WO2002018767A1 - Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung - Google Patents

Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung Download PDF

Info

Publication number
WO2002018767A1
WO2002018767A1 PCT/DE2001/003226 DE0103226W WO0218767A1 WO 2002018767 A1 WO2002018767 A1 WO 2002018767A1 DE 0103226 W DE0103226 W DE 0103226W WO 0218767 A1 WO0218767 A1 WO 0218767A1
Authority
WO
WIPO (PCT)
Prior art keywords
adaptation
dependent
mixture
temperature
operating mode
Prior art date
Application number
PCT/DE2001/003226
Other languages
English (en)
French (fr)
Inventor
Gholamabas Esteghlal
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2002522660A priority Critical patent/JP2004507656A/ja
Priority to DE50108335T priority patent/DE50108335D1/de
Priority to EP01962668A priority patent/EP1315894B1/de
Priority to US10/129,221 priority patent/US6725826B2/en
Priority to KR1020027005547A priority patent/KR20020068333A/ko
Publication of WO2002018767A1 publication Critical patent/WO2002018767A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • Leakage air influences have an additive effect per unit of time and errors in the compensation of the retarding of the injection valves have an additive effect per injection. According to legal regulations, emissions-related errors should be recognized with on-board means and, if necessary, an error lamp should be activated.
  • the mixture adaptation is also used for fault diagnosis. If, for example, the corrective action of the adaptation is too great, this indicates an error.
  • the measured lambda value deviates from the physically available lambda value in engines with gasoline direct injection mainly in stratified operation over the service life, the sample distribution and in the case of non-regulated probe heating.
  • the adaptation in shift operation is not expedient. For the adaptation, therefore, a switch is made to homogeneous operation and the mixture adaptation is activated.
  • the engine In shift operation, the engine is operated with a strongly stratified cylinder charge and a large excess of air in order to achieve the lowest possible fuel consumption.
  • the stratified charge is achieved by means of a late fuel injection, which ideally leads to the combustion chamber being divided into two zones: the first zone contains a combustible air-fuel mixture cloud on the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas.
  • the potential for optimizing consumption results from the possibility of avoiding the engine To operate charge exchange losses largely unthrottled. Shift operation is preferred at a comparatively low load.
  • the engine is operated with a homogeneous cylinder charge.
  • the homogeneous cylinder filling results from early fuel injection during the intake process. As a result, there is more time available for mixture formation until combustion.
  • the potential of this operating mode for performance optimization results, for example, from the use of the entire combustion chamber volume for filling with a combustible mixture.
  • the engine temperature must have reached the switch-on temperature threshold and the lambda sensor must be ready for operation.
  • the current values of load and speed must lie in certain areas in which learning takes place. This is known for example from US 4,584,982.
  • Homogeneous operation must also exist. According to the known program, the switchover from shift operation to homogeneous operation does not depend on whether there is an error in the system.
  • the invention aims to increase the period in which the engine can be operated in a shift-optimal manner.
  • Switching to homogeneous operation for diagnosis reduces the consumption advantage of direct petrol injection, since homogeneous operation is less fuel-efficient than shift operation. Switching to homogeneous operation increases the Fuel consumption is therefore unnecessary if there is no fault. It should be avoided as far as possible without worsening the discovery of emissions-related errors.
  • a method for compensating for mismatches in the precontrol of a fuel metering (adaptation) for an internal combustion engine is disclosed, which is operated in the at least two different operating modes homogeneous operation and stratified operation
  • One embodiment provides that the short-term mixture adaptation below the minimum temperature of the area-dependent adaptation is activated.
  • Another embodiment provides that the minimum temperature of the area-dependent adaptation is greater than or equal to 70 ° Celsius.
  • Another embodiment provides that the short-term mixture adaptation is activated for a time in the range of approximately 10 to 20 seconds.
  • a further embodiment provides that the physical urgency is withdrawn when the error in the normal range-dependent mixture adaptation has been learned, so that the range-dependent mixture adaptation is released by the engine control program under normal urgency.
  • a further embodiment provides that the value of the temperature-dependent short-term adaptation is maintained when the car is parked and is reset during the initialization phase after the next start by the value learned in the context of the normal range-dependent mixture adaptation.
  • Another embodiment provides that the operating parameter-dependent (range-dependent) mixture adaptation has a multiplicative and / or additive effect on the fuel metering.
  • Another embodiment provides that the deviation of the current temperature-dependent adaptation factor from a long-term adaptation factor is formed to form the suspected error.
  • the invention is also directed to an electronic control device for carrying out at least one of the methods and embodiments specified above.
  • An essential part of the invention is a short-term mixture adaptation, which also outside the normal switch-on conditions of the adaptation, in particular below the minimum temperature of the region-dependent adaptation.
  • the short-term mixture adaptation is only activated for a very short time in the range of approximately 10 to 20 seconds. If there is an error, the correction value of the short-term temperature-dependent adaptation will deviate from its neutral value.
  • the deviation increases the urgency of the normal mixture adaptation as part of the operating mode control program. If their running conditions are then fulfilled, the normal mixture adaptation is started comparatively quickly.
  • the physical urgency is withdrawn and the range-dependent mixture adaptation only runs when it is released by the engine control program under normal urgency. Since the temperature-dependent short-term adaptation retains its value when the car is parked and is incorrect again in the adapted state the next time it is started, it is reset during the initialization phase after the next start by the value learned as part of the normal area-dependent GemiSchad adaption.
  • the maximum of the integrator is corrected downwards or upwards depending on the learned error, so that, for example, only 5% correction is allowed for a 20% learned error ,
  • the switchover to homogeneous operation takes place only at long intervals.
  • the switchover to homogeneous operation which is less favorable in terms of consumption, is activated only very briefly and the temperature-dependent mixture adaptation is immediately activated if a fault is suspected. If there is no fault in the system, the mixture adaptation is activated less frequently, so that the period in which the engine can be operated in shift mode is optimized.
  • FIG. 1 shows the technical environment of the invention.
  • FIG. 2 illustrates the formation of a fuel metering signal on the basis of the signals from FIG. 1 and
  • FIG. 3 discloses the formation of a temperature-dependent adaptation variable as used in the invention and
  • FIG. 4 represents an embodiment of the invention in the form of functional blocks.
  • FIG. 1 in FIG. 1 represents an internal combustion engine with an intake manifold 2, an exhaust pipe 3, a fuel metering device 4, sensors 5-8 for operating parameters of the engine and a control unit 9.
  • the fuel metering device 4 can, for example, consist of an arrangement of injection valves for direct injection of There is fuel in the combustion chambers of the internal combustion engine.
  • the sensor 5 supplies the control unit with a signal about the air mass ml sucked in by the engine.
  • Sensor 6 provides an engine speed signal n.
  • Sensor 7 provides the engine temperature T and sensor 8 provides a signal Us about the exhaust gas composition of the engine.
  • the control unit forms, in addition to further manipulated variables, the fuel metering signals ti for controlling the fuel metering means 4 such that a desired behavior of the engine, in particular a desired exhaust gas composition, is established.
  • FIG. 2 shows the formation of the fuel metering signal.
  • Block 2.1 represents a map, which is determined by the speed n and the relative air charge rl is addressed and the pilot control values rk for the formation of the fuel metering signals are stored.
  • the relative air filling rl is related to a maximum filling of the combustion chamber with air and thus to a certain extent indicates the fraction of the maximum combustion chamber or cylinder filling. It is essentially formed from the signal ml, rk corresponds to the fuel quantity assigned to the air quantity rl.
  • Block 2.2 shows the known multiplicative lambda control intervention.
  • a mismatch in the amount of fuel to the amount of air is shown in the signal Us of the exhaust gas probe.
  • a controller 2.3 forms the control manipulated variable fr, which reduces the mismatch via the intervention 2.2.
  • the metering signal for example a trigger pulse width for the injection valves, can already be formed from the signal corrected in this way in block 2.4.
  • Block 2.4 thus represents the conversion of the relative and corrected fuel quantity into a real control signal taking into account fuel pressure, injector geometry, etc.
  • Blocks 2.5 to 2.9 represent the known operating parameter-dependent (area-dependent) mixture adaptation, which can have a multiplicative and / or additive effect.
  • the circle 2.9 should represent these 3 possibilities.
  • the switch 2.5 is opened or closed by the means 2.6, wherein the means 2.6 are supplied with operating parameters of the internal combustion engine, such as temperature T, air mass ml and speed n. Means 2.6 in connection with the switch 2.5 thus enables an activation of the three mentioned adaptation options depending on the operating parameter range.
  • the formation of the Adaptation intervention fra on the fuel metering signal formation is illustrated by blocks 2.7 and 2.8. With switch 2.5 closed, block 2.7 forms the mean value frm of the control variable fr.
  • Deviations of the mean value frm from the neutral value 1 are transferred from block 2.8 to the adaptation intervention variable fra.
  • the control manipulated variable fr initially approaches 1.05 due to a mismatch in the precontrol.
  • the deviation 0.05 from the value 1 is transferred from block 2.8 to the value fra of the adaptation intervention.
  • fra then goes to 1.05, with the result that fr goes back to 1.
  • the adaptation ensures that mismatches in the pilot control do not have to be corrected every time the operating point changes.
  • This adaptation of the adaptation variable fra is carried out at high temperatures of the internal combustion engine, for example above a cooling water temperature of 70 ° Celsius with switch 2.5 then closed; Once adjusted, fra also affects the formation of the fuel metering signal when switch 2.5 is open.
  • Block 3.1 supplies the deviation of the mean control manipulated variable frm from the value 1 to an integrator block 3.2.
  • Block 3.3 activates the integrator for comparatively low engine temperatures T from an interval TMN ⁇ T ⁇ TMX.
  • TMN as the lower interval limit can be, for example, 20 ° Celsuis;
  • TMX as the upper interval limit can correspond, for example, to the temperature at which the conventional adaptation by closing the switch 2.5 is activated. A typical value for this temperature is 70 ° Celsius.
  • the output value of the integrator with the value frak, provides a measure of the mismatch when the engine is comparatively cold.
  • This value is used when the engine is cold
  • Fuel metering signal formation is taken into account without there being any differences at high temperatures from the known adaptation when the engine is warm.
  • ftk represents a multiplicative correction that varies between zero and one.
  • the value zero results when the engine is warm, that is, when T> TMX.
  • the minimum selection in block 3.7 returns the value TMX.
  • Block 3.8 the difference between TMX and TMX is zero, which is fed to the quotient formation in block 3.9 as a counter.
  • Block 3.8 accordingly delivers the value zero for the size of the temperature-dependent size ftk.
  • the sum frat therefore has the value 1 and does not change the fuel metering signal formation when the engine is warm when the multiplicative link in block 2.10.
  • ftk has a maximum weakening effect on frak.
  • T zero "Celsius
  • the minimum selection delivers the value zero and the subsequent quotient formation gives the value 1.
  • ftk is then neutral and effective minimally weakening or not weakening to frak. To compensate for the addition of 1 in block 3.6 for this case, a subtraction of 1 takes place in block 3.4.
  • the map 3.10 provides values K for the
  • Integration speed in integrator 3.2 depends on values for drl and n. For example, K becomes smaller the larger drl.
  • drl is the change in the intake air mass, which is particularly large, for example, in transitional operating states. In this way, mismatches have an effect
  • Block 4.1 stands for the formation of the sizes frat and frak shown in FIG. 3.
  • a long-term adaptation factor fratia is first formed in the area of the temperature-dependent mixture adaptation (block 4.2). To a certain extent, this is the proportion of the cold adaptation factor frak that is always with the engine cold occurs. If there is always a similar value, e.g. a value of 2.5%, for the temperature-dependent adaptation in the error-free state, this value does not indicate an error in any case. This always occurring value is saved in the control unit.
  • the difference formation and the amount formation are represented by blocks 4.3 and 4.4. Then a comparison of dfrat with an error suspicion threshold FVLRAS (block 4.5) takes place. If this is exceeded, the condition B-fvlra is set in block 4.6 via a flip-flop.
  • the suspected error corresponds to a high urgency for the normal adaptation that takes place when the engine is warm. Due to the high urgency that resulted from the setting of the suspected error in the context of the short-term temperature-dependent adaptation, as soon as the other switch-on conditions for the normal mixture adaptation exist, the system switches to homogeneous operation and the normal mixture adaptation is activated (block 4.7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Vorgestellt wird ein Verfahren zur Kompensation von Fehlpassungen der Vorsteuerung einer Kraftstoffzumessung für einen Verbrennungsmotor, der in den wenigstens zwei verschiedenen Betriebsarten Homogenbetrieb und Schichtbetrieb betrieben wird, wobei im Homogenbetrieb eine Gemischregelung und eine Adaption der Gemischregelung stattfindet und wobei zwischen den Betriebsarten in Abhängigkeit von einer Soll-Bettriebsart umgeschaltet wird, die aus einer Mehrzahl von Betriebsartenanforderungen ermittelt wird, wobei jeder der Betriebsartenanforderungen eine Priorität zugeordnet ist und wobei die Ermittlung der Soll-Betriebsart in Abhängigkeit von den Prioritäten der Betriebsartenanforderungen durchgeführt wird, wobei kurzzeitig auch außerhalb der normalen Einschaltbedingungen der Adaption auf Homogenbetrieb mit Aktivierung der Adaption umgeschaltet wird und wobei eine Abweichung der Adaptionsgröße von ihrem neutralen Wert während der kurzzeitigen Aktivierung als Fehlerverdacht gewertet wird und wobei das Motorsteuerungsprogramm beim Vorliegen eines Fehlersverdachtes die Priorität der Adaption unter normalen Einschaltbedingungen heraufsetzt.

Description

Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung
Stand der Technik
Es ist bereits bekannt, bei der Regelung des Kraftstoff/Luftverhältnisses für Verbrennungsmotoren eine Vorsteuerung mit einer Regelung zu überlagern. Weiter ist bekannt, aus dem Verhalten der Regelstellgröße weitere Korrekturgrößen abzuleiten um Fehlanpassungen der Vorsteuerung an veränderte Betriebsbedingungen zu kompensieren. Diese Kompensation wird auch als Adaption bezeichnet. Die US 4 584 982 beschreibt beispielsweise eine Adaption mit unterschiedlichen Adaptionsgrößen in verschiedenen Bereichen des Last/Drehzahlspektrums eines Verbrennungsmotors (Bereichsadaption) . Die verschiedenen Adaptionsgrößen richten sich auf die Kompensation unterschiedlicher Fehler. Nach Ursache und Wirkung lassen sich drei Fehlerarten unterscheiden: Fehler eines Heißfilmluftmassenmessers wirken sich multiplikativ auf die Kraftstoffzumessung aus. Lecklufteinflüsse wirken additiv pro Zeiteinheit und Fehler bei der Kompensation der Anzugsverzögerung der Einspritzventile wirken additiv pro Einspritzung. Nach gesetzlichen Vorschriften sollen abgasrelevante Fehler mit On Board Mitteln erkannt werden und gegebenenfalls soll eine Fehlerlampe aktiviert werden. Die Gemischadaption wird auch zur Fehlerdiagnose genutzt. Ist beispielsweise der Korrektureingriff der Adaption zu groß, deutet dies auf einen Fehler hin.
Über der Lebensdauer, der ExemplarStreuung und bei nichtgeregelter Sondenheizung weicht der gemessene Lambdawert vom physikalisch vorhandenen Lambdawert bei Motoren mit Benzindirekteinspritzung hauptsächlich im Schichtbetrieb ab.
Da die Gemischadaption das gemessene Lambda für das Lernen des Fehlers in Betracht zieht, ist die Adaption im Schichtbetrieb nicht zielführend. Für die Adaption wird daher in den Homogenbetrieb umgeschaltet und die Gemischadaption aktiviert.
Aus der DE 1 98 50 586 ist ein Motorsteuerungsprogramm bekannt, das die Umschaltung zwischen Schichtbetrieb und Homogenbetrieb steuert.
Im Schichtbetrieb wird der Motor mit einer stark geschichteten Zylinderladung und hohem Luftüberschuß betrieben, um einen möglichst niedrigen Kraftstoffverbrauch zu erreichen. Die geschichtete Ladung wird durch eine späte Kraftstoffeinspritzung erreicht, die im Idealfall zur Aufteilung des Brennraums in zwei Zonen führt: Die erste Zone enthält eine brennfähige Luft-Kraftstoff-Gemischwolke an der Zündkerze. Sie wird von der zweiten Zone umgeben, die aus einer isolierenden Schicht aus Luft und Restgas besteht. Das Potential zur Verbrauchsoptimierung ergibt sich aus der Möglichkeit, den Motor unter Vermeidung von Ladungswechselverlusten weitgehend ungedrosselt zu betreiben. Der Schichtbetrieb wird bei vergleichsweise niedriger Last bevorzugt.
Bei höherer Last, wenn die Leistungsoptimierung im Vordergrund steht, wird der Motor mit homogener Zylinderfüllung betrieben. Die homogene Zylinderfüllung ergibt sich aus einer frühen Kraftsto feinspritzung während des Ansaugvorganges. Als Folge steht bis zur Verbrennung eine größere Zeit zur Gemischbildung zur Verfügung. Das Potential dieser Betriebsart zur Leistungsoptimierung ergibt sich zum Beispiel aus der Ausnutzung des gesamten Brennraumvolumens zur Füllung mit brennfähigem Gemisch.
Hinsichtlich der bekannten Adaption existieren mehrere Einschaltbedingungen:
So muß beispielsweise die Motortemperatur die Einschalttemperaturschwelle erreicht haben und die Lambdasonde muß betriebsbereit sein. Weiter müssen die aktuellen Werte von Last und Drehzahl in bestimmten Bereichen liegen, in denen jeweils gelernt wird. Dies ist beispielsweise aus der US 4 584 982 bekannt. Weiterhin muß Homogenbetrieb vorliegen. Nach dem bekannten Programm ist die Umschaltung vom Schichtbetrieb in den Homogenbetrieb nicht davon abhängig, ob ein Fehler im System vorliegt.
Die Erfindung zielt darauf, den Zeitraum, in dem der Motor verbrauchsoptimal im Schichtbetrieb gefahren werden kann, zu vergrößern. Die Umschaltung auf Homogenbetrieb zur Diagnose verringert den Verbrauchsvorteil der Benzindirekteinspritzung, da der Homogenbetrieb verbrauchsungünstiger ist als der der Schichtbetrieb. Eine Umschaltung in den Homogenbetrieb erhöht den Kraftstoffverbrauch daher dann, wenn kein Fehler vorliegt, unnötig. Sie soll soweit wie möglich vermieden werden, ohne die Entdeckung abgasrelevanter Fehler zu verschlechtern.
Diese Wirkung wird mit den Merkmalen des Anspruchs 1 erzielt.
Im einzelnen wird dazu ein Verfahren zur Kompensation von Fehlanpassungen der Vorsteuerung einer Kraftstoffzumessung (Adaption) für einen Verbrennungsmotor offenbart, der in den wenigstens zwei verschiedenen Betriebsarten Homogenbetrieb und Schichtbetrieb betrieben wird,
- bei dem im Homogenbetrieb eine Gemischregelung und eine Adaption der Gemischregelung stattfindet
- und bei dem zwischen den Betriebsarten in Abhängigkeit von einer Soll-Betriebsart umgeschaltet wird, die aus einer Mehrzahl von Betriebsartenanforderungen ermittelt wird, wobei jeder der Betriebsartenanforderungen eine Priorität zugeordnet ist
- und bei dem die Ermittlung der Soll-Betriebsart in Abhängigkeit von den Prioritäten der Betriebsartenanforderungen durchgeführt wird,
- wobei kurzzeitig auch außerhalb der normalen Einschaltbedingungen einer bereichsabhängigen Adaption auf Homogenbetrieb mit Aktivierung einer temperaturabhängigen Adaption umgeschaltet wird
- und bei dem eine Abweichung der Adaptionsgröße von ihrem neutralen Wert während der kurzzeitigen Aktivierung der temperaturabhängigen Adaption als Fehlerverdacht gewertet wird und bei dem das Motorsteuerungsprogramm beim Vorliegen eines Fehlerverdachtes die Priorität der bereichsabhängigen Adaption unter normalen Einschaltbedingungen heraufsetzt. Eine Ausführungsform sieht vor, daß die kurzeitige Gemischadaption unterhalb der Mindesttemperatur der bereichsabhängigen Adaption aktiviert wird.
Eine weitere Ausführungsform sieht vor, daß die Mindesttemperatur der bereichsabhängigen Adaption größer oder gleich 70° Celsius ist.
Eine weitere Ausführungsform sieht vor, daß die kurzzeitige Gemischadaption für eine Zeit im Bereich von etwa 10 bis 20 Sekunden aktiviert wird.
Eine weitere Ausführungsform sieht vor, daß die physikalische Dringlichkeit zurückgenommen wird wenn der Fehler in der normalen bereichsabhängigen Gemischadaption gelernt worden ist, so daß die bereichsabhängige Gemischadaption von dem Motorsteuerungsprogramm bei normaler Dringlichkeit freigegeben wird.
Eine weitere Ausführungsform sieht vor, daß der Wert der temperaturabhängigen Kurzzeitadaption beim Abstellen des Autos beibehalten wird und während der Initialisierungsphase nach dem nächsten Start um den im Rahmen der normalen bereichsabhängigen Gemischadadaption gelernten Wert zurückgesetzt wird.
Eine weitere Ausführungsform sieht vor, daß die betriebspara eterabhängige (bereichsabhängige) Gemischadaption multiplikativ und/oder additiv auf die Kraftstoffzumessung einwirkt.
Eine weitere Ausführungsform sieht vor, daß der oder die Werte der bereichsabhängigen Adaption oberhalb einer Temperaturschwelle erneuert werden und auf die
Kraftstoffzu essung unabhängig von der Temperatur einwirken.
Eine weitere Ausführungsform sieht vor, daß zur Bildung des Fehlerverdachtes die Abweichung des aktuellen temperaturabhängigen Adaptionsfaktors von einem Langzeitadaptionsfaktor gebildet wird.
Die Erfindung richtet sich auch auf eine elektronische Steuereinrichtung zur Durchführung wenigstens einer der oben angegebenen Verfahren und Ausführungsformen.
Ein wesentlicher Bestandteil der Erfindung ist eine kurzeitige Gemischadaption, die auch außerhalb der normalen Einschaltbedingungen der Adaption, insbesondere unterhalb der Mindesttemperatur der bereichsabhängigen Adaption. Erfindungsgemäß wird die kurzzeitige Gemischadaption nur für eine sehr kurze Zeit im Bereich von etwa 10 bis 20 Sekunden aktiviert. Wenn ein Fehler vorliegt, wird die Korrekturgröße der kurzzeitigen temperaturabhängigen Adaption von ihrem neutralen Wert abweichen.
Die Abweichung setzt erfindungsgemäß im Rahmen des Betriebsartensteuerungsprogramms die Dringlichkeit der normalen Gemischadaption herauf. Wenn dann deren Laufbedingungen erfüllt sind, wird die normale Gemischadaption vergleichsweise schnell gestartet.
Wenn der Fehler in der normalen bereichsbhängigen Gemischadaption gelernt worden ist, wird die physikalische Dringlichkeit zurückgenommen und damit läuft die bereichsabhängige Gemischadaption nur dann, wenn sie von dem Motorsteuerungsprogramm bei normaler Dringlichkeit freigegeben wird. Da die temperaturabhängige Kurzzeitadaption beim Abstellen des Autos ihren Wert behält und bei dem nächsten Start wieder im ausadaptierten Zustand falsch ist, wird sie während der Initialisierungsphase nach dem nächsten Start um den im Rahmen der normalen bereichsabhängigen GemiSchadadaption gelernten Wert zurückgesetzt.
Dies hat den Vorteil, dass im nicht adaptierten Zustand sofort die physikalische Dringlichkeit der normalen Adaption steigt.
Da die temperaturabhängige Adaption im normalen Zustand nur 3 bis 4 % Korrektur liefern soll, wird das Maximum des Integrators abhängig von dem gelernten Fehler nach unten oder oben korrigiert, so dass zum Beispiel bei einem zu 20 % gelernten Fehler nur noch 5 % Korrektur erlaubt wird.
Die Erfindung liefert folgende Vorteile:
Im fehlerfreien Zustand wird nur in großen Zeitabständen in den Homogenbetrieb umgeschaltet. Im fehlerhaften Zustand beim kalten Motor werden zuerst sehr kurze und dann lange Zeitabstände gefahren. Die kurzen Zeitabstände werden beim nicht gelernten Fehler nach dem Start wiederholt. Beim gelernten Fehler wird wieder in langen Zeitabständen Homogenbetrieb gefahren. Beim Verfahren nach der Erfindung wird nur sehr kurz in den verbrauchsungünstigeren Homogenbetrieb umgeschaltet und beim Fehlerverdacht die temperaturabhängige Gemischadaption sofort aktiviert. Wenn kein Fehler im System vorliegt, wird die Gemischadaption seltener aktiviert so dass sich der Zeitraum verlängert, in dem der Motor verbrauchsoptimal im Schichtbetrieb gefahren werden kann. Im folgenden wird ein Ausführungsbeispiel der Erfindung unter Bezug auf die Zeichnung erläutert.
Fig. 1 zeigt das technische Umfeld der Erfindung. Fig. 2 verdeutlicht die Bildung eines Kraftstoffzumesssignals auf der Basis der Signale aus Fig. 1 und Fig. 3 offenbart die Bildung einer temperaturabhängigen Adaptionsgröße, wie sie bei der Erfindung verwendet wird und Fig. 4 repräsentiert ein Ausführungsbeispiel der Erfindung in Form von Funktionsblöcken.
Die 1 in der Fig. 1 repräsentiert einen Verbrennungsmotor mit einem Saugrohr 2, einem Abgasrohr 3, einem Kraftstoffzumessmittel 4, Sensoren 5 - 8 für Betriebsparameter des Motors und einem Steuergerät 9. Das Kraftstoffzumessmittel 4 kann beispielsweise aus einer Anordnung von Einspritzventilen zur direkten Einspritzung von Kraftstoff in die Brennräume des Verbrennungsmotors bestehen.
Der Sensor 5 liefert dem Steuergerät ein Signal über die vom Motor angesaugte Luftmasse ml. Sensor 6 liefert ein Motordrehzahlsignal n. Sensor 7 stellt die Motortemperatur T bereit und Sensor 8 liefert ein Signal Us über die AbgasZusammensetzung des Motors. Aus diesen und gegebenenfalls weiteren Signalen über weitere Betriebsparameter des Motors bildet das Steuergerät neben weiteren Stellgrößen die KraftstoffZumesssignale ti zur Ansteuerung des Kraftstoffzumessmittels 4 so, dass sich ein gewünschtes Verhalten des Motors, insbesondere eine gewünschte AbgasZusammensetzung einstellt.
FIG. 2 zeigt die Bildung des Kraftstoffzumesssignals . Block 2.1 stellt ein Kennfeld dar, das durch die Drehzahl n und die relative Luftfüllung rl adressiert wird und in dem Vorsteuerwerte rk für die Bildung der Kraftstoffzumesssignale abgelegt sind. Die relative Luftfüllung rl ist auf eine maximale Füllung des Brennraums mit Luft bezogen und gibt damit gewissermaßen den Bruchteil der maximalen Brennraum- oder Zylinderfüllung an. Sie wird im wesentlichen aus dem Signal ml gebildet, rk entspricht der zur Luftmenge rl zugeordneten Kraftstoffmenge.
Block 2.2 zeigt den bekannten multiplikativen Lambdaregeleingriff . Eine Fehlanpassung der Kraftstoffmenge an die Luftmenge bildet sich im Signal Us der Abgassonde ab. Aus diesem formt ein Regler 2.3 die Regelstellgröße fr, die über den Eingriff 2.2 die Fehlanpassung verringert.
Aus dem so korrigierten Signal kann im Block 2.4 bereits das Zumesssignal, beispielsweise eine Ansteuerimpulsbreite für die Einspritzventile gebildet werden. Block 2.4 repräsentiert damit die Umrechnung der relativen und korrigierten Kraftstoffmenge in ein reales Ansteuersignal unter Berücksichtigung von Kraftstoffdruck, Einspritzventilgeometrie etc.
Die Blöcke 2.5 bis 2.9 repräsentieren die bekannte betriebsparameterabhängige (bereichsabhängige) Gemischadaption, die multiplikativ und/oder additiv wirken kann. Der Kreis 2.9 soll diese 3 Möglichkeiten repräsentieren. Der Schalter 2.5 wird vom Mittel 2.6 geöffnet oder geschlossen, wobei dem Mittel 2.6 Betriebsparameter des Verbrennungsmotors wie Temperatur T, Luftmasse ml und Drehzahl n zugeführt werden. Mittel 2.6 in Verbindung mit dem Schalter 2.5 erlaubt damit eine betriebsparameterbereichsabhängige Aktivierung der drei genannten Adaptionsmöglichkeiten. Die Bildung des Adaptionseingriffs fra auf die Kraftstoffzumeßsignalbildung wird durch die Blöcke 2.7 und 2.8 veranschaulicht. Block 2.7 bildet bei geschlossenem Schalter 2.5 den Mittelwert frm der Regelstellgröße fr. Abweichungen des Mittelwerts frm vom neutralen Wert 1 werden vom Block 2.8 in die Adaptionseingriffsgröße fra übernommen. Beispielsweise gehe die Regelstellgrösse fr aufgrund einer Fehlanpassung der Vorsteuerung zunächst gegen 1,05. Die Abweichung 0,05 vom Wert 1 wird vom Block 2.8 in den Wert fra des Adaptionseingriffs übernommen. Bei einem multiplikativen fra-Eingriff geht dann fra gegen 1,05 mit der Folge, dass fr wieder gegen 1 geht. Die Adaption sorgt damit dafür, dass Fehlanpassungen der Vorsteuerung nicht bei jedem Betriebspunktwechsel erneut ausgeregelt werden müssen. Diese Anpassung der Adaptionsgröße fra wird bei hohen Temperaturen des Verbrennungsmotors, beispielsweise oberhalb einer Kühlwassertemperatur von 70°Celsius bei dann geschlossenem Schalter 2.5 durchgeführt; einmal angepasst, wirkt fra aber auch bei offenem Schalter 2.5 auf die Bildung des Kraftstoffzumesssignals ein..
Diese bekannte Adaption wird im Rahmen der Erfindung durch die weitere Korrektur frat ergänzt, die in der Verknüpfung 2.10 wirksam wird.
Ein Ausführungsbeispiel der frat-Bildung ist in der Fig. 3 dargestellt. Block 3.1 liefert die Abweichung der mittleren Regelstellgröße frm vom Wert 1 an einen Integratorblock 3.2. Block 3.3 aktiviert den Integrator für vergleichsweise niedrige Motortemperaturen T aus einem Intervall TMN < T < TMX. TMN als untere Intervallgrenze kann beispielsweise 20°Celsuis betragen; TMX als oberer Intervallgrenze kann beispielsweise der Temperatur entsprechen, bei der die herkömmliche Adaption über ein Schließen des Schalters 2.5 aktiviert wird. Ein typischer Wert für diese Temperatur ist 70°Celsius.
Der Ausgangswert des Integrators liefert mit dem Wert frak ein Maß für die Fehlanpassung bei vergleichsweise kaltem Motor.
Dieser Wert wird bei kaltem Motor bei der
Kraftstoffzumesssignalbildung berücksichtigt, ohne das sich bei hohen Temperaturen Unterschiede zur bekannten Adaption bei warmem Motor ergeben.
Dies wird beispielsweise durch die Blöcke 3.4 bis 3.6 und 2.10 erreicht.
Wesentlich ist in diesem Zusammenhang zunächst die Verknüpfung des Integratorausgangs frak mit einer temperaturabhängigen Größe ftk. In dem Beispiel stellt ftk eine zwischen Null und Eins variierende multiplikative Korrektur dar. Der Wert Null ergibt sich bei warmem Motor, das heißt bei T > TMX. Dann liefert die Minimalauswahl im Block 3.7 den Wert TMX. Im Block 3.8 ergibt sich als Differenz von TMX und TMX der Wert Null, der der Quotientenbildung im Block 3.9 als Zähler zugeführt wird. Block 3.8 liefert entsprechend den Wert Null für die Größe der temperaturabhängigen Größe ftk. Zu diesem Wert ftk = Null wird im Block 3.6 der Wert 1 addiert. Die Summe frat hat demnach den Wert 1 und ändert bei der multiplikativen Verknüpfung im Block 2.10 die Kraftstoffzumesssignalbildung bei warmem Motor nicht. Mit anderen Worten: Bei warmem Motor wirkt ftk maximal abschwächend auf frak ein. Bei kaltem Motor mit beispielsweise T = Null "Celsius liefert die Minimalauswahl den Wert Null und die nachfolgende Quotientenbildung den Wert 1. ftk ist dann neutral und wirkt minimal abschwächend beziehungsweise nicht abschwächend auf frak ein. Um die Addition der 1 im Block 3.6 für diesen Fall zu kompensieren, erfolgt im Block 3.4 eine Subtraktion von 1. Bei kaltem Motor (T = Null) wirkt frak demnach als (frak-1) *l+l=frak unverändert und damit nicht abgeschwächt auf die Kraftstoffzumesssignalbildung ein. Mit anderen Worten: Die weitere adaptive (temperaturabhängige) Korrektur wirkt nur bei kaltem Motor. Zwischen den dargestellten Extremwerten variiert die Korrektur stetig.
Das Kennfeld 3.10 liefert Werte K für die
Integrationsgeschwindigkeit im Integrator 3.2 abhängig von Werten für drl und n. Dabei wird beispielsweise K umso kleiner, je größer drl ist. drl ist die Änderung der angesaugten Luftmasse, die beispielsweise bei Übergangsbetriebszuständen besonders groß ist. Auf diese Weise wirken sich Fehlanpassungen in
Übergangsbetriebszuständen nur in abgeschwächter Form auf die Adaption aus.
Da die Motortemperatur sich ändert und der im Integrator gelernte Wert frak unabhängig von der Temperatur sein soll, wird die frm Abweichung von Eins mit dem Faktor ftk multipliziert .
Fig. 4 repräsentiert ein Ausführungsbeispiel der Erfindung in Form von Funktionsblöcken.
Block 4.1 steht für die in der Fig. 3 dargestellte Bildung der Größen frat und frak. Zur Bildung des Fehlerverdachtes wird im Bereich der temperaturabbhängigen Gemischadaption zunächst ein Langzeitadaptionsfaktor fratia gebildet (Block 4.2). Dies ist gewissermaßen der Anteil des Kaltadaptionsfaktors frak, der immer bei kaltem Motor auftritt. Wenn sich bei der temperaturabhängigen Adaption im fehlerfreien Zustand immer ein ähnlicher Wert, bspw. ein Wert von 2,5% einstellt, zeigt dieser Wert jedenfalls keinen Fehler an. Dieser immer auftretende Wert wird im Steuergerät gespeichert.
Weiter wird zur Bildung des Fehlerverdachtes die Abweichung des aktuellen temperaturabhängigen Adaptionsfaktors frak vom Langzeitadaptionsfaktor fratia gebildet:
dfrat = Betrag (frak - fratia)
Die Differenzbildung und die Betragsbildung werden durch die Blöcke 4.3 und 4.4 dargestellt. Anschließend erfolgt ein Vergleich von dfrat mit einer Fehlerverdachtsschwelle FVLRAS (Block 4.5). Wird diese überschritten, so wird die Bedingung B-fvlra im Block 4.6 über ein Flip-Flop gesetzt. Der Fehlerverdacht entspricht einer hohen Dringlichkeit für die normale, bei warmem Motor erfolgende Adaption. Aufgrund der hohen Dringlichkeit, die sich aus dem Setzen des begründeten Fehlerverdachts im Rahmen der kurzzeitigen temperaturabhängigen Adaption ergeben hat, wird anschließend, sobald die übrigen Einschaltbedingungen für die normale Gemischadaption vorliegen, beschleunigt in den Homogenbetrieb umgeschaltet und die normale Gemischadaption aktiviert (Block 4.7).

Claims

Ansprüche
1. Verfahren zur Kompensation von Fehlanpassungen der Vorsteuerung einer Kraftstoffzumessung für einen Verbrennungsmotor, der in den wenigstens zwei verschiedenen Betriebsarten Homogenbetrieb und Schichtbetrieb betrieben wird,
- wobei im Homogenbetrieb eine Gemischregelung und eine Adaption der Gemischregelung stattfindet
- und wobei zwischen den Betriebsarten in Abhängigkeit von einer Soll-Betriebsart umgeschaltet wird, die aus einer Mehrzahl von Betriebsartenanforderungen ermittelt wird, wobei jeder der Betriebsartenanforderungen eine Priorität zugeordnet ist
- und wobei die Ermittlung der Soll-Betriebsart in Abhängigkeit von den Prioritäten der Betriebsartenanforderungen durchgeführt wird,
- wobei kurzzeitig auch außerhalb der normalen Einschaltbedingungen einer bereichsabhängigen Adaption auf Homogenbetrieb mit Aktivierung einer temperaturabhängigen Adaption umgeschaltet wird
- und wobei eine Abweichung der temperaturabhängigen Adaptionsgröße von ihrem neutralen Wert während der kurzzeitigen Aktivierung als Fehlerverdacht gewertet wird und wobei das Motorsteuerungsprogramm beim Vorliegen eines Fehlerverdachtes die Priorität der Adaption unter normalen Einschaltbedingungen heraufsetzt.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß die kurzeitige Gemischadaption unterhalb der Mindesttemperatur der bereichsabhängigen Adaption aktiviert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Mindesttemperatur der bereichsabhängigen Adaption größer oder gleich 70° Celsius liegt,
4 . Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die kurzzeitige Gemischadaption für eine Zeit im Bereich von etwa 10 bis 20 Sekunden aktiviert wird.
)
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die physikalische Dringlichkeit zurückgenommen wird wenn der Fehler in der normalen bereichsabhängigen Gemischadaption gelernt worden ist, so daß die bereichsabhängige Gemischadaption von dem Motorsteuerungsprogramm bei normaler Dringlichkeit freigegeben wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Wert der temperaturabhängigen Kurzzeitadaption beim Abstellen des Autos beibehalten wird und während der Initialisierungsphase nach dem nächsten Start um den im Rahmen der normalen bereichsabhängigen Gemischadadaption gelernten Wert zurückgesetzt wird.
1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die betriebsparameterabhängige (bereichsabhängige) Gemischadaption multiplikativ und/oder additiv auf die Kraftstoffzumessung einwirkt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der oder die Werte der bereichsabhängigen Adaption oberhalb einer Temperaturschwelle erneuert werden und auf die Kraftstoffzumessung unabhängig von der Temperatur einwirken.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Bildung des Fehlerverdachtes die Abweichung des aktuellen temperaturabhängigen Adaptionsfaktors von einem Langzeitadaptionsfaktor gebildet wird.
10. Elektronische Steuereinrichtung zur Durchführung wenigstens eines der Verfahren nach den Ansprüchen 1 - 9.
PCT/DE2001/003226 2000-09-01 2001-08-23 Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung WO2002018767A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002522660A JP2004507656A (ja) 2000-09-01 2001-08-23 ガソリン直噴装置を備えた内燃機関における混合気適合方法
DE50108335T DE50108335D1 (de) 2000-09-01 2001-08-23 Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
EP01962668A EP1315894B1 (de) 2000-09-01 2001-08-23 Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
US10/129,221 US6725826B2 (en) 2000-09-01 2001-08-23 Mixture adaptation method for internal combustion engines with direct gasoline injection
KR1020027005547A KR20020068333A (ko) 2000-09-01 2001-08-23 가솔린 직접 분사 내연 기관에서 혼합물 어댑션 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10043093.7 2000-09-01
DE10043093A DE10043093A1 (de) 2000-09-01 2000-09-01 Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung

Publications (1)

Publication Number Publication Date
WO2002018767A1 true WO2002018767A1 (de) 2002-03-07

Family

ID=7654635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/003226 WO2002018767A1 (de) 2000-09-01 2001-08-23 Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung

Country Status (8)

Country Link
US (1) US6725826B2 (de)
EP (1) EP1315894B1 (de)
JP (1) JP2004507656A (de)
KR (1) KR20020068333A (de)
CN (1) CN1388858A (de)
DE (2) DE10043093A1 (de)
RU (1) RU2002113751A (de)
WO (1) WO2002018767A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093537A1 (de) * 2006-02-13 2007-08-23 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer brennkraftmaschine mit adaptiver lambda-regelung

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308650B3 (de) * 2003-02-27 2004-12-30 Siemens Ag Motorsteuerung und zugehörige Betriebsverfahren
JP4085900B2 (ja) * 2003-07-08 2008-05-14 日産自動車株式会社 筒内直接噴射式火花点火エンジンの燃料噴射制御装置
DE102004041217A1 (de) * 2004-08-26 2006-03-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US8116931B2 (en) * 2007-05-15 2012-02-14 GM Global Technology Operations LLC Fast fuel adjustment system diagnostic systems and methods
JP4407730B2 (ja) * 2007-08-31 2010-02-03 株式会社デンソー 内燃機関の燃料噴射制御装置
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US7628137B1 (en) * 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8365700B2 (en) 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
WO2011025512A1 (en) * 2009-08-27 2011-03-03 Mcallister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8413634B2 (en) * 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8225768B2 (en) * 2008-01-07 2012-07-24 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8192852B2 (en) * 2008-01-07 2012-06-05 Mcalister Technologies, Llc Ceramic insulator and methods of use and manufacture thereof
DE102008052061A1 (de) 2008-10-17 2010-04-22 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Kraftstoffverbrauchssignal für eine Motorsteuerung
US8267063B2 (en) 2009-08-27 2012-09-18 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
SG181518A1 (en) 2009-12-07 2012-07-30 Mcalister Technologies Llc Adaptive control system for fuel injectors and igniters
MX2012006563A (es) 2009-12-07 2012-08-23 Mcalister Technologies Llc Dispositivos de encendido de inyector de combustible integrado adecuados para aplicaciones de motor grande y metodos asociados de uso y fabricacion.
BR112012020097A2 (pt) 2010-02-13 2018-03-20 Mcalister Tech Llc conjuntos de injetor de comubustível tendo modificadores de força acústica e métodos associados de uso e fabricação.
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
US8297265B2 (en) 2010-02-13 2012-10-30 Mcalister Technologies, Llc Methods and systems for adaptively cooling combustion chambers in engines
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
WO2012112615A1 (en) 2011-02-14 2012-08-23 Mcalister Technologies, Llc Torque multiplier engines
EP2742218A4 (de) 2011-08-12 2015-03-25 Mcalister Technologies Llc Systeme und verfahren zur verbesserten motorkühlung und energieerzeugung
US8919377B2 (en) 2011-08-12 2014-12-30 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US8851047B2 (en) 2012-08-13 2014-10-07 Mcallister Technologies, Llc Injector-igniters with variable gap electrode
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US8746197B2 (en) 2012-11-02 2014-06-10 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US9309846B2 (en) 2012-11-12 2016-04-12 Mcalister Technologies, Llc Motion modifiers for fuel injection systems
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US20140131466A1 (en) 2012-11-12 2014-05-15 Advanced Green Innovations, LLC Hydraulic displacement amplifiers for fuel injectors
US8800527B2 (en) 2012-11-19 2014-08-12 Mcalister Technologies, Llc Method and apparatus for providing adaptive swirl injection and ignition
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
US8820293B1 (en) 2013-03-15 2014-09-02 Mcalister Technologies, Llc Injector-igniter with thermochemical regeneration
US9562500B2 (en) 2013-03-15 2017-02-07 Mcalister Technologies, Llc Injector-igniter with fuel characterization
DE102014217112A1 (de) * 2014-08-28 2016-03-03 Robert Bosch Gmbh Verfahren zur Adaption eines Common-Rail-Einspritzsystems einer Brennkraftmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584982A (en) 1983-11-12 1986-04-29 Robert Bosch Gmbh Arrangement for a fuel metering system for an internal combustion engine
US5546918A (en) * 1994-07-02 1996-08-20 Robert Bosch Gmbh Method of adjusting the composition of the operating mixture for an internal combustion engine
JP2000073819A (ja) * 1998-08-27 2000-03-07 Unisia Jecs Corp 内燃機関の蒸発燃料処理装置
DE19850586A1 (de) 1998-11-03 2000-05-04 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
EP1081363A2 (de) * 1999-09-01 2001-03-07 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906378A1 (de) * 1999-02-16 2000-08-17 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine
US6510834B1 (en) * 1999-08-31 2003-01-28 Nissan Motor Co., Ltd. Control for spark-ignited direct fuel injection internal combustion engine
DE10043072A1 (de) * 2000-09-01 2002-03-14 Bosch Gmbh Robert Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung
DE10046446A1 (de) * 2000-09-18 2002-03-28 Daimler Chrysler Ag Verfahren zur Regelung einer Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584982A (en) 1983-11-12 1986-04-29 Robert Bosch Gmbh Arrangement for a fuel metering system for an internal combustion engine
US5546918A (en) * 1994-07-02 1996-08-20 Robert Bosch Gmbh Method of adjusting the composition of the operating mixture for an internal combustion engine
JP2000073819A (ja) * 1998-08-27 2000-03-07 Unisia Jecs Corp 内燃機関の蒸発燃料処理装置
US6176217B1 (en) * 1998-08-27 2001-01-23 Unisia Jecs Corporation Fuel vapor processing apparatus and method of internal combustion engine
DE19850586A1 (de) 1998-11-03 2000-05-04 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
EP1081363A2 (de) * 1999-09-01 2001-03-07 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 06 22 September 2000 (2000-09-22) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093537A1 (de) * 2006-02-13 2007-08-23 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer brennkraftmaschine mit adaptiver lambda-regelung
US8027779B2 (en) 2006-02-13 2011-09-27 Continental Automotive Gmbh Method and device for operating an internal combustion engine having lambda control

Also Published As

Publication number Publication date
CN1388858A (zh) 2003-01-01
EP1315894A1 (de) 2003-06-04
US20030106522A1 (en) 2003-06-12
KR20020068333A (ko) 2002-08-27
DE50108335D1 (de) 2006-01-12
DE10043093A1 (de) 2002-03-14
EP1315894B1 (de) 2005-12-07
US6725826B2 (en) 2004-04-27
RU2002113751A (ru) 2004-03-10
JP2004507656A (ja) 2004-03-11

Similar Documents

Publication Publication Date Title
WO2002018767A1 (de) Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
EP1317617B1 (de) Verfahren und elektronische steuereinrichtung zur diagnose der gemischbildung einer brennkraftmaschine
DE102007026408B4 (de) Verfahren zum Wechsel des Betriebsmodus eines Verbrennungsmotors
DE102013205631A1 (de) Identifizierung der kraftstoffbestandteile
DE102020133434A1 (de) Systeme und verfahren zum einstellen der kraftstoffzufuhr in einem zylinder mit einer vorkammer
DE102016001711A1 (de) Motorsteuereinrichtung
EP3464856A1 (de) Vorrichtung für ein betreiben eines motors
DE10001583A1 (de) Verfahren und Einrichtung zur Funktionsüberwachung eines Gasströmungssteuerorgans, insbesondere einer Drallkappe, bei einer Brennkraftmaschine
DE102020131252A1 (de) Systeme und verfahren zur feststellung von luft- und kraftstoffversätzen in einer vorkammer
EP1315895B1 (de) Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
EP1179130B1 (de) Verfahren zum betreiben einer mehrzylindrigen brennkraftmaschine
DE102009028638A1 (de) Verfahren zum Ausgleichen von Gaswechsel-Verlusten zwischen Brennräumen eines Ottomotors
DE102005046952B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102007060224A1 (de) Verfahren zur Bestimmung der Zusammensetzung eines Kraftstoffgemischs
EP1317610B1 (de) Verfahren zur bestimmung des kraftstoffgehaltes des regeneriergases bei einem verbrennungsmotor mit benzindirekteinspritzung im schichtbetrieb
DE102013225253B4 (de) Kraftstoffeinspritzmengen-Steuervorrichtung für einen Verbrennungsmotor und Kraftstoffeinspritzmengen-Steuerverfahren für einen Verbrennungsmotor
EP2809928A1 (de) Verfahren zur steuerung einer brennkraftmaschine
DE102012221046A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors
EP1317609B1 (de) Verfahren und elektronische steuereinrichtung zur steuerung der regenerierung eines kraftstoffdampfzwischenspeichers bei verbrennungsmotoren
EP1315892A1 (de) Verfahren zur gemischadaption
EP1382822B1 (de) Verfahren zur Adaption eines Kraftstoff-Luft-Gemisches bei einem Verbrennungsmotor und elektronische Steuereinrichtung
DE102007062171B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102021114990B4 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine
DE102005058522A1 (de) Lambda-Regelungsverfahren und Steuergerät
DE102023101347A1 (de) Verfahren und systeme zum diagnostizieren von nicht abgeschalteten ventilen von deaktivierten motorzylindern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001962668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018026591

Country of ref document: CN

Ref document number: 1020027005547

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2002 522660

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/816/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10129221

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027005547

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2002113751

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: 2001962668

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001962668

Country of ref document: EP