WO2002030600A1 - Dispersion de particules metalliques ultrafines et procede de fabrication - Google Patents

Dispersion de particules metalliques ultrafines et procede de fabrication Download PDF

Info

Publication number
WO2002030600A1
WO2002030600A1 PCT/JP2001/009004 JP0109004W WO0230600A1 WO 2002030600 A1 WO2002030600 A1 WO 2002030600A1 JP 0109004 W JP0109004 W JP 0109004W WO 0230600 A1 WO0230600 A1 WO 0230600A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrafine
metal
particles
vapor
metal particles
Prior art date
Application number
PCT/JP2001/009004
Other languages
English (en)
French (fr)
Inventor
Toshihiro Suzuki
Masaaki Oda
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to EP01974833A priority Critical patent/EP1340568B1/en
Priority to DE60139950T priority patent/DE60139950D1/de
Priority to KR1020087012392A priority patent/KR100909201B1/ko
Publication of WO2002030600A1 publication Critical patent/WO2002030600A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/006Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to an ultrafine metal particle dispersion and a method for producing the same.
  • This ultra-fine particle dispersion liquid uses multilayer wiring such as IC substrates, internal wiring of semiconductors, interlayer connection of semiconductor modules having a laminated structure, formation of transparent conductive films, bonding of metals and ceramics, or the use of the colloidal color of the liquid. It is used for color filters and the like. Background art
  • Examples of a method for producing a conductive metal dispersion using fine metal particles of 100 nm or less include a gas evaporation method disclosed in Japanese Patent Application Laid-Open No. 3-34411 and a method disclosed in Japanese Patent Application Laid-Open No. H11-319. There is known a technique using a reduction precipitation method from a metal salt, which is disclosed in Japanese Patent Publication No. 538/58.
  • metal ultra-fine particles in a high concentration liquid are supplied to the target site with good fluidity without aggregation. It is necessary.
  • the individual particles are dispersed in an isolated state while maintaining fluidity, but as the concentration increases, the particles aggregate or do not aggregate. Even in this case, there is a problem in that the protective colloid component and the resin component that are mixed are solidified to form a solid, and no fluidity is exhibited.
  • the present invention solves the problems of the conventional ultrafine metal particle dispersion described above.
  • I. To provide a metal ultrafine particle dispersion which maintains fluidity even at a high concentration, does not agglomerate the metal ultrafine particles, and can be concentrated at a high concentration, and a method for producing the same. The purpose is. Disclosure of the invention
  • the present inventors have found that, in a liquid in which ultrafine metal particles are dispersed in an isolated state, aggregation of particles at a high concentration can be achieved without containing a protective colloid or a resin component.
  • the ultrafine metal particle dispersion of the present invention comprises, as a dispersant, one or more selected from alkylamines, carboxylic acid amides, and aminopulponates, and ultrafine metal particles having a particle size of 100 nm or less. They are distributed in an isolated state. Dispersions containing one or more selected from alkylamines, carboxylic acid amides, and aminocarboxylates, even when the concentration of metal ultrafine particles is high, can be achieved by uniformly dispersing the ultrafine particles individually. It is dispersed and liquidity is maintained.
  • the ultrafine metal particles may be produced by a known gas evaporation method of 1 O T o r r or less, or may be produced by a known liquid phase reduction method.
  • the alkylamine preferably has 4 to 20 carbon atoms in the main chain, and is preferably a primary amine.
  • the content of one or more selected from the group consisting of alkylamine, carboxylic acid amide, and amino sulfonic acid salt is 0.1 to 10% by weight, preferably 0 to 10% by weight based on the weight of the metal ultrafine particles. 2-7% by weight.
  • the method for producing an ultrafine metal particle dispersion according to the present invention may be performed in a vacuum atmosphere in the presence of or in the presence of a vapor of an organic solvent containing at least one organic solvent for producing ultrafine metal particles by an in-gas evaporation method.
  • the liquid containing the ultrafine metal particles collected by cooling and collecting is used as a dispersant for an alkylamine, a carboxylic acid amide, and an aminocarboxylate.
  • a low molecular weight polar solvent for removing the organic solvent is added to precipitate the metal ultrafine particles, and the supernatant is removed to substantially remove the organic solvent.
  • the solvent may be replaced by adding one or more solvents for producing isolated ultrafine metal particles to the obtained sediment.
  • a low molecular weight polar solvent for removing the organic solvent is added to the liquid containing the ultrafine metal particles collected by cooling and collecting to precipitate the ultrafine metal particles. Then, the organic solvent may be substantially removed by removing the supernatant liquid, and then the solvent may be replaced by adding one or more solvents for producing isolated ultrafine metal particles to the obtained precipitate. .
  • the organic solvent for producing ultrafine metal particles by the gas evaporation method may be an organic solvent containing one or more alcohols having 5 or more carbon atoms or an organic solvent containing one or more organic esters. preferable. It is preferable that the solvent for forming the dispersed ultrafine metal particles in an isolated state is a solvent having a weak polarity and has 6 to 18 carbon atoms in the main chain. After obtaining a dispersion in which ultrafine metal particles having a particle size of 10 O nm or less are dispersed in an isolated state, the dispersion is heated and concentrated in a vacuum, and the concentration of the ultrafine metal particles is reduced to about 80% by weight. Even when the high-concentration dispersion is used, the ultrafine metal particles are uniformly dispersed individually, and the fluidity is maintained.
  • another method for producing a dispersion liquid of ultrafine metal particles of the present invention comprises, as a dispersant, one or more selected from alkylamine, carboxylic amide, and aminocarboxylate as a metal-containing reducing raw material.
  • the raw material is thermally decomposed in the added state to produce ultrafine metal particles in which each particle having a particle size of 10 O nm or less is covered with the dispersant, and then used as a solvent for producing isolated ultrafine particles in an isolated state.
  • a dispersion BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an electron micrograph showing the Au dispersion state in the Au ultrafine particle dispersion of the present invention.
  • the line width is 10 to 10 nm or less, that is, 100 nm or less, preferably 1 O nm or less.
  • the ultrafine metal particles used in the present invention are preferably those that can be produced by a gas evaporation method, a chemical reduction method (compound decomposition method in a gas phase or a liquid phase), and the like.
  • Ultrafine metal particles having a uniform particle size of 100 nm or less can be produced.
  • one or more selected from alkylamines, carboxylic acid amides, and aminocarbonates are added as a dispersant in order to increase the dispersion stability of the ultrafine particles. .
  • the ultrafine gold particle dispersion containing one or more selected from alkylamines, carboxamides, and aminocarboxylates has a particle diameter of 100 nm even when the concentration of the ultrafine metal particles is increased.
  • the following ultrafine metal particles are uniformly dispersed individually and maintain a fluid state.
  • the resulting ultrafine metal particle dispersion is concentrated to, for example, a dispersion having a concentration of 80% by weight, and the viscosity at room temperature is 5 OmPa ⁇ s or less. Liquid.
  • the metal is evaporated in a vacuum chamber and under an atmosphere in which the pressure of the inert gas is 1 OT orr or less.
  • one or more organic solvent vapors are introduced into the vacuum chamber, and the surface is brought into contact with the organic solvent vapor at the stage of metal grain growth to obtain A liquid in which primary particles are dispersed alone and uniformly in an organic solvent in a colloidal state is used as a raw material.
  • alkylamine One or more selected from acid amides and aminocarboxylates are added and mixed.
  • a step of adding a low molecular weight polar solvent to precipitate the metal ultrafine particles and allowing the supernatant to flow out by decantation or the like is repeated a plurality of times to substantially remove the organic solvent,
  • One or more solvents for generating isolated dispersed ultrafine particles are added to the obtained sediment to perform solvent replacement to obtain a liquid in which ultrafine metal particles having a particle size of 100 nm or less are dispersed in an isolated state.
  • One or more selected from alkylamines, carbonamides, and aminocarboxylates are added to the dispersion collected by cooling after contact with metal vapor and organic solvent vapor, as described above.
  • it may be mixed with the vapor of the organic solvent and used as a mixed vapor of the organic solvent and the dispersant.
  • the alkylamine that can be used in the present invention is not particularly limited, and may be a primary to tertiary amine, a monoamine, a diamine, or a triamine.
  • an alkylamine having a main skeleton having 4 to 20 carbon atoms is preferable, and an alkylamine having a main skeleton having 8 to 18 carbon atoms is more preferable in terms of stability and handling properties.
  • Alkylamines of all classes work effectively as dispersants, but primary alkylamines are preferably used in terms of stability and handling.
  • the carbon number of the main chain of the alkylamine is less than 4, the basicity of the amine is too strong, which tends to corrode the ultrafine metal particles, which eventually dissolves the ultrafine particles. Also, if the carbon number of the main chain of the alkylamine is longer than 20, when the concentration of the ultrafine metal particle dispersion is increased, the viscosity of the dispersion increases, and the handling property becomes slightly inferior. There is a problem that the carbon tends to remain in the metal film later and the specific resistance increases.
  • alkylamines that can be used in the present invention include, for example, butylamine, octylamine, dodecylamine, hexadodecylamine, octadecylamine, cocoamine, tallowamine, hydrogenated tallowamine, oleylamine, laurylamine, and stearylamine.
  • Secondary amines such as primary amines, such as primary diamine, dicocoamine, dihydrogenated tallowamine, and distearylamine, and dodecyldimethylamine, didodecylmonomethylamine, tetradecyldimethylamine, Octadecyl dimethylamine, coco dimethylamine, dode Tertiary amines such as siltetradecyldimethylamine, and trioctylamine; and diamines such as naphthalenediamine, stearylpropylenediamine, oxethylenediamine, and nonanediamine.
  • primary amines such as primary diamine, dicocoamine, dihydrogenated tallowamine, and distearylamine
  • dodecyldimethylamine didodecylmonomethylamine
  • tetradecyldimethylamine Octadecyl dimethylamine
  • coco dimethylamine dode Tertiary amines
  • diamines such
  • carboxylic acid amide diaminocarboxylate examples include, for example, stearic acid amide, palmitic acid amide, lauric acid laurylamide, oleic acid amide, oleic acid diethanolamide, oleic acid laurylamide, stearanilide, and Railaminoethyldaricin and the like.
  • these alkylamines, carboxamides, and aminocarboxylates they act as stable dispersants.
  • the content of the alkylamine in the dispersion containing the metal colloid is in the range of about 0.1 to 10% by weight, preferably 0.2 to 7% by weight, based on the weight of the ultrafine metal particles. .
  • the ultrafine metal particles do not disperse in an isolated state, and agglomerates thereof are generated, resulting in a problem that dispersion stability is deteriorated. If it exceeds, there is a problem that the viscosity of the obtained dispersion becomes high, and eventually a gel-like substance is formed.
  • the organic solvent for generating ultrafine metal particles used in the gas evaporation method in the present invention is a solvent having a relatively high boiling point so that it can be easily liquefied when cooling and collecting the ultrafine metal particles in a subsequent step.
  • a solvent having a relatively high boiling point so that it can be easily liquefied when cooling and collecting the ultrafine metal particles in a subsequent step.
  • alcohols having 5 or more carbon atoms for example, solvents containing one or more of terpineol, citroneol, geraniol, phenethyl alcohol, and the like, or organic esters, for example, benzyl acetate, ethyl stearate, and oleic acid
  • Any solvent containing at least one of methyl, ethyl phenylacetate, glyceride and the like may be used, and can be selected as appropriate depending on the constituent elements of the ultrafine metal particles used or the use of the dispersion.
  • a solvent capable of dispersing the metal ultrafine particles in an isolated state is a solvent having a weak polarity and having a carbon number of 6 to 18 in the main chain. It is preferable to use a certain organic solvent. If the carbon number is less than 6, the solvent polarity is so strong that it does not disperse, or it dries too quickly and there is a problem in handling the dispersion product. If the number of carbons exceeds 18, there is a problem that the viscosity increases and carbon tends to remain during firing.
  • solvents include, for example, hexane, heptane, octane
  • Long-chain alkanes such as tan, decane, pendecane, dodecane, tridecane and trimethylpentane
  • cyclic alkanes such as cyclohexane, cycloheptane and cyclooctane
  • aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene and dodecylbenzene
  • Alcohols such as hexanol, heptanol, octanol, decanol, cyclohexanol and terpineol can be used.
  • These solvents may be used alone or in the form of a mixed solvent.
  • it may be a mineral spirit that is a mixture of long-chain alkanes.
  • the amount of the solvent to be used may be appropriately set according to the use of the dispersion in the case of preparing a dispersion of ultrafine metal particles.
  • the concentration of the ultrafine metal particles can be adjusted as needed by heating in a vacuum after preparing the dispersion.
  • the constituent elements of the ultrafine metal particles used in the present invention are not particularly limited, and may be appropriately selected according to the purpose “application.
  • one or more of the above-mentioned alkylamines, carboxylic acid amides, and aminocarbonates act as dispersants, and the intended ultrafine metal particle dispersion can be obtained. .
  • a dispersion is produced using ultrafine metal particles obtained by a chemical reduction method such as a liquid phase reduction method, alkylamine, carboxylic acid amide, aminocarboxylic acid, etc.
  • a chemical reduction method such as a liquid phase reduction method, alkylamine, carboxylic acid amide, aminocarboxylic acid, etc.
  • One or more selected from the acid salts may be added to produce the desired dispersion, but the metal-containing raw material before reduction may be alkylamine, carboxylic acid amide, or aminocarboxylic acid.
  • the constituent elements of the metal fine particles used here one or more selected from among alkylamines, carboxamides, and aminocarboxylates are the same as those described above in relation to the gas evaporation method. It is.
  • Raw materials for producing ultrafine metal particles include, for example, copper bishexafluoroacetylacetonate and bisacetylacetonate. Nickel, bisacetyl acetate cobalt and the like can be used.
  • the reduction method is performed, for example, as follows.
  • the raw material is heated and decomposed at a predetermined temperature in a state where one or more selected from alkylamine, carboxylic acid amide, and aminocarboxylic acid salt are added to the raw material to generate ultrafine metal particles. Almost all of the generated ultrafine metal particles are recovered in an isolated and dispersed state.
  • the particle size of the ultrafine metal particles is about 100 nm or less. If the ultrafine metal particles are replaced with the solvent for producing ultrafine metal particles as described above, the resulting ultrafine metal particle dispersion is concentrated by heating in a vacuum to a maximum concentration of 80% by weight. Also maintain stable dispersion.
  • the ultrafine particles do not aggregate with each other even at a high concentration of 80% by weight, and the dispersion of the dispersion liquid There is no loss of sex.
  • the viscosity of a dispersion of ultrafine particles of 80% by weight of gold is 50 mPa's or less at room temperature.
  • the dispersion was diluted 10-fold with acetone to extract methyl oleate, the ultrafine particles were precipitated, and the process of removing the supernatant was repeated three times to substantially remove methyl oleate. .
  • the mineral spirit of the solvent is added, and the particles of Au ultrafine particles in which the particles are dispersed in an isolated state are added. A liquid was obtained.
  • the Au particles in the resulting dispersion had a particle size of about 8 nm and were dispersed in the solvent in a state where the particles were completely isolated (Fig. 1).
  • This dispersion was a dispersion of ultrafine Au particles containing 25% by weight of ultrafine Au particles, and had a viscosity of 8 mPa ⁇ s at room temperature.
  • the dispersion obtained by removing methyl oleate as described above was heated in a vacuum and concentrated until the concentration of Au ultrafine particles became 80% by weight.
  • the viscosity of the obtained dispersion was 40 mPa, s at room temperature, the Au particles had a particle size of about 8 nm, and the particles were in an isolated and dispersed state.
  • the particles were kept in an isolated and dispersed state for more than 2 weeks at a temperature of 60 ° C, and were stable.
  • the Au ultrafine particle dispersion obtained as described above was 0.13 m in hole diameter
  • the substrate was coated on a Si substrate with a peer (aspect ratio 5) and a trench by spinning all at once, and the coated substrate was baked at 250 ° C in air. Flows without forming the metal film, and the obtained metal film has a specific resistance value of 1.
  • the obtained copper oxide ultrafine particle dispersion is concentrated by heating in a vacuum to a concentration of 80% by weight, the viscosity is 45 mPas at room temperature, the particle size of the copper oxide particles is about 10 nm, and the particles are Was obtained in a state of being isolated and dispersed.
  • the particles were kept in an isolated and dispersed state for more than 2 weeks at a temperature of 60 ° C, and were stable.
  • Example 3 The bishexafluoroacetylacetonate copper was added with oleylamine and ethyl stearate and rapidly heated to reduce the copper, generating ultrafine copper particles to obtain a dispersion. Oleilamine was added at a rate of 0.1 lg / g of ultrafine copper particles. Almost all of the generated ultrafine copper particles were recovered in an isolated and dispersed state. The particle size of the ultrafine copper particles was about 1 O nm.
  • the copper ultrafine particle dispersion was diluted 10-fold with acetone to extract ethyl stearate, the copper ultrafine particles were precipitated, and the process of removing the supernatant was repeated three times to substantially remove the ethyl stearate.
  • the solvent was replaced with toluene solvent, the obtained ultrafine copper particle dispersion maintained a stable dispersion state even when concentrated to 80% by weight by heating in vacuum.
  • the dispersion was subjected to an accelerated temperature rise test for stability. As a result, the particles were kept in an isolated and dispersed state for more than 2 weeks at a temperature of 60 ° C., and were stable.
  • the metal ultrafine particle dispersion according to the present invention can be prepared at a high concentration by using one or more selected from alkylamine, carbonamide, and aminocarboxylate as a dispersant. It is a dispersion liquid composed of ultrafine metal particles having a particle diameter of 100 nm or less, which maintains fluidity, does not aggregate metal ultrafine particles, and can be concentrated at a high concentration.
  • This metal ultra-fine particle dispersion uses multilayer wiring such as IC substrates, internal wiring of semiconductors, interlayer connection of semiconductor modules having a laminated structure, formation of transparent conductive films, bonding of metals and ceramics, or the use of colloidal colors of liquids. It is suitable for use as a color filter.
  • the metal ultrafine particle dispersion in which the metal ultrafine particles having a predetermined particle size are dispersed in an isolated state is brought into contact with the vapor of the metal and the vapor of the organic solvent, and then cooled.
  • One or more selected from alkylamine, carboxylic acid amide, and aminocarboxylate are added to the collected and collected liquid, and then, if desired, an organic solvent is used to generate dispersed metal ultrafine particles in an isolated state Or by contacting a metal vapor with a mixed vapor of an organic solvent and an alkylamine, collecting by cooling, collecting, and then, if desired, performing the solvent substitution. Can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Colloid Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Conductive Materials (AREA)

Description

明細書 金属超微粒子分散液及びその製造方法 技術分野
本発明は、 金属超微粒子分散液及びその製造方法に関する。 この超微粒子分散 液は、 I C基板などの多層配線、 半導体の内部配線、 積層構造を持つ半導体モジ ユールの層間接続、 透明電導膜の形成、 金属とセラミックスとの接合、 又は液の コロイド色を利用した色フィルターなどに用いられる。 背景技術
1 0 0 n m以下の金属微粒子を用いた導電性金属分散液の製造方法として、 特 開平 3— 3 4 2 1 1号公報などに示されるガス中蒸発法や、 特開平 1 1— 3 1 9 5 3 8号公報などに示される金属塩からの還元析出法を用いた技術が知られてい る。
I C基板などの多層配線や半導体の内部配線の微細な配線膜を形成するために は、 高濃度の液中の金属超微粒子が凝集しない状態で、 流動性よく目的とされる 部位へ供給されることが必要である。 上記いずれの従来技術の場合も、 1 5重量 %程度の低濃度においては流動性を保ちつつ粒子個々が孤立した状態で分散して いるが、 高濃度になるにつれて粒子が凝集したり、 凝集しない場合においても配 合されている保護コロイド成分や樹脂成分が固まって固形となり、 流動性を示さ なくなるという問題がある。 例えば、 I C基板などの多層配線や半導体の内部配 線の場合、 微細化、 高周波化がますます進んでいることから、 均一な電気伝導度 を持つ欠損の無い配線パターンを形成することが必要であり、 そのためには、 で きるだけ高濃度の金属超微粒子分散液を用いて配線パターンの形成を行う必要が ある。 しかし、 従来の金属超微粒子分散液を用いたときには、 上記したように、 超微粒子の凝集や液の固形化などの問題があり、 均一な電気伝導度を持つ欠損の 無い配線パターンを得ることが困難である。
従って、 本発明は、 以上のような従来の金属超微粒子分散液の持つ問題点を解 I 消し、 高濃度であっても流動性が保たれると共に、 金属超微粒子が凝集すること もなく、 また、 高濃度に濃縮可能でもある金属超微粒子分散液及びその製造方法 を提供することを目的としている。 発明の開示
本発明者らは、 従来の問題点を解決するために、 金属超微粒子が孤立状態で分 散している液について、 保護コロイドや樹脂成分を含まなくても、 高濃度におい て粒子の凝集を発生しないようにし、 かつ、 流動性を保つようにする技術の研究 •開発を行ってきたが、 特定の分散剤を使用し、 また、 特定の工程の組み合わせ を実施することにより、 前記問題点を解決することができることを見出し、 本発 明を完成するに至った。
本発明の金属超微粒子分散液は、 アルキルァミン、 カルボン酸アミド、 ァミノ 力ルポン酸塩の中から選ばれた 1つ若しくは複数のものを分散剤とし、 粒径 1 0 0 n m以下の金属超微粒子が孤立状態で分散されてなるものである。 アルキルァ ミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複 数のものを含んだ分散液は、 金属超微粒子濃度を高くしても、 この超微粒子が個 々に均一に分散しており、 流動性が保たれる。
前記金属超微粒子は 1 O T o r r以下の公知のガス中蒸発法で作られたもので あっても、 また、 公知の液相還元法で作られたものであっても良い。
前記アルキルアミンは、 その主鎖の炭素数が 4〜2 0であり、 また、 第 1級ァ ミンであることが好ましい。 このアルキルァミン、 及びカルボン酸アミド、 .アミ ノ力ルポン酸塩の中から選ばれた 1つ若しくは複数のものの含有量は、 金属超微 粒子重量基準で 0 . 1〜1 0重量%、 望ましくは 0 . 2〜7重量%である。 本発明の金属超微粒子分散液の製造方法は、 真空雰囲気中で、 ガス中蒸発法に よる金属超微粒子生成用の有機溶媒 1種以上を含む有機溶媒の蒸気の存在下で又 は該有機溶媒の蒸気と分散剤としてのアルキルァミン、 カルボン酸アミド、 アミ ノカルボン酸塩の中から選ばれた 1つ若しくは複数のものの蒸気との混合蒸気の 存在下で、 金属を蒸発させて、 該有機溶媒蒸気又は該混合蒸気と該金属蒸気とを 接触させ、 冷却捕集して金属超微粒子を含む液を回収することにより、 次いで、 該有機溶媒蒸気のみと該金属蒸気とを接触させた場合は、 該回収した液に分散剤 としてのアルキルァミン、 カルボン酸アミド、 ァミノカルボン酸塩の中から選ば れた 1つ若しくは複数のものを添加することにより、 所期の分散液を得ることか らなる。 このようなプロセスを経ることによって、 粒径 1 0 0 n m以下の金属超 微粒子が孤立状態で分散している金属超微粒子分散液が得られる。
前記製造方法において、 有機溶媒蒸気のみと金属蒸気とを接触させた場合、 冷 却捕集して回収した金属超微粒子を含む液に分散剤としてのアルキルアミン、 力 ルボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のもの を添加した後に、 有機溶媒を除去するための低分子量の極性溶媒を加えて金属超 微粒子を沈降させ、 上澄み液を取り除いて該有機溶媒を実質的に除去し、 次いで、 得られた沈降物に孤立状態の分散金属超微粒子生成用の溶媒 1種以上を加えるこ とにより溶媒置換を行っても良い。 また、 該混合蒸気と金属蒸気とを接触させた 場合、 冷却捕集して回収した金属超微粒子を含む液に、 有機溶媒を除去するため の低分子量の極性溶媒を加えて金属超微粒子を沈降させ、 上澄み液を取り除いて 該有機溶媒を実質的に除去し、 次いで、 得られた沈降物に孤立状態の分散金属超 微粒子生成用の溶媒 1種以上を加えることにより溶媒置換を行っても良い。
前記ガス中蒸発法による金属超微粒子生成用の有機溶媒は、 炭素数 5以上のァ ルコール類の 1種以上を含む有機溶媒、 又は有機エステル類の 1種以上を含む有 機溶媒であることが好ましい。 また、 前記孤立状態の分散金属超微粒子生成用溶 媒は、 極性の弱い溶媒であって、 主鎖の炭素数が 6〜 1 8であることが好ましい。 前記粒径 1 0 O n m以下の金属超微粒子が孤立状態で分散している分散液を得 た後、 該分散液を真空中加熱して濃縮し、 金属超微粒子濃度が 8 0重量%程度ま での高濃度分散液とした場合でも、 金属超微粒子は個々に均一に分散しており、 流動性も保たれている。
また、 本発明の金属超微粒子分散液の別の製造方法は、 金属を含有する還元用 原料にアルキルァミン、 カルボン酸アミド、 ァミノカルボン酸塩の中から選ばれ た 1つ若しくは複数のものを分散剤として添加した状態で原料を加熱分解させ、 粒径 1 0 O n m以下の各粒子が該分散剤で覆われた金属超微粒子を作製し、 次い で、 孤立状態の分散超微粒子生成用の溶媒に置換して分散液を得ることからなる。 図面の簡単な説明
第 1図ほ、 本発明の A u超微粒子分散液における A uの分散状態を示す電子顕 微鏡写真である。 発明を実施するための最良の形態
I C基板などの多層配線や半導体の内部配線などの場合、 近年ますますフアイ ン化が進み、 1 以下の配線が要求されてきているので、 金属超微粒子分散液 に求められる粒径は、 要求される線幅の 1ノ1 0以下、 すなわち l O O n m以下、 好ましくは 1 O n m以下である。
上記したように、 本発明において用いる金属超微粒子は、 ガス中蒸発法、 化学 還元法 (気相又は液相中での化合物分解法) などで製造され得るものが好ましく、 これらの方法によれば粒径 1 0 0 n m以下の粒度の揃った金属超微粒子を製造す ることができる。 このような金属超微粒子を原料とし、 この超微粒子の分散安定 性を増すために、 分散剤としてアルキルァミン、 カルボン酸アミド、 ァミノカル ボン酸塩の中から選ばれた 1つ若しくは複数のものを添加する。 アルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のも のを含んだ金 超微粒子分散液は、 金属超微粒子の濃度を高くしても、 粒径 1 0 0 n m以下の金属超微粒子が個々に均一に分散され、 かつ、 流動性のある状態を 保持している。 得られた金属超微粒子分散液は、 濃縮して、 例えば、 濃度 8 0重 量%の分散液にした時でも、 室温における粘度は 5 O mP a · s以下であり、 流 動性のある分散液である。
ガス中蒸発法により得られた金属超微粒子を用いて分散液を製造する場合、 真 空室中でかつ不活性ガスの圧力を 1 O T o r r以下とする雰囲気の下で金属を蒸 発させ、 蒸発した金属蒸気を冷却捕集する過程において、 該真空室中に、 1種以 上の有機溶媒の蒸気を導入し、 金属が粒成長する段階においてその表面を該有機 溶媒蒸気と接触せしめ、 得られる一次粒子が単独でかつ均一に有機溶媒中にコロ ィド状に分散した液を原料として用いる。 このようにして得られたコロイド状分 散液に、 金属超微粒子の分散安定性を改善するためにアルキルァミン、 カルボン 酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のものを添加、 混合する。 その後、 所望により、 低分子量の極性溶媒を加えて該金属超微粒子を 沈降させ、 その上澄み液をデカンテ一ションなどにより流出させる工程を複数回 繰り返して該有機溶媒を実質的に除去し、 次いで、 得られた沈降物に孤立状態の 分散超微粒子生成用の溶媒 1種以上を加えて溶媒置換を行い、 粒径 1 0 0 n m以 下の金属超微粒子が孤立状態で分散している液を得る。 アルキルァミン、 カルボ ン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のものは、 上記したように、 金属蒸気と有機溶媒蒸気との接触後に冷却捕集された分散液に 加える他に、 金属の蒸発過程において、 有機溶媒の蒸気に混入して有機溶媒と分 散剤との混合蒸気として使用されても良い。
本発明で使用することのできるアルキルァミンとしては、 特に限定されるわけ ではなく、 第 1〜3級ァミンであっても、 モノアミン、 ジァミン、 トリアミンで あっても良い。 特に、 炭素数 4〜2 0の主骨格を持つアルキルァミンが好ましく、 炭素数 8〜1 8の主骨格を持つアルキルァミンが安定性、 ハンドリング性の点か らはさらに好ましい。 また、 全ての級数のアルキルァミンが分散剤として有効に 働くが、 第 1級のアルキルァミンが安定性、 ハンドリング性の点からは好適に用 いられる。 アルキルァミンの主鎖の炭素数が 4より短かいと、 ァミンの塩基性が 強過ぎて金属超微粒子を腐食する傾向があり、 最終的にはこの超微粒子を溶かし てしまうという問題がある。 また、 アルキルァミンの主鎖の炭素数が 2 0よりも 長いと、 金属超微粒子分散液の濃度を高くしたときに、 分散液の粘度が上昇して ハンドリング性がやや劣るようになり、 また、 焼成後の金属膜中に炭素が残留し やすくなつて、 比抵抗値が上昇するという問題がある。
本発明で使用することができるアルキルァミンの具体例としては、 例えば、 ブ チルァミン、 ォクチルァミン、 ドデシルァミン、 へクサドデシルァミン、 ォクタ デシルァミン、 ココアミン、 タロウァミン、 水素化タロウァミン、 ォレイルアミ ン、 ラウリルァミン、 及びステアリルァミンなどのような第 1級ァミン、 ジココ ァミン、 ジ水素化タロウァミン、 及びジステアリルァミンなどのようよ第 2級ァ ミン、 並びにドデシルジメチルァミン、 ジドデシルモノメチルァミン、 テトラデ シルジメチルァミン、 ォクタデシルジメチルァミン、 ココジメチルァミン、 ドデ シルテトラデシルジメチルァミン、 及びトリオクチルァミンなどのような第 3級 アミンゃ、 その他に、 ナフタレンジァミン、 ステアリルプロピレンジァミン、 ォ ク夕メチレンジァミン、 及びノナンジアミンなどのようなジアミンがぁり、 カル ボン酸アミドゃァミノカルボン酸塩の具体例としては、 例えば、 ステアリン酸ァ ミド、 パルミチン酸アミド、 ラウリン酸ラウリルアミド、 ォレイン酸アミド、 ォ レイン酸ジエタノールアミド、 ォレイン酸ラウリルアミド、 ステアラニリド、 ォ レイルアミノエチルダリシンなどがある。 これらのアルキルァミン、 カルボン酸 アミド、 ァミノカルボン酸塩は、 その 1種以上を使用することで安定な分散剤と して作用する。
本発明によれば、 金属コロイドを含んだ分散液中のアルキルァミンの含有量は、 金属超微粒子重量基準でおよそ 0 . 1〜1 0重量%、 望ましくは 0 . 2〜7重量 %の範囲である。 含有量が 0 . 1重量%未満であると、 金属超微粒子が孤立状態 で分散せずに、 その凝集体が発生し、 分散安定性が悪くなるという問題があり、 また、 1 0重量%を超えると、 得られる分散液の粘度が高くなり、 最終的にはゲ ル状物が形成されるという問題がある。
本発明においてガス中蒸発法の際に用いる金属超微粒子生成用の有機溶媒は、 その後の工程において金属超微粒子を冷却捕集する際に容易に液化できるように、 比較的沸点の高い溶媒であり、 例えば、 炭素数 5以上のアルコール類、 例えば、 テルピネオール、 シトロネオール、 ゲラニオール、 フエネチルアルコールなどの 1種以上を含有する溶媒、 又は有機エステル類、 例えば、 酢酸ベンジル、 ステア リン酸ェチル、 ォレイン酸メチル、 フエニル酢酸ェチル、 グリセリドなどの 1種 以上を含有する溶媒であれば良く、 使用する金属超微粒子の構成元素、 又は分散 液の用途によって適時選択できる。
また、 本発明の金属超微粒子分散液作製の際に、 孤立状態で金属超微粒子を分 散せしめることのできる溶媒は、 極性の弱い溶媒であって、 主鎖の炭素数が 6〜 1 8である有機溶媒を用いることが好ましい。 炭素数が 6未満であると、 溶媒極 性が強くて分散しないか、 または乾燥が早すぎて分散液製品のハンドリング上で 問題がある。 炭素数が 1 8を超えると、 粘度の上昇や焼成時に炭素が残留し易い という問題がある。 これらの溶媒としては、 例えば、 へキサン、 ヘプタン、 ォク タン、 デカン、 ゥンデカン、 ドデカン、 トリデカン、 トリメチルペンタンなどの 長鎖アルカンや、 シクロへキサン、 シクロヘプタン、 シクロオクタンなどの環状 アルカン、 ベンゼン、 トルエン、 キシレン、 トリメチルベンゼン、 ドデシルペン ゼンなどの芳香族炭化水素、 へキサノール、 ヘプタノール、 ォクタノール、 デカ ノール、 シクロへキサノール、 テルピネオールなどのアルコールを用いることが できる。 これらの溶媒は、 単独で用いても、 混合溶媒の形で用いても良い。 例え ば、 長鎖アルカンの混合物であるミネラルスピリットであっても良い。
溶媒の使用量は、 金属超微粒子分散液作製の場合、 この分散液の用途に応じて 適宜設定すれば良い。 なお、 金属超微粒子濃度は、 分散液作製後に真空中加熱に より随時調整可能である。
本発明で用いる金属超微粒子の構成元素としては、 特に制限はなく、 目的 "用 途に合わせて適宜選定すれば良く、 例えば、 銀、 金、 銅、 白金、 パラジウム、 タ ングステン、 ニッケル、 タンタル、 インジウム、 錫、 亜鉛、 チタン、, クロム、 鉄、 コバルト、 ケィ素からなる群から選ばれた少なくとも 1種の金属、 又はこれらの 金属の合金若しくは酸化物があげられる。 これらのいずれの元素で構成された金 属超微粒子においても、 上記アルキルァミン、 カルボン酸アミド、 ァミノカルボ ン酸塩の中から選ばれた 1つ若しくは複数のものが分散剤として作用し、 所期の 金属超微粒子分散液が得られる。
また、 液相還元法などの化学還元法で得られた金属超微粒子を用いて分散液を 製造する場合においては、 化学還元による金属超微粒子生成後に分散剤としてァ ルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若 しくは複数のものを添加して所期の分散液を製造しても良いが、 還元前の金属含 有原料にアルキルアミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ば れた 1つ若しくは複数のものを添加することにより、 所期の金属超微粒子分散液 を製造すれば、 より分散安定性の良い分散液が得られる。 ここで使用される金属 微粒子の構成元素、 アルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の 中から選ばれた 1つ若しくは複数のものなどは、 ガス中蒸発法との関係で上述し たものと同じである。 また、 金属超微粒子を製造するための原料としては、 例え ば、 ビスへキサフルォロアセチルァセトネート銅、 ビスァセチルァセトネ一トニ ッケル、 ビスァセチルァセトネ一トコバルトなどを使用することができる。
前記還元法は、 例えば、 次のようにして行われる。 前記原料にアルキルァミン、 カルボン酸アミド、 ァミノカルボン酸塩の中から選ばれた 1つ若しくは複数のも のを添加した状態で、 所定の温度で原料を加熱分解させ、 金属超微粒子を発生さ せる。 発生した金属超微粒子のほぼ全量を孤立分散状態で回収する。 この金属超 微粒子の粒径は約 1 0 0 n m以下である。 この金属超微粒子を前記したような分 散金属超微粒子生成用溶媒に置換すれば、 得られた金属超微粒子分散液は、 真空 中での加熱により最高濃度 8 0重量%になるまで濃縮しても、 安定な分散状態を 維持している。 . 本発明によれば、 以上のように構成された金属超微粒亍分散液の場合、 8 0重 量%の高濃度であっても超微粒子同士が凝集を起こさず、 また、 分散液の流動性 が失われることもない。 例えば、 8 0重量%の金の超微粒子分散液の粘度は室温 で 5 0 m P a ' s以下である。 この金属超微粒子分散液を、 例えば、 I C基板な どに用いられる多層配線や I Cの内部配線に用いる場合、 この分散液は流動性を 失うこともなく、 また、 金属超微粒子が凝集を起こすことも無いため、 電導性が 均一な欠損の無い微細な配線パターンを形成することができる。
以下、 本発明を実施例に基づいて説明する。 これらの例は単なる例示であって、 本発明を何ら限定するものではない。
(実施例 1 )
^1 6ガス圧カ0 . 5 T o r rの条件で金 (A u ) を蒸発させ、 ガス中蒸発法に より A uの超微粒子を生成する際に、 生成過程の A u超微粒子にォレイン酸メチ ルの蒸気を接触させ、 冷却捕集して回収し、 回収した液中の A u超微粒子 1 g当 たり 0 . 0 7 gの割合でラウリルアミンを添加し、 A uの一次粒子が単独でかつ 均一にォレイン酸メチル中にコロイド状に分散した分散液を得た。 このようにし て得られた分散液自体は、 A u超微粒子が孤立状態で分散されている金属超微粒 子分散液であった。 次いで、 この分散液をアセトンで 1 0倍希釈してォレイン酸 メチルを抽出し、 A u超微粒子を沈降させて、 上澄みを除く工程を 3回繰り返す ことにより、 ォレイン酸メチルを実質的に取り除いた。 その後、 溶媒のミネラル スピリツトを添加して、 粒子同士が孤立した状態で分散している A u超微粒子分 散液を得た。
得られた分散液中の Au粒子は約 8 nmの粒径を持ち、 粒子同士が完全に孤立 した状態で溶媒中に分散していた (第 1図) 。 この分散液は、 Au超微粒子を 2 5重量%含有する Au超微粒子分散液であり、 その粘度は室温で 8mP a · sで めった。
上記したようにしてォレイン酸メチルを除去して得た分散液を真空中加熱して、 Au超微粒子の濃度が 80重量%になるまで濃縮した。 得られた分散液の粘度は 室温で 40mP a , sを示し、 A u粒子は約 8 nmの粒径を持ち、 粒子同士は孤 立して分散した状態を示していた。 また、 この Au超微粒子分散液に対して安定 性の昇温加速試験を行った結果、 60°C保温で 2週間以上にわたって粒子は孤立 して分散した状態を維持し、 安定であった。
次いで、 上記したようにして得られた Au超微粒子分散液を穴径 0. 13 m
(アスペクト比 5) のピアとトレンチとを持つ S i基板にスピンコ一夕一により 塗布し、 塗布した基板を大気中で 250°Cで焼成したところ、 分散液はビアゃト レンチ内に、 空洞を形成することなく流れ込み、 得られた金属膜は比抵抗値 1.
1 X 1 CI—5 Ω cmを有していた。
(実施例 2 )
10%の空気を含む Heガス圧力 0. 5 To r rの条件で銅を蒸発させ、 ガス 中蒸発法により酸化銅の超微粒子を生成する際に、 生成過程の酸化銅超微粒子に α—テルビネオールとラウリルァミンとの蒸気を接触させ、 次いで、 冷却捕集し て回収した液にォレイン酸アミドを添加して、 粒子同士が孤立した状態で分散し ている酸化銅超微粒子分散液を得た (酸化銅含有量 13重量%;酸化銅粒子の粒 径約 10 nm) 。 ラウリルアミンは、 酸化銅超微粒子 1 g当たり 0. 08 gの割 合で添加した。 得られた酸化銅超微粒子分散液を真空中加熱により濃度 80重量 %になるまで濃縮し、 粘度が室温で 45mP a · sであり、 酸化銅粒子の粒径が 約 10 nmであり、 粒子同士が孤立して分散した状態を示す分散液を得た。 この 酸化銅超微粒子分散液に対して安定性の昇温加速試験を行った結果、 60°C保温 で 2週間以上にわたって粒子は孤立して分散した状態を維持し、 安定であった。
(実施例 3) ビスへキサフルォロアセチルァセトネ一ト銅にォレイルァミンとステアリン酸 ェチルとを添加した状態で急激に加熱して銅を還元し、 銅超微粒子を発生させ、 分散液を得た。 ォレイルァミンは銅超微粒子 1 g当たり 0 . l gの割合で添加し た。 発生した銅超微粒子のほぼ全量が孤立分散状態で回収された。 この銅超微粒 子の粒径は約 1 O n mであった。 この銅超微粒子分散液をアセトンで 1 0倍希釈 してステアリン酸ェチルを抽出し、 銅超微粒子を沈降させて、 上澄みを除く工程 を 3回繰り返すことにより、 ステアリン酸ェチルを実質的に取り除いて、 トルェ ン溶媒に置換したところ、 得られた銅超微粒子分散液は、 真空中加熱により濃度 8 0重量%になるまで濃縮しても安定な分散状態を維持した。 この分散液につい て、 安定性の昇温加速試験を行った結果、 6 0 °C保温で 2週間以上にわたって粒 子は孤立して分散した状態を維持し、 安定であった。
また、 ビスへキサフルォロアセチルァセトネ一ト銅とステアリン酸ェチルを急 激に加熱して銅を還元し、 銅超微粒子を発生させた後、 これにォレイルァミンを 銅超微粒子 1 g当たり 0 . 1 gの割合で添加して銅超微粒子分散液を回収した。 得られた分散液を前記と同様にして、 アセトンを用いて溶媒をトルエンに置換し たところ、 銅超微粒子の大部分は孤立状態であつたが、 一部は凝集した形で回収 された。 産業上の利用の可能性
以上のように、 本発明にかかる金属超微粒子分散液は、 アルキルァミン、 カル ボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のものを 分散剤として用いることにより、 高濃度であっても流動性が保たれると共に、 金 属超微粒子が凝集することもなく、 また、 高濃度に濃縮可能でもある粒径 1 0 0 n m以下の金属超微粒子からなる分散液である。 この金属超微粒子分散液は、 I C基板などの多層配線、 半導体の内部配線、 積層構造を持つ半導体モジュールの 層間接続、 透明電導膜の形成、 金属とセラミックスとの接合、 又は液のコロイド 色を利用した色フィルターなどに用いるのに適している。
また、 このように所定の粒径を有する金属超微粒子が孤立状態で分散している 金属超微粒子分散液は、 金属の蒸気と有機溶媒の蒸気とを接触せしめた後、 冷却 捕集して回収した液にアルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩 の中から選ばれた 1つ若しくは複数のものを添加し、 その後、 所望により、 有機 溶媒を孤立状態の分散金属超微粒子生成用の溶媒に置換することにより、 又は、 金属蒸気と有機溶媒及びアルキルァミンの混合蒸気とを接触せしめた後、 冷却捕 集して回収し、 その後、 所望により、 前記溶媒置換を行うことにより得ることが できる。

Claims

請求の範囲
1 . アルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のものを分散剤とし、 粒径 1 0 0 n m以下の金属超微粒子が孤 立状態で分散されてなることを特徴とする金属超微粒子分散液。
2 . 前記超微粒子が 1 O T o r r以下のガス中蒸発法で作られたものであるか、 又は液相還元法で作られたものであることを特徴とする請求の範囲第 1項記載の 金属超微粒子分散液。
3 . 前記アルキルァミンの主鎖の炭素数が 4〜 2 0であることを特徴とする請求 の範囲第 1又は 2項記載の金属超微粒子分散液。
4 . 前記アルキルァミンが第 1級ァミンであることを特徴とする請求の範囲第 1 〜 3項のいずれかに記載の金属超微粒子分散液。
5 . 前記アルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ば れた 1つ若しくは複数のものの含有量が、 金属超微粒子重量基準で 0 . 1〜1 0 重量%であることを特徴とする請求の範囲第 1〜 4項のいずれかに記載の金属超 微粒子分散液。
6 . 真空雰囲気中で、 ガス中蒸発法による金属超微粒子生成用の有機溶媒 1種以 上を含む有機溶媒の蒸気の存在下で又は該有機溶媒の蒸気と分散剤としてのアル キルァミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若し くは複数のものの蒸気との混合蒸気の存在下で、 金属を蒸発させて、'該有機溶媒 蒸気又は該混合蒸気と該金属蒸気とを接触させ、 冷却捕集して金属超微粒子を含 む液を回収することにより、 次いで、 該有機溶媒蒸気のみと該金属蒸気とを接触 させた場合は、 該回収した液に分散剤としてのアルキルァミン、 カルボン酸アミ ド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のものを添加するこ とにより、 粒径 1 0 0 n m以下の金属超微粒子が孤立状態で分散している液を得 ることを特徴とする金属超微粒子分散液の製造方法。
7 . 前記有機溶媒蒸気のみと金属蒸気とを接触させた場合、 冷却捕集して回収し た金属超微粒子を含む液に分散剤としてのアルキルアミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選ばれた 1つ若しくは複数のものを添加した後に、 有機溶媒を除去するための低分子量の極性溶媒を加えて金属超微粒子を沈降させ、 上澄み液を取り除いて該有機溶媒を実質的に除去し、 次いで、 得られた沈降物に 孤立状態の分散金属超微粒子生成用の溶媒 1種以上を加えることにより溶媒置換 を行うことを特徴とする請求の範囲第 6項記載の金属超微粒子分散液の製造方法。
8 . 前記混合蒸気と金属蒸気とを接触させた場合、 冷却捕集して回収した金属超 微粒子を含む液に、 有機溶媒を除去するための低分子量の極性溶媒を加えて金属 超微粒子を沈降させ、 上澄み液を取り除いて該有機溶媒を実質的に除去し、 次い で、 得られた沈降物に孤立状態の分散金属超微粒子生成用の溶媒 1種以上を加え ることにより溶媒置換を行うことを特徴とする請求の範囲第 6項記載の金属超微 粒子分散液の製造方法。
9 . 前記ガス中蒸発法による金属超微粒子生成用の有機溶媒が、 炭素数 5以上の アルコール類の 1種以上を含む有機溶媒、 又は有機エステル類の 1種以上を含む 有機溶媒であることを特徴とする請求の範囲第 6〜 8項のいずれかに記載の金属 超微粒子分散液の製造方法。
1 0 . 前記孤立状態の分散金属超微粒子生成用の溶媒が、 極性の弱い溶媒であつ て、 主鎖の炭素数が 6〜ュ 8であることを特徴とする請求の範囲第 7〜9項のい ずれかに記載の金属超微粒子分散液の製造方法。
1 1 . 前記粒径 1 0 0 n m以下の金属超微粒子が孤立状態で分散している液を得 た後、 該液を真空中加熱して濃縮し、 金属超微粒子濃度が 8 0重量%までの高濃 度分散液を得ることを特徴とする請求の範囲第 6〜 1 0項のいずれかに記載の金 属超微粒子分散液の製造方法。
1 2 . 金属を含有する還元用原料にアルキルァミン、 カルボン酸アミド、 ァミノ カルボン酸塩の中から選ばれた 1つ若しくは複数のものを分散剤として添加した 状態で原料を加熱分解させ、 粒径 1 0 0 n m以下の各粒子が該分散剤で覆われた 金属超微粒子を作製し、 次いで、 孤立状態の分散超微粒子生成用の溶媒に置換し て分散液を得ることを特徴とする金属超微粒子分散液の製造方法。
PCT/JP2001/009004 2000-10-13 2001-10-12 Dispersion de particules metalliques ultrafines et procede de fabrication WO2002030600A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01974833A EP1340568B1 (en) 2000-10-13 2001-10-12 Dispersion of ultrafine metal particles and process for producing the same
DE60139950T DE60139950D1 (de) 2000-10-13 2001-10-12 Dispersion von ultrafeinen metallpartikeln und herstellungsverfahren dafür
KR1020087012392A KR100909201B1 (ko) 2000-10-13 2001-10-12 금속 초미립자 분산액

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-313591 2000-10-13
JP2000313591A JP4871443B2 (ja) 2000-10-13 2000-10-13 金属超微粒子分散液の製造方法

Publications (1)

Publication Number Publication Date
WO2002030600A1 true WO2002030600A1 (fr) 2002-04-18

Family

ID=18792985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009004 WO2002030600A1 (fr) 2000-10-13 2001-10-12 Dispersion de particules metalliques ultrafines et procede de fabrication

Country Status (7)

Country Link
US (1) US20030116057A1 (ja)
EP (1) EP1340568B1 (ja)
JP (1) JP4871443B2 (ja)
KR (2) KR100909201B1 (ja)
DE (1) DE60139950D1 (ja)
TW (1) TW533431B (ja)
WO (1) WO2002030600A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323793A1 (en) * 2001-12-29 2003-07-02 Samsung Electronics Co., Ltd. Metallic nanoparticle cluster ink and method for forming metal pattern using the same
WO2006109410A1 (ja) * 2005-04-12 2006-10-19 Asahi Glass Company, Limited インク組成物及び金属質材料
CN103137243A (zh) * 2011-11-22 2013-06-05 旭硝子株式会社 导电糊剂以及导电糊剂的制备方法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677092B2 (ja) * 2000-12-04 2011-04-27 株式会社アルバック フラットパネルディスプレイの電極形成方法
JP4627376B2 (ja) * 2001-02-20 2011-02-09 バンドー化学株式会社 金属コロイド液及びその製造方法
JP3764349B2 (ja) * 2001-05-07 2006-04-05 ハリマ化成株式会社 金属微粒子分散液を用いたメッキ代替導電性金属皮膜の形成方法
US7566360B2 (en) * 2002-06-13 2009-07-28 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US7601406B2 (en) * 2002-06-13 2009-10-13 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US7736693B2 (en) * 2002-06-13 2010-06-15 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
JP4021361B2 (ja) * 2003-04-23 2007-12-12 東邦チタニウム株式会社 ニッケル粉末分散体およびその調製方法、ならびにこの粉末分散体を用いた導電ペーストの調製方法
JP2005081501A (ja) * 2003-09-09 2005-03-31 Ulvac Japan Ltd 金属ナノ粒子及びその製造方法、金属ナノ粒子分散液及びその製造方法、並びに金属細線及び金属膜及びその形成方法
US9006296B2 (en) * 2003-09-12 2015-04-14 Harima Chemicals, Inc. Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
TWI289488B (en) 2003-10-20 2007-11-11 Harima Chemicals Inc Fine metal particles, fine metal oxide particles in the form of dried-up powder, and use of the same
WO2005099941A1 (ja) * 2004-04-16 2005-10-27 National Institute For Materials Science 金属微粒子コロイド溶液、導電ペースト材料、導電性インク材料とそれらの製造方法
JP4616599B2 (ja) * 2004-09-03 2011-01-19 石原産業株式会社 流動性組成物及びそれを用いて形成した電極並びに配線パターン
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
US8167393B2 (en) 2005-01-14 2012-05-01 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
US7824466B2 (en) 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
US20060189113A1 (en) * 2005-01-14 2006-08-24 Cabot Corporation Metal nanoparticle compositions
JP5116218B2 (ja) * 2005-06-02 2013-01-09 株式会社アルバック 分散液、分散液の製造方法
KR101300442B1 (ko) * 2005-06-10 2013-08-27 시마 나노 테크 이스라엘 리미티드 강화 투명 전도성 코팅 및 이의 제조 방법
JP5176060B2 (ja) * 2005-07-05 2013-04-03 Dowaエレクトロニクス株式会社 銀粒子分散液の製造法
KR100773534B1 (ko) * 2005-07-15 2007-11-05 삼성전기주식회사 혼합 분산제, 이를 이용한 페이스트 조성물 및 분산방법
JP4982992B2 (ja) * 2005-09-30 2012-07-25 大日本印刷株式会社 カラーフィルタ用塗工液および有機エレクトロルミネッセンス素子用基板、ならびにこれらの製造方法
KR100768341B1 (ko) * 2005-11-09 2007-10-17 주식회사 나노신소재 금속성 잉크, 그리고 이를 이용한 전극형성방법 및 기판
US20070144305A1 (en) * 2005-12-20 2007-06-28 Jablonski Gregory A Synthesis of Metallic Nanoparticle Dispersions
JP5065718B2 (ja) * 2006-06-20 2012-11-07 田中貴金属工業株式会社 圧電素子の気密封止方法、及び、圧電デバイスの製造方法
EP2048205A4 (en) * 2006-07-28 2010-07-21 Asahi Glass Co Ltd DISPERSION CONTAINING FINE METALLIC PARTICLES, METHOD FOR PRODUCING THE DISPERSION AND ARTICLES HAVING METALLIC FILMS
JP2008159498A (ja) * 2006-12-26 2008-07-10 Tokai Rubber Ind Ltd 導電性ペーストの製造方法および導電性ペースト
US9580810B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
JP4838219B2 (ja) * 2007-10-01 2011-12-14 ハリマ化成株式会社 金属ナノ粒子焼結体の製造方法
KR100948165B1 (ko) * 2007-11-09 2010-03-17 삼성전기주식회사 금속 나노입자의 제조방법
US8323251B2 (en) 2008-01-14 2012-12-04 Fenwal, Inc. Phlebotomy needle assembly and frangible cover
KR100978671B1 (ko) * 2008-08-05 2010-08-30 삼성전기주식회사 금속입자 분산액
CN104906997B (zh) * 2008-08-22 2018-07-13 日产化学工业株式会社 由具有铵基的支链高分子化合物构成的金属微粒分散剂
JP5191844B2 (ja) * 2008-09-10 2013-05-08 国立大学法人東北大学 水溶媒分散性銀微粉の製造方法
JP5197534B2 (ja) 2008-09-22 2013-05-15 株式会社東芝 低分子型発光材料の分散液の製造方法及び製造装置
JP2010108843A (ja) * 2008-10-31 2010-05-13 Hitachi Cable Ltd 絶縁被覆電線
JP5479725B2 (ja) * 2008-12-24 2014-04-23 株式会社新光化学工業所 金属ナノ粒子コロイド、金属ナノ粒子、多元金属ナノ粒子コロイド、多元金属ナノ粒子、金属ナノ粒子コロイドの製造方法、金属ナノ粒子の製造方法、多元金属ナノ粒子コロイドの製造方法および多元金属ナノ粒子の製造方法
JP5667558B2 (ja) * 2009-02-27 2015-02-12 日産化学工業株式会社 有機スイッチング素子及びその製造方法
JP5580153B2 (ja) * 2010-09-21 2014-08-27 日揮触媒化成株式会社 金属微粒子分散液、金属微粒子、金属微粒子分散液の製造法等
JP5638935B2 (ja) * 2010-12-24 2014-12-10 日揮触媒化成株式会社 金属微粒子分散液、透明導電性被膜形成用塗布液及び透明導電性被膜付基材
JP2013129903A (ja) * 2011-11-21 2013-07-04 Toyota Central R&D Labs Inc 無機ナノ粒子の製造方法及び無機ナノ粒子分散液
JP5600702B2 (ja) * 2012-03-28 2014-10-01 京都エレックス株式会社 太陽電池素子の電極形成用導電性ペースト
JP5647650B2 (ja) 2012-08-07 2015-01-07 田中貴金属工業株式会社 銀微粒子インクの製造方法
KR20160025449A (ko) 2014-08-27 2016-03-08 제이에스알 가부시끼가이샤 3차원 배선의 형성 방법, 3차원 배선을 갖는 회로 장치 및, 3차원 배선용의 금속막 형성용 조성물
JP6149126B1 (ja) * 2015-09-01 2017-06-14 エス・オー・シー株式会社 低電圧ヒューズの製造方法及び低電圧ヒューズ
JP6718780B2 (ja) * 2016-09-13 2020-07-08 旭化成株式会社 プリント配線板を製造するためのキット、方法、及び基板
US10043910B1 (en) 2017-04-26 2018-08-07 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of forming the same
JP7267685B2 (ja) * 2018-05-18 2023-05-02 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169905A (ja) * 1984-09-13 1986-04-10 Nissan Chem Ind Ltd 超微粒子金属コバルト分散体の製造方法
JPH0334211A (ja) * 1989-03-30 1991-02-14 Shinku Yakin Kk 金属ペースト及びその製造方法
WO1997024224A1 (en) * 1995-12-28 1997-07-10 Heath James R Organically-functionalized monodisperse nanocrystals of metals

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877647A (en) * 1986-04-17 1989-10-31 Kansas State University Research Foundation Method of coating substrates with solvated clusters of metal particles
US5922403A (en) * 1996-03-12 1999-07-13 Tecle; Berhan Method for isolating ultrafine and fine particles
DE19630581A1 (de) * 1996-07-30 1998-02-05 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Solvens-stabilisierten Metallkolloiden und trägerfixierten Metallclustern
US6103868A (en) 1996-12-27 2000-08-15 The Regents Of The University Of California Organically-functionalized monodisperse nanocrystals of metals
JPH11319538A (ja) * 1998-05-20 1999-11-24 Nippon Paint Co Ltd 貴金属又は銅のコロイドの製造方法
WO2000003823A1 (fr) * 1998-07-15 2000-01-27 Toho Titanium Co., Ltd. Poudre de metal
AU5248600A (en) * 1999-06-15 2001-01-02 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
JP5008216B2 (ja) * 2000-10-13 2012-08-22 株式会社アルバック インクジェット用インクの製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169905A (ja) * 1984-09-13 1986-04-10 Nissan Chem Ind Ltd 超微粒子金属コバルト分散体の製造方法
JPH0334211A (ja) * 1989-03-30 1991-02-14 Shinku Yakin Kk 金属ペースト及びその製造方法
WO1997024224A1 (en) * 1995-12-28 1997-07-10 Heath James R Organically-functionalized monodisperse nanocrystals of metals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1340568A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323793A1 (en) * 2001-12-29 2003-07-02 Samsung Electronics Co., Ltd. Metallic nanoparticle cluster ink and method for forming metal pattern using the same
WO2006109410A1 (ja) * 2005-04-12 2006-10-19 Asahi Glass Company, Limited インク組成物及び金属質材料
US7956103B2 (en) 2005-04-12 2011-06-07 Asahi Glass Company, Limited Ink composition and metallic material
JP5151476B2 (ja) * 2005-04-12 2013-02-27 旭硝子株式会社 インク組成物及び金属質材料
CN103137243A (zh) * 2011-11-22 2013-06-05 旭硝子株式会社 导电糊剂以及导电糊剂的制备方法
CN103137243B (zh) * 2011-11-22 2016-12-21 旭硝子株式会社 导电糊剂以及导电糊剂的制备方法
TWI582793B (zh) * 2011-11-22 2017-05-11 Asahi Glass Co Ltd Standardization of conductive paste and conductive paste

Also Published As

Publication number Publication date
KR20020074168A (ko) 2002-09-28
JP2002121606A (ja) 2002-04-26
KR100851801B1 (ko) 2008-08-13
DE60139950D1 (de) 2009-10-29
US20030116057A1 (en) 2003-06-26
EP1340568A4 (en) 2006-06-21
TW533431B (en) 2003-05-21
KR100909201B1 (ko) 2009-07-23
JP4871443B2 (ja) 2012-02-08
EP1340568A1 (en) 2003-09-03
EP1340568B1 (en) 2009-09-16
KR20080052694A (ko) 2008-06-11

Similar Documents

Publication Publication Date Title
WO2002030600A1 (fr) Dispersion de particules metalliques ultrafines et procede de fabrication
JP5008216B2 (ja) インクジェット用インクの製法
KR100764535B1 (ko) 금속 나노입자 및 그 제조방법, 금속 나노입자 분산액 및그 제조방법, 그리고 금속 세선 및 금속막 및 그 형성방법
EP1840244B1 (en) Method for forming metal thin film, and metal thin film
JP4674375B2 (ja) 銀粒子粉末の製造法
JP4807933B2 (ja) 透明導電膜の形成方法及び透明電極
US20120168692A1 (en) Method for Preparing Water-Soluble Nanoparticles and Their Dispersions
JP4034968B2 (ja) 絶縁基板上に導電パターンを形成する方法
JP4747839B2 (ja) 金属水素化物微粒子を含有する分散液及びその製造方法、並びに金属質材料
TW201501135A (zh) 金屬奈米粒子分散體,金屬奈米粒子分散體之製造方法及接合方法
JP4277976B2 (ja) メッキ用シードパターン及び導電膜パターンの形成方法
JP5736244B2 (ja) 金属微粒子の製造方法
JP2007046072A (ja) 銀粒子粉末の製造法
JP4382335B2 (ja) 金属配線の作製方法
JP2009185390A (ja) 金属ナノ粒子の製造方法、並びに金属細線及び金属膜及びその形成方法
JP2004231982A (ja) Ag合金系反射膜、LCD用反射体、反射膜形成用超微粒子分散液、分散液製造方法、及び反射膜形成方法
JP2011117025A (ja) 金属微粒子分散体の製造方法及び該製造方法を使用した後に分散媒置換する金属微粒子分散液の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027007534

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027007534

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001974833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10240768

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001974833

Country of ref document: EP