WO2002032869A2 - Substituted heterocyclic compounds for treating multidrug resistance - Google Patents

Substituted heterocyclic compounds for treating multidrug resistance Download PDF

Info

Publication number
WO2002032869A2
WO2002032869A2 PCT/US2001/042781 US0142781W WO0232869A2 WO 2002032869 A2 WO2002032869 A2 WO 2002032869A2 US 0142781 W US0142781 W US 0142781W WO 0232869 A2 WO0232869 A2 WO 0232869A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
phenyl
mmol
piperidine
Prior art date
Application number
PCT/US2001/042781
Other languages
English (en)
French (fr)
Other versions
WO2002032869A3 (en
WO2002032869A8 (en
Inventor
Charles Raymond Degenhardt
David Joseph Eickhoff
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU2002214657A priority Critical patent/AU2002214657A1/en
Priority to CA002421008A priority patent/CA2421008C/en
Priority to DE60142304T priority patent/DE60142304D1/de
Priority to MXPA03003490A priority patent/MXPA03003490A/es
Priority to AT01983211T priority patent/ATE469887T1/de
Priority to EP01983211A priority patent/EP1326833B1/en
Priority to JP2002536053A priority patent/JP4451060B2/ja
Publication of WO2002032869A2 publication Critical patent/WO2002032869A2/en
Publication of WO2002032869A3 publication Critical patent/WO2002032869A3/en
Publication of WO2002032869A8 publication Critical patent/WO2002032869A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/24Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/06Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/56Nitrogen atoms
    • C07D211/58Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D211/62Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/56Amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/233Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/06Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/04Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D263/06Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by oxygen atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D263/12Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/145Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/15Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/20Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof
    • C07D295/205Radicals derived from carbonic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • This invention relates to compounds for treating multidrug resistance and methods for their preparation and use. More particularly, this invention relates to substituted heterocyclic compounds that regulate the cellular transport proteins P-glycoprotein and MRP1, which are the proteins believed to be largely responsible for causing multidrug resistance in cancer patients.
  • Drug resistance means a circumstance when a disease (e.g., cancer) does not respond to a therapeutic agent. Drug resistance can be intrinsic, which means that the disease has never been responsive to the therapeutic agent, or acquired, which means that the disease ceases responding to the agent or agents to which the disease had previously been responsive.
  • Multidrug resistance is a type of drug resistance wherein a disease is resistant to a variety of drugs that can be functionally unrelated, structurally unrelated, or both. Multidrug resistance is a problem associated with cancer and other conditions, such as bacterial, viral, protozoal, and fungal diseases.
  • One cause of multidrug resistance in cancer patients is that many cancer cells express high levels of the transmembrane transport proteins, such as Pleiotropic- glycoprotein (also known as Pgp, P-glycoprotein, gp-170, or MDR1) and MRP1 (see Borst, P., "Multidrug resistance: A solvable problem?" Annals of Oncology, 10, suppl. 4, pp. S162-S164 (1999)).
  • Pleiotropic- glycoprotein also known as Pgp, P-glycoprotein, gp-170, or MDR1
  • MRP1 MRP1
  • these transport proteins export hydrophobic compounds (such as vinblastine, daunorubicin, doxorubicin, etoposide, vincristine, and TAXOL®, which are cytotoxic drugs useful for treating cancer) from the cell in an effort to protect the cell from harm.
  • the transport proteins remove the compounds from the cell prior to their having a lethal effect on the cell (see Legrand, et. al, "Simultaneous Activity of MRP1 and Pgp Is Correlated With In Vitro Resistance to Daunorubicin and With In Vivo Resistance in Adult Acute Myeloid Leukemia", Blood, Vol. 94, No. 3, pp.
  • multidrug resistance such as antibacterial, antiviral, and antifungal multidrug resistance may also be caused by the action of transport proteins that are similar to Pgp, and others (see “Annual Reports on Medicinal Chemistry - 33; Section HI Cancer and Infectious Diseases” ed. Plattner, J., Academic Press, Ch. 12, pp. 121 - 130 (1998)).
  • Pgp is also expressed at high levels in the gastrointestinal tract, liver, kidneys, and brain, and therefore Pgp represents a major pharmacological barrier to the bioavailability of many drugs (see Amudkar, et. al in "Biochemical, Cellular, and
  • This invention relates to novel compounds useful in treating or preventing multidrug resistance ("MDR"). More specifically, these compounds are useful in treating or preventing P-glycoprotein-mediated MDR and MRPl-mediated MDR. This invention further relates to compositions comprising these compounds. This invention further relates to methods for the preparation and use of the compounds and compositions.
  • the compounds and compositions of this invention are well suited for treatment of multidrug resistant cells, for prevention of the development of multidrug resistance, and for use in multidrug resistant chemotherapies.
  • Aromatic group means a group having a monocyclic or polycyclic ring structure.
  • Monocyclic aromatic groups contain 4 to 10 carbon atoms, preferably 4 to 7 carbon atoms, and more preferably 4 to 6 carbon atoms in the ring.
  • Preferred polycyclic ring structures have two or three rings.
  • Polycyclic structures having two rings typically have 8 to 12 carbon atoms, preferably 8 to 10 carbon atoms in the rings.
  • Polycyclic aromatic groups include groups wherein at least one, but not all, of the rings are aromatic.
  • Carbocyclic group means a saturated or unsaturated hydrocarbon ring. Carbocyclic groups are not aromatic. Carbocyclic groups are monocyclic or polycyclic.
  • Polycyclic carbocyclic groups can be fused, spiro, or bridged ring systems.
  • Monocyclic carbocyclic groups contain 4 to 10 carbon atoms, preferably 4 to 7 carbon atoms, and more preferably 5 to 6 carbon atoms in the ring.
  • Bicyclic carbocyclic groups contain 8 to 12 carbon atoms, preferably 9 to 10 carbon atoms in the rings.
  • Carrier means one or more substances that are suitable for administration to a subject (i.e., mammal) and that can be combined with the active compound according to this invention.
  • Carrier includes solid and liquid diluents, hydrotropes, surface-active agents, and encapsulating substances.
  • Cyclonsitizing agent means a noncytotoxic compound that sensitizes drug resistant cells to the action of cytotoxic drugs. As used in this application, the term “chemosensitizing agent”, excludes the active compounds of this invention.
  • Halogen atom means F, CI, Br, or I.
  • Heteroaromatic group means an aromatic group containing carbon and 1 to 4 heteroatoms in the ring.
  • Monocyclic heteroaromatic groups contain 4 to 10 member atoms, preferably 4 to 7 member atoms, and more preferably 4 to 6 member atoms in the ring.
  • Preferred polycyclic ring structures have two or three rings. Polycyclic structures having two rings typically have 8 to 12 member atoms, preferably 8 to 10 member atoms in the rings.
  • Polycyclic heteroaromatic groups include groups wherein at least one, but not all, of the rings are heteroaromatic.
  • Heteroatom means an atom other than carbon e.g., in the ring of a heterocyclic group or the chain of a heterogeneous group.
  • heteroatoms are selected from the group consisting of sulfur, phosphorous, nitrogen and oxygen atoms.
  • Groups containing more than one heteroatom may contain different heteroatoms.
  • Heterocyclic group means a saturated or unsaturated ring structure containing carbon atoms and 1 or more heteroatoms in the ring. Heterocyclic groups are not aromatic. Heterocyclic groups are monocyclic or polycyclic. Polycyclic heteroaromatic groups can be fused, spiro, or bridged ring systems. Monocyclic heterocyclic groups contain 4 to 10 member atoms (i.e., including both carbon atoms and at least 1 heteroatom), preferably 4 to 7, and more preferably 5 to 6 in the ring. Bicyclic heterocyclic groups contain 8 to 18 member atoms, preferably 9 or 10 in the rings.
  • Heterogeneous group means a saturated or unsaturated chain of non-hydrogen member atoms comprising carbon atoms and at least one heteroatom. Heterogeneous groups typically have 1 to 25 member atoms. Preferably, the chain contains 1 to 12 member atoms, more preferably 1 to 10, and most preferably 1 to 6. The chain may be linear or branched. Preferred branched heterogeneous groups have one or two branches, preferably one branch. Preferred heterogeneous groups are saturated. Unsaturated heterogeneous groups have one or more double bonds, one or more triple bonds, or both. Preferred unsaturated heterogeneous groups have one or two double bonds or one triple bond. More preferably, the unsaturated heterogeneous group has one double bond.
  • Hydrocarbon group means a chain of 1 to 25 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, and most preferably 1 to 8 carbon atoms. Hydrocarbon groups may have a linear or branched chain structure. Preferred hydrocarbon groups have one or two branches, preferably 1 branch. Preferred hydrocarbon groups are saturated. Unsaturated hydrocarbon groups have one or more double bonds, one or more triple bonds, or combinations thereof. Preferred unsaturated hydrocarbon groups have one or two double bonds or one triple bond; more preferred unsaturated hydrocarbon groups have one double bond.
  • ICso means concentration of drug required to produce a 50% inhibition of growth of cancer cells or 50% inhibition of activity.
  • MDR means multidrug resistance
  • Parenter as used herein includes subcutaneous, intravenous, intramuscular, intraarticular, intrasynovial, intrastemal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • Pgp means P-glycoprotein
  • “Pharmaceutically acceptable” means suitable for use in a human or other mammal.
  • Protecting group is a group that replaces the active hydrogen of a -OH, -COOH, or -NH 2 moiety thus preventing undesired side reaction at the moiety.
  • Use of protecting groups in organic synthesis is well known in the art. Examples of protecting groups are found in Protecting Groups in Organic Synthesis by Greene, T. W. and Wuts, P. G. M., 2nd ed., Wiley & Sons, Inc., 1991.
  • Preferred protecting groups for hydroxyl moieties include silyl ethers, alkoxymethyl ethers, tetrahydropyranyl, tetrahydrofuranyl, esters, and substituted or unsubstituted benzyl ethers.
  • Other preferred protecting groups include carbamates.
  • Subject means a living vertebrate animal such as a mammal (preferably human).
  • Substituted aromatic group means an aromatic group wherein 1 or more of the hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents.
  • Preferred substituents include hydrocarbon groups such as methyl groups and heterogeneous groups including alkoxy groups such as methoxy groups. The substituents may be substituted at the ortho, meta, or para position on the ring, or any combination thereof.
  • “Substituted carbocyclic group” means a carbocyclic group wherein 1 or more hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents.
  • Preferred substituents include hydrocarbon groups such as alkyl groups (e.g, methyl groups) and heterogeneous groups such as alkoxy groups (e.g., methoxy groups).
  • “Substituted heteroaromatic group” means a heteroaromatic group wherein 1 or more hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents.
  • Preferred substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups.
  • “Substituted heterocyclic group” means a heterocyclic group wherein 1 or more hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents.
  • Preferred substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups. Substituted heterocyclic groups are not aromatic. "Substituted heterogeneous group” means a heterogeneous group, wherein 1 or more of the hydrogen atoms bonded to carbon atoms in the chain have been replaced with other substituents. Preferred substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups. "Substituted hydrocarbon group” means a hydrocarbon group wherein 1 or more of the hydrogen atoms bonded to carbon atoms in the chain have been replaced with other substituents.
  • Preferred substituents include monovalent aromatic groups, monovalent substituted aromatic groups, monovalent hydrocarbon groups including alkyl groups such as methyl groups, monovalent substituted hydrocarbon groups such as benzyl, and monovalent heterogeneous groups including alkoxy groups such as methoxy groups.
  • Substrate potential means the likelihood that a compound for use in treating multidrug resistance will be transported out of a cell by cellular transport proteins before effectively preventing or reversing multidrug resistance.
  • Transport protein means a protein that acts to remove cytotoxic substances from cells through the cell membrane. Transport protein includes P-glycoprotein, MRPl, and others.
  • Treating multidrug resistance means preventing multidrug resistance from developing in nonresistant cells, increasing or restoring sensitivity of multidrug resistant cells to therapeutic or prophylactic agents, or both.
  • Treating means 1) preventing a disease (i.e., causing the clinical symptoms of the disease not to develop), 2) inhibiting the disease (i.e., arresting the development of clinical symptoms of the disease), 3) relieving the disease (i.e., causing regression of the clinical symptoms), and combinations thereof.
  • “Wax” means a lower-melting organic mixture or compound of high molecular weight, solid at room temperature and generally similar in formulation to fats and oils except that they contain no glycerides.
  • the active compounds of this invention are heterocyclic compounds.
  • the active compounds have the general structure:
  • Groups A 1 and A 2 are each independently selected from the group consisting of a hydrogen atom and a group of the formula
  • Each R 1 is independently selected from the group consisting of a hydrogen atom, a hydroxyl group, a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
  • R 1 is preferably a hydrogen atom or a hydroxyl group. In group A 1 , R 1 is preferably a hydrogen atom.
  • the subscript x is 0 to about 10, preferably 0 to about 1.
  • R 2 is selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
  • R 2 is preferably selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
  • R 2 is a substituted hydrocarbon group or a substituted heterogeneous group, wherein said group is substituted with a group selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
  • R 2 is selected from the group consisting of:
  • R 12 and R 13 are each independently selected from the group consisting of hydrocarbon groups and substituted hydrocarbon groups.
  • R 12 and R 13 are substituted hydrocarbon groups such as alkoxy groups.
  • alkoxy groups include methoxy, ethoxy, propoxy, and butoxy.
  • Each R 14 is independently selected from the group consisting of CH and a heteroatom.
  • the heteroatom is nitrogen. More preferably, each R 14 is CH.
  • Groups D 1 and D 2 are each independently selected from the group consisting of - C(O)- and -NR 3 -, wherein R is selected from the group consisting of a hydrogen atom and R 2 , and with the proviso that optionally, R 2 and R 3 may be bonded together to form a ring structure selected from the group consisting of heterocyclic groups and substituted heterocyclic groups when D 2 is -NR 3 -; y is O or 1 and z is 0 or 1, with the provisos that when y is 0, z is 1 and when y is 1, z is 0, when y is 0 and D 1 is -NR 3 -, then D 2 is -C(O)-, and when y is 0 and D 2 is -NR 3 -, then D 1 is -C(O)-.
  • y is 0 and z is 1.
  • R 2 and R 3 are bonded together and the ring structure has 5 to 6 members.
  • the ring structure formed by R and R is a substituted heterocyclic group, wherein the substituted heterocyclic group is substituted with a group selected from the group consisting of an aromatic group; a substituted aromatic group; a heteroaromatic group; a substituted heteroaromatic group; a substituted hydrocarbon group, wherein the substituted hydrocarbon group is substituted with a group selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group; and a substituted heterogeneous group, wherein the substituted heterogeneous group is substituted with a group selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
  • D 1 is -C(O)- and D 2 is -NR 3
  • D 1 is -C(O)-, y is 1, and z is 0.
  • D 1 is -NR 3 - and D 2 is -C(O)-.
  • R 3 is selected from the group consisting of a hydrogen atom and a hydrocarbon group.
  • a 3 has the formula
  • t is 0 to about 6, preferably 0 to about 2.
  • Group D 4 is selected from the group consisting of -C(O)- and -CH(R ! )-. D 4 is preferably -CH(R 1 )-.
  • Group D 5 is selected from the group consisting of -NR 6 (R 7 ), -O r R 6 , and -C(O)R 6 , wherein r is 0 or 1, preferably 1;
  • R 6 is selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group; and
  • R 7 is selected from the group consisting of a hydrogen atom and R 6 .
  • R 7 is preferably a hydrogen atom.
  • D 5 is preferably -O r R 6 , and R 6 is preferably selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
  • R 6 is more preferably selected from the group consisting of a heteroaromatic group and a substituted heteroaromatic group.
  • R 6 is most preferably a heteroaromatic group.
  • Preferred heteroaromatic groups for R 6 have the formula: wherein each X is independently selected from the group consisting of CH and a heteroatom, with the proviso that at least one X is a heteroatom.
  • the heteroatom is preferably nitrogen.
  • one X is a heteroatom.
  • heteroaromatic groups for X include quinolyl and isoquinolyl groups.
  • Preferred quinolyl groups for X include 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, and 8-quinolyl. More preferably, X is 5-quinolyl.
  • D 4 is -C(O)-, t is 0, and D 5 is - C(O)R 6 .
  • D 4 is -C(O)- and D 5 is -
  • D 4 is -CH(R 1 )- and D 5 is
  • D 4 is -CH(R')- and D 5 is -NR 6 (R 7 ).
  • D 4 is -C(O)- and D 5 is - NR 6 (R 7 ).
  • Group A 4 is a heterocyclic group having 4 to 9 member atoms.
  • a 4 has 4 to 6 member atoms, most preferably 5 or 6 member atoms.
  • the compound may be an optical isomer, a diastereomer, an enantiomer, a pharmaceutically-acceptable salt, a biohydrolyzable amide, a biohydrolyzable ester, and a biohydrolyzable imide of the structure, or combinations thereof.
  • the active compound of this invention inhibits at least one transport protein.
  • the active compound preferably inhibits Pgp or MRPl. More preferably, the active compound inhibits both Pgp and MRPl. In a preferred embodiment of this invention, the active compound inhibits Pgp and has low substrate potential for Pgp. In an alternative preferred embodiment, the active compound inhibits MRPl and has low substrate potential for MRPl. In the most preferred embodiment of this invention, the active compound inhibits both Pgp and MRPl and the active compound has low substrate potential for both Pgp and MRPl.
  • the degree to which a compound inhibits a transport protein can be measured by quantitating the effectiveness of the compound toward restoring drug sensitivity to multidrug resistant cells.
  • Methods for quantitating the effectiveness of the active compounds toward restoring drug sensitivity are readily available to one skilled in the art without undue experimentation (see U.S. Patent Nos. 5,935,954 and 5,272,159, which are hereby incorporated by reference for the purpose of disclosing these methods).
  • Any assay known to measure the restoration of the anti-proliferative activity of a drug may be employed to test the compounds of this invention. These assays use cell lines resistant to particular drugs, and characterized by the presence of one or both of Pgp and MRPl.
  • cell lines include L1210, HL60, P388, CHO, and MCF7.
  • resistant cell lines can be developed by methods readily available to one of ordinary skill in the art without undue experimentation (see Chaudhary, et al., "Induction of Multidrug Resistance in Human Cells by Transient Exposure to Different Chemotherapeutic Agents," lournal of the National Cancer Institute, Vol. 85, No. 8, pp. 632-639 (1993)).
  • the cell line is then exposed to compounds of this invention in the presence or absence of the drug to which it is resistant, such as TAXOL®.
  • the viability of the cells treated with both the active compound and the drug can then be compared to the viability of the cells treated only with the drug.
  • the active compound preferably also has low substrate potential for Pgp or MRPl. More preferably, the active compound has low substrate potential for both Pgp and MRPl.
  • Substrate potential for a transport protein can be determined by using an assay for measuring ATPase activity of the Pgp or MRPl pumps (see, for example, Reference Example 4, below).
  • composition can be used for treating various conditions or disease states.
  • the composition is preferably a pharmaceutical composition administered for treatment or prevention of multidrug resistance. Standard pharmaceutical formulation techniques are used, such as those disclosed in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA. (1990) and U.S. Patent No. 5,091,187, which is hereby incorporated by reference.
  • the composition comprises component (A) the active compound described above and component (B) a carrier.
  • the composition may further comprise component (C) an optional ingredient, such as a therapeutic agent.
  • Component (B) is a carrier.
  • a carrier is one or more compatible substances that are suitable for administration to a mammal.
  • “Compatible” means that the components of the composition are capable of being commingled with component (A), and with each other, in a manner such that there is no interaction which would substantially reduce the efficacy of the composition under ordinary use situations. Carriers must be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the mammal being treated.
  • the carrier can be inert, or it can possess pharmaceutical benefits, cosmetic benefits, or both, depending on the intended use as described herein.
  • the choice of carrier for component (B) depends on the route by which component (A) will be administered and the form of the composition.
  • composition may be in a variety of forms, suitable, for example, for systemic administration (e.g., oral, rectal, nasal, sublingual, buccal, or parenteral) or topical administration (e.g., local application on the skin, ocular, liposome delivery systems, or iontophoresis).
  • systemic administration e.g., oral, rectal, nasal, sublingual, buccal, or parenteral
  • topical administration e.g., local application on the skin, ocular, liposome delivery systems, or iontophoresis.
  • Carriers for systemic administration typically comprise one or more ingredients selected from the group consisting of a) diluents, b) lubricants, c) binders, d) disintegrants, e) colorants, f) flavors, g) sweeteners, h) antioxidants, j) preservatives, k) glidants, m) solvents, n) suspending agents, o) surfactants, combinations thereof, and others.
  • Ingredient a) is a diluent.
  • Suitable diluents include sugars such as glucose, lactose, dextrose, and sucrose; polyols such as propylene glycol; calcium carbonate; sodium carbonate; glycerin; mannitol; sorbitol; and maltodextrin.
  • the amount of ingredient a) in the composition is typically about 1 to about 99 %.
  • Ingredient b) is a lubricant.
  • Suitable lubricants are exemplified by solid lubricants including silica, talc, stearic acid and its magnesium salts and calcium salts, calcium sulfate; and liquid lubricants such as polyethylene glycol and vegetable oils such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil, and oil of theobroma.
  • the amount of ingredient b) in the composition is typically about 1 to about 99 %.
  • Ingredient c) is a binder.
  • Suitable binders include polyvinylpyrrolidone; magnesium aluminum silicate; starches such as corn starch and potato starch; gelatin; tragacanth; and cellulose and its derivatives, such as sodium carboxymethylcellulose, ethylcellulose, methylcellulose, microcrystalline cellulose, and hydroxypropylmethylcellulose; carbomer; providone; acacia; guar gum; and xanthan gum.
  • the amount of ingredient c) in the composition is typically about 1 to about 99 %.
  • Ingredient d) is a disintegrant.
  • Suitable disintegrants include agar, alginic acid and the sodium salt thereof, effervescent mixtures, croscarmelose, crospovidone, sodium carboxymethyl starch, sodium starch glycolate, clays, and ion exchange resins.
  • the amount of ingredient d) in the composition is typically about 1 to about 99 %.
  • Ingredient e) is a colorant such as an FD&C dye.
  • the amount of ingredient e) in the composition is typically about 1 to about 99 %.
  • Ingredient f) is a flavor such as menthol, peppermint, and fruit flavors.
  • the amount of ingredient f) in the composition is typically about 1 to about 99 %.
  • Ingredient g) is a sweetener such as saccharin and aspartame.
  • the amount of ingredient g) in the composition is typically about 1 to about 99 %.
  • Ingredient h) is an antioxidant such as butylated hydroxyanisole, butylated hydroxytoluene, and vitamin E.
  • the amount of ingredient h) in the composition is typically about 1 to about 99 %.
  • Ingredient j) is a preservative such as phenol, alkyl esters of parahydroxybenzoic acid, benzoic acid and the salts thereof, boric acid and the salts thereof, sorbic acid and the salts thereof, chorbutanol, benzyl alcohol, thimerosal, phenylmercuric acetate and nitrate, nitromersol, benzalkonium chloride, cetylpyridinium chloride, methyl paraben, ethyl paraben, and propyl paraben. Particularly preferred are the salts of benzoic acid, cetylpyridinium chloride, methyl paraben and propyl paraben, and sodium benzoate.
  • the amount of ingredient j) in the composition is typically about 1 to about 99 %.
  • Ingredient k) is a glidant such as silicon dioxide.
  • the amount of ingredient k) in the composition is typically about 1 to about 99 %.
  • Ingredient m) is a solvent, such as water, isotonic saline, ethyl oleate, alcohols such as ethanol, glycerin, cremaphor, glycols (e.g., polypropylene glycol and polyethylene glycol), and buffer solutions (e.g., phosphate, potassium acetate, boric carbonic, phosphoric, succinic, malic, tartaric, citric, acetic, benzoic, lactic, glyceric, gluconic, glutaric, and glutamic).
  • the amount of ingredient m) in the composition is typically about 1 to about 99 %.
  • Ingredient n) is a suspending agent. Suitable suspending agents include AVICEL® RC-591 from FMC Corporation of Philadelphia, Pennsylvania and sodium alginate. The amount of ingredient n) in the composition is typically about 1 to about 99 %.
  • Ingredient o) is a surfactant such as lecithin, polysorbate 80, sodium lauryl sulfate, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene monoalkyl ethers, sucrose monoesters, lanolin esters, and lanolin ethers. Suitable surfactants are known in the art and commercially available, e.g., the TWEENS® from Atlas Powder Company of Wilmington, Delaware. Suitable surfactants are disclosed in the C.T.F.A.
  • carrier ingredients discussed above are exemplary and not limiting. One skilled in the art would recognize that different carrier ingredients may be added to or substituted for the carrier ingredients above. One skilled in the art would be able to select appropriate carrier ingredients for systemic compositions without undue experimentation.
  • compositions for parenteral administration typically comprise (A) about 0J to about 10% of an active compound and (B) about 90 to about 99.9% of a carrier comprising a) a diluent and m) a solvent.
  • a carrier comprising a) a diluent and m) a solvent.
  • component a) is propylene glycol and m) is selected from the group consisting of ethanol, ethyl oleate, water, isotonic saline, and combinations thereof.
  • compositions for oral administration can have various dosage forms.
  • solid forms include tablets, capsules, granules, and bulk powders.
  • These oral dosage forms comprise a safe and effective amount, usually at least about 1%, and preferably from about 5% to about 50%, of component (A).
  • the oral dosage compositions further comprise (B) about 50 to about 99% of a carrier, preferably about 50 to about 95%.
  • Tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film- coated, or multiple-compressed. Tablets typically comprise (A) the active compound, and (B) a carrier comprising ingredients selected from the group consisting of a) diluents, b) lubricants, c) binders, d) disintegrants, e) colorants, f) flavors, g) sweeteners, k) glidants, and combinations thereof.
  • Preferred diluents include calcium carbonate, sodium carbonate, mannitol, lactose, and sucrose.
  • Preferred binders include starch, and gelatin.
  • Preferred disintegrants include alginic acid, and croscarmelose.
  • Preferred lubricants include magnesium stearate, stearic acid, and talc.
  • Preferred colorants are the FD&C dyes, which can be added for appearance.
  • Chewable tablets preferably contain g) sweeteners such as aspartame and saccharin or f) flavors such as menthol, peppermint, and fruit flavors, or both.
  • Capsules typically comprise (A) the active compound and (B) the carrier comprising one or more a) diluents disclosed above in a capsule comprising gelatin.
  • Granules typically comprise (A) the active compound, and preferably further comprise k) glidants such as silicon dioxide to improve flow characteristics.
  • the selection of ingredients in the carrier for oral compositions depends on secondary considerations like taste, cost, and shelf stability, which are not critical for the purposes of this invention. One skilled in the art can optimize appropriate ingredients without undue experimentation.
  • the solid compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that component (A) is released in the gastrointestinal tract at various times to extend the desired action.
  • the coatings typically comprise one or more components selected from the group consisting of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methyl cellulose phthalate, ethyl cellulose, acrylic resins such as EUDRAGIT® coatings (available from Rohm & Haas G.M.B.H.
  • compositions for oral administration can also have liquid forms.
  • suitable liquid forms include aqueous solutions, emulsions, suspensions, solutions reconstituted from non-effervescent granules, suspensions reconstituted from non- effervescent granules, effervescent preparations reconstituted from effervescent granules, elixirs, tinctures, syrups, and the like.
  • Liquid orally administered compositions typically comprise (A) the active compound and (B) a carrier comprising ingredients selected from the group consisting of a) diluents, e) colorants, and f) flavors, g) sweeteners, j) preservatives, m) solvents, n) suspending agents, and o) surfactants.
  • Peroral liquid compositions preferably comprise one or more ingredients selected from the group consisting of e) colorants, f) flavors, and g) sweeteners.
  • Other compositions useful for attaining systemic delivery of the active compounds include sublingual, buccal and nasal dosage forms.
  • Such compositions typically comprise one or more of soluble filler substances such as a) diluents including sucrose, sorbitol and mannitol; and c) binders such as acacia, microcrystalline cellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose.
  • Such compositions may further comprise b) lubricants, e) colorants, f) flavors, g) sweeteners, h) antioxidants, and k) glidants.
  • composition may further comprise component (C) one or more optional ingredients.
  • Component (C) can be a therapeutic agent used to treat the underlying disease from which the subject suffers.
  • component (C) can be (i) a cancer therapeutic agent, such as a chemotherapeutic agent or a chemosensitizing agent, or a combination thereof; (ii) an antibacterial agent, (iii) an antiviral agent, (iv) an antifungal agent, and combinations thereof.
  • Component (C) can be coadministered with component (A) to increase the susceptibility of the multidrug resistant cells within the subject to the therapeutic agent.
  • Suitable (i) cancer therapeutic agents are known in the art. Cancer therapeutic agents include chemotherapeutic agents, chemosensitizing agents, and combinations thereof. Suitable chemotherapeutic agents are disclosed in U.S. Patent No. 5,416,091, which is hereby incorporated by reference for the purpose of disclosing chemotherapeutic agents.
  • Suitable chemotherapeutic agents include actinomycin D, adriyamycin, amsacrine, colchicine, daunorubicin, docetaxel (which is commercially available as TAXOTERE® from Aventis Pharmaceuticals Products, Inc.), doxorubicin, etoposide, mitoxantrone, mytomycin C, paclitaxel (which is commercially available as TAXOL® from Bristol- Myers Squibb Company of New York, NY), tenipaside, vinblastine, vincristine, and combinations thereof.
  • Suitable chemosensitizing agents include calcium channel blockers, calmodulin antagonists, cyclic peptides, cyclosporins and their analogs, phenothiazines, quinidine, reserpine, steroids, thioxantheres, transflupentixol, trifluoperazine, and combinations thereof.
  • Suitable chemosensitizing agents are disclosed by Amudkar, et. al in "Biochemical, Cellular, and Pharmacological Aspects of the Multidrug Transporter ' Annu. Rev. Pharmacol. Toxicol., 39, pp. 361-398 (1999).
  • Suitable (ii) antibacterial agents, (iii) antiviral agents, and (iv) antifungal agents are known in the art (see “Annual Reports on Medicinal Chemistry - 33; Section m Cancer and Infectious Diseases” ed. Plattner, J., Academic Press, Ch. 12, pp. 121 - 130 (1998)).
  • Suitable antibacterial agents include quinolones, fluoroquinolones, C-lactam antibiotics, aminoglycosides, macrolides, glycopeptides, tetracyclines, and combinations thereof.
  • Suitable (iii) antiviral agents include protease inhibitors, DNA synthase inhibitors, reverse transcription inhibitors, and combinations thereof.
  • Suitable (iv) antifungal agents include azoles, such as ketoconazole, fluconazole, itraconazole, and combinations thereof.
  • therapeutic agents are exemplary and not limiting, and that some may be used in the treatment of various multidrug resistant conditions and diseases.
  • One skilled in the art would be able to select therapeutic agents without undue experimentation.
  • the amount of component (C) used in combination with component (A), whether included in the same composition or separately coadministered, will be less than or equal to that used in a monotherapy.
  • the amount of component (C) is less than 80% of the dosage used in a monotherapy.
  • Monotherapeutic dosages of such agents are known in the art.
  • Component (C) may be part of a single pharmaceutical composition or may be separately administered at a time before, during, or after administration of component (A), or combinations thereof.
  • the composition of this invention comprises component (A), component (B), and (C) a chemotherapeutic agent.
  • the composition comprises component (A), component (B), and (C) a chemosensitizing agent.
  • the composition comprises component (A), component (B), and (C) both a chemotherapeutic agent and a chemosensitizing agent.
  • the exact amounts of each component in the systemic compositions depend on various factors. These factors include the specific compound selected as component (A), and the mode by which the composition will be administered. The amount of component
  • (A) in the systemic composition is typically about 1 to about 99 %.
  • the systemic composition preferably further comprises 0 to 99 % component (C), and a sufficient amount of component (B) such that the amounts of components (A), (B), and (C), combined equal 100%.
  • the amount of (B) the carrier employed in conjunction with component (A) is sufficient to provide a practical quantity of composition for administration per unit dose of the compound.
  • Topical compositions comprise: component (A), described above, and component (B), described above, and component (A), described above, and component (A).
  • Topical compositions preferably aids penetration of component (A) into the skin.
  • Topical compositions preferably further comprise (C) the optional ingredient described above.
  • Component (B) the carrier may comprise a single ingredient or a combination of two or more ingredients.
  • component (B) is a topical carrier.
  • Preferred topical carriers comprise one or more ingredients selected from the group consisting of water, alcohols, aloe vera gel, allantoin, glycerin, vitamin A and E oils, mineral oil, propylene glycol, polypropylene glycol-2 myristyl propionate, dimethyl isosorbide, combinations thereof, and the like. More preferred carriers include propylene glycol, dimethyl isosorbide, and water.
  • the topical carrier may comprise one or more ingredients selected from the group consisting of q) emollients, r) propellants, s) solvents, t) humectants, u) thickeners, v) powders, and w) fragrances in addition to, or instead of, the preferred topical carrier ingredients listed above.
  • q) emollients r) propellants
  • solvents s) solvents
  • t) humectants u) thickeners
  • v) powders v) powders
  • fragrances in addition to, or instead of, the preferred topical carrier ingredients listed above.
  • One skilled in the art would be able to optimize carrier ingredients for the topical compositions without undue experimentation.
  • Ingredient q) is an emollient.
  • the amount of ingredient q) in the topical composition is typically about 5 to about 95%.
  • Suitable emollients include stearyl alcohol, glyceryl monoricinoleate, glyceryl monostearate, propane- 1,2-diol, butane- 1,3-diol, mink oil, cetyl alcohol, isopropyl isostearate, stearic acid, isobutyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan-2-ol, isocetyl alcohol, cetyl palmitate, di-n-butyl sebacate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lan
  • Ingredient r) is a propellant.
  • the amount of ingredient r) in the topical composition is typically about 5 to about 95%.
  • Suitable propellants include propane, butane, isobutane, dimethyl ether, carbon dioxide, nitrous oxide, nitrogen, and combinations thereof.
  • Ingredient s) is a solvent.
  • the amount of ingredient s) in the topical composition is typically about 5 to about 95 %.
  • Suitable solvents include water, ethyl alcohol, methylene chloride, isopropanol, castor oil, ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, dimethylsulfoxide, dimethyl formamide, tetrahydrofuran, and combinations thereof.
  • Preferred solvents include ethyl alcohol.
  • Ingredient t) is a humectant.
  • the amount of ingredient t) in the topical composition is typically about 5 to about 95 %.
  • Suitable humectants include glycerin, sorbitol, sodium 2-pyrrolidone-5-carboxylate, soluble collagen, dibutyl phthalate, gelatin, and combinations thereof.
  • Preferred humectants include glycerin.
  • Ingredient u) is a thickener.
  • the amount of ingredient u) in the topical composition is typically 0 to about 95%.
  • Ingredient v) is a powder.
  • the amount of ingredient v) in the topical composition is typically 0 to about 95 %.
  • Suitable powders include chalk, talc, fullers earth, kaolin, starch, gums, colloidal silicon dioxide, sodium polyacrylate, tetraalkyl ammonium smectites, trialkyl aryl ammonium smectites, chemically modified magnesium aluminum silicate, organically modified montmorillonite clay, hydrated aluminum silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, ethylene glycol monostearate, and combinations thereof.
  • Ingredient w) is a fragrance.
  • the amount of ingredient w) in the topical composition is typically about 0.001 to about 0.5%, preferably about 0.001 to about 0.1%.
  • Ingredient x) is a wax. Waxes useful in this invention are selected from the group consisting of animal waxes, vegetable waxes, mineral waxes, various fractions of natural waxes, synthetic waxes, petroleum waxes, ethylenic polymers, hydrocarbon types such as Fischer-Tropsch waxes, silicone waxes, and mixtures thereof wherein the waxes have a melting point between 40 and 100°C.
  • the amount of ingredient x) in the topical composition is typically about 1 to about 99%.
  • the active compounds may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles.
  • Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
  • a preferred composition for topical delivery of the present compounds uses liposomes as described in Dowton et al., "Influence of Liposomal Composition on Topical Delivery of Encapsulated Cyclosporin A: I. An in vitro Study Using Hairless Mouse Skin", S.T.P. Pharma Sciences, Vol. 3, pp.
  • each component in the topical composition depends on various factors. Including the specific compound selected for component (A) and the mode by which the composition will be administered. However, the amount of component (A) typically added to the topical composition is about 0.1 to about 99%, preferably about 1 to about 10%.
  • the topical composition preferably further comprises 0 to about 99% component (C), more preferably 0 to abut 10%, and a sufficient amount of component (B) such that the amounts of components (A), (B), and (C), combined equal 100%.
  • the amount of (B) the carrier employed in conjunction with component (A) is sufficient to provide a practical quantity of composition for administration per unit dose of the compound.
  • Topical compositions that can be applied locally to the skin may be in any form including solutions, oils, creams, ointments, gels, lotions, shampoos, leave-on and rinse- out hair conditioners, milks, cleansers, moisturizers, sprays, skin patches, and the like.
  • Component (A) may be included in kits comprising component (A), a systemic or topical composition described above, or both; and information, instructions, or both that use of the kit will provide treatment for multidrug resistance (particularly in humans).
  • the information and instructions may be in the form of words, pictures, or both, and the like.
  • the kit may comprise component (A), a composition, or both; and information, instructions, or both, regarding methods of administration of component (A) or the composition, preferably with the benefit of treating multidrug resistance in mammals.
  • components (A) and (C) may be included in kits comprising components (A) and (C), systemic or topical compositions described above, or both; and information, instructions, or both that use of the kit will provide treatment for multidrug resistance (particularly humans).
  • the information and instructions may be in the form of words, pictures, or both, and the like.
  • the kit may comprise components (A) and (C), compositions, or both; and information, instructions, or both, regarding methods of administration of components (A) and (C) or the compositions, preferably with the benefit of treating multidrug resistance in mammals.
  • This invention relates to a method of inhibiting a transport protein.
  • the method comprises administering to a mammal in need of treatment, (A) an active compound described above.
  • This invention further relates to a method for treating multidrug resistance.
  • the method comprises administering to a mammal (preferably a human) suffering from multidrug resistance, (A) an active compound described above.
  • a mammal diagnosed with multidrug resistant cancer can be treated by the methods of this invention.
  • a systemic or topical composition comprising (A) the active compound and (B) the carrier is administered to the mammal.
  • the composition is a systemic composition comprising (A) the active compound, (B) the carrier, and (C) an optional ingredient such as a therapeutic agent.
  • Component (A) may be administered before, during, or after administration of component (C).
  • a preferred administration schedule is a continuous infusion over the 24 hour period during which component (C) is also administered.
  • the dosage of component (A) administered depends on various factors, including the method of administration, the physical attributes of the subject (e.g., age, weight, and gender), and the condition from which the subject suffers.
  • Effective dosage levels for treating or preventing MDR range from about 0.01 to about 100 mg/kg body weight per day, preferably about 0.5 to about 50 mg/kg body weight per day of (A) a compound of this invention. These dosage ranges are merely exemplary, and daily administration can be adjusted depending on various factors.
  • the specific dosage of the active compound to be administered, as well as the duration of treatment, and whether the treatment is topical or systemic are interdependent.
  • the dosage and treatment regimen will also depend upon such factors as the specific active compound used, the treatment indication, the efficacy of the active compound, the personal attributes of the subject (such as, for example, weight, age, sex, and medical condition of the subject), compliance with the treatment regimen, and the presence and severity of any side effects of the treatment.
  • the active compounds in the compositions and methods of this invention can also be used to treat other conditions. These other conditions include other types of multidrug resistance (i.e., in addition to cancer multidrug resistance) such as bacterial, viral, and fungal multidrug resistance.
  • many of the FDA approved HIV protease inhibitors used to treat AIDS patients suffering from the HTV virus are substrates for Pgp.
  • an active compound of this invention is coadministered with a therapeutic agent such as an HTV protease inhibitor.
  • a therapeutic agent such as an HTV protease inhibitor.
  • the active compounds and compositions of this invention can also be administered with other therapeutic agents such as oral drugs.
  • the active compounds and compositions can be used to enhance oral drug absorption and increase bioavailability of various drugs.
  • the active compounds and compositions can also be used to aid drug delivery through the blood-brain barrier for, e.g., enhancing the effectiveness of drugs to treat Alzheimer's disease, treating memory disorders, enhancing memory performance, or treating any other central nervous system disorder where drug delivery is compromised via this transport pump mechanism.
  • the active compounds and compositions can also be administered to treat subjects suffering from neurological disorders such as spinal injuries, diabetic neuropathy, and macular degeneration.
  • the active compounds and compositions can also be administered to treat subjects suffering from vision disorders and to improve vision.
  • the active compounds and compositions can also be administered to treat hair loss.
  • Treating hair loss includes arresting hair loss, reversing hair loss, and promoting hair growth.
  • the active compounds and compositions can also be adminstered to treat inflammatory diseases.
  • Inflammatory diseases include irritable bowel disease, arthritis, and asthma.
  • EXAMPLES These examples are intended to illustrate the invention to those skilled in the art and should not be interpreted as limiting the scope of the invention set forth in the claims
  • the active compounds of this invention can be made using conventional organic syntheses, which are readily available to one skilled in the art without undue expe ⁇ mentation. Such syntheses can be found m standard texts such as J. March,
  • the starting mate ⁇ als for prepa ⁇ ng the compounds of the invention are known, made by known methods, or commercially available.
  • the starting mate ⁇ als for prepa ⁇ ng the compounds of the invention may include the following.
  • the following reagents are available from Lancaster Synthesis Inc., Windham, NH. 4- phenylbutyromt ⁇ le, l-tert-butoxycarbonyl-p ⁇ pe ⁇ d ⁇ ne-3-carboxyl ⁇ c acid, l-benzyl-4- aminopipe ⁇ dine, 3,4-d ⁇ methoxybenzenesulfonyl chlo ⁇ de, and 1 -benzyl -4- homopiperazine.
  • the following reagents are available from Fluka Chemie AG, Milwaukee, WI l-tert-butoxycarbonyl-p ⁇ pe ⁇ d ⁇ ne-4-carboxyhc, and (benzot ⁇ azol-1- yloxy)tnpy ⁇ Ohd ⁇ nophosphon ⁇ um hexafluorophosphate ("PyBOP"), N-(tert- butoxycarbonyl)- ⁇ m ⁇ nod ⁇ acet ⁇ c acid, and l-(d ⁇ phenylmethyl)p ⁇ peraz ⁇ ne.
  • the following reagents are available from Acros Organics, Pittsburgh, PA: quinoline-6-carboxylic acid and quinoline-5-carboxylic acid.
  • NTH-MDR1-G185 cells obtained from M. Gottesman, NIH were harvested and resuspended at 6 x 10 4 cells/ml in RPMI 1640 containing L-glutamine, 10% Cosmic calf serum, and penicillin-streptomycin. Cell suspension aliquots of 100 microliters were added to individual wells of a 96 well microtiter plate and incubated overnight at 37° C to allow cells to adhere. Cell viability in the presence of an anticancer drug was determined in the presence and absence of an MDR modifying agent using an MTT assay (P. A. Nelson, et. al, J. Immunol, 150:2139-2147 (1993)).
  • MDR modulating agent final concentration 5 micromolar
  • an anticancer agent for 72 hr at 37° C.
  • MTT dye (20 microliters of 5 mg/ml PBS solution) was added to each well and incubated for 4 hr at 37° C. Media was carefully removed and dye was solubilized with 100 microliters of acidified isopropyl alcohol. Abso ⁇ tion was measured on a spectrophotometric plate reader at 570 nm and corrected for background by subtraction at 630 nm. Reversal index was calculated for each MDR modulator and normalized to the reversal index of a benchmark modulator, VX-710 as below:
  • Reversal index IC 50 in the absence of modulator / IC 50 in the presence of modulator
  • Normalized reversal index Reversal index of modulator / Reversal index of VX-710
  • VX-710 is (S)-N-[2-Oxo-2-(3,4,5-trimethoxyphenyl)acetyl]piperidine-2-carboxylic acid lJ-bis(3-pyridyl)-4-heptyl ester.
  • Pgp-dependent calcein AM extrusion was measured in NIH-MDR1-G185 cells or HL60-MDR1 cells.
  • MRPl -dependent calcein AM extrusion was measured in HL60/ADR cells.
  • Inhibition of calcein AM transport by varying concentrations of MDR modulators was determined by measuring the rate of increase in fluorescence of free calcein for 5 min periods. The IC 5 o values were obtained by determining the concentration of modulator resulting in 50% of the maximum transport inhibition. Maximum transport inhibition was the % inhibition produced in the presence of 50 - 60 microliters verapmil.
  • NIH-MDR1-G185 cells obtained from M. Gottesman, NIH were harvested and resuspended in RPMI-1640 containing L-glutamine, 10% Cosmic Calf Serum and penicillin-streptomycin. Cell suspension aliquots of 175 microliters (1 x 10 5 cells) were added to individual wells of a 96 well microtiter plate and preincubated for 15 min at 37° C with 20 microliters MDR modulator diluted in cell culture media to give a final concentration of 10 micromolar. Control wells received no modulating agent.
  • BODIPY- FL Taxol (Molecular Probes, Eugene, Ore.) was added to each well in 10 microliter aliquots to give a final concentration of 500 nM and cells were incubated for 40 min at 37° C. Cells were centrifuged at 100 x g for 5 min at 4° C and the cell pellet washed with 200 microliters cold PBS to remove fluorescent medium from wells. Cells were centrifuged once more, media removed, and cells resuspended in 200 microliters cold PBS. Fluorescence accumulation was measured in a fluorescence plate reader fitted with an excitation filter of 485 nm and an emission filter of 538 nm. BODIPY-FL taxol accumulation in the cells was calculated as follows:
  • Recombinant baculovirus carrying the human MDR1 gene was generated and Sf9 cells infected with virus.
  • the virus-infected cells were harvested and their membranes isolated.
  • MDRl-ATPase activity of the isolated Sf9 cell membranes was estimated by measuring inorganic phosphate liberation as previously described (B. Sarkadi, J. Biol. Chem., 1992, 267:4854 - 4858). The differences between the ATPase activities measured in the absence and presence of 100 micromolar vanadate were determined as activity specific to MDR1.
  • MDR modulator concentrations causing half-maximum activation (Ka) or half-maximum inhibition of the MDR 1 -ATPase stimulated by 30 - 40 micromolar verapamil (Ki) were determined.
  • the reaction mixture is diluted with methanol (3.2 L) using an addition funnel.
  • Sodium borohydride (83.4 g, 2.2 mol) is added in portions. Upon complete addition the reaction is stirred at room temperature for six hours.
  • the reaction mixture is quenched by a slow addition of water (3.2 L).
  • the mixture is diluted with ether (3.2 L) and water (1.6 L).
  • the ether layer is separated and the aqueous layer is extracted twice with ether (3.2 L x 2).
  • the combined ether extracts are washed once with sodium chloride solution, dried, filtered, and concentrated in vacuo to give the crude product.
  • This product is diluted in ether (1.2 L) and acidified by slow addition of 1M HCI (1.2 L).
  • l-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (1 g; 4.36 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature.
  • lJ-Diphenyl-4-aminoheptane hydrochloride (1) (1.33 g; 4.38 mmol)
  • triethylamine (1.22 mL; 8.75 mmol)
  • N-(3- dimethylaminopropyl)-N' -ethylcarbodiimide hydrochloride (0.92 g; 4.8 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then concentrated in vacuo at 40°C.
  • the residue is diluted with ethyl acetate (150 mL) and washed successively with water (150 mL), 0.1 N HCI (100 mL), saturated aqueous sodium bicarbonate (50 mL), and saturated brine (50 mL).
  • the organic layer is dried over MgSO 4 , filtered, and concentrated in vacuo.
  • the residue is purified via silica gel chromatography with gradient elution (5% — » 40% ethyl acetate in hexanes) affording the desired product (0J7 g) as a solid.
  • the slurry is diluted with water (200 mL) then extracted with methylene chloride (3x 100 mL). The organic extracts are dried over MgSO 4 , filtered, and concentrated in vacuo affording the desired product (0.58 g) as an oil.
  • 3,4-Pyridinedicarboxylic acid (1 g; 6.0 mmol) is slurried in DMF (50 mL) at ambient temperature.
  • DMF 50 mL
  • To this reaction mixture is added sequentially 1-hydroxybenzotriazole hydrate (2.43 g; 18.0 mmol), 4-phenylbutylamine (2.08 mL; 13.2 mmol), triethylamine (1.67 mL; 12.0 mmol), and N-(3-dimethylaminopropyl)-N' -ethylcarbodiimide hydrochloride (2.87 g; 15.0 mmol).
  • the reaction mixture is stirred for 18 hours at ambient temperature.
  • Pyridine-3,4-dicarboxylic acid bis-[(4-phenyl-butyl)-amide] (7) (0.46 g; 1.07 mmol) is combined with ethanol (20 mL) and 20% Pd(OH) 2 on carbon (0.4 g) in a hydrogenation bottle.
  • the mixture is hydrogenated at 50 psi for 18 hours, then additional 20% Pd(OH) 2 on carbon (0.25 g) is added to the mixture and the hydrogenation is resumed for an additional 18 hours.
  • the mixture is filtered through a celite pad and washed with ethanol.
  • the combined filtrate plus wash is concentrated in vacuo.
  • the residue is purified via silica gel chromatography with gradient elution (5% — > 100% methanol in methylene chloride) affording the desired products as separable diastereomers.
  • the first eluted diastereomer is (8) 70.9 mg; ESMS: MET 436.4 (base).
  • the second eluted diastereomer is (9) 78J mg; ESMS: MH + 436.4 (base).
  • Example 10 Preparation of tr n-y-(R)-l-r2-hydroxy-3-(quinolin-5-yloxy)-propyll- piperidine-3,4-dicarboxylic acid bis-[(4-phenyl-butyl)-amidel (10)
  • trans- Piperidine-3,4-dicarboxylic acid bis [(4-phenyl-butyl)-amide] (8) (78J mg; 0.179 mmol) is dissolved in isopropanol (10 mL) at ambient temperature.
  • (R)-5- Oxiranylmethoxy-quinoline (2) (36.1 mg; 0.179 mmol) is added then the mixture is heated to 70°C and maintained for 18 hours. After cooling to ambient temperature the solution is concentrated in vacuo at 40°C. The residue is purified via silica gel chromatography with gradient elution (0% — > 50% methanol in methylene chloride) affording the desired product (69.6 mg) as a solid.
  • ESMS MH + 637.4 (base).
  • l-tert-Butoxycarbonyl-piperidine-3-carboxylic acid (1 g; 4.36 mmol) is dissolved in methylene chloride (50 mL) at ambient temperature.
  • l,7-Diphenyl-4-aminoheptane hydrochloride (1) [1.33 g; 4.36 mmol], triethylamine (0.61 mL; 4.36 mmol), and N-(3- dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (0.84 g; 4.4 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then concentrated in vacuo at 30°C.
  • the slurry is diluted with water (50 mL) then extracted with methylene chloride (3x 50 mL). The organic extracts are dried over MgSO 4 , filtered, and concentrated in vacuo affording the desired product (0.147 g) as an oil.
  • Piperidine-3-carboxylic acid [4-phenyl-l-(3-phenyl-propyl)-butyl]-amide (13) (150 mg; 0.4 mmol) is dissolved in methylene chloride (10 mL) at ambient temperature.
  • 3-Pyridinepropionic acid (60.0 mg; 0.4 mmol), triethylamine (0.111 mL; 0.4 mmol), and N-(3-dimethylaminopropyl)-N' -ethylcarbodiimide hydrochloride (0.0836 g; 0.4 mmol) are added sequentially.
  • 2J,4-Trimethyl-2-oxazoline (5.64 mL; 44.2 mmol) is dissolved in THF (40 mL) in a dry, argon purged flask at ambient temperature.
  • the solution is cooled to -78°C, then n-butyllithium in hexanes (31.3 mL of 1.6 M solution; 50 mmol) is added dropwise via syringe, followed by a solution of l-bromo-3-phenylpropane (7.42 mL; 48.8 mmol) in THF (20 mL) dropwise via syringe.
  • the cooling bath is removed and the solution is allowed to slowly warm to ambient temperature.
  • n-butyllithium in hexanes (31.3 mL of 1.6 M solution; 50 mmol) is added dropwise via syringe, followed by a solution of l-bromo-3- phenylpropane (7.42 mL; 48.8 mmol) in THF (20 mL) dropwise via syringe.
  • the reaction mixture is stirred overnight with very slow warming to ambient temperature.
  • the solution is poured onto water (200 mL) and IN HCI is added to make the mixture acidic.
  • the mixture is extracted with ether (150 mL), then made alkaline with 50% aqueous sodium hydroxide solution.
  • the alkaline mixture is extracted with ether (3 x 100 mL).
  • the combined ether extracts are dried over MgSO 4 , filtered, and concentrated in vacuo.
  • the residue is purified via silica gel chromatography with gradient elution (0% — 33% ethyl acetate in hexanes) affording the dialkylated oxazoline intermediate (13.55 g) as a colorless liquid.
  • ESMS MET 1" 349.6 (base).
  • the dialkylated oxazoline intermediate (1 g; 2.86 mmol) is dissolved in dioxane (10 mL) at ambient temperature. 3N HCI (20 mL) is added and the solution is heated to gentle reflux for 18 hours.
  • Piperidine-3-carboxylic acid [4-phenyl-l-(3-phenyl-propyl)-butyl]-amide (13) (0.46 g; 1.23 mmol) is dissolved in N,N-dimethylformamide (25 mL) at ambient temperature.
  • 3',4',5'-Trimethoxyphenylglyoxylic acid (0.29 g; 1.23 mmol)
  • N,N- diisopropylethylamine (0.31 g; 2.43 mmol)
  • PyBOP (0.63 g; 17.0 mmol
  • Piperidine-4-carboxylic acid [4-phenyl-l-(3-phenyl-propyl)-butyl]-amide (4) (1.00 g; 2.64 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. 3- Butenoic acid (0.27 g; 3.17 mmol), N,N-diisopropylethylamine (0.75 g; 5.81 mmol) and PyBOP (1.65 g; 3.17 mmol) are added sequentially. The reaction is stirred for 27 hr. at room temperature, then concentrated under reduced pressure.
  • Lithium (R)-l-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature.
  • l-(Diphenylmethyl)piperazine (33) (80 mg; 0.312 mmol), N,N- diisopropylethylamine (0.85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially.
  • the reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure.
  • Lithium (R)-l-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature.
  • l-(o-Tolyl)piperazine hydrochloride (35) (66 mg; 0.312 mmol), N,N- diisopropylethylamine (123 mg; 0.952 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially.
  • the reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure.
  • Lithium (R)-l-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature.
  • 4-Phenylbutylamine (37) (47 mg; 0.312 mmol), N,N-diisopropylethylamine (85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure.
  • Lithium (R)-l-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature.
  • Dibenzylamine (41) (62 mg; 0.312 mmol), N,N-diisopropylethylamine (85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure.
  • 4-Aminomethylpiperidine (2.28 g; 20 mmol) is dissolved in dry toluene (25 mL) at ambient temperature. Benzaldehyde (2.03 mL; 20 mmol) is added in one portion and the solution is heated to azeotropic reflux for 135 minutes (with concommitant removal of water from the reaction medium). The reaction mixture is cooled to ambient temperature then di-tert-butyl dicarbonate (4.8 g; 22 mmol) is added portionwise and the resulting solution is stirred at ambient temperature for 64 hours. The solution is concentrated to dryness in vacuo at 40°C, then IN KHSO 4 (22 mL) is added to the residue and the resulting mixture is stirred rapidly at ambient temperature for 4 hours.
  • l-Butoxycarbonyl-4-aminomethylpiperidine (0.30 g; 1.4 mmol) is dissolved in DMF (10 mL) at ambient temperature.
  • 5-Phenyl-2-(3-phenyl-propyl)-pentanoic acid (22) (0.415 g: 1.4 mmol) is added followed sequentially by 1-hydroxybenzotriazole (0.2364 g; 1.75 mmol), triethylamine (0.2439 mL; 1.75 mmol), and N-(3- dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (0.2952 g; 1.54 mmol).
  • the slurry is diluted with water (200 mL) then extracted with methylene chloride (3 x 100 mL). The organic extracts are dried over MgSO 4 , filtered, and concentrated in vacuo affording the desired product (0.46 g) as a white solid.
  • the slurry is diluted with water (200 mL) then extracted with methylene chloride (3 x 100 mL). The organic extracts are dried over MgSO 4 , filtered, and concentrated in vacuo affording the desired product (1.23 g) as a white solid.
  • Methylpiperidine-4-carboxylic acid [4-phenyl- 1 -(3-phenyl-propyl)-butyl]-amide (57) (150 mg; 0.382 mmol) is dissolved in isopropanol (10 mL) at ambient temperature.
  • (R)-5-Oxiranylmethoxy-quinoline (2) (77.5 mg; 0.382 mmol) is added, then the mixture is heated to 70°C and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40°C.
  • l-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (0.5 g; 2J8 mmol) is dissolved in DMF (10 mL) at ambient temperature.
  • 1-Hydroxybenzotriazole (0.37, 2.74 mmol)
  • triethylamine (0.46 mL, 3.3 mmol
  • lJ-di-(3-pyridyl)-heptan-4-ol (0.59 g; 2.4 mmol) as prepared according to WO 98/20893 Al assigned to Vertex Pharmaceuticals
  • N-(3- dimethylamino-propyl)-N' -ethylcarbodiimide hydrochloride (0.46 g; 2.4 mmol) are added sequentially.
  • (R)- 5-Oxiranylmethoxy-quinoline (2) (90.0 mg; 0.45 mmol) is added, then the mixture is heated to 70°C and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40°C. The residue is purified via silica gel chromatography with gradient elution (0% — > 50% methanol in methylene chloride) affording the desired product (120.2 mg) as an amber oil.
  • ESMS MH + 583.4.
  • N-tert-Butoxycarbonyl-N-methyl-2-aminoacetic acid [4-phenyl-l-(3-phenyl- propyl)-butyl]-amide (65) (2J9 g; 4.99 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 2.5 hours at ambient temperature. The solution is concentrated in vacuo at 40°C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated.
  • N-(N-tert-Butoxycarbonyl-piperidine-4-carbonyl)-(N-methyl)-2-aminoacetic acid [4-phenyl-l-(3-phenyl-propyl)-butyl]-amide (67) (1.46 g; 2.66 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. Trifluoroacetic acid (15 mL) is added in a slow stream, and the solution is stirred for 2 hours at ambient temperature. The solution is concentrated in vacuo at 40°C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution.
  • N-(Piperidine-4-carbonyl)-(N-methyl)-2-aminoacetic acid [4-phenyl-l-(3-phenyl- propyl)-butyl] -amide (68) (223.5 mg; 0.497 mmol) is dissolved in ethanol (12 mL) at ambient temperature.
  • (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 15.5 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40°C.
  • l-tert-Butoxycarbonyl-piperidine-2-carboxylic acid (3 g; 13.1 mmol) is dissolved in methylene chloride (100 mL) at ambient temperature.
  • lJ-Diphenyl-4-aminoheptane hydrochloride (1) (4.77 g; 15.7 mmol), diisopropylethylamine (7.3 mL; 41.9 mmol), and PyBOP (8J7 g; 15.7 mmol) are added sequentially.
  • the mixture is stirred for 17 hours at ambient temperature then concentrated in vacuo at 40°C.
  • the residue is purified via silica gel chromatography with gradient elution (10% — > 30% ethyl acetate in hexanes) affording the desired product as an oil.
  • ESMS MH + 479.4
  • N-tert-Butoxycarbonyl-3-(3-pyridyl)-alanine (1.00 g; 3J6 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature.
  • l,7-Diphenyl-4-aminoheptane hydrochloride (1) (1.37 g; 4.51 mmol)
  • N,N-diisopropylethylamine (1.55 g; 12.0 mmol)
  • PyBOP (2.34 g; 4.51 mmol)
  • N-tert-Butoxycarbonyl-3-(3-pyridyl)-alanine [4-phenyl-l-(3-phenyl-propyl)- butyl]-amide (84) (2.08 g; 4.03 mmol) is dissolved in methylene chloride (40 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 4 hours at ambient temperature. The solution is concentrated in vacuo at 40°C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated.
  • Piperidine-4-carboxylic acid [4-phenyl-l-(3-phenyl-propyl)-butyl]-amide (4) (100.0 mg; 0.264 mmol) is dissolved in ethanol (10 mL) at ambient temperature.
  • (R)-6- Oxiranylmethoxy-quinoline (89) (53.0 mg; 0.264 mmol) is added, then the mixture is refluxed for 17 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40°C.
  • a composition for oral administration is prepared by reducing an active compound according to this invention to a No. 60 powder.
  • Starch and magnesium stearate are passed through a No. 60 bolting cloth onto the powder.
  • the combined ingredients are mixed for 10 minutes and filled into a hard shell capsule of a suitable size at a fill weight of 100 mg per capsule.
  • the capsule contains the following composition:
  • a mixture of vinblastine and an active compound according to this invention is reduced to a No. 60 powder. Lactose and magnesium stearate are passed through a No. 60 bolting cloth onto the powder. The combined ingredients are mixed for 10 minutes, and then filled into a No. 1 dry gelatin capsule. Each capsule contains the following composition:
  • An active compound according to this invention (1 mg) is dissolved in 1 mL of a solution of 10% cremaphor, 10% ethanol, and 80% water. The solution is sterilized by filtration.
  • Example 89 - Parenteral Composition for the Active Compound of this Invention A sufficient amount of an active compound according to this invention and TAXOL® are dissolved in a 0.9% sodium chloride solution such that the resulting mixture contains 0.9 mg/mL of the active compound of this invention and 1.2 mg/mL
  • a sufficient amount of the solution to deliver 135 mg/sq m TAXOL® is administered intravenously over 24 hours to a patient suffering from ovarian cancer.
PCT/US2001/042781 2000-10-17 2001-10-16 Substituted heterocyclic compounds for treating multidrug resistance WO2002032869A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2002214657A AU2002214657A1 (en) 2000-10-17 2001-10-16 Substituted heterocyclic compounds for treating multidrug resistance
CA002421008A CA2421008C (en) 2000-10-17 2001-10-16 Substituted heterocyclic compounds for treating multidrug resistance
DE60142304T DE60142304D1 (de) 2000-10-17 2001-10-16 Substituierte heterocyclische verbindungen und deren verwendung zur behandlung multipler medikamentenresistenz
MXPA03003490A MXPA03003490A (es) 2000-10-17 2001-10-16 Compuestos heterociclicos sustituidos para tratar la resistencia a multiples farmacos.
AT01983211T ATE469887T1 (de) 2000-10-17 2001-10-16 Substituierte heterocyclische verbindungen und deren verwendung zur behandlung multipler medikamentenresistenz
EP01983211A EP1326833B1 (en) 2000-10-17 2001-10-16 Substituted heterocyclic compounds for treating multidrug resistance
JP2002536053A JP4451060B2 (ja) 2000-10-17 2001-10-16 多剤耐性を治療するための置換複素環式化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24112700P 2000-10-17 2000-10-17
US60/241,127 2000-10-17
US09/740,643 2000-12-19
US09/740,643 US6376514B1 (en) 2000-10-17 2000-12-19 Substituted six-membered heterocyclic compounds useful for treating multidrug resistance and compositions and methods thereof

Publications (3)

Publication Number Publication Date
WO2002032869A2 true WO2002032869A2 (en) 2002-04-25
WO2002032869A3 WO2002032869A3 (en) 2002-08-22
WO2002032869A8 WO2002032869A8 (en) 2003-11-20

Family

ID=26934029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/042781 WO2002032869A2 (en) 2000-10-17 2001-10-16 Substituted heterocyclic compounds for treating multidrug resistance

Country Status (10)

Country Link
US (3) US6376514B1 (US07135483-20061114-C00092.png)
EP (1) EP1326833B1 (US07135483-20061114-C00092.png)
JP (1) JP4451060B2 (US07135483-20061114-C00092.png)
AT (1) ATE469887T1 (US07135483-20061114-C00092.png)
AU (1) AU2002214657A1 (US07135483-20061114-C00092.png)
CA (1) CA2421008C (US07135483-20061114-C00092.png)
DE (1) DE60142304D1 (US07135483-20061114-C00092.png)
MX (1) MXPA03003490A (US07135483-20061114-C00092.png)
PE (1) PE20020512A1 (US07135483-20061114-C00092.png)
WO (1) WO2002032869A2 (US07135483-20061114-C00092.png)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622496B2 (en) 2005-12-23 2009-11-24 Zealand Pharma A/S Modified lysine-mimetic compounds
US11324799B2 (en) 2017-05-05 2022-05-10 Zealand Pharma A/S Gap junction intercellular communication modulators and their use for the treatment of diabetic eye disease

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2395869C (en) * 1999-12-30 2006-07-25 H. Lundbeck A/S 4-phenyl-1-piperazinyl, -piperidinyl and -tetrahydropyridyl derivatives
US6693099B2 (en) * 2000-10-17 2004-02-17 The Procter & Gamble Company Substituted piperazine compounds optionally containing a quinolyl moiety for treating multidrug resistance
US6376514B1 (en) * 2000-10-17 2002-04-23 The Procter & Gamble Co. Substituted six-membered heterocyclic compounds useful for treating multidrug resistance and compositions and methods thereof
KR100503161B1 (ko) * 2002-07-18 2005-07-25 한미약품 주식회사 신규한 p-당단백질 저해제, 그의 제조방법 및 이를유효성분으로 하는 경구투여용 조성물
WO2007107965A1 (en) * 2006-03-23 2007-09-27 Actelion Pharmaceuticals Ltd Cyclohexyl or piperidinyl carboxamide antibiotic derivatives
WO2009110955A2 (en) * 2008-02-29 2009-09-11 Albert Einstein College Of Medicine Of Yeshiva University Ketoconazole-derivative antagonists of human pregnane x receptor and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363212A2 (en) * 1988-10-06 1990-04-11 MITSUI TOATSU CHEMICALS, Inc. Novel heterocyclic compounds and anticancer-drug reinforcing agents containing them as effective components
US5723459A (en) * 1991-05-09 1998-03-03 Vertex Pharmaceuticals Incorporated Biologically active acylated amino acid derivatives
WO2000018733A1 (en) * 1998-09-30 2000-04-06 The Procter & Gamble Company Heterocyclic 2-substituted ketoamides useful for treating hair loss in mammals

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029801A (en) 1970-09-03 1977-06-14 John Wyeth & Brother Limited Pharmaceutical compositions and methods of treating hypertension
PT66682B (pt) 1976-06-18 1978-11-15 Ind Biolog Francaise /(quinolyl-4)-propyl-1/-4 piperidines leur preparation et leur utilisation comme medicaments /(quinolyl-4)-propyl/-4 piperidines leur preparation et leur utilisation comme medicaments
GB1583811A (en) 1977-05-09 1981-02-04 Laroche Navarron Sa Chromene derivatives
NL7908031A (nl) 1979-11-01 1981-06-01 Acf Chemiefarma Nv Nieuwe chinolinederivaten en farmaceutische preparaten die een dergelijke verbinding bevatten, alsmede werk- wijze voor het bereiden van deze verbindingen.
FR2471981A1 (fr) 1979-12-21 1981-06-26 Pharmindustrie Nouveaux derives de la (piperidyl-4)-2 (quinolyl-4)-1 ethanone, produits intermediaires et procedes pour leur preparation, et leur utilisation comme medicaments
US4806552A (en) 1980-03-01 1989-02-21 John Wyeth & Brother, Limited Pyridyl- and/or pyridoyl-(piperid-4-yl) ureas and analogues thereof
IL62240A0 (en) 1980-03-06 1981-05-20 Acf Chemiefarma Nv Novel quinoline derivatives,pharmaceutical compositions containing such compounds,and methods for the preparation of these compounds
US4443453A (en) 1980-03-06 1984-04-17 Acf Chemiefarma N.V. Quinoline derivatives, pharmaceutical compositions containing such compounds, and methods for treating cardiovascular conditions with them
US4442107A (en) 1980-03-06 1984-04-10 Acf Chemiefarma N.V. Quinoline derivatives, pharmaceutical compositions containing such compounds, and methods for treating cardiovascular conditions with them
FR2485014A1 (fr) 1980-06-20 1981-12-24 Pharmindustrie Nouveaux derives de (quinolyl-2, -3 ou -4)-1 (piperidyl ou pyrrolidinyl-2 ou -3)-2 ou -3 ethanone ou propanone, procedes pour leur preparation, et leur utilisation comme medicaments
FR2495470A1 (fr) 1980-12-05 1982-06-11 Pharmindustrie Nouveaux medicaments a base de derives de (quinolyl-4)-1 (piperidyl-4)-2 ethanol ou (quinolyl-4)-1 (piperidyl-4)-3 propanol
US4962115A (en) 1981-10-01 1990-10-09 Janssen Pharmaceutica N.V. Novel N-(3-hydroxy-4-piperidinyl)benzamide derivatives
US4584303A (en) 1984-04-09 1986-04-22 The Boc Group, Inc. N-aryl-N-(4-piperidinyl)amides and pharmaceutical compositions and method employing such compounds
DE3524955A1 (de) * 1984-07-19 1986-01-30 Sandoz-Patent-GmbH, 7850 Lörrach 3-aminopropoxyaryl-derivate, ihre herstellung und sie enthaltende arzneimittel
GB2163150B (en) * 1984-07-19 1988-05-25 Sandoz Ltd 3-aminopropoxyaryl derivatives
US4911923A (en) 1985-06-27 1990-03-27 Conoco Inc. Biocide for petroleum operations
US4963553A (en) 1986-10-16 1990-10-16 American Cyanamid Co. 4-[(substituted) alkylcarbonyl]-4,5-dihydro- and -4,5,6,7-tetrahydro-7-[(substituted)phenyl]pyrazolo[1,5-a]pyrimidines
JPS63135381A (ja) 1986-11-26 1988-06-07 Kyorin Pharmaceut Co Ltd 多剤耐性癌細胞に対する感受性増強剤及びその製造方法
US4916142A (en) 1987-02-02 1990-04-10 Boc, Inc. N-heterocyclic-N-(4-piperidinyl)amides and pharmaceutical compositions and their use as analgesics
US4911928A (en) 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US5928637A (en) 1987-06-16 1999-07-27 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Methods of inducing multidrug resistance using human MDR1 cDNA
US5013742A (en) 1987-11-02 1991-05-07 Boc, Inc. 4-phenyl-4-N-(phenyl) amido piperidine derivatives and pharmaceutical compositions and method employing such compounds
US4980351A (en) 1987-11-04 1990-12-25 Warner-Lambert Company 3-aminopropoxyaryl derivatives having cardiotonic and antihypertensive use and compositions thereof
US4791120A (en) 1987-12-31 1988-12-13 The Boc Group, Inc. 4-heteropentacyclic-4-[N-(phenyl)amino] piperidine derivatives and pharmaceutical compositions and method employing such compounds
DK733788A (da) 1988-01-14 1989-07-15 Fujisawa Pharmaceutical Co Indolylpiperidinderivater og fremgangsmaade til fremstilling deraf
US5216172A (en) 1988-02-24 1993-06-01 Ajinomoto Co., Inc. 1,4-dihydropyridine-4-aryl-2,6-dimethyl-3,5-dicarboxylates useful as agents against drug resistant tumor cells
ES2059767T3 (es) 1988-07-28 1994-11-16 Nikken Chemicals Co Ltd Derivado de 1,4-dihidropiridina.
CA1334752C (en) 1988-08-02 1995-03-14 Ryozo Sakoda Drug effect-enhancing agent for antitumor drug
JP2850376B2 (ja) 1988-08-02 1999-01-27 日産化学工業株式会社 抗癌剤薬効増強剤
DE3832362A1 (de) 1988-09-23 1990-03-29 Sandoz Ag Neue cyclopeptolide, verfahren zu ihrer herstellung und ihre verwendung
US5204348A (en) * 1988-10-06 1993-04-20 Mitsui Toatsu Chemicals Inc. Heterocyclic compounds and anticancer-drug potentiaters conaining them as effective components
GB8914062D0 (en) 1989-06-19 1989-08-09 Wellcome Found Agents for potentiating the effects of antitumour agents and combating multiple drug resistance
US5098915A (en) 1989-09-05 1992-03-24 G. D. Searle & Co. Substituted N-benzylpiperidine amides
US5182293A (en) 1989-11-13 1993-01-26 Merrell Dow Pharmaceuticals Inc. Treatment of multi-drug resistant tumors with pyridyloxazole-2-ones
US5190957A (en) 1989-11-13 1993-03-02 Merrell Dow Pharmaceuticals Inc. Treatment of multi-drug resistant tumors with quinolyl-and isoquinolyloxazole-2-ones
US5160727A (en) 1990-02-13 1992-11-03 Warner-Lambert Company Tumor cell sensitization method using quinazolinedione derivatives
US5190946A (en) 1990-02-23 1993-03-02 Hoffmann-La Roche Inc. Methods and compounds
US4996321A (en) 1990-02-26 1991-02-26 Merck & Co., Inc. Dibenzo[a,d]cycloheptenylidene compounds
US5272159A (en) 1990-02-26 1993-12-21 Merck & Co., Inc. Adjuncts in cancer chemotherapy
US5114919A (en) 1990-02-26 1992-05-19 Merck & Co., Inc. Adjuncts in cancer chemotherapy
US5091187A (en) 1990-04-26 1992-02-25 Haynes Duncan H Phospholipid-coated microcrystals: injectable formulations of water-insoluble drugs
JPH05507480A (ja) 1990-05-26 1993-10-28 ビイク グルデン ロンベルク ヒエーミツシエ フアブリーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 医薬品抵抗性の克服の際に使用するための1,4―ジヒドロピリジン
US5189036A (en) 1990-06-20 1993-02-23 Schering Ag Imidazolylbenzoyl substituted heterocycles
DK178490D0 (da) 1990-07-26 1990-07-26 Novo Nordisk As 1,4-disubstituerede piperaziner
FR2667243B1 (fr) 1990-09-27 1994-11-04 Adir Utilisation de s derives de la triazine et de la pyrimidine pour l'obtention de medicaments reversant la resistance aux agents anticancereux et antimalariques.
US5416091A (en) 1990-12-18 1995-05-16 Burroughs Wellcome Co. Agents for potentiating the effects of antitumor agents and combating multiple drug resistance
US5693767A (en) 1991-01-22 1997-12-02 Harrier Inc. Glycoside derivatives of acetaminophen
FR2673627B1 (fr) 1991-03-07 1993-05-07 Adir Triazines et pyrimidines trisubstituees, leur procede de preparation et les compositions pharmaceutiques les contenant.
US5939420A (en) 1991-04-08 1999-08-17 Duquesne University Of The Holy Ghost Pyrrolo 2,3d!derivatives
US5292757A (en) 1991-04-26 1994-03-08 Ajinomoto Company, Inc. 1,4-dihydropyridine compounds useful as reverse resistance agents
US5620971A (en) 1991-05-09 1997-04-15 Vertex Pharmaceuticals Incorporated Biologically active acylated amino acid derivatives
US5292726A (en) 1991-05-22 1994-03-08 Merck & Co., Inc. N,N-diacylpiperazines
ZA925185B (en) 1991-07-18 1993-04-29 Hoffmann La Roche Dithianes.
WO1993003729A1 (en) 1991-08-12 1993-03-04 Research Corporation Technologies, Inc. N-substituted phenoxazines for treating multidrug resistant cancer cells
CA2093633A1 (en) 1991-08-23 1993-02-24 Seiji Sato Carbostyril derivative and platelets aggregation inhibitory agent
US5173486A (en) 1991-08-26 1992-12-22 Bristol-Myers Squibb Company Dibenz[b,f][1,4]oxazepin-11(10H)-ones for multidrug resistance reversing agents
GB9119983D0 (en) 1991-09-19 1991-11-06 Erba Carlo Spa Dihydropyridine derivatives useful in antitumor therapy
HUT69722A (en) 1991-11-12 1995-09-28 Pfizer Triazine derivatives for enhancing antitumor activity
FR2686879B1 (fr) 1992-02-05 1994-03-18 Adir Cie Nouveaux composes de 1,4-dihydropyridine, leur procede de preparation et les compositions pharmaceutiques les contenant.
JPH07503728A (ja) 1992-02-06 1995-04-20 メレルダウファーマスーティカルズ インコーポレイテッド テトラアリールエチレン類による多剤耐性の逆転
JPH08828B2 (ja) 1992-02-19 1996-01-10 ファイザー・インコーポレーテッド 抗腫瘍活性を高めるための複素環化合物
US5605896A (en) 1992-02-25 1997-02-25 Recordati S.A., Chemical And Pharmaceutical Company Bicyclic heterocyclic derivatives having α1 adrenergic and 5HT1A activities
US5521184A (en) 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
ATE152443T1 (de) 1992-07-10 1997-05-15 Glaxo Lab Sa Anilide-derivate
US5516775A (en) 1992-08-31 1996-05-14 Ciba-Geigy Corporation Further use of pyrimidine derivatives
US5840319A (en) 1992-10-08 1998-11-24 Alakhov; Valery Yu Biological agent compositions
DK0691962T3 (da) 1993-03-29 2000-10-16 Basf Ag 1-amino-3-phenoxypropanderivater som modulatorer ved multilægemiddelresistens
US5336685A (en) 1993-04-12 1994-08-09 Sloan-Kettering Institute For Cancer Research Use of flavonoids to treat multidrug resistant cancer cells
US5814644A (en) 1993-04-15 1998-09-29 Merck Sharp & Dohme, Ltd. Indole derivatives as dopamine D4 antagonists
US5643909A (en) 1993-04-19 1997-07-01 Syntex (U.S.A.) Inc. 10,11-Methanodibenzosuberane derivatives
DE4315153A1 (de) 1993-05-07 1994-11-10 Hoechst Schering Agrevo Gmbh Substituierte Chinolinverbindungen, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
JPH09500109A (ja) 1993-06-18 1997-01-07 メルク エンド カンパニー インコーポレーテッド ファルネシル蛋白質トランスフェラーゼの阻害剤
US5409690A (en) 1993-06-23 1995-04-25 Chemex Pharmaceuticals, Inc. Treatment of multidrug resistant diseases in cancer cell by potentiating with masoprocol
EP0714299B1 (en) 1993-07-16 2002-04-24 Merck & Co. Inc. Benzoxazinone and benzopyrimidinone piperidinyl tocolytic oxytocin receptor antagonists
US5387685A (en) 1993-07-16 1995-02-07 American Cyanamid Co MDR reversal agents
JPH07126165A (ja) 1993-10-29 1995-05-16 Masao Oguro 腫瘍治療剤
US5436243A (en) 1993-11-17 1995-07-25 Research Triangle Institute Duke University Aminoanthraquinone derivatives to combat multidrug resistance
WO1995021381A1 (en) 1994-02-01 1995-08-10 The Rockefeller University Methods and agents for measuring and controlling multidrug resistance
US5610165A (en) 1994-02-17 1997-03-11 Merck & Co., Inc. N-acylpiperidine tachykinin antagonists
US5744485A (en) 1994-03-25 1998-04-28 Vertex Pharmaceuticals Incorporated Carbamates and ureas as modifiers of multi-drug resistance
US5763443A (en) 1994-04-05 1998-06-09 Universiteit Van Pretoria MDR resistance treatment and novel pharmaceutically active riminophenazines
AU2565795A (en) 1994-06-01 1995-12-21 Ciba-Geigy Ag Carbazole derivatives as agents against multi-drug resistance
US5571687A (en) 1994-06-07 1996-11-05 Duke University Modulators of multidrug resistance transporters
US5525606A (en) 1994-08-01 1996-06-11 The United States Of America As Represented By The Department Of Health And Human Services Substituted 06-benzylguanines and 6(4)-benzyloxypyrimidines
US5670521A (en) 1994-08-05 1997-09-23 Merrell Pharmaceuticals Inc. Reversal of multi-drug resistance by triphenyl-azacycloalkane derivatives
US5543428A (en) 1994-08-31 1996-08-06 Eli Lilly And Company Method for treating resistant tumors
ES2128629T3 (es) 1994-10-31 1999-05-16 Merck Patent Gmbh Derivados de bencilpiperidina con afinidad elevada a puntos de enlace de receptores de aminoacidos.
US5543423A (en) 1994-11-16 1996-08-06 Vertex Pharmaceuticals, Incorporated Amino acid derivatives with improved multi-drug resistance activity
US5789402A (en) 1995-01-17 1998-08-04 Eli Lilly Company Compounds having effects on serotonin-related systems
US5726184A (en) 1995-05-19 1998-03-10 Vertex Pharmaceuticals Incorporated Tetralin compounds with improved MDR activity
US5756527A (en) 1995-06-07 1998-05-26 Ontogen Corporation Imidazole derivatives useful as modulators of multi drug resistances
US5700826A (en) 1995-06-07 1997-12-23 Ontogen Corporation 1,2,4,5-tetra substituted imidazoles as modulators of multi-drug resistance
GB9512697D0 (en) 1995-06-22 1995-08-23 Zeneca Ltd Heterocyclic compounds
CA2179574A1 (en) 1995-06-26 1996-12-27 Tomomi Okada Substituted piperidine derivative and medicine comprising the same
US5834014A (en) 1995-10-06 1998-11-10 The Regents Of The University Of Michigan Stimulation of hair follicles
US5670508A (en) 1995-10-25 1997-09-23 National Science Council 2-amino-6-alkyl-5-(4-substituted-1-piperazinyl) pyrimidin-4-ones, the preparation and use thereof
US5733911A (en) 1996-01-26 1998-03-31 Hitachi Chemical Co., Ltd. Method for inducing death of neoplastic cells using piperazne derivatives
CA2196370A1 (en) 1996-01-31 1997-08-01 Kohei Inomata Isoprene derivatives
US5717092A (en) * 1996-03-29 1998-02-10 Vertex Pharmaceuticals Inc. Compounds with improved multi-drug resistance activity
US5885786A (en) * 1996-04-19 1999-03-23 John Wayne Cancer Institute Methods for screening of substances for inhibition of multidrug resistance
DE69716619T2 (de) 1996-08-28 2003-06-26 Procter & Gamble Phosphinsäureamide als matrix metalloprotease inhibitoren
US5811434A (en) 1996-11-13 1998-09-22 Vertex Pharmacueticals Incorporated Methods and compositions for stimulating neurite growth
TWI242011B (en) * 1997-03-31 2005-10-21 Eisai Co Ltd 1,4-substituted cyclic amine derivatives
US5776939A (en) 1997-06-12 1998-07-07 Eli Lilly And Company Drug resistance and multidrug resistance modulators
US5840721A (en) 1997-07-09 1998-11-24 Ontogen Corporation Imidazole derivatives as MDR modulators
US6066673A (en) 1998-03-12 2000-05-23 The Procter & Gamble Company Enzyme inhibitors
WO2000023076A1 (en) * 1998-10-16 2000-04-27 Suntory Limited Aminophenoxyacetic acid derivatives as neuroprotectants
US6200990B1 (en) 1998-12-21 2001-03-13 Alcon Laboratories, Inc. Neuroprotective agents having antioxidant and NMDA antagonist activity
FR2789076B1 (fr) * 1999-02-02 2001-03-02 Synthelabo Derives de alpha-azacyclomethyl quinoleine, leur preparation et leur application en therapeutique
US6403610B1 (en) * 1999-09-17 2002-06-11 Aventis Pharma S.A. Quinolylpropylpiperidine derivatives, their preparation and the compositions which comprise them
US6476041B1 (en) * 1999-10-29 2002-11-05 Merck & Co., Inc. 1,4 substituted piperidinyl NMDA/NR2B antagonists
US6258526B1 (en) 2000-01-19 2001-07-10 M.D.R. Test Ltd Ex-vivo test kit for testing the effectiveness of reversers of multidrug resistance
US6498170B2 (en) * 2000-07-17 2002-12-24 Wyeth Cyclamine sulfonamides as β-3 adrenergic receptor agonists
US6564304B1 (en) * 2000-09-01 2003-05-13 Ati Technologies Inc. Memory processing system and method for accessing memory including reordering memory requests to reduce mode switching
US20020091120A1 (en) * 2000-10-17 2002-07-11 Degenhardt Charles Raymond 2-substituted heterocyclic compounds for treating multidrug resistance
US6376514B1 (en) * 2000-10-17 2002-04-23 The Procter & Gamble Co. Substituted six-membered heterocyclic compounds useful for treating multidrug resistance and compositions and methods thereof
US6693099B2 (en) * 2000-10-17 2004-02-17 The Procter & Gamble Company Substituted piperazine compounds optionally containing a quinolyl moiety for treating multidrug resistance
US20020128269A1 (en) * 2000-10-17 2002-09-12 Degenhardt Charles Raymond Substituted heterocyclic compounds for treating multidrug resistance
US20020115659A1 (en) * 2000-10-17 2002-08-22 Degenhardt Charles Raymond Compounds having heterocyclic groups containing two nitrogen atoms for treating multidrug resistance
US20020119979A1 (en) * 2000-10-17 2002-08-29 Degenhardt Charles Raymond Acyclic compounds and methods for treating multidrug resistance
US20020082262A1 (en) * 2000-10-17 2002-06-27 Degenhardt Charles Raymond Substituted bicyclic compounds for treating multidrug resistance
US6602884B2 (en) * 2001-03-13 2003-08-05 Aventis Pharma S.A. Quinolylpropylpiperidine derivatives, their preparation, and compositions containing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363212A2 (en) * 1988-10-06 1990-04-11 MITSUI TOATSU CHEMICALS, Inc. Novel heterocyclic compounds and anticancer-drug reinforcing agents containing them as effective components
US5723459A (en) * 1991-05-09 1998-03-03 Vertex Pharmaceuticals Incorporated Biologically active acylated amino acid derivatives
WO2000018733A1 (en) * 1998-09-30 2000-04-06 The Procter & Gamble Company Heterocyclic 2-substituted ketoamides useful for treating hair loss in mammals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622496B2 (en) 2005-12-23 2009-11-24 Zealand Pharma A/S Modified lysine-mimetic compounds
US8431540B2 (en) 2005-12-23 2013-04-30 Zealand Pharma A/S Modified lysine-mimetic compounds
US11324799B2 (en) 2017-05-05 2022-05-10 Zealand Pharma A/S Gap junction intercellular communication modulators and their use for the treatment of diabetic eye disease

Also Published As

Publication number Publication date
US7476680B2 (en) 2009-01-13
US20020099215A1 (en) 2002-07-25
WO2002032869A3 (en) 2002-08-22
US6376514B1 (en) 2002-04-23
CA2421008A1 (en) 2002-04-25
JP4451060B2 (ja) 2010-04-14
MXPA03003490A (es) 2003-07-14
DE60142304D1 (de) 2010-07-15
CA2421008C (en) 2009-01-06
ATE469887T1 (de) 2010-06-15
PE20020512A1 (es) 2002-07-17
US7135483B2 (en) 2006-11-14
JP2004511546A (ja) 2004-04-15
WO2002032869A8 (en) 2003-11-20
AU2002214657A1 (en) 2002-04-29
EP1326833B1 (en) 2010-06-02
US20060223853A1 (en) 2006-10-05
EP1326833A2 (en) 2003-07-16

Similar Documents

Publication Publication Date Title
US6693099B2 (en) Substituted piperazine compounds optionally containing a quinolyl moiety for treating multidrug resistance
US20020119979A1 (en) Acyclic compounds and methods for treating multidrug resistance
US7476680B2 (en) Substituted heterocyclic compounds for treating multidrug resistance
ES2474150T3 (es) Compuestos de beta- y gamma-aminoisoquinolinamida y compuestos de benzamida sustituida
ES2397928T3 (es) Compuestos de 6- y 7-aminoisoquinolina y métodos para preparar y usar los mismos
US9963432B2 (en) Beta-amino-isoquinolinyl amide compounds
JPH09510974A (ja) 多剤耐性のモディファイアーとしての新規カルバメートおよびウレア
JP2007523868A (ja) ウイルス複製の阻害薬として有用な置換アリールチオウレア誘導体類
JP2008543732A (ja) ペプチドデホルミラーゼ阻害剤としての新規ヒドロキサム酸誘導体及びその製造方法
US20020128269A1 (en) Substituted heterocyclic compounds for treating multidrug resistance
US6809093B2 (en) 2-substituted heterocyclic compounds
JPH09509657A (ja) 中間体および製造のための方法
US20020082262A1 (en) Substituted bicyclic compounds for treating multidrug resistance
US20020115659A1 (en) Compounds having heterocyclic groups containing two nitrogen atoms for treating multidrug resistance
JP5330377B2 (ja) 3,4−ジヒドロキナゾリン誘導体
US20020091120A1 (en) 2-substituted heterocyclic compounds for treating multidrug resistance
SG181733A1 (en) Compounds for the treatment of neurologic disorders
KR20180071069A (ko) 페닐알라닌-클로로퀸 유도체 화합물을 유효성분으로 함유하는 말라리아 감염 질환의 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2421008

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001983211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002536053

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/003490

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2001983211

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 17/2002 DUE TO A TECHNICAL PROBLEM AT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION

Free format text: IN PCT GAZETTE 17/2002 DUE TO A TECHNICAL PROBLEM AT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION