WO2002027971A1 - Dispositif de station de base et procede d'emission radioelectrique - Google Patents

Dispositif de station de base et procede d'emission radioelectrique Download PDF

Info

Publication number
WO2002027971A1
WO2002027971A1 PCT/JP2001/008350 JP0108350W WO0227971A1 WO 2002027971 A1 WO2002027971 A1 WO 2002027971A1 JP 0108350 W JP0108350 W JP 0108350W WO 0227971 A1 WO0227971 A1 WO 0227971A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication terminal
arrival
transmission
terminal device
signal
Prior art date
Application number
PCT/JP2001/008350
Other languages
English (en)
French (fr)
Inventor
Takahisa Aoyama
Kenichi Miyoshi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2001290270A priority Critical patent/AU2001290270A1/en
Priority to EP01970213A priority patent/EP1233543A1/en
Publication of WO2002027971A1 publication Critical patent/WO2002027971A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to a base station apparatus using adaptive array antenna technology for transmitting and receiving signals by adaptively controlling directivity.
  • adaptive array antenna (hereinafter, “AAA”) technology that adaptively controls directivity by adding weights (hereafter, “weight”) to antenna outputs of multiple antenna elements has improved performance. It is expected as a technology.
  • the interference wave can be suppressed by adaptively controlling the directivity by utilizing the fact that the arrival direction of the received wave is different. For this reason, this adaptive array antenna technology is suitable as a method for removing interference waves in the same channel.
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus using a conventional AAA technique.
  • a base station device using the AAA technology is simply referred to as an AAA base station device.
  • FIG. 1 shows, as an example, a base station apparatus equipped with an array antenna composed of two antenna elements.
  • a normal base station apparatus includes a plurality of reception signal processing circuits and a plurality of transmission signal processing circuits in order to perform communication with a plurality of communication terminal apparatuses, but in FIG. 1, the description is simplified. Therefore, the case where only one reception signal processing circuit and one transmission signal processing circuit are provided is described.
  • the base station device 10 shown in FIG. 1 receives signals from the communication terminal device 20 using the antennas 11 and 12 when communicating with the communication terminal device 20.
  • the signal received by the antenna 11 is down-converted by the receiving radio circuit 13 in the order of the intermediate frequency band and the base frequency band, and output to the reception signal processing circuit 15.
  • Ante The signal received by the antenna 12 is down-converted by the reception radio circuit 14 in the order of the intermediate frequency band and the base frequency band, and output to the reception signal processing circuit 15.
  • the reception signal processing circuit 15 performs demodulation processing on the reception signal. Further, the reception signal processing circuit 15 adjusts a complex coefficient (reception weight) by which the reception signal is multiplied. This allows the array antenna to strongly receive only electromagnetic waves arriving from the desired direction.
  • reception directivity Such strong reception of only the electromagnetic wave arriving from the desired direction is called “having reception directivity” or “forming reception directivity”.
  • reception SIR Signal to Interference Ratio: SIR
  • the configuration of the reception signal processing circuit 15 is determined according to the communication method to be used.
  • the transmission signal processing circuit 16 performs modulation processing on transmission data. Further, the transmission signal processing circuit 16 generates a complex coefficient (transmission weight) by which the transmission signal is multiplied using the arrival direction estimation result estimated by the reception signal processing circuit 15. This transmission weight is generated for each communication terminal device that is the communication partner. This allows the array antenna to transmit electromagnetic waves only in the desired direction. Such strong transmission of an electromagnetic wave only in a desired direction is called “having transmission directivity” or “forming transmission directivity”. The communication terminal apparatus that has received the signal transmitted with the transmission directivity in the base station apparatus can keep the reception S high. The configuration of the transmission signal processing circuit 16 is determined according to the communication method to be used. The transmission signals multiplied by the transmission weights are up-converted into radio frequency bands in transmission radio circuits 17 and 18 and transmitted to communication terminal apparatus 20 from antennas 11 and 12.
  • the conventional AAA base station apparatus has a problem that the processing load increases because the transmission weight is individually generated for each communication terminal apparatus as a communication partner.
  • the conventional AAA base station apparatus multiplies the transmission signal by the transmission weight generated for each communication terminal apparatus even when the arrival directions of the signals from the communication terminal apparatuses that are the communication partners are close to each other.
  • Communication terminal There is also a problem that orthogonality is broken between devices and interference occurs. Disclosure of the invention
  • An object of the present invention is to prevent intersymbol interference due to collapse of orthogonality even when the directions of arrival of signals from communication terminal devices that are communication partners are close to each other, and to reduce transmission weight. It is an object of the present invention to provide a base station apparatus and a radio transmission method that can reduce the amount of calculation for generating a base station.
  • a first subject of the present invention is a base station apparatus provided with an array antenna, in a case where signals from a plurality of communication terminal apparatuses as communication partners are close to each other, the communication terminal apparatuses. Is to form a common transmission directivity with respect to, and transmit a signal to each communication terminal device using this transmission directivity.
  • a second subject of the present invention is to detect, in a base station apparatus having an array antenna for performing wireless communication with a plurality of communication terminal apparatuses, a communication terminal apparatus receiving interference of a predetermined amount or more from another communication terminal apparatus. In this case, the transmission directivity is formed in a direction in which the reference direction is shifted away from the arrival direction of the signal from the communication terminal device receiving the interference of the predetermined amount or more.
  • FIG. 1 is a block diagram showing a configuration of a base station device using the conventional AAA technology
  • FIG. 2 is a block diagram showing a configuration of the base station device according to Embodiment 1 of the present invention
  • FIG. Diagram showing the direction of arrival of a received wave from a terminal device
  • FIG. 4 is a diagram showing a transmission directivity pattern generated individually for each communication terminal device
  • FIG. 5 is generated when it is determined that the arrival directions of signals from the communication terminal device are close to each other
  • FIG. 6 is a block diagram showing a configuration of a base station apparatus according to Embodiment 2 of the present invention
  • FIG. 7 is a block diagram showing a configuration of a base station apparatus according to Embodiment 3 of the present invention; Shows the transmission directivity pattern formed in the same direction as the arrival direction of the desired wave Figure;
  • Figure 9 shows the transmission directivity pattern after shifting
  • FIG. 10 is a block diagram showing a configuration of a base station apparatus according to Embodiment 4 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a base station apparatus according to Embodiment 5 of the present invention.
  • Figure 12 is a diagram showing a common transmission directivity pattern generated by taking into account the quality of the line condition
  • FIG. 13 is a block diagram showing a configuration of a base station apparatus according to Embodiment 6 of the present invention.
  • the base station device When the arrival directions of signals from a plurality of communication terminal devices that are communication partners are close to each other, the base station device according to the first embodiment has a common transmission directivity for those communication terminal devices. Is formed, and a signal is transmitted to each communication terminal device using the transmission directivity. That is, when forming the transmission directivity, the base station apparatus according to the present embodiment monitors the relationship between the communication terminal apparatuses from the aspect of the signal arrival direction.
  • FIG. 2 is a block diagram showing a configuration of the base station apparatus according to Embodiment 1 of the present invention.
  • base station apparatus 100 performs wireless communication with communication terminal apparatuses 15 1 and 15 2 will be described.
  • the reception radio circuits 103 and 104 perform predetermined radio reception processing (down conversion, A / D conversion, etc.) on signals received via the antennas 101 and 102, respectively.
  • a base station apparatus includes a plurality of baseband signal processing circuits for demodulating signals received from a plurality of communication terminal apparatuses.
  • a base station apparatus includes a plurality of baseband signal processing circuits for demodulating signals received from a plurality of communication terminal apparatuses.
  • two processing systems demodulation circuit 10 5 to arrival direction estimation circuit 107 and demodulation circuit 106 to arrival direction estimation circuit 108).
  • the demodulation circuits 105 and 106 perform baseband processing such as CDMA demodulation on the received signals of the corresponding communication terminal devices 151 and 152 to obtain received data.
  • Arrival wave direction estimating circuits 107 and 108 each perform adaptive signal processing on the signals received from the communication terminal devices 151 and 152, and the arrival direction of the desired wave from each communication terminal device. Is estimated.
  • the summation circuit 109 sums up the arrival direction information from the communication terminal devices 151 and 152, which is the output from the arrival wave direction estimation circuits 107 and 108.
  • the arrival direction information is angle information represented by an angle based on the front direction of the antenna of the base station apparatus 100.
  • the judging circuit 110 calculates the difference between the angles of the incoming waves from the communication terminal devices 151 and 152 with reference to the incoming direction information output from the summing circuit 109, and calculates the calculated difference. Is determined as a threshold.
  • the transmission weight generation circuit 111 sends the signals to the respective communication terminal devices. Form a common transmission directivity. Actually, the transmission weight generation circuit 111 generates a common transmission weight for realizing a common transmission directivity. This common transmission directivity is approximately the center of the direction of arrival of the signal from each communication terminal device estimated by the arriving wave direction estimating circuits 107 and 108 (the forward direction of the antenna in the direction of arrival of the signal is assumed to be (The direction of the average of the reference angles). If the reception weight is calculated in order to have the reception directivity in the reception sequence, appropriate processing is applied to the reception weight so that the approximate arrival direction of the signal from the communication terminal device can be obtained. The transmission direction has a transmission directivity toward the center. Can be generated.
  • the arrival wave direction estimation circuit 110 determines that the directions of arrival of the signals from the communication terminal device that is the communication partner are not close to each other.
  • a method for generating the transmission weight includes a method of using the reception weight as it is, and a method of converting the generated reception weight by a predetermined method when the frequency differs between reception and transmission of the base station apparatus.
  • the modulation circuits 112 and 113 perform predetermined modulation processing such as CDMA modulation on the transmission data. Further, modulation circuits 112 and 113 multiply the modulated signal by the transmission weight generated by transmission weight generation circuit 111 to generate a transmission signal.
  • the transmission radio circuits 114 and 115 perform predetermined radio transmission processing (down-comparison, DZA conversion, etc.) on the transmission signal. Note that the base station apparatus of the present embodiment has an array antenna transmission function using two antennas, and therefore, two antennas and two transmission radio circuits are provided. Next, the operation of base station apparatus 100 having the above configuration will be described.
  • Signals transmitted from communication terminal devices 151 and 152 are received by receiving radio circuits 103 and 104 via antennas 101 and 102, respectively, where predetermined radio reception processing is performed and transmission to demodulation circuits 105 and 106.
  • the demodulation circuits 105 and 106 perform processing such as CDMA demodulation on the signals transmitted from the communication terminal devices 151 and 152 received from the reception radio circuits 103 and 104, and the signals are transmitted to the arrival wave direction estimation circuits 107 and 108, respectively. send.
  • Arrival wave direction estimation circuits 107 and 108 perform an arrival wave estimation process on the received signal.
  • the arriving wave estimation method there can be mentioned a MUSIC method, an ESPRIT method, a beamformer method using FFT (Fast Fourier Transform), a linear prediction method, a minimum norm method, etc., but there is no particular limitation.
  • the estimation result of the direction of the incoming wave performed by the direction-of-arrival-wave estimation circuits 107 and 108 is output to the totalizing circuit 109.
  • the summing circuit 109 sums up the estimation results of the directions of the incoming waves, thereby ascertaining the directions of arrival of the desired waves from the communication terminal devices 151 and 152.
  • counting circuit 109 counting is performed by associating each communication terminal device with the angle of the incoming wave direction with reference to the front direction of the antenna.
  • the aggregation circuit 109 outputs the arrival direction information (angle information) of the desired wave from each of the communication terminal devices 15 1 and 15 2 to the determination circuit 110.
  • the determination circuit 110 determines the arrival direction of signals from the communication terminal devices 151 and 152 in order to determine whether the arrival directions of the signals from the communication terminal devices as communication partners are close to each other. The difference in the direction is determined as a threshold.
  • the threshold determination in the determination circuit 110 will be described with reference to FIG.
  • the arrival direction estimation circuits 107 and 108 estimate the arrival directions of the desired waves from the communication terminal devices 15 1 and 15 2 as ⁇ 1 and ⁇ 2, respectively.
  • the angles ⁇ 1 and ⁇ 2, which indicate the direction of the incoming waves, are angles with reference to the front direction of the antenna.
  • This threshold determination is performed to determine whether or not the arrival directions of the signals from the communication terminal device that is the communication partner are close to each other. Therefore, when the difference between the angles of the incoming wave directions is smaller than a predetermined threshold value, it is determined that the directions of arrival of the signals from the communication terminal devices that are the communication partners are close to each other. Conversely, when the angle difference between the directions of the incoming waves is larger than a predetermined threshold value, it is determined that the directions of arrival of the signals from the communication terminal devices that are the communication partners are not close to each other.
  • This threshold is set in advance, and is appropriately changed and set in the system in consideration of an error in estimating the direction of an incoming wave.
  • transmission weight generation circuit 111 when the determination circuit 110 determines that the directions of arrival of the signals from the communication terminal devices that are the communication partners are close to each other, the transmission weight generation circuit 111 common to each communication terminal device Is generated. Referring to FIGS. 4 and 5, transmission weight generation circuit 111 generates transmission weights. The forming process will be described. First, FIG. 4 shows a transmission directivity pattern generated individually for each communication terminal device in the same manner as in the past.
  • the conventional base station apparatus when estimating the arrival direction of a received wave from a received signal, generates transmission directivity for each of the communication terminal apparatuses 151 and 152 individually. That is, the directivity pattern 301 is generated for the communication terminal device 151, and the directivity pattern 302 is generated for the communication terminal device 152, respectively.
  • the signal is generated when the determination circuit 110 determines that the arrival directions of the signals from the respective communication terminal devices are close to each other.
  • the transmission directivity pattern common to each communication terminal device is shown.
  • base station apparatus 100 refers to the estimated arrival direction of a received wave, and communication terminal apparatus 15 1 1 whose signal arrival directions are close to each other.
  • the directivity pattern 401 is formed so as to maximize the gain in the substantially center direction of the arrival direction of the desired wave from the communication terminal devices 151 and 152.
  • the transmission weight generation circuit 111 generates transmission weights for realizing the directivity pattern 401 shown in FIG.
  • the orthogonality between the signal transmitted to the communication terminal device 151 and the signal transmitted to the communication terminal device 152 is broken. According to the method of forming the common directivity according to the present embodiment shown in FIG. 7, the orthogonality is not clearly broken, and therefore no interference due to the broken orthogonality occurs.
  • the transmission signal thus multiplied by the common transmission weight is subjected to predetermined radio transmission processing in transmission radio circuits 114, 115, and is subjected to communication terminal devices 151, 15 Sent to 2.
  • a transmission layer is provided for each communication terminal device. Since it is not necessary to generate data, it is possible to greatly reduce the amount of calculation. Also, by combining the despread signal for the communication terminal device transmitting with the common transmission directivity and multiplying by the transmission weight, it is possible to reduce the transmission weight multiplication process conventionally performed for each communication terminal. It is.
  • the base station apparatus is communicating with two communication terminal apparatuses as an example, but even if there are three or more communication terminal apparatuses that communicate with the base station apparatus, good.
  • a communication terminal device to be used as a reference is selected from the communication terminal devices that perform communication, and a difference in the angle of the incoming wave direction between the communication terminal device to be used as the reference and another communication terminal device is calculated accordingly.
  • a communication terminal device in which the calculated difference is smaller than a predetermined threshold value may be detected, and a signal may be transmitted by forming a common transmission directivity to the detected communication terminal device.
  • the second embodiment is a modification of the first embodiment, and detects the current position of the moving object by using a positioning technology (hereinafter referred to as “positioning”) for knowing the current position of the moving object.
  • positioning a positioning technology
  • Direction of the communication terminal from the current location of This is an example of recognizing the direction of arrival of a wave. That is, the present embodiment differs from Embodiment 1 in that the position of the communication terminal device is known by positioning, and the direction of the communication terminal device with respect to the base station device is recognized based on the position information.
  • FIG. 6 is a block diagram showing a configuration of a base station apparatus according to Embodiment 2 of the present invention. 6, the same parts as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and detailed description thereof will be omitted.
  • GPS Global Positioning System
  • the communication terminal devices 55 1 and 55 2 have a GPS receiver.
  • the communication terminal devices 55 1 and 55 2 receive the signal transmitted from the artificial satellite, and use their own time information based on the time information and satellite position information contained in the received signal and the time of the clock that the GPS receiver has locally. Know the location of The communication terminal devices 55 1 and 55 2 insert the position information of the own device known in this way into the transmission signal and transmit it to the base station device 100.
  • the communication terminal position information demodulation circuits 501 and 502 extract position information from the received signal and demodulate the extracted position information.
  • the communication terminal position information demodulation circuits 501, 502 refer to the demodulated position information, and thereby, the directions of the communication terminal devices 551, 552 viewed from the base station device 100 (that is, It is possible to recognize the direction of arrival of the desired signal from the communication terminal devices 55 1 and 55 2.
  • the directions of the communication terminals 55 1 and 55 2 (the communication terminals 55 1
  • the direction of arrival of the signal from each communication terminal device is determined by determining the difference in the angle indicating this direction as a threshold value to determine whether the directions of arrival of the signals from the communication terminal devices are close to each other. You. If it is determined that the directions of arrival of the signals from the communication terminal devices are close to each other, a common transmission entry is generated for each communication terminal device.
  • the direction of the communication terminal apparatus can be recognized by demodulating the position information included in the received signal. There is no. Therefore, reception directivity and transmission The processing amount for forming the signal directivity can be reduced.
  • a base station apparatus When a base station apparatus according to Embodiment 3 detects a communication terminal apparatus that is receiving interference of a predetermined amount or more from another communication terminal apparatus, the base station apparatus in the reference direction receives the interference of the predetermined amount or more.
  • the signal is transmitted by forming transmission directivity in the direction shifted away from the signal. That is, when forming the transmission directivity, the base station apparatus according to the present embodiment monitors the relationship between the communication terminal apparatuses from the viewpoint of the phenomenon (interference amount).
  • FIG. 7 is a block diagram showing a configuration of a base station apparatus according to Embodiment 3 of the present invention. 7, the same parts as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and detailed description thereof will be omitted.
  • the interference amount calculation circuit 6001 calculates the amount of interference received by the communication terminal device 151 with reference to the arrival direction information of the communication terminal devices 151 and 152 compiled by the summation circuit 109, and the communication terminal. The amount of interference received by the device 15 2 is calculated.
  • the determination circuit 602 determines the amount of interference received by each communication terminal device calculated by the interference amount calculation circuit 601 as a threshold value. This threshold determination is performed to compare the interference generated between the communication terminal devices that are the communication partners with the amount of interference that can be tolerated in the system (hereinafter, abbreviated as “allowable amount”) and to determine the magnitude relationship. To do.
  • a communication terminal device that receives interference with an interference amount exceeding the allowable amount is referred to as “interfered terminal”.
  • the decision circuit 62 detects this interfered terminal.
  • the transmission weight generation circuit 603 forms transmission directivity in a direction in which the reference direction is shifted in a direction away from the interfered terminal detected by the determination circuit 602.
  • a transmission weight generation circuit 603 forms transmission directivity for each communication terminal device that transmits a signal.
  • the reference direction for example, it is conceivable to adopt the arrival direction of a signal from a communication terminal device that transmits a signal.
  • the transmission weight generation circuit 603 generates the transmission weight for realizing the transmission directivity in the direction after the shift described above.
  • the transmission weight generation circuit 603 determines the arrival direction of the desired wave estimated by the arriving wave direction estimation circuits 107, 108 (each The transmission directivity is formed in the same direction as the direction of the communication terminal device. Next, the operation of the base station apparatus 100 having the above configuration will be described.
  • the signals transmitted from the communication terminal devices 15 1 and 15 2 are received by the receiving radio circuits 10 3 and 10 4 via the antennas 10 1 and 10 2, respectively, and the demodulation circuits 10 5 and At 106, processing such as CDMA demodulation is performed.
  • the demodulated data are output to the incoming wave direction estimating circuits 107 and 108, respectively.
  • the incoming wave direction estimating circuits 107 and 108 perform an incoming wave estimating process on the received signal, and output the result of estimating the incoming wave direction to the summing circuit 109.
  • the estimation result of the direction of the incoming wave is summed up, and information on the direction of arrival of the signal from each of the communication terminal devices 151, 152 is output to the interference amount calculating circuit 61.
  • the communication terminal devices 15 1 and 15 2 are referred to by referring to the arrival direction information of the communication terminal devices 15 1 and 15 2 compiled by the aggregation circuit 109. Is calculated.
  • the determination circuit 602 the interference amount calculated by the interference amount calculation circuit 601 is determined as a threshold value, and the interfered terminal is detected.
  • FIG. 8 shows a transmission directivity pattern formed in the same direction as the arrival direction of the desired wave, as in the conventional case
  • FIG. 9 shows a transmission directivity pattern formed in a direction shifted from the reference direction.
  • a case will be described as an example where communication terminal apparatus 152 is an interfered terminal due to interference received from communication terminal apparatus 151.
  • the directivity pattern 701 is formed in the same direction as the arrival direction of the signal from the communication terminal device 151 (the direction in which the communication terminal device 151 is located when viewed from the base station device 100). This is the transmission directivity pattern obtained.
  • the directivity pattern 701 is formed based on the arriving wave information collected by the counting circuit 109.
  • the communication terminal device 15 1 is in the direction of 0 °
  • the communication terminal device 15 2 is in the direction of 10 °. Shall exist.
  • the transmission wave to the communication terminal device 151 is an interference of the communication terminal device 152.
  • This interference increases when the directions of arrival of the signals from the communication terminals are close to each other (when the difference in the angles of the directions of the incoming waves from the communication terminals is small). Also, the higher the transmission power, the greater the interference to other stations.
  • FIG. 9 shows a transmission directivity pattern after the transmission directivity has been shifted as described above.
  • the directional pattern 8001 is formed by shifting the directional pattern 701 by a shift width ⁇ in the minus direction of the horizontal axis of the graph shown in FIG.
  • a shift width ⁇ corresponding to the calculated interference amount is read from a table provided in advance in the base station apparatus and indicating the correspondence between the received interference amount and the shift width ⁇ .
  • the interference amount received by the communication terminal device 152 is set to be smaller than the allowable amount.
  • the transmission directivity (directivity pattern 800 1) of the signal transmitted to the communication terminal device 151 is determined by the arrival direction of the received wave from the communication terminal device 151 (that is, as viewed from the base station device). With reference to the communication terminal device 15 1), the direction (in the minus direction of the horizontal axis in the graph shown in FIG. 8) shifted away from the communication terminal device 15 2 Direction).
  • the transmission weight generation circuit 603 generates a transmission weight for realizing the shifted directivity pattern 801.
  • the transmission signals multiplied by the transmission weights generated in this way are transmitted to transmission radio circuits 114 and 115 at a predetermined radio transmission processing level. Then, the data is transmitted to the communication terminal devices 15 1 and 15 2.
  • the transmission directivity of a signal transmitted to communication terminal apparatus 151 is determined by the interfering terminal based on the arrival direction of the signal from communication terminal apparatus 151. Since a signal is formed and transmitted in a direction shifted away from a certain communication terminal device 152, interference received by the communication terminal device 152 can be reduced.
  • Embodiment 4 is a modification of Embodiment 3, in which the current position of a moving object is detected using a positioning technology (positioning) for knowing the current position of the moving object, and communication is performed based on the detected current position of the moving object.
  • a positioning technology positioning
  • This is an example of recognizing the direction of the terminal device (that is, the arrival direction of the desired signal). That is, the present embodiment differs from Embodiment 3 in that the position of the communication terminal device is known by positioning, and the direction of the communication terminal device with respect to the base station device is recognized based on the position information.
  • FIG. 10 is a block diagram showing a configuration of a base station apparatus according to Embodiment 4 of the present invention. 10, the same parts as those in FIG. 7 are denoted by the same reference numerals as those in FIG. 7, and the detailed description thereof will be omitted.
  • GPS Global Positioning System
  • the communication terminal devices 55 1 and 55 2 have a GPS receiver.
  • the communication terminal devices 55 1 and 55 2 receive the signal transmitted from the artificial satellite and know the position of the own device.
  • the communication terminal devices 55 1 and 55 2 enter the position information of the own device thus obtained into the transmission signal and transmit it to the base station device 100.
  • the communication terminal position information demodulation circuits 501 and 502 extract position information from the received signal and demodulate the extracted position information.
  • the communication terminal position information demodulation circuits 501, 502 refer to the demodulated position information, and thereby, the directions of the communication terminal devices 551, 552 viewed from the base station device 100 (that is, It is possible to recognize the direction of arrival of the desired signal from the communication terminal devices 55 1 and 55 2.
  • the communication terminal position information demodulation circuits By demodulating the position information included in the received signal, the directions of the communication terminal devices 55 1 and 55 2 with respect to the front direction of the antenna (that is, the signals from the communication terminal devices 55 1 and 55 2 The direction of arrival) is recognized, and the interference amount is calculated in the interference amount calculation circuit 611, using the difference in the angle indicating the direction or the like as a parameter.
  • the determination circuit 602 determines a threshold value of the interference amount in order to determine a magnitude relationship when the interference amount calculated by the interference amount calculation circuit 601 is compared with an allowable amount, and detects the interfered terminal. Is performed.
  • the transmission directivity is formed in the transmission weight generation circuit 603 in a direction in which the reference direction is shifted in a direction away from the interfered terminal, and this transmission directivity is realized. Is generated for the transmission.
  • the direction of the communication terminal apparatus can be recognized by demodulating the position information included in the received signal. There is no. Therefore, it is possible to reduce the processing amount for forming the reception directivity and the transmission directivity.
  • the fifth embodiment is a modification of the first embodiment.
  • a common transmission directivity is provided in substantially the center of the direction of arrival of the desired wave from each of the communication terminal devices.
  • the direction in which the desired wave from each communication terminal device arrives in the substantially central direction is the optimum direction for forming a common directivity.
  • the entire system is formed by forming a transmission directivity in a direction closer to the arrival direction of a signal from the communication terminal device with a bad line condition and transmitting the signal. Communication status is improved.
  • the transmission directivity is shifted from a reference direction to a direction closer to a communication terminal device having poor communication conditions.
  • FIG. 11 is a block diagram showing a configuration of a base station apparatus according to Embodiment 5 of the present invention. It is.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and detailed description thereof will be omitted.
  • the line state estimating circuits 100 1 and 100 2 detect the state of the line from the base station 100 to each communication terminal device based on the output of the demodulation circuit.
  • the state of the line can be known, for example, by referring to the TPC command extracted from the received signal in the demodulation circuits 105 and 106. That is, when the downlink transmission power controlled by the TPC command is high, the line state can be estimated to be bad. Conversely, when the downlink transmission power controlled by the TPC command is low, the line condition can be estimated. The state can be estimated to be good.
  • the determination circuit 1003 determines a threshold value based on the difference between the angles of the incoming waves in order to determine whether or not the directions of arrival of the signals from the communication terminal device that is the communication partner are close to each other.
  • the determination circuit 1003 compares the detection result of the line state output from the line state estimation circuit 1001 with the detection result of the line state output from the line state estimation circuit 1002, It also determines which line condition is bad.
  • the result of the threshold determination and the result of the line state determination are output to the transmission weight generation circuit 104.
  • the transmission weight generation circuit 1004 A common transmission byte is generated for the device in the direction that takes into account the difference in line status. That is, the transmission byte generation circuit 1004 detects which of the communication terminal devices 151 and 152 has a worse line condition based on the output of the determination circuit 1003, and determines the reference direction.
  • the transmission directivity is formed in a direction shifted from (for example, substantially the center of the arrival direction of a signal from each communication terminal device) to a communication terminal device having a poor communication state.
  • the line state estimation circuits 1001 and 1002 detect the line state based on the downlink transmission power controlled by the TPC command included in the received signal.
  • the communication terminal device that is the communication partner is The difference between the angles of the incoming wave directions for determining whether the directions of arrival of the signals from the devices are close to each other is determined by a threshold value.
  • the determination circuit 1003 determines which of the communication terminal device 151 and the communication terminal device 152 has a worse line condition.
  • FIG. 12 shows a common transmission directivity pattern generated in consideration of the difference in the line state of each communication terminal device.
  • the transmission weight generation circuit 1004 when the determination circuit 1003 determines that the directions of arrival of the signals from the communication terminal devices that are the communication partners are close to each other, the transmission weight generation circuit 1004 A common transmission directivity is formed in the direction taking into account the difference in the line state.
  • the determination circuit 1003 determines that the line state of the communication terminal apparatus 152 is worse than the line state of the communication terminal apparatus 151.
  • the communication terminal device 152 If the line condition of the communication terminal device 152 is worse, the communication terminal having a poor communication condition from the reference direction (here, approximately the center of the communication terminal device 151 and the communication terminal device 152). A directivity pattern 1101 having transmission directivity in a direction shifted toward the device 152 is formed. As a result, a better communication state can be ensured for the communication terminal device 152 compared to the case where the transmission directivity is formed substantially in the center of the communication terminal device 151 and the communication terminal device 152. Can be done. As described above, according to the present embodiment, the transmission directivity is formed in a direction shifted from the reference direction to a direction in which the communication terminal apparatus having a poor communication state is approached. The communication state can be improved. This improves the communication status of the entire system.
  • the case where the base station apparatus is communicating with two communication terminal apparatuses is described as an example, but even if there are three or more communication terminal apparatuses that communicate with the base station apparatus, good.
  • the line condition of each communication terminal device is estimated, and the reference direction is set to the direction in which the estimated line condition approaches the worst communication terminal device.
  • the transmission directivity is formed in the direction after the shift.
  • the sixth embodiment is a modification of the third embodiment.
  • the transmission directivity is formed in a direction shifted from the arrival direction of the received wave to a direction away from the communication terminal of the interference destination.
  • the direction in which the transmission directivity is formed is determined in consideration of the quality of the line state. Specifically, when a communication terminal device having a good line condition is the interfered terminal, the transmission directivity used for transmitting a signal to the communication terminal device that interferes with the interfered terminal is shifted. Decrease the width (angle).
  • FIG. 13 is a block diagram showing a configuration of a base station apparatus according to Embodiment 6 of the present invention.
  • the same parts as those in FIG. 7 are denoted by the same reference numerals as those in FIG. 7, and detailed description thereof will be omitted.
  • the line state estimating circuits 100 1 and 100 2 detect the state of the line from the communication terminal apparatus to the base station apparatus 100 based on the output of the demodulation circuit.
  • the state of the line can be known, for example, by referring to the TPC command extracted from the received signal in the demodulation circuits 105 and 106. In other words, when the transmission power controlled by the TPC command is high, it can be estimated that the line state is bad when the transmission power controlled by the TPC command is low. Can be estimated.
  • the determination circuit 122 determines the amount of interference calculated by the interference amount calculation circuit 601 as a threshold value. This threshold determination compares the inter-code interference that occurs between the communication terminals as communication partners with the amount of interference (allowable amount) that can be tolerated in the system. This is performed to determine the magnitude relationship. This threshold determination result is output to the transmission weight generation circuit 122.
  • the determination circuit 1221 is provided with a template indicating a correspondence relationship between the estimation result of the channel state and the shift width of the transmission directivity.
  • Judgment circuit 1 2 0 1 is a communication terminal device output from communication state estimation circuit 1 The shift width corresponding to the estimation result of the line state of 52 is read from the tape and output to the transmission weight generation circuit 122.
  • a communication terminal device with a good line condition is considered to be strong against interference because it receives the desired wave strongly even if it receives interference from other stations. Therefore, when a communication terminal device having a good line condition is an interfered terminal, the width of shifting the transmission directivity used for transmitting a signal to a communication terminal device that interferes with the interfered terminal is reduced. .
  • the transmission byte generation circuit 1222 The transmission directivity is formed in a direction shifted away from the communication terminal device of the interference destination from the arrival direction of the transmission. Then, the transmission weight generation circuit 122 generates a transmission byte for realizing the formed transmission directivity. This transmission directivity is formed using the shift width of each communication terminal device output from the determination circuit 1221.
  • the line state is detected by referring to the TPC command included in the received signal in the line state estimation circuits 1001, 1002. It is.
  • the determination circuit 1003 the amount of interference between the communication terminals as communication partners is compared with an allowable amount, and the magnitude relationship is determined. This judgment result is output to the transmission weight generation circuit 122. Further, in the determination circuit 1221, the interfered terminal is detected.
  • the transmission directivity is formed in the direction shifted by the shift width taking into account the difference in the line state in the direction away from the interfered terminal detected by the determination circuit 62 in the reference direction. Is done.
  • the transmission directivity for the communication terminal device that interferes with the interfered terminal is shifted. Reduce the width. As a result, a signal transmitted using the transmission directivity having a reduced shift width is transmitted with a directivity closer to a desired directivity. Therefore, it is possible to improve the communication quality of a communication terminal device receiving this signal. Can be done.
  • Embodiments 5 and 6 Although a method of referring to a TPC command has been described as an example of a method for estimating a line state in Embodiments 5 and 6, the present invention is not limited to this. A method using downlink reception quality may be used.
  • a common transmission directivity is provided for each communication terminal device. Therefore, there is no need to generate a transmission byte for each communication terminal device. Therefore, the amount of calculation can be greatly reduced. Also, since a signal is transmitted with a common transmission directivity formed to a plurality of communication terminal devices, transmission is performed in a state where the transmission signal is orthogonalized to communication terminal devices in which the arrival directions of the signals are close to each other. It is possible to do. Therefore, it is possible to reduce intersymbol interference between communication terminal devices.
  • the reference direction is subjected to interference of the predetermined amount or more, Since a signal is transmitted with transmission directivity formed in a direction shifted away from the communication terminal device in which it is located, intersymbol interference can be reduced.
  • a base station apparatus includes a direction-of-arrival estimating unit that estimates directions of arrival of signals from a plurality of communication terminal apparatuses, and a communication terminal apparatus in which the directions of arrival of signals are close to each other based on the estimated direction-of-arrival information.
  • a first detection unit for detecting the transmission direction, a forming unit for forming a common transmission directivity for each of the detected communication terminal devices, and the arrival directions of the signals are close to each other by using the common transmission directivity.
  • a transmitting unit for wirelessly transmitting a signal to the communication terminal device.
  • a signal is transmitted while forming a common transmission directivity to a plurality of communication terminal devices, so that a transmission signal is transmitted to communication terminal devices in which the arrival directions of the signals are close to each other. Transmission can be performed in the orthogonalized state. Therefore, intersymbol interference between communication terminal devices can be reduced.
  • the base station apparatus of the present invention in the base station apparatus, further includes a line state estimating unit for estimating a line state for each communication terminal apparatus, and A configuration is adopted in which transmission directivity is formed in a direction shifted in the direction of arrival of a signal from a bad communication terminal device.
  • the transmission directivity is formed in a direction shifted from the reference direction to the communication terminal device having a poor communication condition, so that the communication condition of the communication terminal device having the poor line condition is preferentially improved. Can be done. As a result, the communication state of the entire system can be improved.
  • a base station apparatus includes a direction-of-arrival estimating unit that estimates directions of arrival of signals from a plurality of communication terminal apparatuses, and an interference that the communication terminal apparatus receives from another communication terminal apparatus based on the estimated direction-of-arrival information.
  • a calculation unit for calculating the amount, and the calculated amount of interference is a predetermined value.
  • a second detection unit that detects a larger communication terminal device; and a formation unit that forms a transmission directivity in a direction in which a reference direction determined from the arrival direction information is shifted in a direction away from the communication terminal device detected by the second detection unit.
  • a transmitting unit that wirelessly transmits a signal to the other communication terminal device using the formed transmission directivity.
  • the reference direction is set to a direction away from the communication terminal device receiving the interference of the predetermined amount or more. Since the signal is transmitted while forming the transmission directivity in the direction shifted to, the interference can be reduced.
  • the base station apparatus of the present invention is the base station apparatus, further comprising a line state estimating unit for estimating a line state for each communication terminal apparatus, wherein the forming unit detects the line state of the communication terminal apparatus detected by the second detecting unit.
  • a line state estimating unit for estimating a line state for each communication terminal apparatus, wherein the forming unit detects the line state of the communication terminal apparatus detected by the second detecting unit. The better the value, the smaller the shift width from the reference direction.
  • the transmission directivity used for transmission to another communication terminal apparatus that interferes with this communication terminal apparatus The width of shifting is reduced.
  • a signal transmitted using the transmission directivity having a reduced shift width is transmitted with a directivity closer to a desired directivity, and thus the communication quality of a communication terminal device receiving this signal is improved. be able to.
  • the arrival direction estimating unit refers to the position information about the own apparatus acquired by the communication terminal apparatus and transmitted from the communication terminal apparatus, and the arrival of the signal from the communication terminal apparatus. A configuration for estimating the direction is adopted.
  • the arrival direction of the signal can be recognized by demodulating the position information included in the received signal, it is not necessary to perform the arrival direction estimation process. Therefore, the amount of processing for forming the reception directivity and the transmission directivity can be reduced.
  • the wireless transmission method estimates a direction of arrival of a signal from a plurality of communication terminal devices and, based on the estimated direction-of-arrival information, indicates that the directions of arrival of the signals are close to each other.
  • a communication terminal device is detected, a common transmission directivity is formed for each of the detected communication terminal devices, and a signal is transmitted to and from the communication terminal devices whose arrival directions of signals are close to each other using the common transmission directivity.
  • this method it is not necessary to generate a transmission weight for each communication terminal device when the arrival directions of signals from a plurality of communication terminal devices as communication partners are close to each other. The amount can be reduced. In addition, since a signal is transmitted while forming a common transmission directivity to a plurality of communication terminal devices, intersymbol interference between the communication terminal devices can be reduced.
  • the wireless transmission method estimates a direction of arrival of a signal from a plurality of communication terminal devices, and calculates an amount of interference that the communication terminal device receives from another communication terminal device based on the estimated direction of arrival information.
  • a communication terminal device having a detected interference amount larger than a predetermined value is detected, and a transmission directivity is formed in a direction shifted from a reference direction defined by the arrival direction information in a direction away from an arrival direction of a signal from the detected communication terminal device.
  • a signal is wirelessly transmitted to the other communication terminal device using the formed transmission directivity.
  • the reference direction is changed to a signal from the communication terminal device receiving the predetermined amount of interference or more. Since signals are transmitted with transmission directivity formed in a direction shifted away from the arrival direction of the signal, interference can be reduced.
  • the present invention can be applied to a base station apparatus and a wireless transmission method used in a digital wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

明 細 書 基地局装置及び無線送信方法 技術分野
本発明は、 指向性を適応的に制御して信号の送受信を行うァダプティブァレ イアンテナ技術を用いた基地局装置に関する。 背景技術
ディジタル無線通信においては、 複数のアンテナ素子のアンテナ出力に重み (以下、 「ゥヱイト」 という) を加えて指向性を適応的に制御するァダプティ ブアレイアンテナ (以下、 「AAA」 という) 技術が性能改善技術として期待 されている。 この A A A技術では、 受信波の到来方向が異なることを利用して 指向性を適応的に制御することにより干渉波を抑圧することができる。 このた め、 このァダプティブアレイアンテナ技術は、 同一チャネルにおける干渉波を 除去する方法として好適である。
図 1は、 従来の AAA技術を用いた基地局装置の構成を示すプロック図であ る。 以下、 AAA技術を用いた基地局装置を単に AAA基地局装置という。 図 1においては、 例として、 2本のアンテナ素子で構成されたアレーアンテナを 装備する基地局装置を示す。 なお、 通常基地局装置においては、 複数の通信端 末装置と通信を行うために、複数系統の受信信号処理回路及び送信信号処理回 路を具備するが、 図 1においては、 説明を簡単にするために、 受信信号処理回 路及び送信信号処理回路を 1系統のみ設けた場合について記述する。
図 1に示す基地局装置 1 0は、 通信端末装置 2 0と通信を行う際に、 アンテ ナ 1 1 , 1 2を用いて通信端末装置 2 0からの信号を受信する。 アンテナ 1 1 で受信した信号は、 受信無線回路 1 3で中間周波数帯域、 基底周波数帯域の順 にダウンコンバートされ、 受信信号処理回路 1 5に出力される。 また、 アンテ ナ 1 2で受信した信号は、 受信無線回路 1 4で中間周波数帯域、 基底周波数帯 域の順にダウンコンバートされ、 受信信号処理回路 1 5に出力される。 受信信 号処理回路 1 5では、 受信信号に復調処理を行う。 また、 受信信号処理回路 1 5では、 受信信号に乗算する複素係数(受信ウェイ ト) を調節する。 これによ り、 アレーアンテナで希望方向から到来する電磁波のみを強く受信することが できる。 このように希望方向から到来する電磁波のみ強く受信することを 「受 信指向性を持つ」、 又は「受信指向性を形成する」 という。基地局装置におい て受信指向性を持つことにより、 受信 S I R ( Signal to Interference Ratio :以下 S I Rという)を高く保つことができる。なお、 受信信号処理回路 1 5の構成は、 使用する通信方式等により決定する。
一方、 送信の際には、 送信信号処理回路 1 6において送信データに変調処理 が行われる。 また、 送信信号処理回路 1 6では、 受信信号処理回路 1 5におい て推定した到来方向の推定結果を用いて送信信号に乗算する複素係数(送信ゥ エイト) を生成する。 この送信ウェイトは通信相手である通信端末装置毎に生 成される。 これにより、 アレーアンテナで希望方向にのみ強く電磁波を送信す ることができる。 このように希望方向にのみ電磁波を強く送信することを 「送 信指向性を持つ」、 又は「送信指向性を形成する」 という。基地局装置におい て送信指向性を持つように送信された信号を受信した通信端末装置は、 受信 S を高く保つことができる。 なお、 送信信号処理回路 1 6の構成は、 使用す る通信方式等により決定する。送信ウェイトを乗算された送信信号は、 送信無 線回路 1 7 , 1 8において無線周波数帯域にアップコンバートされ、 アンテナ 1 1 , 1 2から通信端末装置 2 0に送信される。
しかしながら、従来の A A A基地局装置は送信ウェイトを通信相手である通 信端末装置ごとに個別に生成するため、 処理負担が増大するという問題がある。 また、 従来の AAA基地局装置は、 通信相手である通信端末装置からの信号の 到来方向が互いに近接している場合であっても、 通信端末装置ごとに生成した 送信ウェイトを送信信号に乗算して送信するので、 通信を行っている通信端末 装置の間で直交性が崩れて干渉を生ずるという問題もある。 発明の開示
本発明の目的は、 通信相手である通信端末装置からの信号の到来方向が互い に近接している場合であっても、 直交性が崩れることによる符号間干渉を生じ ることなく、 また送信ウェイトを生成する演算量を削減することが出来る基地 局装置及び無線送信方法を提供することである。
本発明の第 1の主題は、 ァレ一アンテナを備えた基地局装置において、 通信 相手である複数の通信端末装置からの信号の到来方向が互いに近接している 場合に、 それらの通信端末装置に対して共通の送信指向性を形成し、 この送信 指向性を用いてそれそれの通信端末装置に信号を送信することである。 本発明の第 2の主題は、 複数の通信端末装置と無線通信を行うアレーアンテ ナを備えた基地局装置において、 他の通信端末装置から所定量以上の干渉を受 けている通信端末装置を検出した場合、基準方向をその所定量以上の干渉を受 けている通信端末装置からの信号の到来方向から遠ざかる向きにシフトした 方向に送信指向性を形成することである。 図面の簡単な説明
図 1は、 従来の A A A技術を用いた基地局装置の構成を示すプロック図; 図 2は、 本発明の実施の形態 1に係る基地局装置の構成を示すプロヅク図; 図 3は、 各通信端末装置からの受信波の到来方向を示す図;
図 4は、 通信端末装置毎に個別に生成される送信指向性パターンを示す図; 図 5は、 通信端末装置からの信号の到来方向が互いに近接していると判定さ れた場合に生成される共通の送信指向性パターンを示す図;
図 6は、 本発明の実施の形態 2に係る基地局装置の構成を示すプロヅク図; 図 7は、 本発明の実施の形態 3に係る基地局装置の構成を示すプロック図; 図 8は、 希望波の到来方向と同一方向に形成した送信指向性パターンを示す 図;
図 9は、 シフト後の送信指向性パターンを示す図;
図 1 0は、 本発明の実施の形態 4に係る基地局装置の構成を示すブロック 図;
図 1 1は、 本発明の実施の形態 5に係る基地局装置の構成を示すブロック 図;
図 1 2は、 回線状態の良し悪しを加味して生成される共通の送信指向性パ夕 —ンを示す図;並びに
図 1 3は、 本発明の実施の形態 6に係る基地局装置の構成を示すブロック図 である。 発明を実施するための最良の形態
以下、 本発明の各実施形態について添付図面を参照して説明する。
(実施の形態 1 )
実施の形態 1に係る基地局装置は、通信相手である複数の通信端末装置から の信号の到来方向が互いに近接している場合に、 それらの通信端末装置に対-し て共通の送信指向性を形成し、 この送信指向性を用いてそれそれの通信端末装 置に信号を送信する。 つまり、 本実施の形態に係る基地局装置は、 送信指向性 の形成に際して、 各通信端末装置相互の関係を信号の到来方向の面から監視す る。
図 2は、 本発明の実施の形態 1に係る基地局装置の構成を示すプロック図で ある。 ここでは、 基地局装置 1 0 0が通信端末装置 1 5 1 , 1 5 2と無線通信 を行う場合について説明する。
受信無線回路 1 0 3 , 1 0 4は、 それぞれアンテナ 1 0 1 , 1 0 2を介して 受信された信号に所定の無線受信処理 (ダウンコンバート、 A/D変換など) を行う。
それそれの受信無線回路 1 0 3 , 1 0 4で処理されたベースバンド信号は、 ペースバンド信号処理回路 1 3 0に送られる。 通常、 基地局装置においては、 複数の通信端末装置からの受信信号を復調するために、複数系統のベースバン ド信号処理回路を備えている。本実施の形態においては、 説明を簡単にするた めに通信端末装置を 2つと想定し、 これに対応してベ一スパンド信号処理回路 1 3 0内には 2つの処理系統 (復調回路 1 0 5〜到来波方向推定回路 1 0 7、 及び復調回路 1 0 6〜到来波方向推定回路 1 0 8 ) を設けている。
復調回路 1 0 5 , 1 0 6は、 対応する通信端末装置 1 5 1, 1 5 2の受信信 号に対して C D M A復調などのベースバンド処理を行って受信デ一夕を得る。 到来波方向推定回路 1 0 7 , 1 0 8は、 それそれ通信端末装置 1 5 1 , 1 5 2 からの受信信号に対して適応信号処理を行い、 各通信端末装置からの希望波の 到来方向を推定する。集計回路 1 0 9は、 到来波方向推定回路 1 0 7 , 1 0 8 からの出力である通信端末装置 1 5 1, 1 5 2からの到来方向情報を集計する。 なお、 この到来方向情報は、 基地局装置 1 0 0のアンテナ正面方向を基準とし た角度で表される角度情報である。
判定回路 1 1 0は、 集計回路 1 0 9から出力される到来方向情報を参照して 通信端末装置 1 5 1, 1 5 2からの到来波方向の角度の差分を算出し、 算出し た差分を閾値判定する。
送信ウェイト生成回路 1 1 1は、 判定回路 1 1 0において通信相手である通 信端末装置からの信号の到来方向が互いに近接していると判定された場合に は、 それそれの通信端末装置に共通の送信指向性を形成する。 実際には、 送信 ウェイト生成回路 1 1 1は、 共通の送信指向性を実現する共通の送信ウェイト を生成する。 この共通の送信指向性は、 到来波方向推定回路 1 0 7 , 1 0 8に おいて推定した各通信端末装置からの信号の到来方向の略中央方向 (信号の到 来方向のアンテナ正面方向を基準とした角度の平均の方向) に形成される。 な お、 受信系列において受信指向性を持っために受信ゥヱイトを算出している場 合は、 その受信ウェイトに適当な処理を施すことにより、 それそれの通信端末 装置からの信号の到来方向の略中央方向に送信指向性を持つように送信ゥェ ィトを生成することが出来る。
一方、 判定回路 110において、 通信相手である通信端末装置からの信号の 到来方向が互いに近接していないと判定された場合には、 到来波方向推定回路
107, 108において推定した到来方向を参照して、 通信端末装置毎に個別 の送信ウェイトを生成する。 この場合に送信ウェイ トを生成する方法としては、 受信ウェイトをそのまま用いる方法や、 基地局装置の受信と送信とで周波数が 異なる際には、 生成した受信ウェイトを所定の方式で変換する方法などが挙げ られる。
次いで、送信系の各ブロックについて説明する。変調回路 112, 113は、 送信デ一夕に対して CDMA変調などの所定の変調処理を行う。 また、 変調回 路 112, 113は、 変調した信号に送信ウェイト生成回路 111で生成した 送信ウェイトを乗算して送信信号を生成する。送信無線回路 114, 115は、 送信信号に所定の無線送信処理(ダウンコンパ一ト、 DZA変換など)を行う。 なお、 本実施の形態の基地局装置は、 2本のアンテナによるアレーアンテナ送 信機能を有するので、 アンテナ及び送信無線回路は各々 2個ずつ存在する。 次に、 上記構成を有する基地局装置 100の動作について説明する。
通信端末装置 151, 152から送信された信号は、 アンテナ 101, 10 2を介してそれそれ受信無線回路 103, 104で受信され、 そこで所定の無 線受信処理がなされて復調回路 105 , 106に送られる。 復調回路 105, 106においては、 受信無線回路 103, 104から受け取った通信端末装置 151, 152から送信された信号に対して CDMA復調などの処理を行い、 それそれ到来波方向推定回路 107, 108に送る。 到来波方向推定回路 10 7, 108では、 受信信号に対して到来波推定処理を行う。
到来波推定方法としては、 MUSIC法、 ESPRIT法、 FFT (高速フ 一リエ変換) を用いたビームフォーマ法、 線形予測法、 最小ノルム法などを挙 げることができるが、 特に制限はない。 次いで、 到来波方向推定回路 107, 108において行った到来波方向の推定結果を集計回路 109に出力する。 集計回路 1 0 9においては、 到来波方向の推定結果を集計することにより、 通信端末装置 1 5 1 , 1 5 2からの希望波の到来方向を把握する。集計回路 1 0 9では、 各通信端末装置とアンテナ正面方向を基準とした到来波方向の角度 とを対応させて集計がなされる。 集計回路 1 0 9は、 各通信端末装置 1 5 1 , 1 5 2からの希望波の到来方向情報(角度情報)を判定回路 1 1 0に出力する。 判定回路 1 1 0では、 通信相手である通信端末装置からの信号の到来方向が 互いに近接しているか否かを判定するために、 通信端末装置 1 5 1, 1 5 2か らの信号の到来方向の差分が閾値判定される。
判定回路 1 1 0における閾値判定について図 3を参照して説明する。 図 3に 示すように、 到来波方向推定回路 1 0 7 , 1 0 8において、 通信端末装置 1 5 1および 1 5 2からの希望波の到来方向がそれそれ Θ 1 , Θ 2と推定される。 この到来波方向を示す角度 Θ 1, Θ 2はアンテナ正面方向を基準とした角度で ある。判定回路 1 1 0は、 それそれの通信端末装置 1 5 1 , 1 5 2からの到来 波 (受信波) の到来方向の差分 (Θ 3 = I Θ 1— Θ 2 | ) を取り、 この差分を 所定の閾値で閾値判定する。
この閾値判定は通信相手である通信端末装置からの信号の到来方向が互い に近接しているか否かを判定するために行う。 したがって、 到来波方向の角度 の差分が所定の閾値よりも小さい場合には通信相手である通信端末装置から の信号の到来方向が互いに近接していると判定する。逆に到来波方向の角度の 差分が所定の閾値よりも大きい場合には、 通信相手である通信端末装置からの 信号の到来方向が互いに近接していないと判定する。 この閾値は予め設定され ており、 到来波方向推定の誤差等を考慮してシステムにおいて適宜変更して設 定される。
送信ウェイト生成回路 1 1 1では、 判定回路 1 1 0において通信相手である 通信端末装置からの信号の到来方向が互いに近接していると判定された場合 に、 それぞれの通信端末装置に対して共通の送信ウェイトが生成される。 図 4 及び図 5を参照して、 送信ウェイト生成回路 1 1 1における送信ウェイトの生 成処理について説明する。 まず、 図 4に、 従来と同様にして通信端末装置毎に 個別に生成される送信指向性パターンを示す。
図 4に示すように、 従来の基地局装置は、 受信信号から受信波の到来方向を 推定すると、 通信端末装置 1 5 1 , 1 5 2のそれそれに個別に送信指向性を生 成する。 すなわち、 通信端末装置 1 5 1には指向性パターン 3 0 1を、 通信端 末装置 1 5 2には指向性パターン 3 0 2を、 それそれ個別に生成する。 次いで、 図 5に、 本実施の形態において、 判定回路 1 1 0で各通信端末装置 からの信号の到来方向が互いに近接していると判定された場合に生成される、 信号の到来方向が近接している各通信端末装置に共通の送信指向性パターン を示す。 この図 5に示すように、 本実施の形態に係る基地局装置 1 0 0は、 推 定した受信波の到来方向を参照して、 信号の到来方向が近接している通信端末 装置 1 5 1 , 1 5 2のそれそれに対して共通の指向性パターン 4 0 1を形成す る。指向性パターン 4 0 1は、 通信端末装置 1 5 1, 1 5 2からの希望波の到 来方向の略中央方向の利得を最大にするように形成される。送信ウェイ ト生成 回路 1 1 1は、 図 5に示す指向性パターン 4 0 1を実現する送信ウェイトを生 成する。
このように共通の指向性パターンを生成することにより、 送信ウェイトを個 別に生成する必要がなくなるため処理負担が大幅に軽減される。 また、 図 4に 示す従来の個別に送信指向性を形成する方法では、 通信端末装置 1 5 1に送信 する信号と通信端末装置 1 5 2に送信する信号との直交性が崩れるが、 図 5に 示す本実施の形態に係る共通の指向性を形成する方法によれば、 明らかに直交 性が崩れておらず、 したがつて直交性の崩れによる干渉が発生しない。 このようにして生成された共通の送信ウェイトを乗算された送信信号は、 送 信無線回路 1 1 4, 1 1 5において所定の無線送信処理を施されて通信端末装 置 1 5 1 , 1 5 2に送信される。
このように、 本実施の形態によれば、 複数の通信端末装置に対して共通の送 信指向性を形成して信号を送信することにより、 各通信端末装置毎に送信ゥェ ィトを生成する必要がなくなるため、大幅な演算量の削減が可能となる。また、 共通の送信指向性で送信する通信端末装置に対する逆拡散後信号を合成した 後に送信ウェイトを乗算することにより、 従来通信端末毎に行っていた送信ゥ エイ ト乗算処理を低減することが可能である。
C D MA無線通信において、 各通信端末に対する送信信号は直交化されてい るために符号間干渉を除去することが可能である。 しかしながら、 従来の指向 性送信において行われるように、 各通信端末装置毎に異なる送信ゥヱイトを用 いて通信を行う場合には、 この直交性が崩れてしまう。 本構成によれば、 複数 の通信端末装置に対して共通の送信指向性を形成して信号を送信するので、 信 号の到来方向が互いに近接する通信端末装置に対して送信信号を直交化させ た状態で送信を行うことが可能となる。
本実施の形態においては、基地局装置が 2つの通信端末装置と通信を行って いる場合を例に説明しているが、基地局装置と通信を行う通信端末装置は 3つ 以上存在しても良い。 この場合には、 通信を行う通信端末装置から基準とする 通信端末装置を選択し、 この基準とする通信端末装置と他の通信端末装置との 到来波方向の角度の差分をそれそれ算出し、 算出した差分が所定の閾値よりも 小さくなる通信端末装置を検出して、 検出した通信端末装置に対して共通の送 信指向性を形成して信号を送信すれば良い。 これにより、 3つ以上の通信端末 装置からの信号の到来方向が互いに近接する場合であっても、 これらの信号の 到来方向が近接する各通信端末装置に共通の送信指向性を形成することがで きる。 したがって、 3つ以上の通信端末装置からの信号の到来方向が互いに近 接する場合であっても、 演算量を削減することが出来、 また、 送信信号を直交 かさせた状態で送信を行うことが出来る。
(実施の形態 2 )
実施の形態 2は実施の形態 1の変形例であり、 移動体の現在位置を知るため の測位技術 (以下、 「ポジショニング」 という) を用いて移動体の現在位置を 検出し、 検出した移動体の現在位置から通信端末装置の方向 (すなわち、 希望 波の到来方向) を認識する例である。 すなわち、 本実施の形態は、 ポジショニ ングにより通信端末装置の位置を知り、 その位置情報に基づいて基地局装置に 対する通信端末装置の方向を認識する点で実施の形態 1と異なる。
図 6は、 本発明の実施の形態 2に係る基地局装置の構成を示すプロック図で ある。 図 6において、 図 2と同じ部分には図 2と同じ符号を付してその詳細な 説明は省略する。 ここでは、 測位技術として G P S (Global Positioning System) を用いた場合を例に説明する。
通信端末装置 5 5 1 , 5 5 2は G P S受信機を備えている。通信端末装置 5 5 1 , 5 5 2は、 人工衛星から送信された信号を受信し、 受信信号に含まれる 時刻情報及び衛星の位置情報と G P S受信機がローカルに持つ時計の時刻と から自装置の位置を知る。通信端末装置 5 5 1 , 5 5 2は、 このようにして知 つた自装置の位置情報を送信信号に挿入して基地局装置 1 0 0に伝送する。 基地局装置 1 0 0において、 通信端末位置情報復調回路 5 0 1 , 5 0 2は、 受信信号から位置情報を抽出し、 抽出した位置情報を復調する。通信端末位置 情報復調回路 5 0 1 , 5 0 2は、 復調した位置情報を参照することにより、 基 地局装置 1 0 0から見た通信端末装置 5 5 1 , 5 5 2の方向 (すなわち、 通信 端末装置 5 5 1, 5 5 2からの希望波の到来方向) を認識することが出来る。 上記構成の基地局装置では、 受信信号に含まれる位置情報を復調することに より、 アンテナ正面方向を基準とした通信端末装置 5 5 1 , 5 5 2の方向 (通 信端末装置 5 5 1 , 5 5 2からの信号の到来方向) が認識され、 この方向を示 す角度の差分を閾値判定することにより各通信端末装置からの信号の到来方 向が互いに近接しているか否かが判定される。各通信端末装置からの信号の到 来方向が互いに近接していると判定された場合には、 それそれの通信端末装置 に対して共通の送信ゥヱイ トを生成する。
このように、 本実施の形態に係る基地局装置においては、 受信信号に含まれ る位置情報を復調することにより通信端末装置の方向を認識することが出来 るので、 到来方向推定処理を行う必要が無い。 したがって、 受信指向性及び送 信指向性を形成するための処理量を削減することが出来る。
(実施の形態 3 )
実施の形態 3に係る基地局装置は、 他の通信端末装置から所定量以上の干渉 を受けている通信端末装置を検出した場合、 基準方向をその所定量以上の干渉 を受けている通信端末装置から遠ざかる向きにシフトした方向に送信指向性 を形成して信号を送信する。 つまり、 本実施の形態に係る基地局装置は、 送信 指向性の形成に際して、 各通信端末装置相互の関係を現象 (干渉量) の面から 監視する。
図 7は、 本発明の実施の形態 3に係る基地局装置の構成を示すプロヅク図で ある。 図 7において、 図 2と同じ部分には図 2と同じ符号を付してその詳細な 説明は省略する。
干渉量算出回路 6 0 1は、 集計回路 1 0 9で集計した通信端末装置 1 5 1 , 1 5 2の到来方向情報を参照して通信端末装置 1 5 1が受ける干渉量、 及び通 信端末装置 1 5 2が受ける干渉量を算出する。
判定回路 6 0 2は、 干渉量算出回路 6 0 1において算出した各通信端末装置 が受ける干渉量を閾値判定する。 この閾値判定は通信相手である通信端末装置 の間で発生する干渉を、システムにおいて許容することが出来る干渉量(以下、 「許容量」と省略する)と比較し、その大小関係を判定するために行う。以下、 許容量を超える干渉量の干渉を受ける通信端末装置を 「被干渉端末」 という。 判定回路 6 0 2はこの被干渉端末を検出する。
送信ウェイト生成回路 6 0 3は、基準方向を判定回路 6 0 2において検出し た被干渉端末から遠ざかる向きにシフトした方向に送信指向性を形成する。送 信ウェイト生成回路 6 0 3ほ、 信号を送信する通信端末装置ごとに送信指向性 を形成する。基準方向としては、 例えば、 信号を送信する通信端末装置からの 信号の到来方向を採用することが考えられる。実際には、 送信ウェイト生成回 路 6 0 3は、 前述したシフト後の方向の送信指向性を実現する送信ウェイトを 生成する。 一方、 判定回路 6 0 2で被干渉端末が検出されない場合には、 送信ウェイト 生成回路 6 0 3は、 到来波方向推定回路 1 0 7 , 1 0 8で推定した希望波の到 来方向 (各通信端末装置の方向) と同一の方向に送信指向性を形成する。 次に、 上記構成を有する基地局装置 1 0 0の動作について説明する。
通信端末装置 1 5 1 , 1 5 2から送信された信号は、 アンテナ 1 0 1 , 1 0 2を介してそれそれ受信無線回路 1 0 3 , 1 0 4で受信され、復調回路 1 0 5 , 1 0 6で C DMA復調などの処理を施される。復調デ一夕は、 それそれ到来波 方向推定回路 1 0 7 , 1 0 8に出力される。 到来波方向推定回路 1 0 7 , 1 0 8では、 受信信号に対して到来波推定処理が行われ、 到来波方向の推定結果が 集計回路 1 0 9に出力される。集計回路 1 0 9においては、 到来波方向の推定 結果が集計され、 各通信端末装置 1 5 1 , 1 5 2からの信号の到来方向の情報 が干渉量算出回路 6 0 1に出力される。
干渉量算出回路 6 0 1では、 集計回路 1 0 9で集計した通信端末装置 1 5 1 , 1 5 2の到来方向倩報を参照して通信端末装置 1 5 1と通信端末装置 1 5 2 との干渉量が算出される。判定回路 6 0 2では、 干渉量算出回路 6 0 1で算出 された干渉量が閾値判定され、 被干渉端末の検出が行われる。
ここで、 図 8及び図 9を用いて送信ウェイト生成回路 6 0 3における送信ゥ エイトの生成について説明する。 図 8には従来と同様に希望波の到来方向と同 一の方向に形成した送信指向性パターンを示し、 図 9には基準方向からシフト した方向に形成した送信指向性パターンを示す。 ここでは、 通信端末装置 1 5 2が通信端末装置 1 5 1から受ける干渉により被干渉端末となっている場合 を例に説明する。
図 8において、 指向性パターン 7 0 1は、 通信端末装置 1 5 1からの信号の 到来方向 (基地局装置 1 0 0から見て通信端末装置 1 5 1が位置する方向) と 同一方向に形成した送信指向性パターンである。指向性パターン 7 0 1は集計 回路 1 0 9において集計された到来波情報を基にして形成される。 ここでは、 通信端末装置 1 5 1は 0 ° の方向に存在し、 通信端末装置 1 5 2は 1 0 ° の方 向に存在するものとする。
図 8から明らかなように、 通信端末装置 1 5 1への送信波は通信端末装置 1 5 2の干渉になっている。 この干渉は、 通信端末装置からの信号の到来方向が が互いに近いと (それそれの通信端末装置からの到来波方向の角度の差分が小 さいと) 大きくなる。 また、 送信電力が大きいほうが他局に与える干渉が大き い。
そこで、 本実施の形態においては、 干渉量が許容量よりも大きくなる場合に は、 干渉を受けている通信端末装置からの信号の到来方向から遠ざかる向きに シフトした送信指向性を形成する。 図 9に、 上述したように送信指向性をシフ トさせた後の送信指向性パターンを示す。指向性パターン 8 0 1は指向性パ夕 —ン 7 0 1を図 8に示すグラフの横軸のマイナス方向にシフト幅 Φだけシフ トさせて形成される。シフト幅 Φは、例えば、予め基地局装置内に備えられた、 受ける干渉量とシフト幅 Φとの対応関係を示すテーブルから、 算出した干渉量 に対応するシフト幅 Φを読み出す。通信端末装置 1 5 2が受ける干渉量が許容 量よりも小さくなるように設定されている。 このように、 通信端末装置 1 5 1 に送信する信号の送信指向性 (指向性パターン 8 0 1 ) は、 通信端末装置 1 5 1からの受信波の到来方向 (すなわち、 基地局装置から見た通信端末装置 1 5 1の方向) を基準にして、 被干渉端末である通信端末装置 1 5 2より遠ざかる 向き (図 8に示すグラフの横軸のマイナス方向)へシフトした方向 (1 0 ° の 方向) に形成される。
図 8と図 9とを比較するに、 指向性パターン 8 0 1を形成した場合は指向性 パターン 7 0 1を形成した場合よりも、 通信端末装置 1 5 2の位置での通信端 末装置 1 5 1に送信する信号の送信電力が小さくなつているので、 通信端末装 置 1 5 2に対する干渉が低減する。
送信ウェイト生成回路 6 0 3では、 シフト後の指向性パターン 8 0 1を実現 する送信ウェイトが生成される。 このようにして生成された送信ウェイトを乗 算された送信信号は、 送信無線回路 1 1 4, 1 1 5において所定の無線送信処 理を施されて通信端末装置 1 5 1 , 1 5 2に送信される。
このように、 本実施の形態によれば、 通信端末装置 1 5 1に送信する信号の 送信指向性を、 通信端末装置 1 5 1からの信号の到来方向を基準にして、 被干 渉端末である通信端末装置 1 5 2より遠ざかる向きへシフトした方向に形成 して信号を送信するので、 通信端末装置 1 5 2が受ける干渉を低減することが 出来る。
(実施の形態 4 ) .
実施の形態 4は実施の形態 3の変形例であり、移動体の現在位置を知るため の測位技術 (ポジショニング) を用いて移動体の現在位置を検出し、 検出した 移動体の現在位置から通信端末装置の方向 (すなわち、 希望波の到来方向) を 認識する例である。 すなわち、 本実施の形態は、 ポジショニングにより通信端 末装置の位置を知り、 その位置情報に基づいて基地局装置に対する通信端末装 置の方向を認識する点で実施の形態 3と異なる。
図 1 0は、 本発明の実施の形態 4に係る基地局装置の構成を示すブロック図 である。 図 1 0において、 図 7と同じ部分には図 7と同じ符号を付してその詳 細な説明は省略する。ここでは、測位技術として G P S (Global Positioning System) を用いた場合を例に説明する。
通信端末装置 5 5 1 , 5 5 2は G P S受信機を備えている。通信端末装置 5 5 1 , 5 5 2は、人工衛星から送信された信号を受信し、自装置の位置を知る。 通信端末装置 5 5 1 , 5 5 2は、 このようにして知った自装置の位置情報を送 信信号に揷入して基地局装置 1 0 0に伝送する。
基地局装置 1 0 0において、 通信端末位置情報復調回路 5 0 1 , 5 0 2は、 受信信号から位置情報を抽出し、 抽出した位置情報を復調する。通信端末位置 情報復調回路 5 0 1 , 5 0 2は、 復調した位置情報を参照することにより、 基 地局装置 1 0 0から見た通信端末装置 5 5 1 , 5 5 2の方向 (すなわち、 通信 端末装置 5 5 1 , 5 5 2からの希望波の到来方向) を認識することが出来る。 上記構成の基地局装置では、 通信端末位置情報復調回路 5 0 1 , 5 0 2にお いて受信信号に含まれる位置情報を復調することにより、 アンテナ正面方向を 基準とした通信端末装置 5 5 1 , 5 5 2の方向 (すなわち、 通信端末装置 5 5 1 , 5 5 2からの信号の到来方向) が認識され、 干渉量算出回路 6 0 1におい て、 この方向を示す角度の差分等をパラメ一夕として干渉量が算出される。 次 いで、 判定回路 6 0 2において、 干渉量算出回路 6 0 1で算出された干渉量を 許容量と比較した場合の大小関係を判定するために干渉量が閾値判定され、 被 干渉端末の検出が行われる。被干渉端末が検出された場合には、 送信ウェイト 生成回路 6 0 3において、基準方向を被干渉端末から遠ざかる向きにシフ卜し た方向に送信指向性が形成され、 この送信指向性を実現するための送信ウェイ トが生成される。
このように、 本実施の形態に係る基地局装置においては、 受信信号に含まれ る位置情報を復調することにより通信端末装置の方向を認識することが出来 るので、 到来方向推定処理を行う必要が無い。 したがって、 受信指向性及び送 信指向性を形成するための処理量を削減することが出来る。
(実施の形態 5 )
実施の形態 5は実施の形態 1の変形例である。 実施の形態 1では、 各通信端 末装置からの信号の到来方向が互いに近接している場合に、 それそれの通信端 末装置からの希望波の到来方向の略中央方向に共通の送信指向性を形成する。 しかし、 各通信端末装置の通信状態は一様ではないため、 共通の指向性を形成 する方向としてそれそれの通信端末装置からの希望波の到来方向の略中央方 向が最適とは限らない。特に、 回線状態が悪い通信端末装置が存在する場合に は、 その回線状態の悪い通信端末装置からの信号の到来方向により近い方向に 送信指向性を形成して信号を送信することにより、 システム全体の通信状態が 改善される。 そこで、 本実施の形態では、 共通の送信指向性を形成する際に、 送信指向性を、 基準となる方向から通信状態の悪い通信端末装置に近づく向き にシフトさせるようにした。
図 1 1は、 本発明の実施の形態 5に係る基地局装置の構成を示すプロック図 である。 図 1 1において、 図 2と同じ部分には図 2と同じ符号を付してその詳 細な説明は省略する。
回線状態推定回路 1 0 0 1 , 1 0 0 2は、 復調回路の出力に基づいてそれそ れの通信端末装置への基地局装置 1 0 0からの回線の状態を検出する。 回線の 状態は、 例えば、 復調回路 1 0 5 , 1 0 6において受信信号より抽出した T P Cコマンドを参照することにより知ることが出来る。 すなわち、 T P Cコマン ドによって制御された下りの送信電力が高い場合には回線状態は悪いと推定 することが出来、 逆に T P Cコマンドによつて制御された下りの送信電力が低 い場合には回線状態は良いと推定することが出来る。
判定回路 1 0 0 3は、 通信相手である通信端末装置からの信号の到来方向が 互いに近接しているか否かを判定するために、 到来波方向の角度の差分をとつ て閾値判定する。 また、 判定回路 1 0 0 3は、 回線状態推定回路 1 0 0 1より 出力される回線状態の検出結果と回線状態推定回路 1 0 0 2より出力される 回線状態の検出結果とを比較し、 いずれの回線状態が悪いかも判定する。 この 閾値判定結果及び回線状態の判定結果は送信ウェイ ト生成回路 1 0 0 4に出 力される。
送信ウェイト生成回路 1 0 0 4は、判定回路 1 0 0 3において通信相手であ る通信端末装置からの信号の到来方向が互いに近接していると判定された場 合には、 それぞれの通信端末装置に対して回線状態の違いを加味した方向に共 通の送信ゥヱイトを生成する。 すなわち、 送信ゥヱイ ト生成回路 1 0 0 4は、 判定回路 1 0 0 3の出力により通信端末装置 1 5 1と通信端末装置 1 5 2の いずれ回線状態が悪いかを検出し、 基準となる方向 (例えば、 各通信端末装置 からの信号の到来方向の略中央方向)から通信状態の悪い通信端末装置に近づ く向きにシフトした方向に送信指向性を形成する。
上記構成の基地局装置では、 回線状態推定回路 1 0 0 1 , 1 0 0 2において 受信信号に含まれる T P Cコマンドによって制御された下りの送信電力によ り回線状態が検出される。判定回路 1 0 0 3では、 通信相手である通信端末装 置からの信号の到来方向が互いに近接しているか否かを判定するための到来 波方向の角度の差分が閾値判定される。 また、 判定回路 1 0 0 3では、 通信端 末装置 1 5 1と通信端末装置 1 5 2のいずれの回線状態が悪いかが判定され る。
ここで、 図 1 2を参照して、 送信ウェイト生成回路 1 0 0 4における送信ゥ エイトの生成動作について説明する。 図 1 2には、 通信端末装置ごとの回線状 態の違いを加味して生成される共通の送信指向性パターンを示す。送信ウェイ ト生成回路 1 0 0 4では、 判定回路 1 0 0 3において通信相手である通信端末 装置からの信号の到来方向が互いに近接していると判定された場合には、 通信 端末装置ごとの回線状態の違いを加味した方向に共通の送信指向性が形成さ れる。 ここでは、 判定回路 1 0 0 3において、 通信端末装置 1 5 2の回線状態 の方が通信端末装置 1 5 1の回線状態と比較して悪いと判定された場合につ いて説明する。
通信端末装置 1 5 2の回線状態の方が悪い場合には、 基準となる方向 (ここ では、 通信端末装置 1 5 1と通信端末装置 1 5 2の略中央方向) から通信状態 の悪い通信端末装置 1 5 2に近づく向きにシフトした方向に送信指向性を持 つような指向性パターン 1 1 0 1が形成される。 これにより、 通信端末装 1 5 1と通信端末装置 1 5 2の略中央方向に送信指向性を形成する場合と比較し て、 通信端末装置 1 5 2にとつては良い通信状態を確保することが出来る。 このように、 本実施の形態によれば、 基準となる方向から通信状態の悪い通 信端末装置に近づく向きにシフトした方向に送信指向性を形成するので、 回線 状態が悪かった通信端末装置の通信状態を改善することが出来る。 これにより、 システム全体として通信状態が改善する。
本実施の形態においては、 基地局装置が 2つの通信端末装置と通信を行って いる場合を例に説明しているが、 基地局装置と通信を行う通信端末装置は 3つ 以上存在しても良い。 この場合には、 各通信端末装置の回線状態を推定し、 推 定した回線状態が最も悪い通信端末装置に近づく向きに基準となる方向をシ フトさせて、 そのシフト後の方向に送信指向性を形成する。 これにより、 3つ 以上の通信端末装置からの信号の到来方向が互いに近接する場合であっても、 回線状態が悪い通信端末装置の通信状態を改善することが出来るので、 システ ム全体としての通信状態を改善することが出来る。
(実施の形態 6 )
実施の形態 6は実施の形態 3の変形例である。実施の形態 3では、 通信端末 装置の間で干渉が大きい場合に、 受信波の到来方向から干渉先の通信端末装置 より遠ざかる向きへシフトした方向に送信指向性を形成する。 しかし、 回線状 態が良い通信端末装置が存在する場合には、 その回線状態の良い通信端末装置 は干渉に強いと考えられる。 そこで、 本実施の形態においては回線状態の良否 も加味して送信指向性を形成する方向を決定する。 具体的には、 回線状態が良 い通信端末装置が被干渉端末となつている場合に、 その被干渉端末へ干渉を与 える通信端末装置への信号の送信に用いられる送信指向性をシフトさせる幅 (角度) を小さくする。
図 1 3は、 本発明の実施の形態 6に係る基地局装置の構成を示すプロック図 である。 図 1 3において、 図 7と同じ部分には図 7と同じ符号を付してその詳 細な説明は省略する。
回線状態推定回路 1 0 0 1, 1 0 0 2は、 復調回路の出力に基づいてそれそ れの通信端末装置から基地局装置 1 0 0に至る回線の状態を検出する。 回線の 状態は、 例えば、 復調回路 1 0 5 , 1 0 6において受信信号より抽出した T P Cコマンドを参照することにより知ることが出来る。 すなわち、 T P Cコマン ドにより制御された送信電力が高い場合には場合には回線状態は悪いと推定 することが出来、 逆に T P Cコマンドにより制御された送信電力が低い場合に は回線状態は良いと推定することが出来る。
判定回路 1 2 0 1は、 干渉量算出回路 6 0 1において算出した干渉量を閾値 判定する。 この閾値判定は通信相手である通信端末装置の間で発生する符合間 干渉を、 システムにおいて許容することが出来る干渉量 (許容量) と比較し、 その大小関係を判定するために行う。 この閾値判定結果は送信ウェイト生成回 路 1 2 0 2に出力される。
また、 判定回路 1 2 0 1には回線状態の推定結果と送信指向性のシフト幅と の対応関係を示すテ一プルが備えられている。判定回路 1 2 0 1は、 回線状態 推定回路 1 0 0 1より出力される通信端末装置 1 5 1の回線状態の推定結果、 及び回線状態推定回路 1 0 0 2より出力される通信端末装置 1 5 2の回線状 態の推定結果に対応するシフト幅をテ一プルより読み出して、 送信ウェイト生 成回路 1 2 0 2に出力する。
ここで、 判定回路 1 2 0 1に備えられたテ一プルに示される回線状態の検出 結果とシフト幅の対応関係について説明する。 回線状態の良い通信端末装置は、 他局からの干渉を受けても希望波を強く受信しているので干渉に強いと考え られる。 そこで、 回線状態が良い通信端末装置が被干渉端末となっている場合 には、 その被干渉端末に干渉を与える通信端末装置への信号の送信に用いる送 信指向性をシフトさせる幅を小さくする。被干渉端末の回線状態が良いほど干 渉に強くなるので、被干渉端末の回線状態が良いほど、シフト幅を小さくする。 このようにしてシフト幅を小さくした送信指向性を用いて送信された信号は、 より所望の送信指向性に近い指向性で送信されるため、 この信号を受信する通 信端末装置の通信品質を向上させることができる。
送信ゥヱイト生成回路 1 2 0 2は、判定回路 1 2 0 1において通信端末装置 1 5 1と通信端末装置 1 5 2との干渉量が許容量よりも大きいと判定された 場合には、 受信波の到来方向から干渉先の通信端末装置より遠ざかる向きヘシ フトした方向に送信指向性を形成する。 そして、 送信ウェイト生成回路 1 2 0 2は、 形成した送信指向性を実現するための送信ゥヱイトを生成する。 この送 信指向性は、 判定回路 1 2 0 1より出力された通信端末装置ごとのシフト幅を 用いて形成される。
上記構成の基地局装置では、 回線状態推定回路 1 0 0 1 , 1 0 0 2において 受信信号に含まれる T P Cコマンドを参照することにより回線状態が検出さ れる。判定回路 1 0 0 3では、 通信相手である通信端末装置の間での干渉量が 許容量と比較され、 その大小関係が判定される。 この判定結果は送信ウェイト 生成回路 1 2 0 2に出力される。 また、 判定回路 1 2 0 1では、 被干渉端末の 検出が行われる。
送信ゥヱイト生成回路 1 2 0 2では、 基準方向を判定回路 6 0 2において検 出した被干渉端末から遠ざかる向きに、 回線状態の違いを加味したシフト幅だ けシフトした方向に送信指向性が形成される。
このように、 本実施の形態によれば、 回線状態が良い通信端末装置が被干渉 端末になっている場合に、 その被干渉端末に干渉を与える通信端末装置用の送 信指向性をシフトさせる幅を小さくする。 これにより、 シフト幅を小さくした 送信指向性を用いて送信される信号は、 より所望の指向性に近い指向性で送信 されるため、 この信号を受信する通信端末装置の通信品質を向上させることが できる。
なお、 上記実施の形態 5及び実施の形態 6において回線状態を推定する方法 として T P Cコマンドを参照する方法を例に説明したが、 本発明はこれに限ら れず、通信端末装置から報告してもらつた下りの受信品質を用いる方法であつ てもよい。
以上説明したように、 本発明によれば、 通信相手である複数の通信端末装置 からの信号の到来方向が互いに近接している場合に、 それそれの通信端末装置 に対して共通の送信指向性を形成するので、 各通信端末装置毎に送信ゥヱイト を生成する必要がなくなる。 したがって、 大幅な演算量の削減が可能となる。 また、複数の通信端末装置に対して共通の送信指向性を形成して信号を送信 するので、 信号の到来方向が互いに近接する通信端末装置に対して送信信号を 直交化させた状態で送信を行うことが可能となる。 したがって、 通信端末装置 の間での符号間干渉を低減することが出来る。
さらに、 本発明によれば、 他の通信端末装置から所定量以上の干渉を受けて いる通信端末装置を検出した場合、 基準方向をその所定量以上の干渉を受けて いる通信端末装置から遠ざかる向きにシフトした方向に送信指向性を形成し て信号を送信するので、 符号間干渉を低減することが出来る。
本発明の基地局装置は、 複数の通信端末装置からの信号の到来方向を推定す る到来方向推定部と、 推定した到来方向情報に基づいて互いに信号の到来方向 が近接している通信端末装置を検出する第 1の検出部と、 検出した各通信端末 装置に共通の送信指向性を形成する形成部と、 前記共通の送信指向性を用いて、 前記互いに信号の到来方向が近接している通信端末装置のそれそれに信号を 無線送信する送信部と、 を具備する構成を採る。
この構成によれば、 通信相手である複数の通信端末装置からの信号の到来方 向が互いに近接している場合に、 それぞれの通信端末装置に対して共通の送信 指向性を形成するので、 通信端末装置毎に送信ウェイトを生成、 乗算する必要 がなくなる。 したがって、 大幅な演算量の削減が可能となる。
また、 この構成によれば、 複数の通信端末装置に対して共通の送信指向性を 形成して信号を送信するので、 互いに信号の到来方向が近接している通信端末 装置に対して送信信号を直交化させた状態で送信を行うことが可能となる。 し たがって、 通信端末装置の間での符号間干渉を低減することが出来る。
本発明の基地局装置は、 上記基地局装置において、 通信端末装置ごとに回線 状態を推定する回線状態推定部を具備し、 形成部は、 到来方向情報より定める 基準方向から推定した回線状態が最も悪い通信端末装置からの信号の到来方 向にシフトした方向に送信指向性を形成する構成を採る。
この構成によれば、 基準方向から通信状態の悪い通信端末装置に近づく向き にシフトした方向に送信指向性を形成するので、 回線状態が悪かった通信端末 装置の通信状態を優先的に改善することが出来る。 これにより、 システム全体 としての通信状態を改善することができる。
本発明の基地局装置は、複数の通信端末装置からの信号の到来方向を推定す る到来方向推定部と、 推定した到来方向情報に基づいて通信端末装置が他の通 信端末装置から受ける干渉量を算出する算出部と、 算出した干渉量が所定の値 より大きい通信端末装置を検出する第 2の検出部と、 到来方向情報より定める 基準方向を前記第 2の検出部で検出した通信端末装置から遠ざかる向きヘシ フトした方向に送信指向性を形成する形成部と、 形成した送信指向性を用いて 前記他の通信端末装置に信号を無線送信する送信部と、 を具備する構成を採る。 この構成によれば、 他の通信端末装置から所定量以上の干渉を受けている通 信端末装置を検出した場合、 基準方向をその所定量以上の干渉を受けている通 信端末装置から遠ざかる向きにシフトした方向に送信指向性を形成して信号 を送信するので、 干渉を低減することが出来る。
本発明の基地局装置は、 上記基地局装置において、 通信端末装置ごとに回線 状態を推定する回線状態推定部を具備し、 形成部は、 第 2の検出部で検出した 通信端末装置の回線状態が良いほど基準方向からのシフト幅を小さくする構 成を採る。
この構成によれば、 算出した干渉量が所定の値より大きい通信端末装置の回 線状態が良い場合に、 この通信端末装置に干渉を与える他の通信端末装置への 送信に用いられる送信指向性をシフトさせる幅を小さくする。 これにより、 シ フト幅を小さくした送信指向性を用いて送信される信号は、 より所望の指向性 に近い指向性で送信されるため、 この信号を受信する通信端末装置の通信品質 を向上させることができる。
本発明の基地局装置は、 上記基地局装置において、 到来方向推定部は、 通信 端末装置から送信された自ら取得した自装置に関する位置情報を参照して、 前 記通信端末装置からの信号の到来方向を推定する構成を採る。
この構成によれば、 受信信号に含まれる位置情報を復調することにより信号 の到来方向を認識することが出来るので、 到来方向推定処理を行う必要が無い。 したがって、 受信指向性及び送信指向性を形成するための処理量を削減するこ とが出来る。
本発明の無線送信方法は、 複数の通信端末装置からの信号の到来方向を推定 し、 推定した到来方向情報に基づいて互いに信号の到来方向が近接している通 信端末装置を検出し、 検出した各通信端末装置に共通の送信指向性を形成し、 前記共通の送信指向性を用いて互いに信号の到来方向が近接している通信端 末装置のそれそれに信号を無線送信するようにした。
この方法によれば、 通信相手である複数の通信端末装置からの信号の到来方 向が互いに近接している場合に通信端末装置毎に送信ウェイ トを生成する必 要がなくなるので、 大幅な演算量の削減が可能となる。 また、 複数の通信端末 装置に対して共通の送信指向性を形成して信号を送信するので、通信端末装置 の間での符号間干渉を低減することが出来る。
本発明の無線送信方法は、 複数の通信端末装置からの信号の到来方向を推定 し、 推定した到来方向情報に基づいて通信端末装置が他の通信端末装置から受 ける干渉量を算出し、 算出した干渉量が所定の値より大きい通信端末装置を検 出し、 検出した通信端末装置からの信号の到来方向から遠ざかる向きへ到来方 向情報より定める基準方向をシフトした方向に送信指向性を形成し、 形成した 送信指向性を用いて前記他の通信端末装置に信号を無線送信するようにした。 この方法によれば、 他の通信端末装置から所定量以上の干渉を受けている通 信端末装置を検出した場合、 基準方向をその所定量以上の干渉を受けている通 信端末装置からの信号の到来方向から遠ざかる向きにシフトした方向に送信 指向性を形成して信号を送信するので、 干渉を低減することが出来る。
本明細書は、 2 0 0 0年 9月 2 7日出願の特願 2 0 0 0— 2 9 3 6 4 4に基 づく。 この内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 ディジ夕ル無線通信システムにおいて使用される基地局装置及び 無線送信方法に適用することができる。

Claims

請求の範囲
1 . 複数の通信端末装置からの信号の到来方向を推定する到来方向推定手段と、 推定した到来方向情報に基づいて互いに信号の到来方向が近接している通信 端末装置を検出する第 1の検出手段と、 検出した各通信端末装置に共通の送信 指向性を形成する形成手段と、 前記共通の送信指向性を用いて、 前記互いに信 号の到来方向が近接している通信端末装置のそれぞれに信号を無線送信する 送信手段と、 を具備する基地局装置。
2 . 通信端末装置ごとに回線状態を推定する回線状態推定手段を具備し、 形成 手段は、 到来方向情報より定める基準方向から前記回線状態が最も悪い通信端 末装置に近づく向きへシフトした方向に送信指向性を形成する請求項 1記載
3 . 複数の通信端末装置からの信号の到来方向を推定する到来方向推定手段と、 推定した到来方向情報に基づいて通信端末装置が他の通信端末装置から受け る干渉量を算出する算出手段と、算出した干渉量が所定の値より大きい通信端 末装置を検出する第 2の検出手段と、 到来方向情報より定める基準方向を前記 第 2の検出手段で検出した通信端末装置からの信号の到来方向から遠ざかる 向きへシフトした方向に送信指向性を形成する形成手段と、形成した送信指向 性を用いて前記他の通信端末装置に信号を無線送信する送信手段と、 を具備す
4 . 通信端末装置ごとに回線状態を推定する回線状態推定手段を具備し、 形成 手段は、 第 2の検出手段で検出した通信端末装置の回線状態が良いほど基準方 向からのシフト幅を小さくする請求項 3に記載の基地局装置。
5 . 到来方向推定手段は、 通信端末装置から送信された自ら取得した自装置に 関する位置情報を参照して、 前記通信端末装置からの信号の到来方向を推定す る請求項 1記載の基地局装置。
6 . 複数の通信端末装置からの信号の到来方向を推定し、 推定した到来方向情 報に基づいて互いに信号の到来方向が近接している通信端末装置を検出し、 検 出した各通信端末装置に共通の送信指向性を形成し、 前記共通の送信指向性を 用いて互いに信号の到来方向が近接している通信端末装置のそれそれに信号 を無線送信する無線送信方法。
7 . 複数の通信端末装置からの信号の到来方向を推定し、 推定した到来方向情 報に基づいて通信端末装置が他の通信端末装置から受ける干渉量を算出し、 算 出した干渉量が所定の値より大きい通信端末装置を検出し、 検出した通信端末 装置からの信号の到来方向から遠ざかる向きへ到来方向情報より定める基準 方向をシフトした方向に送信指向性を形成し、形成した送信指向性を用いて前 記他の通信端末装置に信号を無線送信する無線送信方法。
PCT/JP2001/008350 2000-09-27 2001-09-26 Dispositif de station de base et procede d'emission radioelectrique WO2002027971A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001290270A AU2001290270A1 (en) 2000-09-27 2001-09-26 Base station device and radio transmitting method
EP01970213A EP1233543A1 (en) 2000-09-27 2001-09-26 Base station device and radio transmitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-293644 2000-09-27
JP2000293644A JP2002111564A (ja) 2000-09-27 2000-09-27 基地局装置及び無線送信方法

Publications (1)

Publication Number Publication Date
WO2002027971A1 true WO2002027971A1 (fr) 2002-04-04

Family

ID=18776402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008350 WO2002027971A1 (fr) 2000-09-27 2001-09-26 Dispositif de station de base et procede d'emission radioelectrique

Country Status (6)

Country Link
US (1) US20020183095A1 (ja)
EP (1) EP1233543A1 (ja)
JP (1) JP2002111564A (ja)
CN (1) CN1165121C (ja)
AU (1) AU2001290270A1 (ja)
WO (1) WO2002027971A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2237379C2 (ru) * 2002-02-08 2004-09-27 Самсунг Электроникс Способ формирования диаграммы направленности адаптивной антенной решетки базовой станции и устройство для его реализации (варианты)
CN1297822C (zh) * 2003-02-21 2007-01-31 重庆邮电学院 一种基于td-scdma无线定位来波方向的估计方法
CN100479350C (zh) * 2003-03-12 2009-04-15 日本电气株式会社 发射束控制方法、自适应天线收发设备及无线电基站
JP2004297665A (ja) * 2003-03-28 2004-10-21 Kyocera Corp 無線受信装置、通信制御方法
DE102004027290A1 (de) * 2004-06-04 2005-12-29 Siemens Ag Empfang von Signalen in einem Funkkommunikationssystem mittels zweier Richtcharakteristiken
CN100345402C (zh) * 2004-07-06 2007-10-24 中兴通讯股份有限公司 一种移动通讯系统来波方向的高分辨率估计方法
JP2006129396A (ja) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd 移動通信システム、基地局、中継装置、移動局
US8855046B2 (en) * 2006-03-30 2014-10-07 Broadcom Corporation Method and system for uplink coordinated reception in orthogonal frequency division multiple access systems
US8208392B2 (en) * 2007-08-13 2012-06-26 Samsung Electronics Co., Ltd. System and method for peer-to-peer beam discovery and communication in infrastructure based wireless networks using directional antennas
US8917675B2 (en) * 2007-08-20 2014-12-23 Samsung Electronics Co., Ltd. System and method for multiple contention access periods
US8817676B2 (en) * 2008-11-03 2014-08-26 Samsung Electronics Co., Ltd. Method and system for station-to-station directional wireless communication
US8385362B2 (en) * 2009-01-09 2013-02-26 Samsung Electronics Co., Ltd. Method and system for contention-based medium access schemes for directional wireless transmission with asymmetric antenna system (AAS) in wireless communication systems
US8154450B2 (en) * 2009-06-05 2012-04-10 Qualcomm Incorporated Optimization for finding direction of arrival in smart antennas
JP6128083B2 (ja) * 2014-09-08 2017-05-17 富士通株式会社 無線通信装置及び算出方法
KR102188747B1 (ko) * 2015-10-12 2020-12-08 에스케이텔레콤 주식회사 하이브리드 빔포밍을 이용한 무선 통신 방법 및 장치
TWI634755B (zh) * 2017-02-10 2018-09-01 瑞昱半導體股份有限公司 解調方法及接收裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274687A (ja) * 1995-03-31 1996-10-18 Matsushita Electric Ind Co Ltd Cdma無線伝送装置およびcdma無線伝送システム
JPH11252614A (ja) * 1998-03-05 1999-09-17 Kokusai Electric Co Ltd 通信システム及び基地局装置及び移動局装置
JP2000151488A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW351886B (en) * 1993-09-27 1999-02-01 Ericsson Telefon Ab L M Using two classes of channels with different capacity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274687A (ja) * 1995-03-31 1996-10-18 Matsushita Electric Ind Co Ltd Cdma無線伝送装置およびcdma無線伝送システム
JPH11252614A (ja) * 1998-03-05 1999-09-17 Kokusai Electric Co Ltd 通信システム及び基地局装置及び移動局装置
JP2000151488A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法

Also Published As

Publication number Publication date
JP2002111564A (ja) 2002-04-12
CN1393067A (zh) 2003-01-22
AU2001290270A1 (en) 2002-04-08
US20020183095A1 (en) 2002-12-05
EP1233543A1 (en) 2002-08-21
CN1165121C (zh) 2004-09-01

Similar Documents

Publication Publication Date Title
US7133698B2 (en) Radio base station apparatus and radio communication method
WO2002027971A1 (fr) Dispositif de station de base et procede d'emission radioelectrique
JP4299083B2 (ja) 無線通信装置及び無線通信方法
US7505509B2 (en) Receiving communication apparatus using array antenna
US6509872B2 (en) Adaptive antenna receiving apparatus
EP1198077B1 (en) Radio communication apparatus and radio communication method
WO2000008778A1 (fr) Dispositif de station de base et procede de communications radio
WO2007003715A1 (en) Speed detection method in communication system, receiver, network element and processor
EP1213863B1 (en) Cdma receiver
EP1583258B1 (en) Array antenna radio communication apparatuses
JP4229936B2 (ja) 無線通信方法及び無線通信装置
JP2002026788A (ja) 受信装置
JP2590441B2 (ja) 干渉波検出方法
WO2001029989A1 (fr) Dispositif de communication sans fil a antenne reseau et procede de generation d'un coefficient de ponderation
EP1381173A2 (en) Wireless communications apparatus
EP1233561A1 (en) Receiving device and receiving method
JP2003347999A (ja) 基地局装置及びアダプティブアレーアンテナ制御方法
JP4470798B2 (ja) 無線通信装置及び方法
JP3897564B2 (ja) 無線基地局装置及び無線通信方法
JP2021087085A (ja) 無線受信装置
JP2004208200A (ja) 無線受信装置およびアンテナベリフィケーション方法
JP4217705B2 (ja) 受信装置
JP2004357315A (ja) アダプティブアレイアンテナ指向性制御システム
JP2007074192A (ja) アダプティブアレイアンテナ型無線通信装置
WO2012171550A1 (en) Method and device for error compensation in a communications network

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 018028446

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10130721

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001970213

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001970213

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001970213

Country of ref document: EP