WO2002024366A1 - Procede permettant de former un rouleau lamine a froid a diametre decroissant pour un tuyau metallique et tuyau metallique obtenu au moyen de ce procede - Google Patents

Procede permettant de former un rouleau lamine a froid a diametre decroissant pour un tuyau metallique et tuyau metallique obtenu au moyen de ce procede Download PDF

Info

Publication number
WO2002024366A1
WO2002024366A1 PCT/JP2001/008310 JP0108310W WO0224366A1 WO 2002024366 A1 WO2002024366 A1 WO 2002024366A1 JP 0108310 W JP0108310 W JP 0108310W WO 0224366 A1 WO0224366 A1 WO 0224366A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
forming
roll
tube
reduced
Prior art date
Application number
PCT/JP2001/008310
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Ishikawa
Yoshiya Tsukada
Ryoich Suzuki
Akihiro Ishikawa
Motoyoshi Ishikawa
Jun Ishikawa
Original Assignee
Nakayama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakayama Corporation filed Critical Nakayama Corporation
Priority to US10/381,341 priority Critical patent/US20040050133A1/en
Priority to EP01970204A priority patent/EP1336438A4/en
Priority to JP2002528424A priority patent/JP3498312B2/ja
Priority to KR1020037004240A priority patent/KR100695311B1/ko
Priority to AU2001290265A priority patent/AU2001290265A1/en
Publication of WO2002024366A1 publication Critical patent/WO2002024366A1/ja
Priority to US11/434,760 priority patent/US20060201223A1/en
Priority to US11/650,465 priority patent/US20070113611A1/en
Priority to US12/003,386 priority patent/US20080148797A1/en
Priority to US12/314,861 priority patent/US20090199924A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/27Carriages; Drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/08Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
    • B21B13/10Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/08Dies; Selection of material therefor; Cleaning thereof with section defined by rollers, balls, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/202Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with guides parallel to the tube axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/02Corrugating tubes longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/18Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling
    • B21H1/20Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling rolled longitudinally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H7/00Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
    • B21H7/18Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons grooved pins; Rolling grooves, e.g. oil grooves, in articles
    • B21H7/187Rolling helical or rectilinear grooves

Definitions

  • the present invention relates to a cold reduction roll forming method for a metal tube and a metal tube formed thereby.
  • the present invention relates to a method for cold reducing a diameter of a metal tube, and a metal tube K reduced in diameter thereby.
  • the present invention relates to a tube obtained by reducing the diameter of a metal tube by cold-hole forming.
  • a steel pipe is cold-drawn by a three-roll reducer (Japanese Patent Application Laid-Open No. 7-51707). This is intended to suppress uneven thickness of the weld.
  • the aim is to achieve this goal by using a drawing process by three or more stand users and a two-roll sizing machine with two or more stands.
  • the present invention relates to a metal tube reduced in diameter from an original tube made of a metal pipe, and a metal tube reduced in diameter from the original tube and having irregularities formed on the inner periphery and the Z or outer periphery.
  • a method of forming a cold-reduced roll of a metal tube capable of forming an inner / outer double tube reduced in diameter from the original tube simply, reliably, and with a reduced number of roll stands; and It is intended to provide a metal tube formed by molding.
  • the present invention provides a preforming step of preforming a raw pipe made of a metal pipe with a preforming roll, and subsequently using a reduced-diameter forming roll arranged in tandem on the preforming roll. This problem has been solved by combining with a diameter reducing molding step performed by the above method.
  • the cold reduction roll forming method for a metal pipe proposed by the present invention is a method of forming an elliptical or elliptical shape of a raw pipe made of a metal pipe by using a preforming hole.
  • the outer peripheral length is made smaller than the outer peripheral length of the original tube while reshaping the cross-sectional shape of the metal tube to a circular shape or another cross-sectional shape different from the cross-sectional shape of the preformed metal tube.
  • the method is characterized in that a diameter reducing step is performed.
  • the cold reduction roll forming method for metal pipes proposed by the present invention uses a preforming port arranged in tandem and a reduced diameter forming roll, as described above, in one preforming step.
  • a preforming port arranged in tandem and a reduced diameter forming roll, as described above, in one preforming step.
  • the following method can also be used.
  • a plurality of sets of pre-forming rolls and reduced-diameter forming rolls are arranged in tandem and alternately, and a combination of one pre-forming step and one subsequent reduced-diameter forming step Is a method that is repeated continuously.
  • a set of preforming rolls or a plurality of preformed rolls arranged in tandem is followed by a set of reduced diameter forming rolls or a plurality of sets of reduced forming rolls arranged in tandem.
  • This is a method in which one or a plurality of reduced-diameter forming steps are performed following one or a plurality of preforming steps using the configuration described above.
  • a metal tube having any cross-sectional shape such as a circular shape, an elliptical shape, an oval shape, a rectangular shape, or a polygonal shape such as a triangular shape, a pentagonal shape, and a hexagonal shape is used as a raw tube. can do.
  • the cross-sectional shape of the metal tube obtained by preforming is limited to an elliptical shape, an oval shape, a square shape, or a polygonal shape such as a triangular shape, a pentagonal shape, a hexagonal shape, and the like. Instead, it can be of any cross-sectional shape.
  • the cross section of the original tube is circular, this includes preforming it into an elliptical, elliptical, square, or polygonal cross section.
  • the cross section of the original tube This includes preforming a circular, elliptical, square, or polygonal shape into a circular cross-sectional shape.
  • the cross section of the original tube is square or rectangular, this includes preforming them into a rectangular or square cross section, respectively.
  • the cross-sectional shape of the original tube is elliptical, elliptical, rectangular, or polygonal, these are the elliptical, oval, rectangular, or polygonal cross-sections, respectively.
  • This includes preforming into a cross-sectional shape that has been rotated and moved in the circumferential direction.
  • a raw tube having a circular cross section is preformed so that the cross section becomes circular, it is difficult to achieve a diameter reduction ratio of 3% or more by subsequent diameter reduction molding. .
  • the cross-sectional shape of the original tube is circular
  • the cross-sectional shape of the metal tube obtained by preforming is changed to elliptical, elliptical, rectangular, triangular, pentagonal, hexagonal, etc. It is desirable to use any of polygonal shapes such as shapes.
  • knurls used for each preforming roll The number of knurls used for each preforming roll, the shape of the knurls, and the combination of a plurality of preforming rolls arranged in tandem are described above.
  • Various cross-sectional shapes can be obtained.
  • two preforming rolls 2a and 2b can be used as shown in Fig. 1 (a)
  • four preforming rolls 2a, 2b, 2c and 2d can be used.
  • two preforming rolls are used as shown in Fig. 1 (a).
  • the cross-sectional shape of the reduced-diameter-formed metal tube can be any shape such as a circle, an ellipse, an oval, a square, and a polygon. It is possible.
  • the various cross-sections described above are determined by variously determining the number of rolls used for each reduced-diameter forming roll and the shape of the roll, and by combining a plurality of reduced-diameter forming rolls arranged in tandem. Shape can be obtained.
  • diameter-reduced molding can be performed over the entire length of the preformed metal tube to obtain a metal tube that has been diameter-reduced over the entire length. It is also possible to obtain a metal tube whose diameter has been reduced only by performing diameter reduction molding. You.
  • each of the reduced-diameter forming rolls has an uneven portion on its surface, and the surface of the preformed metal tube subjected to the reduced-diameter forming by the reduced-diameter forming roll.
  • the outer peripheral surface of the metal tube and the surface of the reduction roll having the concave and convex portions are brought into contact with each other, thereby simultaneously reducing the diameter of the metal tube.
  • An uneven pattern can be provided on the outer peripheral surface. Therefore, one rotation of the diameter reducing roll becomes one pitch of the pattern formed on the outer peripheral surface of the metal tube.
  • the pattern formed on the surface of the reduced diameter metal tube is It extends in the longitudinal direction, that is, linear ridges and valleys extending parallel to the central axis of the metal tube.
  • the shape of the convex and concave portions provided on the surface of the diameter reducing forming roll in various ways, it is possible to form an oblique line-shaped irregular pattern, an arc-shaped irregular pattern, and a spiral irregular pattern at an angle to the central axis of the metal tube.
  • Any desired pattern of concavo-convex pattern, such as a pattern can be formed on the surface of the reduced-diameter molded metal tube.
  • the metal pipe to be preformed and reduced in diameter has a predetermined length (for example, about 0.5 m to about 10 m). Therefore, for example, when the metal pipe is placed in the hole of the reduced-diameter forming port and passes through the hole of the reduced-diameter forming port, the inside of the original pipe subjected to the reduced-diameter forming is formed.
  • the support supporting the above-mentioned shape member is made to be able to advance and retreat along the traveling direction of the metal pipe, and only on a desired portion of the inner peripheral wall of the reduced-diameter-formed metal pipe.
  • An uneven pattern can also be formed.
  • an uneven pattern can be simultaneously formed on the inner peripheral wall and the outer peripheral wall of the metal tube to be reduced in diameter.
  • the mold member supported by the support and provided with the irregularities on the outer peripheral wall may be, for example, a roll or a plug having the irregularities on the outer peripheral surface.
  • the cold reduction roll forming method of a metal tube proposed by the present invention is a method of forming an inner / outer double tube in which a small-diameter inner tube is inserted into an outer tube composed of a large-diameter metal tube.
  • the cross-sectional shape of the preformed outer tube is different from the circular cross-sectional shape or the cross-sectional shape of the preformed outer tube using a reduced-diameter forming roll disposed downstream of the forming roll.
  • At least a part or all of the inner peripheral surface of the outer tube is formed by the diameter reducing forming step of reducing the outer peripheral length of the outer tube from the outer peripheral length of the first outer tube while reforming to another cross-sectional shape. Is to form a double pipe having a structure that is in close contact with the outer peripheral surface of the inner pipe. .
  • the inner and outer double tubes can be easily manufactured.
  • the inner circumference of the outer pipe is reduced in diameter so that the inner circumference of the outer pipe is smaller than the outer circumference of the inner pipe. It is also possible to form a double tube with a structure that is closely adhered to each other. In the double pipe manufactured by this method, the outer peripheral surface of the inner pipe and the inner peripheral face of the outer pipe are directly in contact with uniform pressure, so that the thermal characteristics become uniform. Therefore, it is possible to provide a double pipe product whose reliability has been dramatically improved.
  • a single preforming step is performed by using a preforming roll and a reduced-diameter forming roll arranged in the evening.
  • the material and thickness of the metal tube to be diameter-reduced are, for example, the material, wall thickness, reduction ratio, and diameter reduction of the outer tube and inner tube. The following methods can be used depending on the use of the formed metal tube.
  • a plurality of sets of pre-forming rolls and reduced-diameter forming rolls are arranged in tandem and alternately, and a combination of one pre-forming step and one subsequent reduced-diameter forming step Is a method that is repeated continuously multiple times.
  • a set of reduced-diameter forming rolls or a plurality of sets of reduced-diameter forming rolls arranged in tandem are provided. This is a method in which one or a plurality of preforming steps are performed, followed by one or a plurality of reduced diameter forming steps, using the arranged configuration.
  • the cross-sectional shape of the outer pipe and the inner pipe in the original pipe state is circular, elliptical, elliptical, rectangular, or Any cross-sectional shape, such as a polygonal shape such as a triangular shape, a pentagonal shape, and a hexagonal shape, can be used.
  • the cross-sectional shape of the outer tube and the inner tube obtained by preforming is not limited to an elliptical shape, an elliptical shape, a rectangular shape, or a polygonal shape such as a triangular shape, a pentagonal shape, a hexagonal shape, etc. Such a cross-sectional shape can also be adopted.
  • the inner pipe may be inserted into only a part of the outer pipe over the entire length of the outer pipe.
  • Double tubes can be formed.
  • the inner tube may be made of the same material as the metal tube constituting the outer tube or a metal tube of a different material. Also, a non-metallic tube made of a different material from the metal tube constituting the outer tube can be used.
  • the inner tube may be an aluminum, titanium, or synthetic resin tube.
  • the inner tube may be made of the same material as the metal tube forming the outer tube, a metal tube of a different material, or a non-metal tube of a different material from the metal tube forming the outer tube, and may be used as described above.
  • the formed tube is used as an inner tube, which is inserted into a large-diameter metal tube, as described above. If the preforming step and the subsequent diameter reducing step are performed, an inner / outer triple pipe can be formed.
  • it is possible to form multiple tubes such as a quadruple tube and a quintuple tube.
  • the double tube can be formed by using the small-diameter forming port, so that the processing performed in advance is not necessary.
  • a pretreatment such as a heat treatment or a mechanical treatment such as pre-processing on the inner pipe and the outer pipe.
  • the double pipe can be formed using the reduced-diameter forming roll, no special material is required as a roll material, and no surface treatment of the roll is required, so that the double pipe can be formed efficiently at low cost. Can be formed.
  • the cross-sectional shape of the outer pipe is made elliptical, elliptical, or square by the preforming roll. If the inner tube is fixed to a desired position if at least a part of the inner wall of the outer tube is in contact with the outer wall of the inner tube when the inner tube is formed into a polygonal or polygonal shape, misalignment occurs. It is possible to perform the diameter reduction molding without performing. Therefore, when the inner pipe is inserted only into a part of the outer pipe, and only the inserted part is to be formed to be thick, in this way, only the target part is accurately and thickly formed. Can be formed o
  • each of the reduced-diameter forming rolls has a concave and convex portion on its surface, and the pre-formed metal pipe is subjected to the reduced-diameter forming by the reduced-diameter forming roll.
  • the diameter-reducing molding can be performed while forming convex portions and concave portions on the surface.
  • the metal tube is moved. It is possible to adopt any of the following methods: moving the molding machine having a preforming port and a reduced-diameter forming roll.
  • the reduced-diameter forming rolls, or the pre-formed rolls and the reduced-diameter forming rolls each include a plurality of rolls, and each reduced-diameter forming roll or each pre-formed port and each reduced-diameter roll.
  • the original tube subjected to the preforming and the reduced diameter forming by partly or entirely rotating among the plurality of rolls in the forming port is linked with the preformed port and the reduced forming port. It is a method of moving with respect to.
  • FIG. 5 (c) This is called a roll forming method (roll driving method), an example of which is shown in FIG. 5 (c).
  • FIG. 5 (c) In the illustrated embodiment, what is indicated by reference numerals 41a and 41b41c are preforming rolls, respectively, and reference numerals 42a, 42b and 42c are shown. What is shown by each is a reduced-diameter forming roll. That is, in the embodiment shown in FIG. 5 (c), a plurality of sets of pre-forming rolls and reduced-diameter forming rolls are arranged in tandem and alternately, and one pre-forming step and one subsequent step are performed.
  • the combination of the reduced-diameter forming step times are continuously multiple times (3 times) in which repeated c thus preforming roll, if reduced-diameter type roll is arranged in tandem, in the their May be forcedly driven.
  • a set of four rolls is used, only a pair of rolls can be forcibly driven.
  • the rolls 2a and 2c of the reduced-diameter forming roll 42c which are vertically opposed in the figure are forcibly driven, and the rolls which are opposed in the figure in the figure 2b and 2d (not shown) are idle rolls.
  • the pre-forming roll and the reduced-diameter forming roll are each composed of a plurality of rolls, and a part or all of the plurality of rolls in each of the pre-formed portals and the reduced-diameter forming rolls is driven by the driving means. Any of the following methods can be adopted for idler rolls that have not received the driving force described above.
  • the raw tube subjected to preforming and reduced diameter forming is pushed into the hole shape of the preforming hole and the hole shape of the reduced diameter forming roll from the upstream side by a pushing means.
  • the original tube is moved with respect to the pre-forming roll and the reduced-diameter forming roll.
  • the next roll forming method roll non-driven pipe pushing method
  • a hydraulic cylinder / hydraulic jack can be used as the pushing means.
  • the second method is that the original tube subjected to preforming and diameter reduction is drawn out to the downstream side from the hole shape of the preformed roll and the hole shape of the diameter reduction roll by the bow I punching means.
  • the original tube is moved with respect to the preforming port and the reduced diameter forming roll.
  • This is called the draw forming method (without a roll driven pipe drawing method), an example of which is shown in Fig. 5 (b).
  • a chuck for gripping the distal end side of the metal tube a hydraulic jack for holding and pulling this chuck, Alternatively, a chain or the like that pulls the chuck while being driven to rotate can be used.
  • the third method is a combination of the first method and the second method, wherein the raw tube subjected to preforming and diameter reduction is pressed from the upstream side by a pushing means and the hole shape and diameter reduction of the preforming roll.
  • a pushing means By pushing it into the hole of the forming nozzle and extracting the bow I downstream from the hole of the pre-forming roll and the hole of the reduced-diameter forming roll by pulling-out means, The movement with respect to the forming roll and the reduced-diameter forming roll is performed.
  • a preferable method can be selected from the above-described methods according to the relations such as the diameter, wall thickness, length, and molding speed.
  • the length of the hydraulic cylinder tends to be longer, so it is necessary to devise ways to reduce this as much as possible.
  • the draw forming method it is necessary to devise a method that does not deform the tensile end.
  • the roll forming method it is necessary to devise a method of driving the roll.
  • a plurality of reduced-diameter forming rolls 22 are arranged in tandem downstream of one set of pre-forming rolls 21 or a plurality of pre-forming rolls 21 are arranged in tandem.
  • a configuration in which a pair of reduced-diameter forming rolls 22 is arranged on the downstream side can also be adopted. It is also possible to adopt a configuration in which a plurality of sets of the preforming rolls 31 are arranged in tandem, and a set of reduced diameter forming rolls 32 is arranged in tandem on the downstream side.
  • a pair of pre-forming rolls 21a and a pair of reduced-diameter forming rolls 42a arranged in tandem are used.
  • one set of pre-forming rolls 41a is followed by one set of reduced-diameter forming rolls 42a, or a plurality of sets of reduced-diameter forming rolls 42a, 42b, 42c.
  • the metal tube when the metal tube is reduced in diameter by using the diameter reduction forming nozzle, the metal tube can be reduced in diameter without causing the metal tube to be caught in the gap between the reduced diameter forming rolls. And it is possible.
  • any of the above-described methods of forming a double pipe when the outer pipe is reduced in diameter by using a reduced-diameter forming roll, the outer pipe is not caught in the gap between the reduced-diameter forming ports. In addition, it is possible to reduce the diameter.
  • the pre-forming step and the diameter-reducing forming step are continuously performed by combining the pre-forming roll with the reduced-diameter forming roll arranged in the evening.
  • a diameter reduction ratio of 3% or more was realized.
  • the diameter reduction ratio per one of the preforming step and the diameter reducing step is sufficiently possible to 22% ′.
  • the diameter reduction ratio can be varied between 3% and 22% depending on the form of the preforming roll and the diameter reducing roll to be used.
  • a preforming stand equipped with two preforming rolls is preformed into a triangular cross section, and then A diameter reduction stand with three diameter reduction rolls was used to reduce the diameter of the triangle in the direction of compressing the top of the triangle inward, achieving a reduction rate of 22%. Also, by using the same two pre-forming rolls and changing only their relative positions, and replacing the reduced-diameter forming rolls, a diameter reduction ratio of 8% was achieved.
  • a preforming stand equipped with two preforming ports is preformed into a rectangular cross section and subsequently By reducing the diameter in the direction of compressing the top of the rectangle inward with a diameter reduction forming stand equipped with four diameter reduction forming rolls, a diameter reduction ratio of 11.8% was achieved. Also, by using the same two preforming rolls and changing only their relative positions, and replacing the reduced diameter forming rolls, a diameter reduction rate of 5% was achieved.
  • a preforming stand equipped with four preforming rolls is preformed into a pentagonal cross section, and By reducing the diameter of the pentagon in the direction of compressing the pentagon inward using a diameter reduction forming stand equipped with five diameter reduction rolls, a reduction rate of 7.2% was achieved. Also, by using the same four preforming rolls and changing only their relative positions and replacing the diameter reduction molding nozzle, a reduction rate of 3% was achieved.
  • the preforming step and the reducing step in which the preforming roller and the reduced diameter forming roll arranged in tandem are continuously performed in combination are performed once. Around 3% to 22% of outer tube diameter reduction was possible.
  • the metal pipe of the present invention manufactured by the method of the present invention was examined, When the cross-sectional shape of the original tube is circular and the cross-sectional shape of the metal tube after diameter reduction is also circular, the outer diameter accuracy is equal to the outer diameter accuracy of the original tube before diameter reduction, or The result was that he got worse. Further, when the metal tube of the present invention produced by the method of the present invention was cut and tested, it was found that the outer diameter of the cut surface was almost the same as before cutting.
  • the cold reduction roll forming method for metal tubes proposed by the present invention has been described above.
  • the metal pipe proposed by the present invention is formed by the cold-reducing orifice forming method of any of the metal pipes of the present invention described above.
  • FIG. 1 (a) is a side view illustrating an example of a preforming roll used in the present invention.
  • FIG. 1 (b) is a side view for explaining another example of the preforming roll used in the present invention.
  • FIG. 2 (a) is a cross-sectional view illustrating an example of a reduced-diameter forming roll used in the present invention.
  • FIG. 2 (b) is a side view illustrating an example of a preforming step and a subsequent diameter reducing step.
  • FIG. 3 (a) is a perspective view showing a metal tube of the present invention.
  • FIG. 3 (b) is a partially cutaway perspective view showing another metal tube of the present invention.
  • FIG. 4 is a side view illustrating an embodiment of the next-roll forming method employed in the method of the present invention.
  • FIG. 5 (a) is a perspective view illustrating an embodiment of the next-roll forming method employed in the method of the present invention.
  • FIG. 5 (b) is a perspective view illustrating an embodiment of a draw forming method employed in the method of the present invention.
  • FIG. 5 (c) is a perspective view illustrating an embodiment of a roll forming method employed in the method of the present invention.
  • a round steel pipe 1 having an outer diameter of 216.3 mm is preformed into a steel pipe having a rectangular cross section la (FIG. 1 (a)) by a pair of preforming rolls 2a and 2b.
  • a set of reduced-diameter forming rolls 3a, 3b, 3c, 3d forms a reduced-diameter round tube lb (FIGS. 2 (a), (b)).
  • the reduced-diameter forming rolls 3a, 3b, 3c, and 3d each have, on the surface thereof, a ridge and a ridge that are continuous in the rotational direction. Therefore, a round tube lb (Fig. 3 (a)) with concave and convex ridges 1c formed on the outer peripheral surface is formed at the same time as the diameter reduction.
  • a round steel pipe 1 having an outer diameter of 216.3 mm and a wall thickness of 8.2 mm is provided with a round shape having 60 irregularities 1 c having an outer diameter of 190.7 mm and a depth of 0.7 mm on the outer peripheral surface.
  • a round steel pipe was used as a raw pipe, but the cross-sectional shape of the raw pipe is not limited to a circular shape.
  • stainless steel pipes and aluminum pipes can be formed in the same tree and reduced in diameter.
  • a tube in which a synthetic resin tube 8 was inserted inside a round steel tube 7 was used as a raw tube.
  • the same process as in Example 1 was adopted except that a reduced-diameter molding port having no irregularities on the surface of the reduced-contraction forming rolls 3a, 3b, 3c, and 3d was used.
  • JIS standard: STKM13 A steel pipe (carbon steel pipe for machine structure) was used as the original pipe.
  • the original tube had an outer diameter of 60.5 mm and a wall thickness of 2.9 mm.
  • Fig. 5 (b) Using the method shown in the figure, the cross-sectional shape was preformed into an elliptical shape using a pair of preforming rolls, and then the diameter was reduced using a pair of reduced diameter forming rolls.
  • the outer diameter after diameter reduction molding was 58.2 mm, and the diameter reduction rate was 3.8%.
  • the original tube had an outer diameter of 63.5 mm and a wall thickness of 1.2 mm.
  • Fig. 5 (b) Using the method shown in the figure, a pair of two pre-forming rolls were used to pre-form the cross-section into a square shape, and subsequently, a set of four reduced-diameter forming rolls was used.
  • the outer diameter after diameter reduction molding was 60.0 mm, and the diameter reduction rate was 5.5%.
  • the original tube had an outer diameter of 63.5 mm and a wall thickness of 2.3 mm.
  • Fig. 5 (b) Using the method shown in the figure, a pair of two pre-forming rolls were used to pre-form the cross-section into a square shape, and subsequently, a set of four reduced-diameter forming rolls was used.
  • the outer diameter after diameter reduction molding was 58.2 mm, and the diameter reduction rate was 8.3%.
  • JIS standard: A5052TD aluminum tube was used as the original tube.
  • the original tube had an outer diameter of 60 mni and a wall thickness of 3 mm.
  • Fig. 5 (b) Using the method shown, a set of four preforming rolls was used to preform the cross-sectional shape into a square shape, and subsequently, a set of four reduced diameter forming rolls was used to reduce the diameter.
  • the outer diameter after diameter reduction molding was 58.2 mm, and the diameter reduction rate was 3%.
  • a steel pipe (outer pipe) with an outer diameter of 63.5 mm and a wall thickness of 1.2 mm was inserted into the steel pipe (outer pipe) with a diameter of 63.5 mm and a wall thickness of 1.2 mm over the entire length of the outer pipe.
  • Both steel pipes are JIS standard: STK400-E-G steel pipes.
  • a double tube having a structure in which the inner peripheral surface of the outer tube was in close contact with the outer peripheral surface of the inner tube was formed.
  • the outer tube is a steel tube of JIS standard: STK400-EG
  • the inner tube is an aluminum tube of JIS standard: A5052TD.
  • Fig. 5 (b) Using the method shown in the figure, a pair of two pre-forming rolls were used to pre-form the cross-sectional shape into a square shape, and subsequently, a set of four reduced-diameter forming rolls was used.
  • the outer diameter of the outer tube after diameter reduction molding was 60 mm, and the diameter reduction ratio was 5.5%.
  • a double tube having a structure in which the inner peripheral surface of the outer tube was in close contact with the outer peripheral surface of the inner tube was formed.
  • the original tube had an outer diameter of 63.5 mm and a wall thickness of 1.2 mm.
  • Fig. 5 (c) Using the method shown, preforming to make the cross-sectional shape elliptical with two sets of preforming rolls, diameter reduction with two sets of diameter reduction rolls, two sets of diameter reduction Preforming to make the cross-sectional shape elliptical with pre-forming rolls, reducing the diameter with a set of four diameter reducing rolls, preforming to making the cross-sectional shape elliptical with a set of two preforming ports Forming and diameter reduction with a set of four diameter reduction forming rolls were performed continuously.
  • the outer diameter of the outer tube after diameter reduction was 56 mm, and the diameter reduction ratio of the three sets of preforming rolls and diameter reduction forming rolls was 11.8%.
  • the original tube had an outer diameter of 63.5 mm and a wall thickness of 1.6 mm.
  • Fig. 5 (b) Using the method shown in the figure, the cross-sectional shape was preformed into a triangular shape using a pair of pre-forming rolls, and then the diameter was reduced using a set of three reducing-diameter forming rolls.
  • the outer diameter of the outer tube after diameter reduction molding was 49 mm, and the diameter reduction ratio was 22%.
  • the original tube had an outer diameter of 63.5 mm and a wall thickness of 1.2 mm.
  • Fig. 5 (b) Using the method shown, a set of four preforming rolls was used to preform the cross-sectional shape into a square shape, and subsequently, a set of four reduced diameter forming rolls was used to reduce the diameter.
  • the outer diameter of the outer tube after diameter reduction was 56 mm, and the diameter reduction ratio was 11.8%.
  • the original tube had an outer diameter of 63.5 mm and a wall thickness of 1.2 mm.
  • the cross-sectional shape was preformed into a pentagonal shape using a set of five preforming rolls, and then the diameter was reduced using a set of five reducing diameter forming rolls.
  • the outer diameter of the outer tube after diameter reduction was 58.9 mm, and the diameter reduction rate was 7.2%.
  • JIS standard: STK400-EG steel pipe (carbon steel pipe for general structure) was used as the original pipe.
  • the original tube had an outer diameter of 190.7 mm and a wall thickness of 4.5 mm.
  • Fig. 5 (a) Using the method shown in the figure, a pair of two pre-forming rolls were used to pre-form the cross-sectional shape into a square shape, and subsequently, a set of four reduced-diameter forming rolls was used.
  • the outer diameter after diameter reduction molding was 180 mm, and the diameter reduction rate was 5%.
  • JIS standard: STK400-EG steel pipe (carbon steel pipe for general structure) was used as the original pipe.
  • the original tube had an outer diameter of 216.3 mm and a wall thickness of 10.3 mm.
  • Fig. 5 (a) Using the method shown, a set of four preforming rolls was used to preform the cross-sectional shape into a square shape, and then a set of four reduced diameter forming rolls was used.
  • the outer diameter after diameter reduction molding was 190.7 mm, and the diameter reduction rate was 11%.
  • JIS standard: STK400-EG steel pipe (carbon steel pipe for general structure) was used as the original pipe.
  • the original tube had an outer diameter of 216.3 mm and a wall thickness of 4.5 mm.
  • Fig. 5 (a) Using the method shown in the figure, a pair of two pre-forming rolls are used to pre-form the cross-sectional shape into a square shape. Diameter reduction was performed using a set of diameter reduction rolls. The outer diameter after diameter reduction molding was 190.7 mm, and the diameter reduction rate was 11%. 60 irregular strips with a depth of 0.6 mm were formed on the outer peripheral surface.
  • JIS standard: STK400-EG steel pipe (carbon steel pipe for general structure) was used as the original pipe.
  • the original tube had an outer diameter of 190.7 mm and a wall thickness of 4.5 mm.
  • Fig. 5 (a) Using the method shown in the figure, a cross-sectional shape is preformed into a square shape using a set of four preforming rolls, and following the bow I, there are convex and concave strips that continue in the rotational direction, respectively. The diameter was reduced by a set of four diameter reduction rolls. The outer diameter after diameter reduction molding was 180 mm, and the diameter reduction ratio was 5.6%. 60 irregular strips with a depth of 0.7 mm were formed on the outer peripheral surface. (Evaluation ⁇ Examination) In all of Examples 1 to 16, the cross-sectional shape of the original tube is circular, and the cross-sectional shape of the metal tube whose diameter is reduced is also circular.
  • the accuracy of the outer diameter of the original tube and the reduced diameter metal tube was compared.
  • the accuracy of the reduced diameter metal tube was equal to or better than that of the original tube.
  • the accuracy of the reduced diameter metal tube was equal to or better than that of the original tube.
  • the outer diameter dimensional accuracy within ⁇ 0.1% was obtained.
  • the outer diameter dimensional accuracy within ⁇ 1% was obtained.
  • a portion where the thickness of the metal tube was increased by the diameter reduction forming and a portion where the thickness was stopped at the time of the original tube were formed.
  • the wall thickness of the part where this wall thickness increased increased.
  • the position where the thickened portion occurs is determined by the shape of the preforming roll and the shape of the diameter reducing forming roll. Therefore, when the final shape obtained by reducing the diameter, the reduction ratio, and the forming type to be used are determined, the shape of the preforming roll to be used and the shape of the reducing diameter forming roll can be appropriately combined to obtain the entire circumference. It is possible to obtain a reduced diameter metal tube with a uniform wall thickness over a range of 1.
  • the cold reduction roll forming method for metal pipes comprises a preforming step of forming a raw pipe made of a metal pipe into metal pipes having various cross-sectional shapes by using a preforming roll.
  • the cross-sectional shape of the preformed metal tube is circular or the cross-sectional shape of the preformed metal tube is defined by using a reduced-diameter forming roll disposed downstream of the preforming roll.
  • a reduced diameter metal tube, a reduced diameter metal tube having irregularities formed on the inner circumference and Z or outer circumference, or a reduced diameter inner / outer double pipe can be simply and Certainly, molding can be performed with a reduced number of roll stands.
  • an apparatus is prepared for producing a metal pipe having a predetermined outer diameter and wall thickness. So this To manufacture metal pipes with outside diameters and wall thicknesses other than the predetermined outside diameters and wall thicknesses, a large amount of cost is required for repair or new installation of equipment or rolls. I had to be high. However, according to the present invention, it is possible to easily and at low cost manufacture a metal pipe having a desired outer diameter and wall thickness without particularly preparing new equipment and equipment. Can be.
  • tailor blanks manufactured by welding pipes with the same outer diameter and different wall thickness have been used to catch some parts with insufficient strength. Since the double pipe manufactured by the method proposed by the present invention can be formed into a double pipe only at a portion where the thickness is desired to be increased, an alternative to such a tailor-plank is provided at a low cost. be able to.
  • the metal tube (reduced diameter tube or reduced diameter double tube) of the present invention manufactured by the method of the present invention is used as a raw tube, and is again formed into a metal tube having a circular, square or other irregular cross section.

Description

金属管の冷間縮径ロ一ル成形法及びこれにより成形された金属管 技術分野
この発明は、 金属管の冷間縮径方法及び、 これによつて縮径成形された金属管 K 関する。 特に、 金属管を冷間口一ル成形によって縮径した管に関する。
従来、 金属管の冷間縮径成形方法については、 次のような技術が提案されている。 例えば、 鋼管を 3ロールレデューサにより冷間絞り圧延するものである (日本国 特開平 7— 5 1 7 0 7号) 。 これは、溶接部の偏肉を抑制することを目的とするも のである。 そして、 3スタンド以上のレデユーザーによる絞り工程と、 2スタンド 以上の 2ロール式定径機を用いることにより、 この目的を達成しょうとするもので ある
また、 ダイスの内周面に所定の形状を付与し、 これを用いて引き抜くことにより、 表面に稜線状の凹凸形状を形成した鋼管の製造方法も提案されている (日本国特開
¥7 - 3 1 4 0 3 1号) 。 これは、 内周面にギア状の形状を付与したダイスと、 原 管厚さ減少用ブラグを組み合わせて、 管肉厚に強い圧縮力ならびに圧縮変形を加え ることにより、 効果を上げている発明である。
更に、 最も下流側に位置する最終のロールスタンドのロールプロフィルにより構 成される口一ル孔形のみを真円とした電縫鋼管の冷間口一ル成形方法力提案されて いる (日本国特開平 6— 1 4 2 7 1 8号) 。
前述した従来技術は、 いずれもそれぞれの加工目的を達成するものではあるが、 それぞれの装置の使用用途が特定のものに限定されている、 加工できる寸法 (角度) に制約がある、 ロールスタンドの数が多くなる、 というような問題点があった。 発明の開示
この発明は、 金属製のパイプからなる原管から縮径された金属管や、原管から縮 径された金属管であって内周及び Z又は外周に凹凸が形成されている金属管、 ある いは原管から縮径された内外二重の管を簡単、 かつ、 確実に、 しかもロールスタン ドの数を少なくして成形できる金属管の冷間縮径ロール成形方法及び、 これによつ て成形された金属管を提供することを目的としている。
本発明は、 金属製のパイプからなる原管を予成形ロールによつて予成形する予成 形工程と、 これに引き続いて、 当該予成形ロールにタンデムに配置されている縮径 成形ロールを用いて行われる縮径成形工程とを組み合わせることによって前記の課 題を解決したものである。
すなわち、 前記課題を解決するため、 この発明が提案する金属管の冷間縮径ロー ル成形法は、金属製のパイプからなる原管を、 予成形口—ルにより、 楕円状、 長円 状、 方形状、 又は多角形状の横断面を有する金属管に成形する予成形工程と、 これ に引き続き、 前記予成形ロールの下流側に配置されている縮径成形ロールを用いて、 前記予成形された金属管の横断面形状を円形形状、又は、前記予成形された金属管 の横断面形状とは異なる他の横断面形状へと再成形しつつ、 外周長を原管の外周長 より減少させる縮径成形工程が行われることを特徴とするものである。
本発明が提案する金属管の冷間縮径ロール成形法は、 タンデムに配置されている 予成形口一ルと、縮径成形ロールとを用いて、 前記のように、一回の予成形工程と、 引き続く一回の縮径成形工程とを行う方式の他に、縮径成形される金属管の材質、 肉厚、 縮径する割合、 縮径成形された金属管の用途などに応じて、 次のような方法 として行うこともできる。
例えば、 予成形ロールと、 縮径成形ロールとがタンデムに、 かつ、 交互に、 複数 組配置されていて、 一回の予成形工程とこれに引き続く一回の縮径成形工程との組 み合わせが、連続的に 回繰り返される方法である。
あるいは、 一組の予成形ロールあるいはタンデムに配置されている複数組の予成 形ロールに引き続いて、一組の縮径成形ロールあるいはタンデムに配置されている 複数組の縮径成形ロールが配置されている構成を用いて、一回または複数回の予成 形工程に引き続いて、 一回または複数回の縮径成形工程が行われる方法である。 前記いずれの方法においても、 原管としては、 円形状、 楕円状、 長円状、方形状、 あるいは三角形状、 五角形状、六角形状等の多角形状など、 あらゆる横断面形状を 有する金属管を使用することができる。
また、前記いずれの方法においても、 .予成形によって得られる金属管の横断面形 状は、 楕円状、 長円状、方形状、 あるいは三角形状、五角形状、六角形状等の多角 形状に限定されるものではなく、 どのような横断面形状にすることもできる。 例え ば、 原管の横断面形状が円形形状であった場合に、 これを楕円状、 長円状、方形状、 多角形状の横断面形状に予成形することが含まれる。 また、原管の横断面形状力楕 円状、 長円状、 方形状、 多角形状であった場合に、 これを円形状の横断面形状に予 成形することが含まれる。 また、 原管の横断面形状が正方形状の方形、長方形状の 方形であった場合に、 これをそれぞれ、 長方形状の方形、正方形状の方形の横断面 形状に予成形することが含まれる。 更に、原管の横断面形状が楕円状、 長円状、 方 形状、 多角形状であった場合に、 これを、 それぞれ、 楕円状、 長円状、方形状、 多 角形状の横断面であるが、 周方向に回転移動された状態の横断面形状に予成形する ことが含まれる。 ただし、 円形形状の横断面形状を有する原管を、 横断面が円形形 状になるように予成形しても、 引き続く縮径成形によつて縮径率 3 %以上を達成す ることは難しい。 そこで、 原管の横断面形状が、 円形状である場合は、 予成形によ つて得られる金属管の横断面形状を、 楕円状、 長円状、 方形状、 あるいは三角形状、 五角形状、 六角形状等の多角形状のいずれかとすることが望ましい。
各予成形ロールに採用される口一ルの数や、 当該口ールの形状を種々に定めるこ とによって、 また、 タンデムに配置する複数の予成形ロールの組み合わせ等によつ て、前述した種々の横断面形状を得ることができる。 例えば、 1つの予成形スタン ドにおいて金属管の横断面を方形状に予成形する場合、 図 1 ( a) 図示のように 2 個の予成形ロール 2 a、 2 bを用いることもできるし、 図 1 (b) 図示のように 4 個の予成形ロール 2 a、 2 b、 2 c、 2 dを用いることもできる。 一般に、 1つの 予成形スタンドにおいて予成形された金属管の横断面を楕円状あるいは長円状にす る場合、 図 1 ( a ) 図示のように 2個の予成形ロールを用いる。 また、 1つの予成 形スタンドで、 横断面が三角形状の多角形状になるように予成形する場合には、 2 個あるいは 3個の予成形ロールを用いる。 更に、 1つの予成形スタンドで、 横断面 が五角形状の多角形状になるように予成形する場合には、 4個あるいは 5個の予成 形ロールを用いる。 また、 1つの予成形スタンドで、 横断面が六角形状の多角形状 になるように予成形する場合には、 4個あるいは 6個の予成形ロールを用いる。 前述した本発明の冷間縮径口一ル^^法によれば、 縮径成形された金属管の横断 面形状を、 円形、 楕円形、長円形、方形、多角形など、 あらゆる形状にすることが 可能である。 各縮径成形ロールに採用されるロールの数や、 当該ロールの形状を種 々に定めることによって、 また、 タンデムに配置する複数の縮径成形ロールの組み 合わせ等によって、 前述した種々の横断面形状を得ることができる。
前記いずれの方法においても、予成形が行われた金属管の全長に渡って縮径成形 を施し、 全長に渡って縮径成形された金属管を得ることもできるし、 一部分にのみ 予成形と縮径成形とを施し、 一部分のみが縮径成形された金属管を得ることもでき る。
前述した本発明の冷間縮径ロール成形法において、 縮径成形ロールはそれぞれそ の表面に凹凸部を備えており、 当該縮径成形ロールにより縮径成形を受ける予成形 後の金属管の表面に、 凸部、 凹部を形成しつつ前記縮径成形が行われるようにする ことが可能である。
すなわち、 本発明の冷間縮径ロール成形法によれば、 金属管の外周面と、 凸凹部 を備えている縮径成形ロールの表面との当接により、 縮径成形と同時に、 金属管の 外周面に凹凸模様を設けることができる。 したがって、 縮径成形ロールの一回転が、 金属管の外周面に形成される模様の 1ピッチになる。
前述した従来の金属管の冷間縮径成形方法におけるダイスを利用した引き抜き法 では、 金属管の表面の長手方向に、 同一の模様を付与することのみカ可能である。 し力、し、 本発明の方法によれば、前記のように、縮径成形ロールのロール周長のピ ッチで周期的に変化する模様を金属管の表面に付与することができる。
ここで、 例えば、 縮径成形ロールの表面に備えられている凸凹部が、 その回転方 向に連なる凹条、 凸条であれば、 縮径成形された金属管の表面に形成される模様は、 長手方向に延びる、 すなわち、 金属管の中心軸と平行に延びる直線状の凸条、 凹条 となる。 また、縮径成形ロールの表面に備えられている凸凹部の形態を種々に変更 することによって、 金属管の中心軸と角度をなした斜線状の凹凸模様、 弧状の凹凸 模様、 スパイラル状の凹凸模様など、希望する任意の形態の凹凸模様を、 縮径成形 された金属管の表面に形成することができる。
また、 前述した本発明の冷間縮径ロール成形法において、 縮径成形ロールによつ て縮径成形を受ける原管が当該縮径成形口一ルの孔形内を通過する際に、 当該縮径 成形を受ける原管の内部を揷通できる型材であつて、 外周面に凹凸部を備えている 型材が、 縮径成形ロールの孔形内に配置されており、 原管が当該縮径成形ロールの 孔形内を通過することによって縮径成形されると同時に、縮径成形された金属管の 内周面に凹凸部か、形成されるようにすることができる。
本発明の方法において、 予成形、 縮径成形を受ける金属管は、 所定の長さ (例え ば、 0. 5 m程度〜 1 0 m程度) を有しているものである。 そこで、 例えば、縮径 成形口一ルの孔形内に配置され、 金属管が当該縮径成形口一ルの孔形内を通過する 際に、 当該縮径成形を受ける原管の内部を揷通できるように、 金属管が進行してい く先である下流側から上流側に向かって延びる、 あるいは上流側から下流側に向か つて延びる支持体にて型材を支持することが可能である。 そこで、 このように、 縮 径成形ロールの孔形内に配置される型材の外周面に所望の凹凸部を設けておけば、 縮径成形ロールによる金属管の縮径成形と同時に、 金属管内周壁に凹凸模様を形成 することができる。
例えば、 縮径成形された金属管の内周壁に、 長手方向に延びる、 すなわち、 金属 管の中心軸と平行に延びる直線状の凸条、 凹条を形成することができる。 また、 前 記の型材を支持している支持体を金属管の進行方向に沿って、前進、 後退できるよ うにしておいて、 縮径成形された金属管の内周壁の希望する部分にのみ凹凸模様を 形成することもできる。
また、 ここで、前述した表面に凹凸部が備えられている縮径成形ロールを用いれ ば、縮径成形される金属管の内周壁と外周壁とに同時に凹凸模様を形成することが できる。
なお、前記のように支持体に支持され、外周壁に凹凸部が設けられている型材は、 例えば、外周面に凹凸部が設けられているロール、 プラグなどとすることができる。 次に、前記課題を解決するため、 本発明力提案する金属管の冷間縮径ロール成形 法は、 小径の内管が大径の金属管からなる外管に差し込まれてなる内外二重の原管 を、予成形ロールを用いて、 前記外管の横断面形状が楕円状、長円状、方形状、 又 は多角形状になるように成形する予成形工程と、 これに引き続き、 前記予成形ロー ルの下流側に配置されている縮径成形ロールを用いて、 前記予成形された外管の横 断面形状を円形形状、又は、前記予成形された外管の横断面形状とは異なる他の横 断面形状へと再成形しつつ、 少なくとも、外管の外周長を、 最初の外管の外周長よ り減少させる縮径成形工程とによって、 外管の内周面の一部又は全部が内管の外周 面に密着した構造を有する二重管を形成することを特徵とするものである。
かかる方法によれば、 内外二重管を簡単に製造することができる。
この二重管を形成する方法では、 例えば、 内管は横断面三角形状であって、 外管 は横断面円形状である内外二重管を形成することが可能である。
また、縮径成形過程において、外管の内周長の方が、 内管の外周長より小さくな るように縮径成形することによって、 外管の内周面と、 内管の外周面とが密着した 構造の二重管を形成することもできる。 この方法によって製造された二重管は、 内 管の外周面と外管との内周面とが、 直接、 均等圧で当接されていて、 熱特性が均一 になる。 そこで、 信頼度が飛躍的に向上された二重管製品を提供できる。
この二重管の形成に適用される方法の場合も、 夕ンデムに配置されている予成形 ロールと、縮径成形ロールとを用いて、 前記のように、 一回の予成形工程と、 引き 続く一回の縮径 工程とを行う方式の他に、縮径成形される金属管の材質、 肉厚、 '例えば、 外管 ·内管それぞれの材質、 肉厚、 縮径する割合、縮径成形された金属管 の用途などに応じて、 次のような方法として行うことができる。
例えば、 予成形ロールと、 縮径成形ロールとがタンデムに、 かつ、 交互に、 複数 組配置されていて、 一回の予成形工程とこれに引き続く一回の縮径成形工程との組 み合わせが、 連続的に複数回繰り返される方法である。
また、 一組の予成形ロールあるいは夕ンデムに配置されている複数組の予成形口 ールに引き続いて、一組の縮径成形ロールあるいはタンデムに配置されている複数 組の縮径成形ロールが配置されている構成を用いて、 一回または複数回の予成形ェ 程に引き続いて、一回または複数回の縮径成形工程が行われる方法である。
前記いずれの二重管の成形方法においても、 前述したのと同様に、 原管の状態に おける外管、 内管の横断面形状は、 円形状、 楕円状、 長円状、 方形状、 あるいは三 角形状、 五角形状、 六角形状等の多角形状など、 あらゆる横断面形状にしておくこ とができる。 また、 予成形によって得られる外管、 内管の横断面形状は、 楕円状、 長円状、 方形状、 あるいは三角形状、五角形状、 六角形状等の多角形状に限定され るものではなく、 どのような横断面形状にすることもできる。
前述した本発明の二重管の形成に用いられる金属管の冷間縮径ロール成形法によ れば、 接着剤等を一切使用する必要がない。 そこで、 本発明の方法によれば、 信頼 度が飛躍的に向上された二重管製品を提供できる。
なお、 かかる二重管を形成する方法において、 内管は外管の全長に渡って、 ある ヽは外管の一部分にのみ差し込まれているようにすることができる。
外管の全長に渡つて内管が差し込まれていれば、前述の予成形工程とこれに引き 続く縮径成形工程とによって、 全長に渡つて内外二重となっている二重管を形成す ることができる。 また、外管の一部にのみ内管が差し込まれていれば、前述の予成 形工程とこれに引き続く縮径成形工程とによって、 内管が差し込まれていた部位の みが厚肉に形成されている二重管を形成することができる。
なお、 内管は、 外管を構成する金属管と同じ材質、 または異なる材質の金属管と することができる。 また、 外管を構成する金属管とは異なる材質の非金属管とする こともできる。 例えば、 外管が鋼管である場合に、 内管を、 アルミニウム製、 チタ ン製、 合成樹脂製の管とすることができる。
更に、 内管を外管を構成する金属管と同じ材質、 または異なる材質の金属管、 あ るいは外管を構成する金属管とは異なる材質の非金属管としておいて、 前述した予 成形工程とこれに引き続く縮径成形工程とによつて内外二重管を形成した後、 この 形成されたものを内管として用い、 これを径の大きい金属管の中に差し込んで、 前 述した予成形工程とこれに引き続く縮径成形工程を行えば、 内外三重管を形成する ことができる。 同様にして、 四重管、五重管などの多重管を形成することが可能で ある 0
前述した本発明の二重管の形成に用いられる金属管の冷間縮径ロール成形法によ れば、縮径成形口一ルを用いて二重管を形成できるので、事前に行う処理は、単に、 内管、 外管を洗浄により清浄化する処理のみで済む。 すなわち、 内管、 外管につい て、 熱処理や、 先付け加工のような機械的処理等々の前処理を行う必要はない。 また、 このように、 縮径成形ロールを用いて二重管を形成できるので、 ロール材 として特殊な材料は不要であり、 ロールの表面処理も不要なので、 安価に、 効率よ く二重管を形成することができる。
なお、 前述した本発明の二重管の形成に用いられる金属管の冷間縮径ロール成形 法の予成形工程において、 予成形ロールにより外管の断面形状を楕円状、長円状、 方形状、 又は多角形状にする際に、 外管の内周壁の少なくとも一部分が、 内管の外 周壁に当接するようにしておけば、 内管を所望の位置に固定しておいて、位置ずれ を生じさせることなく縮径成形を行うことができる。 そこで、 内管を外管の一部分 にのみ差し込んでおいて、 当該差し込まれている部分のみ厚肉に形成しょうとする 場合に、 このようにすれば、 目的とする部分のみ、 正確に、 厚肉形成することがで る o
なお、 このような、二重管の形成方法においても、 縮径成形ロールはそれぞれそ の表面に凸凹部を備えており、 当該縮径成形ロールにより縮径成形を受ける予成形 後の金属管の表面に、 凸部、 凹部を形成しつつ前記縮径成形が行われるようにする ことができる。 これによつて、 外管の外周面に凹凸模様が形成されている二重管を 形成することができる。
本発明の金属管の冷間縮径ロール成形法において、予成形ロール、 縮径成形口— ルと、 金属管とを、 金属管の軸方向に相対移動させる方式としては、 金属管を移動 させる方式、 予成形口一ル及び縮径成形ロールを有した成形機を移動させる方式の どちらも採用可能である。
金属管を移動させる方式の場合には以下のような方式を採用することができる。 例えば、縮径成形ロール、 又は、予成形ロール及び縮径成形ロールを、 それぞれ 複数のロールからなるものとし、 各縮径成形ロール又は各予成形口一ル及び各縮径 成形口一ルにおける当該複数のロールの中の一部又は全部が連動して回転すること により前記予成形及び縮径成形を受ける原管が、 前記予成形口ール及び縮径成形口 一ルに対して移動する方式である。
これは、 図 5 ( c ) に一例を示したロールフォーミング方式 (ロール駆動方式) と呼ばれるものである。 図 5 ( c ) 図示の実施形態において、 符号 4 1 a、 4 1 b 4 1 cで示されているものは、 それぞれ、予成形ロールであり、 符号 4 2 a、 4 2 b、 4 2 cで示されているものは、 それぞれ、 縮径成形ロールである。 すなわち、 図 5 ( c ) 図示の実施形態は、 予成形ロールと、 縮径成形ロールとがタンデムに、 かつ、 交互に、 複数組配置されていて、 一回の予成形工程とこれに引き続く一回の 縮径成形工程との組み合わせが、 連続的に複数回 (3回) 繰り返されるものである c このように予成形ロール、 縮径成形ロールがタンデムに配置されているならば、 そ の中の一部のみを強制駆動する方式にすることもできる。 例えば、 4個一組の口一 ルを用いているならば、 この中で 2個一組のロールのみを強制駆動することができ る。 図 5 ( c ) 図示の例では、縮径成形ロール 4 2 cの、 図中、 上下に対向してい るロール 2 a、 2 cのみが強制駆動され、 図中、 前後に対向しているロール 2 b、 2 d (不図示) は遊転ロールになっている。
また、予成形ロール及び縮径成形ロールを、 それぞれ複数のロールからなると共 に、各予成形口ール及び各縮径成形ロールにおける当該複数のロールの中の一部又 は全部が駆動手段からの駆動力を受けていない遊転ロールとしておいて、以下のい ずれかの方式を採用することもできる。
第一の方式は、予成形及び縮径成形を受ける原管が、 押し込み手段によって上流 側から予成形口一ルの孔形及び縮径成形ロールの孔形の中へ押し込まれることによ り、 当該原管の予成形ロール及び縮径成形ロールに対する移動が行われるものであ る。 これは、 図 5 ( a ) に一例を示したェクストロールフォーミング方式 (ロール 無駆動パイプ押込み方式) と呼ばれるものである。 押し込み手段としては、 油圧シ リンダゃ油圧ジャッキを用いることができる。
第二の方式は、予成形及び縮径成形を受ける原管が、 弓 Iき抜き手段によって予成 形ロールの孔形及び縮径成形ロールの孔形の中から下流側へ引き抜き出されること により、 当該原管の予成形口一ル及び縮径成形ロールに対する移動が行われるもの である。 これは、 図 5 (b) に一例を示したドローフォーミング方式 (ロール無駆 動パイプ引き抜き方式) と呼ばれるものである。 弓 iき抜き手段としては、 金属管の 先端側を把持するチャックと、 このチャックを保持して牽引する油圧ジャッキ、 あ るいは周転駆動されつつ前記チャックを牽引するチェインなどを用いることができ る。
第三の方式は、 前記第一の方式と第二の方式とを組み合わせ、予成形及び縮径成 形を受ける原管を、 押し込み手段によつて上流側から予成形ロールの孔形及び縮径 成形口一ルの孔形の中へ押し込むと共に、 引き抜き手段によつて予成形ロールの孔 形及び縮径成形ロールの孔形の中から下流側へ弓 Iき抜き出すことにより、 当該原管 の予成形ロール及び縮径成形ロールに対する移動が行われるものである。
金属管を移動させる方式については、 その直径、 肉厚、長さ、成形速度な'どの関 係に応じて、 前述した方式の中から好ましいものを選択して用いることができる。 ただし、 ェクストロールフォーミング方式では、 油圧シリンダの長さ力長くなり がちになるので、 これをできるだけ短縮する工夫が必要である。 また、 ドロ一フォ 一ミング方式では、 引張り端を変形させない工夫が必要である。 更に、 ロールフォ —ミング方式では、 ロールの駆動方法について工夫する必要がある。
なお、 図 5 ( a ) 、 図 5 (b ) に示したいずれの方式とも、 タンデムに配置され ている一組の予成形ロール 2 1、 3 1と、一組の縮径成形ロール 2 2、 3 2とを用 いて、一回の予成形工程と、 引き続く一回の縮径成形工程とを行うものである。 この他に、 図示してはいないが、 一組の予成形ロール 2 1の下流側に、縮径成形 ロール 2 2をタンデムに複数組配置したり、 予成形ロール 2 1をタンデムに複数組 配置し、 その下流側に一組の縮径成形ロール 2 2を配置する構成とすることもでき る。 また、 予成形ロール 3 1をタンデムに複数組配置し、 その下流側に、 縮径成形 ロール 3 2をタンデムに 組配置する構成にすることもできる。
また、 図 5 ( c ) の実施形態においても、 図示してはいないが、 タンデムに配置 されている一組の予成形ロール 2 1 aと、 一組の縮径成形ロール 4 2 aとを用いて、 一回の予成形工程と、 弓 1き続く一回の縮径成形工程とを行う方式にすることができ る。 また、 一組の予成形ロール 4 1 aに引き続いて、 一組の縮径成形ロール 4 2 a が配置されている、 あるいは複数組の縮径成形ロール 4 2 a、 4 2 b、 4 2 cがタ ンデムに配置されている構成、 あるいは、 タンデムに配置されている ^[組の予成 形ロール 4 1 a、 4 1 b、 4 1 cに引き続いて、 一組の縮径成形ロール 4 2 aが配 置されている、 あるいは複数組の縮径成形ロール 4 2 a、 4 2 b , 4 2 cがタンデ ムに配置されている構成にすることができる。
前記 、ずれの方法においても、縮径成形口一ルを用 、て金属管を縮径成形する際 に、縮径成形ロール間隙への金属管の挟み出しが生じることなく、 縮径成形するこ とが可能である。
また、 前記いずれの二重管を成形する方法においても、 縮径成形ロールを用いて 外管を縮径成形する際に、 縮径成形口一ル間隙への外管の挟み出しが生じることな く、 縮径成形することが可能である。
以上説明した本発明の冷間縮怪ロール成形法によれば、 予成形ロールとこれに夕 ンデムに配置されている縮径成形ロールとの組み合わせで連続的に行う予成形工程 と縮径成形工程との一回あたりで、縮径率 3 %以上を実現できた。 この予成形工程 と縮径成形工程一回あたりでの縮径率は、 発明者等の実験によれば、 2 2 %'まで十 分に可能であった。 この縮径率は、 使用する予成形ロール、 縮径成形ロールの形態 に応じて、 3 %〜2 2 %の間で変動させることができる。
例えば、 肉厚 1. 6 mm、 外径 4 8. 6 mmの鉄製の金属管の場合、予成形ロー ル 2個を備えている予成形スタンドで横断面三角形状に予成形し、 引き続いて、縮 径成形ロール 3個を備えている縮径成形スタンドで、 三角形の頂点部分を内側に向 けて圧縮する方向に縮径することにより、 縮径率 2 2 %を実現できた。 また、 同一 の予成形ロール 2個を用いながら、 その相対位置のみを変更すると共に、 縮径成形 ロールを交換することによって、 縮径率 8 %を実現できた。
また、 肉厚 4. 5 mm、 外径 2 1 6. 3 mmの鉄製の金属管の場合、 予成形口一 ル 2個を備えている予成形スタンドで横断面方形状に予成形し、 引き続いて、 縮径 成形ロール 4個を備えている縮径成形スタンドで、方形の頂点部分を内側に向けて 圧縮する方向に縮径することにより、縮径率 1 1. 8 %を実現できた。 また、 同一 の予成形ロール 2個を用いながら、 その相対位置のみを変更すると共に、 縮径成形 ロールを交換することによって、縮径率 5 %を実現できた。
更に、 肉厚 4. 5 mm、 外径 1 9 0. 7 mmの鉄製の金属管の場合、 予成形ロー ル 4個を備えている予成形スタンドで横断面五角形状に予成形し、 引き続いて、縮 径成形ロール 5個を備えている縮径成形スタンドで、 五角形の頂点部分を内側に向 けて圧縮する方向に縮径することにより、 縮径率 7. 2 %を実現できた。 また、 同 一の予成形ロール 4個を用いながら、 その相対位置のみを変更すると共に、 縮径成 形口一ルを交換することによって、 縮径率 3 %を実現できた。
また、 二重管を製造する方法の場合でも、予成形ロールとこれにタンデムに配置 されている縮径成形ロールとの組み合わせで連続的に行う予成形工程と縮径成形ェ 程との一回あたりで、 外管の縮径率 3 %〜 2 2 %が可能であった。
そして、 本発明の方法によつて製造した本発明の金属管につ 、て検討したところ、 原管の横断面形状が円形状で、縮径成形後の金属管の横断面形状も円形状の場合、 その外径精度は、縮径成形する前の原管の外径精度と同等、 あるいは、 よりょくな るとの結果が得られた。 また、本発明の方法によつて製造した本発明の金属管を切 断して試験したところ、切断面の外径は、切断する前とほぼ同一であるとの結果が 得られた。
以上、 本発明が提案する金属管の冷間縮径ロール成形法を説明した。本発明が提 案する金属管は、 以上説明したいずれかの本発明の金属管の冷間縮径口,ル成形法 によって形成されるものである。 図面の簡単な説明
第 1図 (a ) は、 この発明に用いられる予成形ロールの一例を説明する側面図。 第 1図 (b) は、 この発明に用いられる予成形ロールの他の一例を説明する側面図。 第 2図 (a ) は、 この発明に用いられる縮径成形ロールの一例を説明する断面図。 第 2図 (b) は、 予成形工程と、 これに引き続く縮径成形工程の一例を説明する側 面図。
第 3図 (a ) は、 この発明の金属管を表す斜視図。
第 3図 (b) は、 この発明の他の金属管を表す一部を破切した斜視図。
第 4図は、 この発明の方法に採用されるェクストロールフォーミング方式の実施形 態を説明する側面図。
第 5図 (a ) は、 この発明の方法に採用されるェクストロールフォーミング方式の 実施形態を説明する斜視図。
第 5図 (b ) は、 この発明の方法に採用されるドローフォーミング方式の実施形態 を説明する斜視図。
第 5図 (c ) は、 この発明の方法に採用されるロールフォーミング方式の実施形態 を説明する斜視図。 発明を実施するための最良の形態
以下添付図面を参照して本発明の好ましい実施形態を説明するが、 各構成、形状 及び配置関係については、 本発明が理解できる程度に概略的に示したものにすぎな い。 また、 本明細書中における数値及び各構成の組成 (材質) については例示にす ぎない。 すなわち、 本発明は以下に述べる実施形態に限定されるものではなく、 特 許請求の範囲の記載から把握される技術的範囲において種々の形態に^ M可能であ る。
(実施例 l )
外径 216. 3 mmの丸鋼管 1を一組の予成形ロール 2 a、 2bにより、方形状 の横断面 l a (図 1 (a) ) を有する鋼管に予成形する。
ついで、 一組の縮径成形ロール 3 a、 3b、 3 c、 3 dにより、 縮径された丸管 lb (図 2 (a)、 (b) ) を形成する。
この縮径成形に際しては、 図 4図示のように、 油圧シリンダ 4のロッド 5を矢示 6の方向へ押し出して、丸鋼管 1を移動させる。 このとき、 油圧シリンダの長さが 長くなることを抑えるため、丸鋼管 1の長さよりロッド 5のストローク Lが短い時 には、 丸鋼管 1とロッド 5との間に捕助ロッドを介装することが望ましい。 これに よって、 ロッ ド 5のストロークを必要なだけ延ばすことができる。
縮径成形ロール 3 a、 3b、 3 c、 3dは、 図 2 (a)図示のように、 それぞれ、 その表面に、 回転方向に連なる凸条及び凹条を備えている。 そこで、 縮径成形と同 時に、 外周面に凹条、 凸条 1 cが形成された丸管 lb (図 3 (a) ) が形成される。 この実施例の場合、外径 216. 3mm、 肉厚 8. 2mmの丸鋼管 1を、外径 1 90. 7mmで、 深さ 0. 7 mmの凹凸条 1 cを 60本外周面に有する丸管: L へ と形成した。 すなわち、縮径率は、 11. 8%であった。
なお、 図 1 (a) 図示の一組の予成形ロール 2 a、 2 bに代えて、 図 1 (b) 図 示の一組の予成形ロール 2 a、 2b、 2 c、 2 dを使用することもできる。
この実施例では、 原管として丸鋼管を用いたが、 原管の横断面形状は円形形状に 限られるものではない。 また、 ステンレス管、 アルミニューム管も同樹こ、縮径成 形することができる。
(実施例 2)
丸鋼管 7の内側へ合成樹脂製の管 8が挿入されているものを原管として使用した。 縮怪成形ロール 3 a、 3b、 3 c、 3 dの表面に凹凸部が設けられていない縮径 成形口—ルを用いた以外は、実施例 1と同様の工程を採用し、予成形及び縮径成形 行つた 0
これによつて、 図 3 (b) 図示のように、 丸鋼管 7の内側に合成樹脂管 8が配置 されている二重管 10を製造することができた。
縮径成形工程によって丸鋼管 7が縮径成形されるので、 図 3 (b) 図示のように、 丸鋼管 7の内周壁と、 合成樹脂管 8の外周壁とは、 均一かつ等圧で当接し、一体的 な二重管を製造することができた。 (実施例 3)
J I S規格: STKM13 Aの鋼管 (機械構造用炭素鋼鋼管) を原管として使用 した。 原管は、 外径 60. 5mm、 肉厚 2. 9 mmであった。
図 5 (b) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を楕円形状 に予成形し、 引き続いて、 2個一組の縮径成形ロールで縮径成形した。 縮径成形後 の外径は 58. 2 mmで、 縮径率は 3. 8%であった。
(実施例 4)
J I S規格: STKM13 Aの鋼管 («構造用炭素鋼鋼管) を原管として使用 した。 原管は、 外径 63. 5mm、 肉厚 1. 2mmであった。
図 5 (b) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を方形状に 予成形し、 引き続いて、 4個一組の縮径成形ロールで縮径成形した。 縮径成形後の 外径は 60. 0 mmで、縮径率は 5. 5%であった。
(実施例 5)
J I S規格: STKM13 Aの鋼管 (機械構造用炭素鋼鋼管) を原管として使用 した。 原管は、 外径 63. 5mm、 肉厚 2. 3mmであった。
図 5 (b) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を方形状に 予成形し、 引き続いて、 4個一組の縮径成形ロールで縮径成形した。 縮径成形後の 外径は 58. 2 mmで、縮径率は 8. 3 %であつた。
(実施例 6)
J I S規格: A5052TDのアルミニューム管を原管として使用した。 原管は、 外径 60mni、 肉厚 3 mmであった。
図 5 (b) 図示の方式を用い、 4個一組の予成形ロールで横断面形状を方形状に 予成形し、 引き続いて、 4個一組の縮径成形ロールで縮径成形した。 縮径成形後の 外径は 58. 2 mmで、 縮径率は 3 %であつた。
(実施例 7)
外径 63. 5 mm、 肉厚 1. 2 mmの鋼管 (外管) の中に、 外径 60 mm、 肉厚 1. 2mmの鋼管 (内管) が外管の全長に亘つて差し込まれているものを原管とし て使用した。 いずれの鋼管とも J I S規格: STK400— E— Gの鋼管である。 図 5 (a) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を楕円形状 に予成形し、 引き続いて、 2個一組の縮径成形ロールで縮径成形した。 縮径成形後 の外管の外径は 60 mmで、 縮径率は 5. 5 %であった。
内管の外周面に外管の内周面が密着している構造の二重管が形成された。 (実施例 8)
外径 63. 5mm、 肉厚 1. 2 mmの鋼管 (外管) の中に、 外径 60mm、 肉厚 3mmのアルミニューム管 (内管) が外管の全長に亘つて差し込まれているものを 原管として使用した。 外管は J I S規格: STK400— E— Gの鋼管であり、 内 管は、 J I S規格: A5052TDのアルミニューム管である。
図 5 (b) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を方形形状 に予成形し、 引き続いて、 4個一組の縮径成形ロールで縮径成形した。 縮径成形後 の外管の外径は 60 mmで、 縮径率は 5. 5 %であつた。
内管の外周面に外管の内周面が密着している構造の二重管が形成された。
(実施例 9)
J I S規格: STKM13 Aの鋼管 (漏構造用炭素鋼鋼管) を原管として使用 した。 原管は、 外径 63. 5mm、 肉厚 1. 2 mmであった。
図 5 (c) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を楕円形状 にする予成形、 2個一組の縮径成形ロールでの縮径成形、 2個一組の予成形ロール で横断面形状を楕円形状にする予成形、 4個一組の縮径 ロールでの縮径成形、 2個一組の予成形口一ルで横断面形状を楕円形状にする予成形、 4個一組の縮径成 形ロールでの縮径成形を連続して行った。 縮径成形後の外管の外径は 56mmで、 予成形ロールと縮径成形ロール 3組での縮径率は 11. 8%であった。
(実施例 10)
J I S規格: STKM13 Aの鋼管 (機械構造用炭素鋼鋼管) を原管として使用 した。 原管は、 外径 63. 5mm、 肉厚 1. 6mmであった。
図 5 (b) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を三角形状 に予成形し、 引き続いて、 3個一組の縮径成形ロールで縮径成形した。 縮径成形後 の外管の外径は 49 mmで、 縮径率は 22 %であつた。
(実施例 11)
J I S規格: STKM13 Aの鋼管 (漏構造用炭素鋼鋼管) を原管として使用 した。 原管は、 外径 63. 5mm、 肉厚 1. 2mmであった。
図 5 (b) 図示の方式を用い、 4個一組の予成形ロールで横断面形状を方形状に 予成形し、 引き続いて、 4個一組の縮径成形ロールで縮径成形した。 縮径成形後の 外管の外径は 56 mmで、 縮径率は 11. 8 %であつた。
(実施例 12)
J I S規格: 3で1: 13 の鋼管 (機械構造用炭素鋼鋼管) を原管として使用 一 4 ― した。 原管は、外径 63. 5 mm、 肉厚 1. 2mmであった。
図 5 (b) 図示の方式を用い、 5個一組の予成形ロールで横断面形状を五角形状 に予成形し、 引き続いて、 5個一組の縮径成形ロールで縮径成形した。縮径成形後 の外管の外径は 58. 9 mmで、 縮径率は 7. 2%であった。
(実施例 13)
J I S規格: STK400— E— Gの鋼管 (一般構造用炭素鋼鋼管) を原管とし て使用した。 原管は、 外径 190. 7mm、 肉厚 4. 5mmであった。
図 5 (a) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を方形状に 予成形し、 引き続いて、 4個一組の縮径成形ロールで縮径成形した。 縮径成形後の 外径は 180 mmで、 縮径率は 5 %であつた。
(実施例 14)
J I S規格: STK400— E— Gの鋼管 (一般構造用炭素鋼鋼管) を原管とし て使用した。 原管は、 外径 216. 3mm、 肉厚 10. 3 mmであった。
図 5 (a) 図示の方式を用い、 4個一組の予成形ロールで横断面形状を方形状に 予成形し、 引き続いて、 4個一組の縮径成形ロールで縮径成形した。 縮径成形後の 外径は 190. 7 mmで、 縮径率は 11 %であつた。
(実施例 15)
J I S規格: STK400— E— Gの鋼管 (一般構造用炭素鋼鋼管) を原管とし て使用した。 原管は、 外径 216. 3mm、 肉厚 4. 5mmであった。
図 5 (a) 図示の方式を用い、 2個一組の予成形ロールで横断面形状を方形状に 予成形し、 引き続いて、 それぞれ、 回転方向に連なる凸条及び凹条を備えている 4 個一組の縮径成形ロールで縮径成形した。縮径成形後の外径は 190. 7 mmで、 縮径率は 11%であった。 外周面には、 深さ 0. 6 mmの凹凸条が 60本形成され た。
(実施例 16)
J I S規格: STK400— E— Gの鋼管 (一般構造用炭素鋼鋼管) を原管とし て使用した。 原管は、 外径 190. 7mm、 肉厚 4. 5mmであった。
図 5 (a)図示の方式を用い、 4個一組の予成形ロールで横断面形状を方形状に 予成形し、 弓 Iき続いて、 それぞれ、 回転方向に連なる凸条及び凹条を備えている 4 個一組の縮径成形ロールで縮径成形した。 縮径成形後の外径は 180mmで、 縮径 率は 5. 6%であった。 外周面には、 深さ 0. 7 mmの凹凸条が 60本形成された。 (評価 ·検討) 実施例 1〜 1 6は、 いずれも原管の横断面形状が円形状で、 縮径成形された金属 管の横断面形状も円形状のものである。 これらについて、 原管と縮径成形された金 属管の外径寸法の精度を比較したところ、 いずれも、 縮径成形された金属管の精度 は、 原管の精度と同等、 あるいは、 それよりよかった。 すなわち、 ドロ一フォーミ ングあるいはロールフォーミングを行った実施例 1〜1 2では、 ± 0. 1 %以内の 外径寸法精度が得られた。 また、 ェクストロールフォーミングを行った実施例 1 3 〜1 6では、 ± 1 %以内の外径寸法精度が得られた。
また、実施例 1〜1 6で縮径成形した金属管を切断したところ、 その外径'は、 ほ ぼ同一であった。
なお、 いずれの実施例においても、 縮径成形により金属管の肉厚が厚くなる部分 と、 肉厚が原管の時点のままに止まっている部分とが形成された。 特に、 最も基本 的な縮径成形の工程である一回の予成形とこれに引き続く一回の縮径成形とによる 縮径率の増大と共に、 この肉厚が厚くなる部分の肉厚が増加した。 この増肉部が生 じる位置は、 予成形ロールの形状及び、 縮径成形ロールの形状によって定まってい る。 そこで、 縮径成形して得る最終形状、縮径率、 使用するフォーミング形式が決 定した時点で、 使用する予成形ロールの形状及び、 縮径成形ロールの形状を適宜に 組み合わせれば、 全周に亘つて肉厚が均一な、縮径された金属管を得ることが可能 1、める ο
産 ¾±の利用の可能性
この発明による金属管の冷間縮径ロール成形法は、金属製のパイプからなる原管 を、予成形ロールにより、 種々の断面形状を有する金属管に成形する予成形工程と、 これに引き続き、 前記予成形ロールの下流側に配置されている縮径成形ロールを用 いて、 前記予成形された金属管の横断面形状を円形形状、又は、前記予成形された 金属管の横断面形状とは異なる他の横断面形状へと再成形しつつ、 外周長を原管の 外周長より減少させる縮径成形工程とを行うものである。
そこで、 縮径された金属管や、 縮径された金属管であって内周及び Z又は外周に 凹凸が形成されている金属管、 あるいは縮径された内外二重の管を簡単、 かつ、 確 実に、 しかもロールスタンドの数を少なくして成形することができる。
本発明の方法によれば、 従来に比較して非常に低価格、 かつ簡単に肉厚の厚い金 属管や、 一部分が厚肉になつている金属管を提供することができる。
従来の電縫鋼管やシームレス鋼管を製造する方法では、 あらかじめ定められてい る外径、 肉厚を有する金属管を造管するために装置が準備されている。 そこで、 こ のあらかじめ定められている外径、 肉厚以外の大きさの外径、 肉厚を有する金属管 を製造するには、 装置或いはロールの改修、 新設等に多くの費用が必要であり、 コ スト高にならざるを得なかった。 しかし、 本発明によれば、 特に、 新たな装置ゃ設 備を準備する必要もなく、 希望する大きさの外径、 肉厚を有する金属管を簡単に、 かつ.、 低コストで製造することができる。
また、一部分に高強度を要求される金属管の場合、従来は、 この強度が不足して いる部分だけでなく、 全体を肉厚の厚い金属管や高強度の金属管にする必要があつ た。 しかし、 本発明によれば、 高強度を要求される部分のみを二重管にして、 その 部分の強度不足を捕うことができる。 しかも、 全体を肉厚の厚い金属管や高強度の 金属管にする場合に比べれば、 非常に低コス卜でこれを実現することができる。 本発明の方法によって製造される二重管は、 外管に挿入される内管の位置を調整 することによって、 希望する部位のみを正確に二重管にすることができる。
従来から、 一部の強度不足の部分を捕うため、 同一外径で肉厚が異なるパイプを 溶接して製造したテーラーブランクが使用されている。 本発明が提案する方法によ つて製造した二重管は、 肉厚を厚くしたいと希望する部分のみ二重管にすることが 可能なので、 このようなテーラ一プランクに代わるものを安価に提供することがで きる。
また、 曲げや、バジル加工、 ハイドロフォーミング等によって減肉する部分に対 応する部分のみが二重管にされていて厚肉になっている金属管を簡単、 かつ安価に 提供することができる。
更に、 本発明の方法によって製造した本発明の金属管 (縮径管や、縮径された二 重管) を原管とし、 再度、 円形、 角形、 その他、 異形の横断面を有する金属管に成 形することにより、従来、 非常に高価であった円形、 角形、 その他、 異形の横断面 を有する多重の鋼管を容易、 かつ確実に、 しかも安価に提供することができる。

Claims

請求の範囲
. 1. 金属製のパイプからなる原管を、 予成形ロールにより、 楕円状、長円状、 方 形状、 又は多角形状の横断面を有する金属管に成形する予成形工程と、 これに引き 続き、前記予成形ロールの下流側に配置されている縮径成形ロールを用いて、 前記 予成形された金属管の横断面形状を円形形状、 又は、 前記予成形された金属管の横 断面形状とは異なる他の横断面形状へと再成形しつつ、 外周長を原管の外周長より 減少させる縮径成形工程が行われることを特徵とする金属管の冷間縮径ロール成形 法。
2. 金属製のパイプからなる原管を、 予成形ロールにより、 楕円状、長円状、 方 形状、 又は多角形状の横断面を有する金属管に成形する予成形工程と、 これに引き 続いて、前記予成形ロールの下流側に配置されている縮径成形ロールを用いて行わ れる、 前記予成形された金属管の横断面形状を円形形状、 又は、前記予成形された 金属管の横断面形状とは異なる他の横断面形状へと再成形しつつ、 外周長を原管の 外周長より減少させる縮径成形工程とが、 複数回繰り返されることを特徴とする金 属管の冷間縮径口一ル成形法。
3. 金属製のパイプからなる原管を、 予成形ロールにより、楕円状、長円状、 方 形状、 又は多角形状の横断面を有する金属管に成形する予成形工程が一又は複数回 行われた後、 これに引き続き、 前記予成形ロールの下流側に配置されている縮径成 形ロールを用いて、 前記予成形された金属管の横断面形状を円形形状、又は、 前記 予成形された金属管の横断面形状とは異なる他の横断面形状へと再成形しつつ、 外 周長を原管の外周長より減少させる縮径成形工程が一又は複数回行われることを特 徵とする金属管の冷間縮径口ール成形法。
4. 縮径成形ロール、又は、予成形ロール及び縮径成形ロールは、 それぞれ複数 のロールからなり、 各縮径成形口ール又は各予成形ロール及び各縮径成形ロールに おける当該複数の口一ルの中の一部又は全部が連動して回転することにより前記予 成形及び縮径成形を受ける原管が、 前記予成形口一ル及び縮径成形ロールに対して 移動することを特徴とする請求の範囲第 1項乃至 3項の ヽずれか一項記載の金属管 の冷間縮径ロール成形法。
5. 予成形ロール及び縮径成形ロールは、 それぞれ複数のロールからなると共に、 各予成形ロール及び各縮径成形ロールにおける当該複数のロールの中の一部又は全 部が駆動手段からの駆動力を受けていない遊転ロールであって、 前記予成形及び縮 径成形を受ける原管が、押し込み手段によつて上流側から前記予成形ロールの孔形 及び縮径成形ロールの孔形の中へ押し込まれることにより、 または、 引き抜き手段 によつて前記予成形ロールの孔形及び縮径成形ロールの孔形の中から下流側へ弓 Iき 抜き出されることにより、 若しくは、 押し込み手段によつて上流側から前記予成形 ロールの孔形及び縮径成形ロールの孔形の中へ押し込まれると共に、 引き抜き手段 によつて前記予成形ロールの孔形及び縮径成形ロールの孔形の中から下流側へ弓 Iき 抜き出されることにより、前記予成形及び縮径成形を受ける原管の前記予成形口一 ル及び縮径成形ロールに対する移動が行われることを特徴とする請求の範囲第 1項 乃至 3項のいずれか一項記載の金属管の冷間縮径ロール成形法。
6. 縮径成形ロールはそれぞれその表面に凸凹部を備えており、 当該縮径成形口 ールにより縮径成形を受ける予成形後の金属管の表面に、 凸部、 囬部を形成しつつ 前記縮径成形が行われることを特徴とする請求の範囲第 1項乃至 5項のいずれか一 項記載の金属管の冷間縮径ロール成形法。
7. 縮径成形ロールによって縮径成形を受ける原管が当該縮径成形口一ルの孔形 内を通過する際に、 当該縮径成形を受ける原管の内部を挿通できる型材であって、 外周面に凹凸部を備えている型材が、縮径成形口一ルの孔形内に配置されており、 原管が当該縮径成形ロールの孔形内を通過することによって縮径成形されると同時 に、縮径成形された金属管の内周面に凹凸部が形成されることを特徴とする請求の 範囲第 1項乃至 6項のいずれか一項記載の金属管の冷間縮径ロ—ル成形法。
8. 予成形ロールと当該予成形口一ルの下流側に配置されている縮径成形ロール とによって行われる予成形工程と、 引き続く縮径成形工程とによる縮径率が 3 %以 上であることを特徴とする請求の範囲第 1項乃至 7項のいずれか一項記載の金属管 の冷間縮径ロール成形法。
9. 小径の内管が大径の金属管からなる外管に差し込まれてなる内外二重の原管 を、予成形ロールを用いて、 前記外管の横断面形状が楕円状、 長円状、方形状、 又 は多角形状になるように成形する予成形工程と、 これに引き続き、 前記予成形ロー ルの下流側に配置されている縮径成形ロールを用いて、 前記予成形された外管の横 断面形状を円形形状、 又は、 前記予成形された外管の横断面形状とは異なる他の横 断面形状へと再成形しつつ、 少なくとも、 外管の外周長を、 最初の外管の外周長よ り減少させる縮径成形工程とによつて、 外管の内周面の一部又は全部が内管の外周 面に密着した構造を有する二重管を形成することを特徵とする金属管の冷間縮径ロ レ成形法。
1 0. 小径の内管が大径の金属管からなる外管に差し込まれてなる内外二重の原管 を、 予成形ロールを用いて、 前記外管の横断面形状が楕円状、 長円状、方形状、 又 は多角形状になるように成形する予成形工程と、 これに引き続いて、 前記予成形口 ールの下流側に配置されている縮径成形ロールを用いて行われる、 前記予成形され た外管の横断面形状を円形形状、又は、 前記予成形された外管の横断面形状とは異 なる他の横断面形状へと再成形しつつ、 少なくとも、 外管の外周長を、最初の外管 の外周長より減少させる縮径成形工程と力、 複数回繰り返されることによって、 外 管の内周面の一部又は全部が内管の外周面に密着した構造を有する二重管を形成す ることを特徴とする金属管の冷間縮径ロール成形法。
1 1. 小径の内管が大径の金属管からな έ外管に差し込まれてなる内外二重の原管 を、 予成形ロールを用いて、 前記外管の横断面形状が楕円状、 長円状、方形状、 又 は多角形状になるように成形する予成形工程が一又は複数回行われた後、 これに引 き続き、前記予成形口一ルの下流側に配置されている縮径成形ロールを用いて、 前 記予成形された外管の横断面形状を円形形状、 又は、前記予成形された外管の横断 面形状とは異なる他の横断面形状へと再成形しつつ、少なくとも、外管の外周長を、 最初の外管の外周長より減少させる縮径成形工程力一又は複数回行われることによ つて、 外管の内周面の一部又は全部が内管の外周面に密着した構造を有する二重管 を形成することを特徴とする金属管の冷間縮径ロール成形法。
1 2. 内管は外管の全長に渡って、 あるいは外管の一部分にのみ差し込まれている ことを特徴とする請求の範囲第 9項乃至 1 1項のいずれか一項記載の金属管の冷間 縮径口—ル成形法。
1 3. 縮径成形ロール、又は、予成形ロール及び縮径成形ロールは、 それぞれ複数 のロールからなり、 各縮径成形ロール又は各予成形ロール及び各縮径成形ロールに おける当該複数のロールの中の一部又は全部が連動して回転することにより前記予 成形及び縮径成形を受ける原管が、前記予成形ロール及び縮径成形ロールに対して 移動することを特徴とする請求の範囲第 9項乃至 1 2項のいずれか一項記載の金属 管の冷間縮径ロール成形法。
1 4. 予成形ロール及び縮径成形ロールは、 それぞれ複数のロールからなると共に、 各予成形ロール及び各縮径成形口一ルにおける当該複数の口一ルの中の一部又は全 部力駆動手段からの駆動力を受けていない遊転ローラであつて、前記予成形及び縮 径成形を受ける原管は、押し込み手段によつて上流側から前記予成形ロールの孔形 及び縮径成形ロールの孔形の中へ押し込まれることにより、 または、 引き抜き手段 によつて前記予成形ロールの孔形及び縮径成形口一ルの孔形の中から下流側へ弓 Iき 抜き出されることにより、 若しくは、 押し込み手段によって上流側から前記予成形 ロールの孔形及ぴ縮径成形ロールの孔形の中へ押し込まれると共に、 引き抜き手段 によつて前記予成形ロールの孔形及び縮径成形ロールの孔形の中から下流側へ引き 抜き出されることにより、 前記予成形及び縮径成形を受ける原管の前記予成形口一 ル及び縮径成形ロールに対する移動が行われることを特徴とする請求の範囲第 9項 乃至 1 2項のいずれか一項記載の金属管の冷間縮径ロール成形法。
1 5. 縮径成形ロールはそれぞれその表面に凸凹部を備えており、 当該縮径成形口 —ルにより縮径成形を受ける予成形後の外管の表面に、 凸部、 凹部を形成しつつ前 記縮径成形が行われることを特徴とする請求の範囲第 9項乃至 1 4項のいずれか一 項記載の金属管の冷間縮径ロ—ル成形法。
1 6. 予成形ロールと当該予成形ロールの下流側に配置されている縮径成形ロール とによつて行われる予成形工程と、 引き続く縮径成形工程とによる外管の縮径率が 3 %以上であることを特徴とする請求の範囲第 9項乃至 1 5項のいずれか一項記載 の金属管の冷間縮径ロール成形法。
1 7. 請求の範囲第 1項乃至 1 6項のいずれか一項記載の金属管の冷間縮径ロール 成形法によつて形成された金属管。
PCT/JP2001/008310 2000-09-25 2001-09-25 Procede permettant de former un rouleau lamine a froid a diametre decroissant pour un tuyau metallique et tuyau metallique obtenu au moyen de ce procede WO2002024366A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/381,341 US20040050133A1 (en) 2000-09-25 2001-09-25 Method of forming cold diametrally reducing roll for metal pipe and metal pipe formed by the method
EP01970204A EP1336438A4 (en) 2000-09-25 2001-09-25 PROCESS FOR FORMING A COLD ROLLED ROLLER WITH DECREASING DIAMETER FOR A METAL PIPE AND METAL PIPE OBTAINED BY MEANS OF THIS PROCESS
JP2002528424A JP3498312B2 (ja) 2000-09-25 2001-09-25 金属管の冷間縮径ロール成形法及びこれにより成形された金属管
KR1020037004240A KR100695311B1 (ko) 2000-09-25 2001-09-25 금속관의 냉간축경 롤 성형방법 및 이것에 의하여 성형된금속관
AU2001290265A AU2001290265A1 (en) 2000-09-25 2001-09-25 Method of forming cold diametrally reducing roll for metal pipe and metal pipe formed by the method
US11/434,760 US20060201223A1 (en) 2000-09-25 2006-05-17 Cold roll forming method for reducing a diameter of a metal pipe, and a metal pipe product having its diameter reduced by such method
US11/650,465 US20070113611A1 (en) 2000-09-25 2007-01-08 Cold roll forming method for reducing a diameter of a metal pipe, and a metal pipe product having its diameter reduced by such method
US12/003,386 US20080148797A1 (en) 2000-09-25 2007-12-21 Cold roll forming method for reducing a diameter of a metal pipe, and a metal pipe product having its diameter reduced by such method
US12/314,861 US20090199924A1 (en) 2000-09-25 2008-12-17 Cold roll forming method for reducing a diameter of a metal pipe, and a metal pipe product having its diameter reduced by such method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000290861 2000-09-25
JP2000-290861 2000-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/434,760 Continuation US20060201223A1 (en) 2000-09-25 2006-05-17 Cold roll forming method for reducing a diameter of a metal pipe, and a metal pipe product having its diameter reduced by such method
US12/003,386 Continuation US20080148797A1 (en) 2000-09-25 2007-12-21 Cold roll forming method for reducing a diameter of a metal pipe, and a metal pipe product having its diameter reduced by such method

Publications (1)

Publication Number Publication Date
WO2002024366A1 true WO2002024366A1 (fr) 2002-03-28

Family

ID=18774025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008310 WO2002024366A1 (fr) 2000-09-25 2001-09-25 Procede permettant de former un rouleau lamine a froid a diametre decroissant pour un tuyau metallique et tuyau metallique obtenu au moyen de ce procede

Country Status (7)

Country Link
US (5) US20040050133A1 (ja)
EP (1) EP1336438A4 (ja)
JP (1) JP3498312B2 (ja)
KR (1) KR100695311B1 (ja)
CN (1) CN1222375C (ja)
AU (1) AU2001290265A1 (ja)
WO (1) WO2002024366A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082495A1 (fr) * 2002-04-03 2003-10-09 Nakayama Corporation Procede de moulage a la presse a froid avec reduction du diametre
CN106151695A (zh) * 2016-08-29 2016-11-23 中冶建筑研究总院有限公司 冷辊轧成型的无缝钢管及其制造方法
JP2020510828A (ja) * 2017-04-18 2020-04-09 カチョン ユニバーシティ オブ インダストリー−アカデミック コーオペレイション ファウンデイション 多層構造核燃料被覆管及び多層構造核燃料被覆管の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006143654A (ru) * 2004-05-11 2008-06-20 Тримбл Нэвигейшн Лимитед (Us) Система анализа пути
US20070131610A1 (en) * 2005-12-13 2007-06-14 General Electric Company Membrane-based apparatus and associated method
US20090198505A1 (en) * 2008-02-05 2009-08-06 Peter Gipps Interactive path planning with dynamic costing
KR101138186B1 (ko) * 2009-07-27 2012-04-24 주식회사 포스코 플랜지 일체형 튜브의 제조방법
KR101411755B1 (ko) * 2012-12-04 2014-06-25 용현비엠 주식회사 반경단조용 금형 어셈블리 및 이를 이용한 반경단조 공법
CN103128127A (zh) * 2013-03-14 2013-06-05 合肥工业大学 一种矩形截面钢丝辊拉组合成形工艺及其生产设备
KR101431118B1 (ko) * 2013-12-10 2014-08-18 경인냉열산업 주식회사 타원형 단면의 관재 제조방법 및 이를 적용한 제조장치
CN106163582A (zh) * 2014-04-08 2016-11-23 安东尼奥·桑布瑟蒂 用于软骨重建的可再吸收装置
CN110624975A (zh) * 2019-10-21 2019-12-31 成都先进金属材料产业技术研究院有限公司 带外螺旋凸棱钛合金无缝管的制备方法
KR102322805B1 (ko) * 2020-01-23 2021-11-10 가천대학교 산학협력단 다층구조 핵연료 피복관 제조방법
DE102020111680A1 (de) 2020-04-29 2021-11-04 Valeo Siemens Eautomotive Germany Gmbh Umformvorrichtung zum Herstellen einer gerändelten Rotorwelle, Verfahren zur Herstellung einer Rotorwelle für eine elektrische Maschine, Rotorwelle, Rotor und Verfahren zur Vibrationsanalyse eines Rotors
CN113634600B (zh) * 2021-08-13 2023-08-04 山东中正钢管制造有限公司 一种钢管生产制造热金属检测聚焦装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131450A (en) * 1975-05-12 1976-11-15 Nippon Kokan Kk Method of producing grooved pipes
JPS57112916A (en) * 1980-12-29 1982-07-14 Mitsubishi Metal Corp Working device for outer and inner surface of metallic pipe
JPS59113921A (ja) * 1982-12-20 1984-06-30 Nisshin Steel Co Ltd 2重角管とその製造装置
JPS6012220A (ja) * 1983-07-01 1985-01-22 Nippon Denso Co Ltd 金属チユ−ブの製造方法
JPH0796304A (ja) * 1993-09-29 1995-04-11 Nippon Steel Corp 円管の冷間絞り圧延機列
JPH0957328A (ja) * 1995-08-17 1997-03-04 Kobe Steel Ltd 内面溝付伝熱管の製造方法及びその装置
JPH11104710A (ja) * 1997-10-03 1999-04-20 Yoshitomi Onoda 継目無角形鋼管の製造方法
JPH11277132A (ja) * 1998-03-27 1999-10-12 Nisshin Steel Co Ltd 角管成形スタンド

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE367282C (de) * 1923-01-19 Heinrich Stueting Walzverfahren
BE486464A (ja) *
DE170783C (ja) *
US1662680A (en) * 1923-05-09 1928-03-13 Lindgren Gustaf Abraham Method of rolling down hollow bodies
DE747860C (de) * 1937-12-02 1944-10-18 Rollenstossbank zur Herstellung von Hohlkoerpern
US2367226A (en) * 1940-05-10 1945-01-16 Foster Wheeler Corp Apparatus for producing extended surface tubular members
US2742946A (en) * 1949-11-18 1956-04-24 United States Steel Corp Method of and apparatus for forming a composite tubular support
DE1142823B (de) * 1956-12-31 1963-01-31 Ernst Grob Vorrichtung zum Laengsprofilieren von kalten Werkstuecken, insbesondere von Zahnraedern und Mehrkeilwellen
US3453854A (en) * 1966-05-09 1969-07-08 Lodge & Shipley Co Method of making tubes
NL135455C (ja) * 1967-01-03
US3744290A (en) * 1971-10-18 1973-07-10 Phelps Dodge Copper Prod Production of intermittently fluted tubes
US4125924A (en) * 1977-04-04 1978-11-21 United States Steel Corporation Method of producing composite metal pipe
IT1087435B (it) * 1977-11-08 1985-06-04 Innocenti Santeustacchio Spa Apparecchatura per il comando di rotazione dei rulli di lavoro di un laminatoio per tubi

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131450A (en) * 1975-05-12 1976-11-15 Nippon Kokan Kk Method of producing grooved pipes
JPS57112916A (en) * 1980-12-29 1982-07-14 Mitsubishi Metal Corp Working device for outer and inner surface of metallic pipe
JPS59113921A (ja) * 1982-12-20 1984-06-30 Nisshin Steel Co Ltd 2重角管とその製造装置
JPS6012220A (ja) * 1983-07-01 1985-01-22 Nippon Denso Co Ltd 金属チユ−ブの製造方法
JPH0796304A (ja) * 1993-09-29 1995-04-11 Nippon Steel Corp 円管の冷間絞り圧延機列
JPH0957328A (ja) * 1995-08-17 1997-03-04 Kobe Steel Ltd 内面溝付伝熱管の製造方法及びその装置
JPH11104710A (ja) * 1997-10-03 1999-04-20 Yoshitomi Onoda 継目無角形鋼管の製造方法
JPH11277132A (ja) * 1998-03-27 1999-10-12 Nisshin Steel Co Ltd 角管成形スタンド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1336438A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082495A1 (fr) * 2002-04-03 2003-10-09 Nakayama Corporation Procede de moulage a la presse a froid avec reduction du diametre
CN106151695A (zh) * 2016-08-29 2016-11-23 中冶建筑研究总院有限公司 冷辊轧成型的无缝钢管及其制造方法
JP2020510828A (ja) * 2017-04-18 2020-04-09 カチョン ユニバーシティ オブ インダストリー−アカデミック コーオペレイション ファウンデイション 多層構造核燃料被覆管及び多層構造核燃料被覆管の製造方法

Also Published As

Publication number Publication date
JPWO2002024366A1 (ja) 2004-01-29
EP1336438A4 (en) 2004-06-09
KR20030028848A (ko) 2003-04-10
CN1222375C (zh) 2005-10-12
US20090199924A1 (en) 2009-08-13
KR100695311B1 (ko) 2007-03-14
AU2001290265A1 (en) 2002-04-02
US20060201223A1 (en) 2006-09-14
CN1466496A (zh) 2004-01-07
EP1336438A1 (en) 2003-08-20
JP3498312B2 (ja) 2004-02-16
US20080148797A1 (en) 2008-06-26
US20040050133A1 (en) 2004-03-18
US20070113611A1 (en) 2007-05-24

Similar Documents

Publication Publication Date Title
WO2002024366A1 (fr) Procede permettant de former un rouleau lamine a froid a diametre decroissant pour un tuyau metallique et tuyau metallique obtenu au moyen de ce procede
JP4893858B2 (ja) 冷間圧延による継目無金属管の製造方法
CN112718867B (zh) 一种具有波纹结合面的金属复合管三辊斜轧成形方法
EP1884296B1 (en) Method of manufacturing ultrathin wall metallic tube by cold working method
CN101184561A (zh) 用冷加工法制造超薄壁金属管的方法
US4841760A (en) Process and apparatus for manufacturing tube bends
JP2010051990A (ja) ネック付きエルボの製造方法
CN112439789B (zh) 一种易脱模的芯棒和金属复合管的成形方法
JP6665643B2 (ja) 拡径管部品の製造方法および製造装置
JP3915074B2 (ja) 金属管の冷間成形方法及びこれにより成形された金属管
WO2003082495A1 (fr) Procede de moulage a la presse a froid avec reduction du diametre
JP4461454B2 (ja) 金属管の冷間縮径プレス成形方法及びこれにより成形した金属管
CN107186138A (zh) 弯曲辊锻
JPH01245914A (ja) 外径真円度の優れた金属管の製造方法
JPS6174713A (ja) 継目無鋼管の管端減肉方法および装置
RU2329110C2 (ru) Способ изготовления спирально-профильных труб
RU2628444C1 (ru) Способ изготовления толстостенных крутоизогнутых отводов
KR102315642B1 (ko) 필거 밀의 냉간 압연을 이용하여 다각 형상 튜브를 제조하는 방법
SU825215A1 (ru) Калибр валков для пилигримовой прокатки труб 1
CN216126437U (zh) 一种避免钢管焊接处开裂的模具组
RU2392073C2 (ru) Способ получения опалубочного профиля
RU2296022C2 (ru) Способ изготовления труб
CN1058737A (zh) 高压三通管接头的制造方法
SU1754289A1 (ru) Способ получени полых изделий из трубчатых заготовок
SU1172622A1 (ru) Способ изготовлени конических холоднокатаных труб

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 528424

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037004240

Country of ref document: KR

Ref document number: 018161960

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10381341

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020037004240

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001970204

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001970204

Country of ref document: EP