置換されたシクロデキストリ ンを用いるのが 好適である。
本発明で使用するキラルセレクタの量は、 該キラルセレクタが親和性 を有する D体若しくは L体の量に対して十分な量となるように、 使用す る未分離ァミノ酸誘導体の量及びその光学純度等に応じて適宜決定すれ ばよいが、 十分な分離効果が得られ、 且つ過剰使用および粘度上昇によ る操作性低下を防止するという観点から、 水性溶液中の濃度で l mM〜 1 0 0 mMの範囲で使用するのが好適である。
本発明の分離方法においては、 キラルセレクタと、 未分離アミノ酸誘 導体中の D体あるいは L体との接触を良く し、 高い分離効果を得るため に、 未分離アミノ酸誘導体と上記キラルセレクタとは、 水性溶液中で混 合される。 ここで、 水性溶液とは水を含有する溶液、 即ち、 水、 又は水 及び水に対して溶解性を有する有機化合物の混合溶液を意味するが、 未 分離ァミノ酸誘導体中の D体又は L体とキラルセレクタとの相互作用を 効率よく起こし、 高い分離効果を得るためには、 水と有機化合物との混 合溶液を用いるのが好適である。 この時用いる有機化合物は、 水に対し て混和性を有するものであれば特に限定されず、 ァセトニトリル等の二 トリル化合物; メタノール、 イソプロピルアルコール、 プロピルアルコ
—ル、 エタノール、 ブチルアルコール、 t e r t —ブチルアルコール、 ォクタノール等の脂肪族アルコール; フヱノ一ル等の芳香族アルコール ; エチレングリコール、 グリセロール、 ポリェチレングリコール、 ポリ ビニルアルコールなどの水溶性高分子などが挙げられる。 これらの中で も、 光学異性体分離後の除去の容易さの点から、 沸点の低いァセトニト リル、 メタノール、 イソプロピルアルコール、 エタノール等が好適に使 用される。 有機化合物の使用量は特に限定されないが、 水と該有機化合 物の合計質量を基準として 0 . 0 1〜5 0質量%、 特に有 0 . 1〜2 5質 量%となる量であるのが好適である。
水性溶液中で未分離ァミノ酸誘導体とキラルセレクタとを混合させる 方法は、 特に限定されず、 それぞれ所定量の未分離アミ ノ酸誘導体及び キラルセレクタを計りとり、 水性溶液に同時にあるいは順次添加し、 攪 拌混合すればよい。 このとき未分離ァミノ酸誘導体とキラルセレクタと の量比は、 キラルセレクタのモル数が少なく とも未分離ァミノ酸誘導体 中のキラルセレクタに対する親和性の高い光学異性体のモル数より多く なる量であれば特に限定されないが、 分離効果の高さの点から、 未分離 アミノ酸誘導体 (即ち D体と L体の合計) モル数に対するキラルセレク 夕のモル数の比 {キラルセレクタモル数 Z ( D体モル数 + L体モル数) } が 1 0 0 0〜1、 特に 1 0 0〜5とするのが好適である。
本発明の分離方法では、 上記のようにして調製された未分離アミノ酸 誘導体及びキラルセレクタを含む水性溶液又ほ水性懸濁液を、 ( i ) そ の pHが 3.5以下となる条件下、 又は (il) 使用する本アミノ酸誘導 体の対イオンとなり得る "疎水性を有する原子団を含むイオン" (以下、 疎水性対イオンとも言う。 ) の共存下で疎水性物質と接触させる必要が ある。 上記 ( i ) 又は (il) の条件を満足しないで疎水性物質と接触さ せた場合には、 D体と L体との疎水性に有効な差が生じないためと思わ れるが、 良好な分離効果が得られない。
上記 ( i ) の条件を満足させるためには、 PH調整剤を用いて水性溶 液又は水性懸濁液の p Hが 3.5以下となるように調整すればよい。 こ の時使用できる pH調整剤は、 水性溶液の pHを 3.5以下に調整でき るものであれば特に限定されず、 リ ン酸、 硫酸、 塩酸等の鉱酸類;及び ギ酸、 酢酸、 乳酸、 プロピオン酸、 クェン酸、 マレイン酸、 マロン酸な ど φ有機酸類が制限なく使用できる。 これら ρ Η調整剤の濃度は特に制 限されないが、 一般的には 1〜10 OmM、 好適には 1〜3 OmMの範 囲で使用される。 また、 分離効果の高さから、 水性溶液又は水性懸濁液 の p Hは、 1〜3、 特に 1.4〜2.5とするのが好適である。 なお、 p H調節は疎水性物質と接触させる前に行われていればよく、 未分離ァミ ノ酸とキラルセレクタとの混合前に行なってもよい。 かような混合は、 混合が十分に行われる温度であれば、 限定されるものでないが、 一般的 に、 10°C〜30°Cで行うのがよい。
また、 前記 (ii) の条件下で疎水性物質との接触を行なう場合に共存 させる疎水性対イオンは、 本ァミノ酸誘導体中のカルボキシル基等のィ ォン化し得る部位が水性溶液中でィォン化した際に、 その反対の電荷を 有するイオンとして存在し、 イオンペアを形成するものであれば特に限 定されない。 上記疎水性対イオンが有する "疎水性を有する原子団" と は、 メチル基、 ェチル基、 プロピル基、 イソプロピル基、 ブチル基、 t e r t一ブチル基、 ォクチル基、 ドデシル基、 ォクタデシル基などの C 卜2 2アルキル基; フヱニル基、 ナフチル基などのァリール基等の疎水性 を増大させる作用を有する原子団を意味する。 なお、 これら原子団は、 全体として疎水性を有していればよく、 その一部にヒ ドロキシル基、 二 トロ基等の官能基、 フッ素、 塩素、 臭素、 ヨウ素等のハロゲン原子を有 していてもよい。
疎水性対イオンは、 水性溶液中でイオン化し、 カチオンあるいはァニ オンを形成する化合物 (以下、 疎水性対イオン形成化合物ともいう。 ) の形で水性溶液に添加して使用される。 このような化合物としては、 上 記の疎水性を有する原子団を有するアミ ン化合物、 アンモニゥム化合物、 ホウ素化合物、 リン化合物、 スルホン酸化合物などが使用できる。 なお、 ァミ ン化合物は中性であるため、 水性溶液中で水素イオンを付加させて カチオンとして存在させる必要がある。 そのためには水性溶液の p Hを 使用するアミ ン化合物の p K a以下にして使用する。
本発明で使用できる疎水性対イオンを与える化合物を例示すれば、 ァ ミ ン化合物としては、 トリメチルァミ ン、 ジェチルァミ ン、 トリェチル ァミ ン、 ト リエタノールァミ ン、 ト リイソプロピルァミ ン、 ジイソプロ ピルメチルエタノールァミン、 トリブチルァミ ン、 ジブチルァミ ン、 ブ チルァミ ン、 ォクチルァミ ン、 ジォクチルァミ ン、 トリオクチルァミ ン、 ジフヱニルァミ ン、 トリフヱニルァミ ン等が挙げられる。
また、 アンモニゥム化合物としては、 これらァミ ン化合物の塩酸塩、 臭素酸塩、 水酸化塩等のアンモニゥム塩の他、 塩化テトラメチルアンモ 二ゥム、 臭化テトラメチルアンモニゥム、 塩化テトラエチルアンモニゥ ム、 臭化テトラェチルアンモニゥム、 リン酸テトラブチルアンモニゥム、 塩化テトラブチルァンモニゥム、 臭化テトラブチルァンモニゥム、 水酸 化テトラプチルアンモニゥム等が挙げられる。
また、 ホウ素化合物としては、 テトラフヱニルホウ素ナトリウム、 テ トラ (クロロフヱニル) ホウ素ナトリウムなどのイオン性ホウ素化合物 等が; リン化合物としては、 塩化テトラフヱニルフォスフィ ン、 塩化テ トラォクチルフォスフィ ン等が; さらにスルホン酸化合物としては、 ト ルエンスルホン酸、 ォクチルスルホン酸、 ドデシルスルホン酸等が挙げ られる。
これら化合物の中でも水性溶液に対する溶解度の点からトリェチルァ ミ : 、 トリエタノールァミ ン、 トリブチルァミ ン、 ジブチルァミ ン、 ト リプチルァミ ン、 テトラブチルァミ ン、 テトラアミルァミ ン、 ドデシル スルホン酸等が好適に使用される。
前記疎水性対イオンの使用量は、 未分離ァミノ酸誘導体中に存在する D体又は L体のうちキラルセレクタとの親和性が低いものに対して十分 な量であれば特に限定されず、 用いる未分離ァミノ酸誘導体の種類及び 量、 キラルセレクタの種類等に応じて分離効果の観点から最適な量を適 宜決定すればよいが、 通常は、 水性溶液又は水性懸濁液中の濃度で表し て 0 . 0 l mM〜5 O mM、 特に 0 . l mM〜3 O mMの範囲となる量使 用するのが好適である。
また、 上記疎水性対イオンを含有する水性溶液の p Hは、 分離対象と なる本ァミノ酸誘導体がイオン化し、 疎水性対イオンとイオンペアを形 成することができる p H領域であれば特に制限されないが、 一般的には、 緩衝液の p H調整の容易さや、 使用後の廃液処理の容易さを勘案して p H = 4〜8の範囲、 特に p H = 4〜7の範囲とするのが好適である。 な お、 このような p Hに調整するためには、 前記した無機酸及び有機酸の 他に、 水酸化ナトリウム、 水酸化カリウム、 水酸化カルシウム、 炭酸ナ トリウム、 炭酸力リウム、 炭酸カルシウムなどのアル力リ性塩類、 リン 酸水素ナトリウム、 リ ン酸 2水素カリウム等の塩類、 トリス (ヒ ドロキ シメチル) ァミノメタン、 4一 (2—ヒ ドロキシェチル) 一 1一ピペラ ジンェタンスルホン酸、 モルホリンプロパンスルホン酸などの p H緩衝 液用有機化合物などが使用できる。
疎水性対イオンを与える化合物の添加及び必要に応じて行なう p H調 節は、 疎水性物質と接触させる前に行われていればよく、 未分離ァミノ 酸とキラルセレクタとの混合前に行なってもよい。
また、 疎水性物質と接触される前記水性溶液又は水性懸濁液には、 任 意成分として、 イオン強度を調整するための塩類、 或いは本発明の分離 方法を光学純度分析方法に適用する際に D体及び L体の検出を容易にす るための "紫外領域、 可視領域に吸収スぺク トルを有する化合物" 等を 添加することもできる。 このとき、 塩類としては、 塩化ナトリウム、 塩 化カリウム、 塩化カルシウムなどが使用でき、 "紫外領域、 可視領域に 吸収スペク トルを有する化合物" としてはトルエンスルホン酸、 トルェ ンスルホン酸ナトリウム、 ベンゼンスルホン酸ナトリウム、 ナフタレン スルホン酸ナトリウム、 フルォレセイン、 フエノールフタレイン、 二一 ルブルー、 ェォシン、 クマリ ンなどの芳香族を有する有機化合物等が使 用できる。
本発明の分離方法においては、 "未分離ァミノ酸誘導体及びキラルセ レクタを含む水性溶液又は水性懸濁液" を前記 ( i ) 又は (il ) の条件 を満足するような条件下で疎水性物質と接触させ、 該疎水性物質に対す る親和性の差を利用して D体と L体を分離する。
ここで使用する疎水性物質とは、 前記水性溶液よりも疎水性が高く、 これと容易に分離できる物質であれば特に制限無く液体または固体の疎 水性物質が使用される。 例えば、 液体の疎水性物質としては、 クロロホ ルム、 ジクロロメタン、 へキサン、 ォクタノール等の水に不溶若しくは 難溶の有機溶媒を使用することができる。 また、 固体の疎水性物質とし ては疎水的表面を有する固体であれば特に制限無く使用することができ る。 このような物質を例示すれば、 シリカ、 チタニア等の無機微粒子の 表面に、 ォクタデシル基、 ォクチル基、 ブチル基、 メチル基、 フヱニル 基、 シァノプロピル基等の炭素数 1以上の疎水性基を有する化合物を結 合させた固体; シリ力、 チタニア等の無機微粒子の表面にポリスチレン、 シリコーン、 ポリメタクリル酸メチル等の疎水性ポリマ一を吸着あるい は結合させた固体; ポリスチレン、 ポリメタクリル酸メチル等の疎水性 を有する高分子の微粒子固体; ポリスチレン、 ポリメタクリル酸メチル 等の高分子の微粒子表面にォクタデシル基、 ォクチル基、 ブチル基、 メ チル基、 フ ニル基、 シァノプロピル基等の炭素数 1以上の疎水性基を 有する化合物を結合させた固体などをあげることができる。 必要があれ ば、 さらにこれらの固体の表面に疎水性を調整するために、 スルホニル 基、 アミノ基、 アンモニゥム基等のイオン交換基を有する化合物を結合 させて用いることもできる。 また、 固体の疎水性物質を用いる場合には、 表面積が大きいほど一度に分離できる本ァミノ酸誘導体の量が犬くなる ため、 疎水的表面を有する固体の微粒子を用いることが好ましい。
本発明の分離方法において、 未分離ァミノ酸誘導体 (各光学異性体の 混合物) 及びキラルセレクタを含む水性溶液又は水性懸濁液と疎水性物 質とを接触させ、 D体と L体を分離する方法は特に限定されず、 次のよ うな方法により好適に行なうことができる。
即ち、 固体の疎水性物質を中空管に充填し、 クロマトグラフフィ一の 分離カラムとして用いることにより、 光学異性体の分離を行うことがで きる。 この場合には、 移動相としてキラルセレクタを含み前記 ( i ) 又 は (11 ) の条件を満足する水性溶液を分離カラムに流し、 分離カラムの 上流に未分離アミノ酸誘導体を注入し液体クロマトグラフィーを行えば よい。 カラム内の水性溶液中で未分離ァミノ酸誘導体とキラルセレクタ とが混合されると共に、 カラム内の充填物である疎水性物質と接触し、 一定時間の経過の後に分離カラムの下流から各光学異性体が分離された 状態 (換言すれば異なる保持時間で) で流出する。 流出する移動相を特 定の波長での紫外吸収、 電気電導度、 屈折率等を経時的に観測し、 クロ マトグラフを得ることができ、 該クロマトグラフより D体又は L体の流 出を検出し、 これを分取することにより光学純度が向上した本発明のァ ミノ酸誘導体を得ることができる。 該液体クロマトグラフィ一による方 法は、 操作が簡便であり、 且つ分離性能が高いため、 本発明の分離方法 として特に好適な態様であると言える。
また、 予め未分ァミノ酸誘導体及びキラルセレクタを水性溶液中で混 合し、 次いで前記 ( i ) 又は (11 ) の条件を満足するように調製した水 性溶液又は水性懸濁液 (以下、 このように調製された水性溶液又は水性 懸濁液を単に調製済水性溶液ともいう。 ) を疎水性物質接触させること によっても D体と L体とを分離することができる。
例えば、 疎水性物質として液体を用いる場合には、 調製済水性溶液と 疎水性物質を容器に導入し、 攪拌機を用い或いは容器が分液ロートのよ うに密閉できる構造である場合には容器を激しく振とうする等して攪拌 し、 その後静置して液を 2層分離させ、 2層の液を別々に回収すること により行なうことができる。 この場合には、 疎水性層には疎水性の強い 光学異性体 (若しくはその複合体) が多く、 また水性溶液層には親水性 の強い光学異性体 (若しくはその複合体) が多くなるように用いたキラ ルセレクタの特性に応じた比率で分配され、 各層において D体又は L体 が濃縮される。 この濃縮により十分な光学純度の D体又は L体が得られ ない場合は、 上記操作で分離回収された一方の層について減圧留去等に より液体を除去し、 その後に再び同様の分離操作を繰り返すことにより、 光学純度の高い D体又は L体を得ることができる。
また、 疎水性物質として固体を用いる場合には、 調製済水性溶液に固 体の疎水性物質を投入して攪拌することにより接触させ、 一定時間経過 後に濾過により固体の疎水性物質を取り除き、 液体成分を回収すること により行なうことができる。 この場合には、 疎水性の強い光学異性体 (若 しくはその複合体) は固体疎水性物質に多く吸着されるため、 濾液には 親水性の強い光学異性体 (若しくはその複合体) が多くなる。 1回の操 作で十分な分離が行なえない場合は、 前記と同様に瀘液について減圧留 去等により液体を除去し、 その後に再び同様の分離操作を繰り返すこと により、 光学純度の高い D体又は L体を得ることができる。 なお、 固体 疎水性物質に吸着した光学異性体についても疎水性有機溶媒で洗浄し、 洗浄液を回収し、 回収された液から溶媒を除去することによりもう一方 の光学異性体を回収することも勿論可能である。 この場合にも操作を繰 り返すことにより高純度化を図ることができる。 上記の様な本発明の分離方法で分離された光学異性体は、 一般に夾雑 物 (分離に用いたキラルセレクタや各種塩類等) を含む溶液又は懸濁液 の形で得られることが多いが、 これら溶液等から光学純度の向上したァ ミノ酸誘導体を単離することも勿論可能である。 このような単離方法と しては、 種々の方法を用いることができるが、 一例をあげれば、 減圧留 去により液体成分を除去し、 その後、 アミノ酸誘導体は溶解するが他の 夾雑物は溶解しない溶媒を添加してアミノ酸誘導体のみを溶解させ、 ろ 過等により分離した後、 溶媒を除去する方法が挙げられる。
本発明の分離方法によれば、 D体と L体が混在する本ァミノ酸誘導体 から、 D体と L体容とを容易に分離することができる。 したがって、 該 分離方法は、 前記したような化学合成的方法、 或いは酵素や微生物を用 いた反応により、 ラセミ体又は光学活性な基本アミノ酸から未分離アミ ノ酸誘導体 (すなわち、 D体と L体が混在する本アミノ酸誘導体) を得 て、 該未分離アミノ酸の光学分離を行ない高純度 (高い光学純度) の D 体又は L体を製造する方法における光学分離工程として好適に採用する ことができる。
また、 本発明の分離方法によれば、 未分離アミノ酸誘導体に含まれる D体及び L体を相互に分離した状態でそれぞれの量を定量することもで きるので、 光学純度が未知の未分離ァミノ酸誘導体の光学純度分析方法 としても好適に採用することができる。 特に本発明の分離方法の中でも 前記した液体クロマトグラフィ一による方法は、 簡便で分離性能が高い ばかりでなく、 D体及び L体を単離しなくそも検量線等を用いることに よりそれぞれの量を高精度で求めることができるので、 優れた光学純度 分析方法 (光学純度測定方法) になる。 さらに、 上記の光学純度分析方法は、 上記の様な優れた特徴を有する ため、 例えば、 前記したような方法により基本アミノ酸から未分離アミ ノ酸誘導体を得て、 該未分離アミノ酸の光学分離 (光学分割) を行ない 高純度 (高い光学純度) の D体又は L体を製造する方法における工程管 理の手法として好適に採用することができる。 なお、 この場合において、 光学分離方法としては、 本発明の分離方法の他、 光学異性体の結晶形を 利用して物理的に分離する方法、 ジァステレオマーの分離を原理とする 方法、 具体的には、 安定なジァステレオマー (分子錯体を含む) に転化 し、 ついで結晶分別、 クロマトグラフィー、 蒸留等の操作により分離す る方法、 キラルな吸着剤ゃキラルな溶媒を用いて選択的に吸着、 抽出す る方法等、 不斉変換法、 不斉反応を利用する方法等、 公知の光学分割法 が採用できることは勿論である。
以下、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこ れら実施例に限定されるものではない。
実施例 1
キラルセレクタとして^ーシクロデキストリ ン (東京化成社製) 11. 35 gを 0.1%リン酸水溶液 (容量比) 1 Lに溶解してシクロデキス トリン濃度が 10mM、 p H 2とした溶液に対して、 ァセトニトリノレ (和 光純薬工業社製) を 10% (容量比) 混合した水性溶液を調製した。 こ の溶液を移動相とし、 疎水性物質としてシリカゲル粒子表面にォクタデ シル基を化学結合した固定相が充填された分離カラム I n e r t s i 1 OD S— 2 (GLサイエンス社製) を用い、 N— ( t e r t—ブトキ ' シカルボニル) 一 DL—ァラニン { (D体 ZL体) モル比 =1 2} を 該分離カラムに注入して高速液体クロマトグラフィーを行なって、 クロ マトグラムを得た。
なお、 本実施例で用いた高速液体クロマトグラフィ一の構成と条件は、 以下の通りである。
ポンプ: Wa t e r s社製 600 E
インジヱクタ一 : Wa t e r s社製 U 6 K
カラムオーブン : 島津製作所社製 CTO 1 O A
検出器 : Wa t e r s社製 99 1 J
移動相流速: 1m l /m i n
カラム温度: 30°C
カラムサイズ: 内径 4. 6mm、 長さ 25 Omm
検出波長: 2 10 nm。
上記のようにして得られたクロマトグラムに基づいて、 分離能 (R s ) で光学異性体分離の程度を評価したところ、 R s = 2. 25であり、 良 好な分離が行われていることが確認された。
なお、 分離能 (R s) とは、 この分離能 R sは 2本のピークがどの位 良く分離しているかを表すものであり、 下記式で定義される値である。 この値が大きいほど 2本のピークが良く分離していることを示し、 R s が 0のときは 2本のピークが全く分離されていないことを示し、 また、 R s > 1のときは 2本のピークは底辺部分でも完全に分離した状態であ ることを示す。
Figure imgf000027_0001
但し、 上式中の t R1は、 2種顯の成分からなる化合物を分離して得ら れたクロマトグラムにおけるピーク 1の保持時間を表し、 t R2はピーク 2の保持時間を表し、 はピーク 1の底辺 (時間長) を表し、 W2はピ ーク 2の底辺 (時間長) を表す。
実施例 2
分離力ラムをシリカゲル粒子表面にォクチル基を化学結合した固定相 が充填された I n e r t s i 1 C 8 (GLサイエンス社製) に変える 以外は実施例 1と同様の方法で、 N— ( t e r t—ブトキシカルボニル) — DL—ァラニン { (D体/ L体) モル比 =1 2} の分離を行ないそ の程度を評価したところ、 R sは 2.03であり良好な分離を行うこと ができた。
実施例 3
ァセトニトリルの割合を 15% (容量比) に変えて実施例 1と同様の 方法で N— (t e r t—ブトキシカルボニル) 一 DL—メチォニン { (D 体/ L体) モル比 =1/2} の分離を行ないその程度を評価したところ、 R sは 1.46であり良好な分離を行うことができた。
実施例 4
分離カラムをシリカゲル表面にフ 二ル基を化学結合した固定相が充 填された I n e r t s i l PH (G Lサイエンス社製) に、 ァセトニ トリルの割合を 15% (容量比) に変えて、 実施例 1と同様にして N— ( t e r t—ブトキシカルボニル) 一 DL—ロイシン { (0体 体) モル比 =1ノ 2} の分離を行ないその程度を評価したところ、 Rsは 2. 1 であり、 良好な分離を行うごとができた。
実施例 5
キラルセレクタとして /3—シクロデキストリ ンの水酸基がヒ ドロキシ プロピル化されたシクロデキストリンである CAVA S OL W7 HP (ヮッ力一ケミカルズイース トアジア社製) 43.2 gを用い、 0.1% リン酸溶液 (容量比) 1 Lに溶解してシクロデキス トリ ン濃度を 30m Mとした溶液に対して、 ァセトニトリル (和光純薬工業社製) を 20% (容量比) 混合した溶液を移動相とし、 カラムは I n e r t s i l 0 D S - 2 (GLサイエンス社製) を用いて、 N— ( t e r t _ブトキシ カルボニル) 一 DL—フヱニルァラニン { (D体/ L体) モル比 =1/ 2} の高速液体クロマトグラフィーによる分離を行なった。 なお、 装置 は実施例 1で用いたのと同じ装置を用いたが、 感度が良好であるため検 出波長は 254 nmを用いた。 この時の R sは 1.56であり、 やはり 良好な分離を行うことができた。
実施例 6
/3_シクロデキストリン (東京化成社製) 11.35 gを、 10 mM リン酸トリェチルァミ ン (東京化成社製) 溶液 1 Lに溶解してシクロデ キストリン濃度を 1 OmMとした溶液に対して、 ァセトニトリル (和光 純薬工業社製) を 15% (容量比) 混合した溶液を移動相とし、 カラム は I n e r t s i l 0 D S— 2 ( G Lサイエンス社製) を用いて、 実 施例 5と同様にして N— ( t e r t—ブトキシカルボニル) 一 DL—ト リブトフアン { (D体/ L体) モル比 =1/2} の高速液体クロマトグ ラフィ一による分離を行なったところ、 R s = 1.59であった。
実施例 7
リン酸トリェチルァミ ンをリン酸テトラプチルアンモニゥム (GLサ ィエンス社製) に、 ァセトニトリルの割合を 10% (容量比) に変えて、 さらに検出波長を 210 nmに変えて、 実施例 6と同様に N_ ( t e r t—ブトキシカルボニル) 一DL—プロリン { (D体 ZL体) モル比 = 1X2} の分離を行なったところ、 Rs = 1.91であった。 実施例 8
キラルセレクタとしての CAVASOL W7 HP (ヮッカーケミカ ルズイーストアジア社製) 43.2 gを、 1 OmMリン酸テトラブチル アンモニゥム溶液 (GLサイエンス社製) 1 Lに溶解してシクロデキス トリン濃度を 3 OmMとした溶液に対して、 ァセトニトリル (和光純薬 工業社製) を 15% (容量比) 混合した溶液を移動相とし、 カラムとし て I n e r t s i l ODS— 2 (GLサイエンス社製) を用いて、 実 施例 1と同様にして N— ( t e r t—ブ'トキシカルボニル) 一 DL—チ 口シン { (D体 ZL体) モル比 =1Z2} の高速液体クロマトグラフィ 一による分離を行なった。 但し、 ピークの検出は、 検出波長 210 nm を用いて吸光度をモニタ一した。 その結果、 Rsは 1.96であった。 実施例 9
p H調整剤に 1 OmMクェン酸ナトリウムを用い p Hを 2. 8とし、 キラルセレクタにァミノ酸誘導体である N— ( t e r t—ブトキシカル ボニル) 一L—トリブトファンを用い、 分離対象を N—ベンジルォキシ カルボニル一 DL—ロイシン { (D体 ZL体) モル比 =1/2} として 実施例 1と同様に高速液体クロマトグラフィーを行った。 但し、 ピーク の検出は検出波長 254 nmを用いて吸光度をモニタ一した。 その結果 は R s = 0.34であり、 分離を行うことができた。
実施例 10
pH調整剤に 1 OmMクェン酸ナトリウムを用い p H 3.4とし、 キ ラルセレクタにァミノ酸誘導体であるべンジルォキシカルボニル一 L— ァラニンを用い分離対象を N—ベンゾィル一DL—バリ ン { (D体 ZL 体) モル比 = 1/2} として実施例 1と同様にして高速液体クロマトグ ラフィー分析を行った。 但し、 ピークの検出は、 検出波長 254 nmを 用いて吸光度をモニタ一した。 その結果、 R sは 0.08であり分離を 行うことができた。
実施例 1〜10の結果を表 1にまとめる。
水性溶液の組成 (移動相組成)
疎水性物質 疎水性対ィォ ァセトニト 分離能 (分離カラム) H H調整剤 ン生成化合物 キラルセレクタ (Rs)
N- (tert-ブトキシ lOmM S-シクロデ
実施例 1 カルボ二ル DL - Inertsil ODS-2 2. 0 0. 1% Vン酸 なし キストリン 10% 2. 25
ァラニン
N (tert-ブトキシ lOmM /?—シクロデ
実施例 2 カルボ二ル DL- Inertsil C8 2. 0 0. 1%リン酸 なし キストリン 10% 2. 03
ァラニン
N -(tert-ブトキシ lOmM /S-シクロデ
実施例 3 カルボ二ノレ) DL- Inertsil ODS-2 2. 0 0. 1%リン酸 なし キストリン 15% 1. 46
メチォニン
N -(tert-ブトキシ 10mM β シク jデ
実施例 4 カルボ二ル DL - Inertsil PH 2. 0 0. 1%リン酸 なし キストリン 15% 2. 18
ロイシン
N (tert-ブトキシ 30mM CAVASOL W7
実施例 5 カルボ二ノレ) DL- Inertsil ODS-2 2. 0 0. 1%リン酸 なし HP 20% 1. 56
フエ二ルァラニン
N -(tert-ブトキシ 10mMリン酸ト 10mM jS-シクロデ
実施例 6 カルボ二ル DL- Inertsil ODS-2 7. 0 なし リェチルァミ キストリン 15¾ 1. 59
卜リプ卜ファン ン
N -(tert-ブ卜キシ lOmM ' Jン酸テ lOmM β シク Όデ
実施例 7 カルボ二ノレ) DL- Inertsil ODS-2 7. 5 なし トラブチノレア キストリン 10% 1. 91
プロリン ンモニゥム
N (tert-ブトキシ 10mMリン酸テ 30mM CAVASOL W7
実施例 8 カルボ二ル DL - Inertsil ODS-2 7. 5 なし トラプチルァ HP 15% 1. 96
チロシン ンモニゥム
N-ベンジルォキシ 10mMクェン 20mM N- (tert-ブト
実施例 9 カルボ二ル DL 口 Inertsil ODS-2 2. 8 酸ナトリウ なし キシカルボニル) - 10% 0. 34
イシン ム L一トリプ卜ファン
N-ベンゾィル DL- 10mMクェン 30mMベンジルォキ
実施例 10 バリン Inertsil ODS-2 3. 4 酸ナトリウ なし シカルボ二ノレ Lァ 10% 0. 08
ム ラニン
実施例 11
試料として予め D型 50%、 L型 50%の比率で混合した N— ( t e r t—ブトキシカルボニル) — D L—ァラニンの 5 %溶液 50〃 1を用 い、 実施例 1と同様にして分離し、 得られたクロマトピークの面積を算 出した。 その結果、 面積の比率は D型 50%、 L型 50%となった。 面 積の比率は混合した比率と同じであり、 本発明の分離定法を用いれば、 簡便な操作で正しく光学純度を測定できることが確認された。
また、 各クロマトピークに相当するカラムからの溶出液をそれぞれ分 取した。 先に溶出したクロマトピークの溶出液を溶出液 1、 後に溶出し たクロマトピークの溶出液を溶出液 2とした。 次いで、 溶出液 1、 溶出 液 2について以下の操作を行い、 各溶出液に含まれるアミノ酸誘導体の 光学純度を測定した。
即ち、 分液ロート中に、 上記溶出液および、 上記溶出液とほぼ等体積 のクロ口ホルムを加え、 1分間振とう後、 10分間静置した。 その後、 クロ口ホルム層をナスフラスコに取り出し、 減圧留去によりクロ口ホル ムを除き、 白色固体を得た。 次いで、 該白色固体にジォキサン lm 1を 添加して上記白色固体を再溶解し、 不溶分を濾別除去した。 濾液のジォ キサン溶液に 4 N塩化水素ジォキサン溶液 0. lm 1を加え混合して脱 保護 (t e r t—ブトキシカルボニル基の水素原子への置換) を行った 後、 ;, 12時間放置して生成したアミノ酸塩酸塩を濾過して回収し、 真空 下で十分乾燥した後、 1 OmMリン酸緩衝 (pH7.0) 0.1mlに 溶解した。 次いで、 得られたリン酸緩衝液溶液 10 1を、 市販のァミ ノ酸光学異性体分離用カラム (ダイセル化学工業株式会社製 CH I RA LPAK WE) を用いて下記条件で分離分析した。 分析条件:
ポンプ ·· Wa t e r s社製 600 E
インジヱクタ一 : Wa t e r s社製 U 6 K
カラムオーブン : 島津製作所社製 C TO 1 OA
検出器: Wa t e r s社製 991 J
移動相組成: 0.25 mM 硫酸銅水溶液
移動相流速: 0.6m 1 Zm i n
カラム温度: 50°C
カラムサイズ: 内径 4.6 mm. 長さ 250mm
検出波長: 210 nm。
その結果から溶出液 1及び溶出液 2からそれぞれ得られた前記白色固 体は、 それぞれ 100 %D型の N— ( t e r t—ブトキシカルボニル) ーァラニン及び 100%L型のN— ( t e r t—ブトキシカルボニル) —ァラニンであることが確認された。
比較例 1
キラルセレクタである ; 8—シクロデキストリンを移動相に添加しない 他は実施例 1と同様にして N— ( t e r t—ブトキシカルボニル) 一 D L—ァラニンの分離を行ったが R s = 0となり、 D型と L型はまったく 分離されなかった。
比較例 2〜 4
濃度 1 OmMの酢酸ナトリウム緩衝液を用いて移動相の pHを表 2に 示すように 3.5よりも大きな値とする他は実施例 1と同様にして N— ( t e r t—ブトキシカルボニル) 一 D L—ァラニンの分離を行った。 その結果を表 2中に示した。 何れの場合も R s =0となり、 D型と L型 はまったく分離されなかった。
表 2 水性溶液の組成 (移動相組成)
疎水性物質
分離対象 分離能 セトニト
(分離カラム) 疎水性対ィォ ァ
PH pH調整剤 キラルセレクタ (Es)
ン生成化合物
N- (tert-ブトキシ
比較例 1 カルボ二ル)- DL - Inertsil 0DS-2 2 0. 1%リン酸 なし なし 10% 0
ァノ ノ—一、ノノ
N-(tert-ブトキシ 10mM酢酸ナト 10mM yS-シクロデ
比較例 2 カルボ二ル)- DL - Inertsil ODS-2 3. 6 リウム なし キストリン 10% 0
ァノ 、— ソ z
N -(tert-ブトキシ 10mM酢酸ナト 10mM ^-シクロデ
O 比較例 3 カルボ二ノレ)- DL- Inertsil ODS-2 3. 7 リウム なし キストリン 10% 0
ノ ノ—一 V ,
N -(tert-ブトキシ 10mM酢酸ナト 10mM /S-シクロデ
比較例 4 カルボ二ル)- DL - Inertsil ODS-2 4. 1 リウム なし キストリン 10% 0
ァラニン
N- (tert-ブトキシ 10mM酢酸ナト 10mM β -シク Όデ
比較例 5 カルボ二ル)- DL - Inertsil ODS-2 5. 4 リウム なし キストリン 10% 0
ァラニン
N- (tert-ブトキシ 10mMリン酸 2 10mM /3-シクロデ
比較例 6 カルボ二ル)- DL - Inertsil ODS-2 7 水素カリウム なし キストリン 15% 0
トリプ卜ファン -リン酸水素
2ナトリウム
比較例 5
疎水性対イオンを生成する化合物である トリエチルァミ ンを添加しな い移動相を用いる他は実施例 5と同様にして N— ( t e r t—ブトキシ カルボニル) 一 DL— トリブトファンを分離分析した。 その結果を表 2 中に示した。 表 2に示されるように R s = 0となり D型と L型はまった く分離できなかった。
比較例 6
比較例 5において p Hの調整剤としてリ ン酸緩衝液 (リン酸 2水素力 リウム、 リン酸水素 2ナトリウムを混合したもの) を加え、 p Hが実施 例 5と同じ 7になるようにして分離を行なったが、 やはり R s = 0とな り D型と L型はまったく分離できなかつた。
比較例 7
市販の光学異性体分離用カラムであるスミキラル OA 7000 (β- シクロデキストリンをシリカゲル微粒子表面に固定化した担体を使用し た分離カラム) を充填として使用し、 移動相として、 ァセトニトリル 2 0%を含有する 20mM KH2P04水溶液 (pH 2. 5) を用い、 N - ( t e r t—ブトキシカルボニル) 一DL—フヱ二ルァラニン { (D 体/ L体) モル比 = 1/2} を注入して高速液体クロマトグラフィーを 行なった。 なお、 この時採用した装置および条件は、 以下の通りである。
ポンプ: Wa t e r s社製 600 E
インジヱクタ一 : Wa t e r s社製 U 6 K
カラムオーブン : 島津製作所社製 CTO 1 O A
検出器: wa t e r s社製 99 1 J
移動相流速: lm 1 Zm i n カラム温度: 30°C
カラムサイズ: 内径 4.6 mm. 長さ 250mm
検出波長: 210 nm
得られたクロマトグラムについて分離能を調べたところ R s =0であ り、 D体と L体はまったく分離されていなかった。
実施例 12
ラセミ体の N— ( t e r t—ブトキシカルボニル) 一 DL—ァラニン { (D体 ZL体) モル比 =1} を、 キラルセレクタとしての ;5—シクロ デキストリンを 1 OmM含みリ ン酸を用いて pH 2に調整された水性溶 液 1 Om 1に 10 OmMの濃度となるよう溶解した。 この水性溶液と、 液体の疎水性物質であるクロ口ホルム i Om lとを 50ml分液口一 ト に入れ、 3分間振とう後、 静置した。 その後疎水性物質を 5m l取り出 し、 減圧留去してクロ口ホルムを除去し、 白色固体を得た。 次いで得ら れた白色固体をキラルセレクタとしての S—シクロデキストリンを 10 mM含みリン酸を用いて pH 2に調整された水性溶液 1 Om 1に 100 mMの濃度となるよう溶解し、 該溶液を上記と同様にしてクロ口ホルム 10m lと接触させた後に分離し、 さらにクロ口ホルムを除去し、 白色 固体を回収した。 この白色固体について同様の分離操作を合計分離操作 回数が 5回となるように更に繰り返して白色固体を得た。 最終的に得ら れた白色固体について、 実施例 11における溶出液.1から得た白色固体 と同様にして脱保護を行なつた後に市販のァミノ酸光学異性体分離用力 ラムを使用して液体クロマトグラフィーを行った。 その結果、 該白色固 体中の (D体/ L体) モル比は 0.53であった。
産業上の利用可能性 本発明は、 D体と L体が混在した特定の置換基を有する本ァミノ酸誘 導体から、 D体と L体とを分離する、 新しい方法を提供するものである。 しかも、 従来の分離方法と比べると分離能が高く、 例えば前記した液体 クロマトグラフィ一による方法を採用することにより、 D体と L体とを 完全且つ容易に分離することが可能となる。
したがって、 本発明の分離方法は、 光学活性の低い本アミノ酸誘導体 から光学分割により光学純度の高い本ァミノ酸誘導体を製造する際の光 学分割法として好適に採用できるばかりでなく。 光学純度の測定方法と しても好適に採用できる。 さらに、 従来の光学分割法を採用して光学純 度の高い本ァミノ酸誘導体を製造する際の工程管理にも応用できる。 か く して、 本発明は、 例えば、 アミノ酸誘導体の製造業、 医薬品製造業等 で利用できる。

Claims

請 求 の 範 囲
1. 不斉炭素を少なくとも一つ有するアミノ酸のアミノ基もしくはィ ミノ基の水素原子の一つが有機カルボニル基により N—置換されたァミ ノ酸誘導体の一対の光学異性体を含有する混合物からの各光学異性体の 分離方法であって、
(A) 該混合物を用意し、
(B) 該混合物を、 それに含まれる各光学異性体に対してそれぞれ異 なる親和性を有する親水性化合物と水性溶液中で混合して複合 体を形成し、
(C) 該複合体を含有する水性溶液又は水性懸濁液を、
( i ) pHが 3.5以下となる条件下、 或いは
(ii) 該ァミノ酸誘導体の荷電性基に由来するイオンの対ィ オンとなりうる基及び疎水性の原子団を有する化合物 の共存下
に置くことにより、 各光学異性体間の疎水性に差違をもたらし、 そして
(D) かような疎水性の差違を利用して各光学異性体を相互に分離す る、
ことを特徴とする、 前記方法。
2. N—置換されたアミノ酸誘導体が、 一般式 ( I ) :
R
N-CHCOOH (I)
(上式中、 R1は未置換もしくは置換された 0ぃ6アルキル基を表し、 か つ、 置換された場合の置換基はヒ ドロキシ、 メルカプト、 メチルチオ、 ァミノ、 モノーもしくはジメチルァミノ、 C i— 6アルキルカルボニルァ ミ ノ、 C 6アルキルォキシカルボニル、 アミ ジノアミノ、 カルボキシ、 C アルキルォキシカルボニル、 力ルバモイル、 未置換もしくは置換 されたフ ニル (ここで、 置換された場合の置換基は同一もしくは異な り、 1〜3個のハロゲン原子、 ヒ ドロキシ、 メルカプト、 メチル、 トリ フルォロメチル又はアミノであることができる) 、 環員窒素原子を 1も しくは 2個有し、 ベンゼン環が縮合していてもよい 5員環式基からなる 群より選ばれ;
R 2及び R 3は一方が水素原子であり、 そして他方がアルコキシカルボ ニル、 ァラルキルォキシカルボ ル、 ァリールォキシカルボニル、 アル ケニルォキシカルボニル又はァシルを表し、 或いは R 2及び R 3の水素原 子を表す基は、 水素原子に代わり、 R 1と一緒になつて、 それらが結合 する窒素原子を介して、 5員環を形成しうるプロパン一 1, 3 —ジィル、 2—ヒ ドロキシプロパン一 1, 3—ジィル又は 1—ヒ ドロキシプロパン - 1 , 3 _ジィルを表すことができる)
で表される請求項 1記載の方法。
3 . N _置換されたアミノ酸誘導体がァラニン、 プロリ ン、 ロイシン、 イソロイシン、 バリ ン、 ト リプトファン、 フエ二ルァラニン、 チロシン、 セリ ン、 メチォニン、 グルタミ ン、 グルタミ ン酸及びリジンからなる群 より選ばれるアミノ酸に由来する請求項 1記載の方法。
4 . アルコキシカルボニルが Cぃ9アルキルォキシカルボニルであり ; ァラルキルォキシカルボ二ルが未置換もしくは置換されたフヱニルー
C 1 — 4アルキレンォキシカルボニル又は 9—フルォレニルー C 4アルキ レンォキシカルボニルであって、 置換された場合の置換基が同一もしく は異なり、 1〜 3個のメチル、 ニ トロ、 メ トキシ又はハロゲンであり ; ァリ一ルォキシカルボ二ルが未置換もしくは置換されたフヱニルォキシ カルボニルであって、 置換された場合の置換基が前記 「置換されたフエ 二ルー」 について定義したとおりであり ; アルケニルォキシカルボニル が C 3 - 9アルケニルォキシカルボニルであり ; そしてァシルがホルミル、 d - 6アルキルカルボニル及びベンゾィルである請求項 1記載の方法。
5 . 各光学異性体に対してそれぞれ異なる親和性を有する親水性化合 物が多糖類及びそれらの誘導体、 並びにアミノ酸の光学活性化合物及び それらの誘導体からなる群より選ばれる請求項 1記載の方法。
6 . 多糖類及びそれらの誘導体が、 シクロデキストリ ン及びそれらの 誘導体である請求項 5記載の方法。
7 . アミノ酸の光学活性化合物及びそれらの誘導体が L一もしくは D ―フヱ二ルァラニン、 L—もしくは D— ト リプトファン及び, L—もしく は D—ロイシンから選ばれ、 そしてそれらの誘導体がそれぞれ対応する N— ( t e r t 一ブトキシカルボニル) 化物から選ばれる請求項 5記載 の方法。
8 . 工程 (C ) が、 ( i ) の p Hが 3 . 5以下となる条件下で行われ る請求項 1記載の方法。
9 . 工程 (C ) が、 (11 ) の対イオンとなりうる基及び疎水性の原子 団を有する化合物の共存下で行われ、 該化合物が疎水性の原子団として 未置換もしくは置換された C ! - 2 2アルキル基または未置換もしくは置換 されたァリール基を有し、 かつ、 対イオンとなりうる基として、 四級ァ ンモニゥム基を有する請求項 1記載の方法。
10. 工程 (D) の疎水性の差違の利用が、 各光学異性体を疎水性物 質と接触させることにより達成される請求項 1記載の方法。
1 1. 疎水性物質が疎水性表面を有する固定相である請求項 10記載 の方法。
12. 請求項 1に記載の分離方法における工程 (A) の N—置換アミ ノ酸誘導体の一対の光学異性体を含有する混合物の用意が、 不斉炭素を 少なく とも一つを有するアミノ酸の一対の光学異性体混合物中の各光学 異性体のァミノ基もしくはイ ミノ基の窒素原子を有機カルボニル化する ことにより行われ、 そして工程 (D) を経て得られるいずれか一方の光 学異性体を採取し、 必要により、 N—有機カルボ二ル基を脱離する工程 をさらに含んでなる光学活性ァミノ酸又はその誘導体の製造方法。
13. 各光学異性体のァミノ基もしくはイミノ基の窒素原子を有機力 ルポニル化することが、 一般式 ( I一 a) :
Figure imgf000043_0001
(上式中、 R1は請求項 1における一般式 ( I) についての定義と同じ であり、 そして R2 _ a及び R3aは独立して水素原子であるか、 或いはい ずれか一方が、 R1と一緒になつてそれらが結合する窒素原子を介して 5員環を形成しうるプロパン一 1, 3—ジィル、 2—ヒ ドロキシプロパ ン一 1, 3 _ジィル又は 1—ヒ ドロキシプロパン一 1, 3—ジィルを表す ことができる)
で表されるアミノ酸を、 反応に悪影響を及ぼさない溶媒中で、 一般式 (Π) : A-COOH (Π)
(上式中、 Aは、 アルコキシ、 ァラルキルォキシ、 ァリールォキシ、 ァ ルケニルォキシ又はアルキルもしくはァリ一ルを表す)
で表される酸の活性エステルと反応させることによって行われる請求項 12記載の製造方法。
14. 請求項 1に記載の分離方法における工程 (D) で相互に分離さ れる各光学異性体のいずれか一方又は両者を定量する工程をさらに含む 工程 (A) で用意された一対の光学異性体混合物の光学純度の分析方法。
15. 請求項 1に記載の分離方法における工程 (D) の分離が、 疎水 性表面を有する固定相と各光学異性体とを接触することによって行われ る請求項 14の分析方法。
16. 請求項 14または 15に記載の分析方法によって、 光学活性ァ ミノ酸の製造工程を監視することを特徴とする高光学純度を有する光学 活性アミノ酸の製造方法。
PCT/JP2001/009384 2000-11-02 2001-10-25 Procede pour separer des isomeres optiques d'un derive d'acide amine WO2002036544A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01980906A EP1338588B1 (en) 2000-11-02 2001-10-25 Method of resolving optical isomers of amino acid derivative
DE60130674T DE60130674T2 (de) 2000-11-02 2001-10-25 Verfahren zur racemattrennung von aminosäurederivaten
US10/415,559 US7199264B2 (en) 2000-11-02 2001-10-25 Method of resolving optical isomers of amino acid derivative
KR1020037004754A KR100790507B1 (ko) 2000-11-02 2001-10-25 아미노산 유도체의 광학 이성체의 분리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-335352 2000-11-02
JP2000335352A JP4783496B2 (ja) 2000-11-02 2000-11-02 アミノ酸誘導体の光学異性体の分離方法

Publications (1)

Publication Number Publication Date
WO2002036544A1 true WO2002036544A1 (fr) 2002-05-10

Family

ID=18811110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009384 WO2002036544A1 (fr) 2000-11-02 2001-10-25 Procede pour separer des isomeres optiques d'un derive d'acide amine

Country Status (8)

Country Link
US (1) US7199264B2 (ja)
EP (1) EP1338588B1 (ja)
JP (1) JP4783496B2 (ja)
KR (1) KR100790507B1 (ja)
CN (1) CN1473145A (ja)
AT (1) ATE374175T1 (ja)
DE (1) DE60130674T2 (ja)
WO (1) WO2002036544A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064000A (ja) * 2001-08-23 2003-03-05 Tokuyama Corp 光学異性体の分離方法
WO2005082871A3 (de) * 2004-02-19 2005-11-10 Abbott Gmbh & Co Kg Guanidinverbindungen und ihre verwendung als bindungspartner für 5-ht5-rezeptoren

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019169B2 (en) * 2003-09-23 2006-03-28 Basf Aktiengesellschaft Preparation of (meth)acrylic acid
US7927779B2 (en) 2005-06-30 2011-04-19 Taiwan Semiconductor Manufacturing Companym, Ltd. Water mark defect prevention for immersion lithography
JP5122871B2 (ja) * 2007-06-01 2013-01-16 大東化学株式会社 光学活性n−ベンジルオキシカルボニルアミノ酸の製造方法およびジアステレオマー塩
DE102008013500A1 (de) * 2008-03-10 2009-09-17 Evonik Degussa Gmbh Neue chirale Selektoren und stationäre Phasen zur Trennung von Enantiomerengemischen
CN107407668B (zh) * 2015-05-11 2020-07-03 镜株式会社 结合型氨基酸的旋光性分析方法及旋光性分析系统
CN108181414B (zh) * 2017-12-25 2020-03-31 齐齐哈尔大学 手性键合毛细管电色谱开管柱的制备方法及其应用
CN111323497B (zh) * 2018-12-17 2022-07-12 武汉武药科技有限公司 一种帕瑞肽起始原料的光学纯度分析方法
CN111100051B (zh) * 2019-12-31 2022-01-28 山东新和成氨基酸有限公司 在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法
CN114957024B (zh) * 2022-05-30 2023-08-15 厦门理工学院 一种dl-苯丙氨酸对映体的手性拆分方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254258A (en) * 1991-09-17 1993-10-19 Research Corporation Technologies, Inc. Chiral selector useful for separation of enantiomers of β-amino alcohol compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG S.C. ET AL.: "Facile resolution of N-tert-butoxy-carbonyl amino acids: the importance of enantiomeric purity in peptide synthesis", JOURNAL OF LIQUID CHROMATOGRAPHY, vol. 15, no. 9, 1992, pages 1411 - 1429, XP002907641 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064000A (ja) * 2001-08-23 2003-03-05 Tokuyama Corp 光学異性体の分離方法
WO2005082871A3 (de) * 2004-02-19 2005-11-10 Abbott Gmbh & Co Kg Guanidinverbindungen und ihre verwendung als bindungspartner für 5-ht5-rezeptoren
EP2366697A1 (de) * 2004-02-19 2011-09-21 Abbott GmbH & Co. KG Guanidinverbindungen und ihre Verwendung als Bindungspartner für 5-HT5-Rezeptoren
EP2380885A1 (de) * 2004-02-19 2011-10-26 Abbott GmbH & Co. KG Guanidinverbindungen und ihre Verwendung als Bindungspartner fuer 5-HT5-Rezeptoren
US8431604B2 (en) 2004-02-19 2013-04-30 Abbott Gmbh & Co. Kg Guanidine compounds, and use thereof as binding partners for 5-HT5 receptors
US8481576B2 (en) 2004-02-19 2013-07-09 Abbott Gmbh & Co. Kg Guanidine compounds, and use thereof as binding partners for 5-HT5 receptors
US9475782B2 (en) 2004-02-19 2016-10-25 AbbVie Deutschland GmbH & Co. KG Guanidine compounds, and use thereof as binding partners for 5-HT5 receptors

Also Published As

Publication number Publication date
EP1338588A4 (en) 2005-06-29
US7199264B2 (en) 2007-04-03
EP1338588A1 (en) 2003-08-27
CN1473145A (zh) 2004-02-04
ATE374175T1 (de) 2007-10-15
DE60130674T2 (de) 2008-07-17
KR100790507B1 (ko) 2008-01-02
EP1338588B1 (en) 2007-09-26
US20040102646A1 (en) 2004-05-27
DE60130674D1 (de) 2007-11-08
JP2002145837A (ja) 2002-05-22
KR20030059171A (ko) 2003-07-07
JP4783496B2 (ja) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2002036544A1 (fr) Procede pour separer des isomeres optiques d'un derive d'acide amine
JP6791153B2 (ja) 鏡像異性体の分析方法
JPH0357816B2 (ja)
Mangelings et al. Recent developments in liquid and supercritical fluid chromatographic enantioseparations
JPS63218857A (ja) 液体クロマトグラフイ−用充てん剤
Lin et al. Evaluation of new chiral stationary phases of bonded cyanuric chloride with amino acid and naphthylalkylamine substituents for liquid chromatographic separation of amino acids and amino alcohols as dinitrobenzoyl derivatives
US4290893A (en) Separation of amino acids by liquid chromatography using chiral eluants
Ilisz et al. Cinchona alkaloid-based zwitterionic chiral stationary phases applied for liquid chromatographic enantiomer separations: An overview
Batra et al. Enantiomeric resolution of (RS)-naproxen and application of (S)-naproxen in the direct and indirect enantioseparation of racemic compounds by liquid chromatography: a review
Zief et al. Selection of the mobile phase for enantiomeric resolution via chiral stationary phase columns
Ahuja Chiral separations: An overview
Lin et al. Enantioseparation and recognition mechanisms of dinitrobenzoyl-derivatized amino acids and amino alcohols on chiral stationary phases consisting of cyanuric chloride with (S or R)-phenylalanyl-(S or R)-1-(1-naphthyl) ethylamide substituent
WO2020218173A1 (ja) 新規フルオロジニトロフェニル化合物及びその用途
JPS63501507A (ja) 光学活性試薬および対掌体アミン化合物の測定法
Guo et al. Preparation and Enantiomeric Separation of l-Pro-l-Phe-l-Val-l-Leu Peptide Stationary Phases
JPH01119339A (ja) 光学異性体分離用充填剤
Forjan et al. Performance of a new HPLC chiral stationary phase derived from N-(3, 5-dinitrobenzoyl)-D-alpha-phenylglycine with a quinoxaline branching unit
JP2558537B2 (ja) 動電クロマトグラフィー用界面活性剤、及びこれをキャリヤーとして使用する光学分割方法及び動電クロマトグラフィー
Ilisz et al. High‐performance liquid chromatographic separation of stereoisomers of N‐phthaloyl‐protected amino acids and dipeptidomimetics
JPH03106852A (ja) α―アミノケトン類の直接分割方法
JP2912075B2 (ja) ガスクロマトグラフィー用充填剤
JP2003277401A (ja) 多糖アミノ酸カーバメート誘導体
JPH02204478A (ja) 光学異性体の分離方法
Pirkle et al. Liquid chromatographic separation of the enantiomers of cyclic β-amino esters as their N-3, 5-dinitrobenzoyl derivatives
Ilisz Chiral liquid chromatography: Recent applications with special emphasis on the enantioseparation of amino compounds

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037004754

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10415559

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018184987

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001980906

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037004754

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001980906

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001980906

Country of ref document: EP