WO2002018627A1 - Procede d'examen de maladies a erreurs innees du metabolisme, et appareil d'examen concu a cet effet - Google Patents

Procede d'examen de maladies a erreurs innees du metabolisme, et appareil d'examen concu a cet effet Download PDF

Info

Publication number
WO2002018627A1
WO2002018627A1 PCT/JP2000/005788 JP0005788W WO0218627A1 WO 2002018627 A1 WO2002018627 A1 WO 2002018627A1 JP 0005788 W JP0005788 W JP 0005788W WO 0218627 A1 WO0218627 A1 WO 0218627A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
reaction
dehydrogenase
test
formazan
Prior art date
Application number
PCT/JP2000/005788
Other languages
English (en)
French (fr)
Inventor
Toru Yokoyama
Naoki Shinozuka
Kenji Nakamura
Original Assignee
Sapporo Immuno Diagnostic Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Immuno Diagnostic Laboratory filed Critical Sapporo Immuno Diagnostic Laboratory
Priority to EP00955060A priority Critical patent/EP1314786A4/en
Priority to CN00819857.8A priority patent/CN1461347A/zh
Priority to AU2000267323A priority patent/AU2000267323A1/en
Priority to PCT/JP2000/005788 priority patent/WO2002018627A1/ja
Publication of WO2002018627A1 publication Critical patent/WO2002018627A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention provides a simple but quick method for quantifying D-galactose, L-isocyanate-containing branched-chain amino acids and L-phenylalanine contained in biological samples without the need for complicated pretreatment.
  • the present invention relates to a method and a measuring device.
  • PKU that represents congenital metabolic disorder is a disease caused by a congenital deficiency of L-Phe hydroxylase, which converts an essential amino acid, L-Phe, to tyrosine. He accumulates and L-P he in urine and a large amount of phenyl Pyruvic acid is excreted. Clinical symptoms include mental retardation and other mental disorders, neurological disorders, and melanin deficiency. Treatment of this disorder requires a diet with limited L-Phe levels and must be continued at least until adulthood, preferably for life. Since L-Phe is one of the essential amino acids for the human body, its intake must be strictly maintained between the maximum amount that does not cause brain damage and the minimum amount necessary for physical development. .
  • maternal PKU causes fetal growth disorders, intellectual disorders, microcephaly, cardiac malformations, etc. due to high maternal blood L-Phe concentrations when PKU women become pregnant.
  • prevention can be achieved by controlling blood levels before pregnancy.
  • the screening test method for diagnosis is based on the method of bacterium inhibition using a Bacillus subtilis and an antimetabolite inhibitor, using a sample of dried filter paper blood that has been punctured into the heel of a newborn baby and soaked into a blood collection filter.
  • BIA was developed by Guthrie et al. (Pediatrics, Vol. 32, p. 338 (1963)). Guthrie can also quantify L-histidine, L-methionine, and L-mouth isine (L-Leu) using the principle of the BIA method, and D-galactose (D-Gal) using Escherichia coli. He discovered this and started screening for histidineemia, homocystinuria, maple syrup urine;! Sho, maple syrup urine disease (MSUD), and galactosemia ( ⁇ ⁇ ⁇ ).
  • the current multiple screening system is based on the BI ⁇ method or the Paigen method using Escherichia coli and phage (Journal of Lab. Clin. Med., Vol. 99, ⁇ ⁇ 895 (1982)).
  • the foundation was established in the age.
  • These test methods are very simple methods to determine the size of the bacterial growth circle after arranging blood disks punched by a puncher on an agar medium and culturing overnight, using dried filter paper blood as a sample. It is a method that does not require complicated equipment, has excellent reagent costs, and is capable of performing multi-item inspection processing of a large number of samples.
  • POCT point-of-care testing
  • the POTCT is a simple, fast, and compact device that enables emergency tests and bedside real-time monitoring as clinical tests at medical and nursing sites.
  • test results can be obtained in 30 seconds to 1 minute using whole blood of several microliters as a sample (for example, W099 / 51974 (1999)).
  • the measurement method is either an enzymatic reaction followed by an electrochemical reaction (eg, Analytical Chemistry, Vol. 56, p. 667 (1984),) or an enzymatic reaction followed by a color reaction (eg, Medicine and Pharmacy, Vol.
  • test strip containing reagents is attached to a small measuring instrument, and the sample is spotted on the test strip, or the sample is spotted on the test strip and simply attached to the measuring instrument. This is a very simple operation.
  • the present invention has been developed for three diseases of inborn errors of metabolism, GE, MSUD, and PKU, which are D-Gal and L-Leu, which are the substances to be measured in biological samples.
  • the present invention provides an inspection method and an inspection apparatus which can easily and quickly present a test result for a branched-chain amino acid, L-Phe, including L-Phe.
  • the biological sample is not limited to whole blood, serum, plasma and blood, but a wide range of body fluids such as urine and saliva can be used. It is also possible to measure L-Phe, a branched-chain amino acid containing D—Ga1 and L—Leu in foods as well as biological samples.
  • the principle of the measurement of the present invention is based on the enzymatic reaction of a branched-chain amino acid containing D-Gal and L-Leu as substrates and L-Phe-specific dehydrogenases and coenzymes, and
  • the next step is to detect formazan, an end product that is chemically stable depending on the concentration of the substrate, by performing electron mediation and a redox reaction with tetrazolium salt.
  • the detection method utilizes the characteristic of having a color reaction and an oxidation-reduction reaction by electron transfer in formazan formation, and utilizes both optical and / or electrochemical methods.
  • test method of the present invention by preliminarily immobilizing reaction reagents required for measurement, reagent preparation is not required at the time of use, and the operation of the test performer is made as simple as possible.
  • the inspection system of the present invention comprises a test strip (sensor chip) on which a reaction reagent using the above-described inspection method is immobilized, and a small measuring device (portable meter) having optical and electrochemical detection circuits.
  • the test paper is attached to the measuring device, and the measurement is completed in a few minutes simply by spotting the sample, which is a biological sample, on the test paper, and the test result is displayed.
  • the inspection can be performed at the site where the biological sample is collected, and the inspection can be performed quickly and easily.
  • An inspection system that can obtain inspection results is realized.
  • an object of the present invention is to provide a test method and a test device for converting into a substrate concentration by using both or one of the electrochemical detection and the electrochemical detection.
  • the simple and rapid test method for the three diseases of the present invention is to spot a biological sample as a specimen by immobilizing a reaction reagent in advance in a reaction site, for example, a cuvette, a tube, a well, a cassette, or the like.
  • a reaction site for example, a cuvette, a tube, a well, a cassette, or the like.
  • the immobilized reagents are dissolved and mixed, and the enzymatic reaction and the oxidation-reduction reaction proceed sequentially.
  • the final product, formazan is an inspection method that uses optical detection and / or electrochemical detection.
  • test device for the three diseases of the present invention includes a reaction reagent-immobilized test strip (sensor chip) produced by the above-described test method, and a portable small measurement device having an optical and electrochemical detection circuit ( Portable meter).
  • the reaction reagent-immobilized test paper is characterized by a structure that enhances the quick absorption and the solubility of the immobilized reaction reagent when spotting the sample.
  • the specimen was oriented from top to bottom in a layered structure, and an absorption layer, a development layer, and a reaction layer were provided, and materials suitable for each application were selected.
  • this layered structure makes it possible to produce a sample with excellent sample separation ability, and with respect to whole blood, a colored component considered to be a blood cell does not appear in the lowermost layer.
  • Optical detection circuit in a small measuring device is a quantitative be shall absorbance of formazan in the index (JP-A 9-286784 (1997), Analyst, Vol.120 , p.113 (1995)) 0 device configuration this Invented in the invention, specifically, a light source that irradiates a specific absorption wavelength of formazan, and receives reflected light after formazan irradiation with respect to incident light from the light source It measures the amount of reflected light that is inversely proportional to the formazan concentration.
  • a light-emitting diode-laser diode as the light source and a photodiode or phototransistor as the light-receiving element, an optical detection circuit can be constructed with relatively inexpensive semiconductor elements.
  • the electrochemical detection circuit measures the electrolytic oxidation current generated by applying a specific oxidation potential of formazan through an electrode system.
  • the configuration consists of a circuit that applies a constant voltage and a circuit that measures current, which can also be miniaturized at low cost with semiconductor elements.
  • optical detection methods can take advantage of both. If the sample contains a large amount of a contaminant redox substance, it will increase the electrochemical background response and interfere with the response that should be sought. In such a case, an optical detection method is suitable. Conversely, if the darkness or turbidity is significant, an electrochemical detection method is advantageous.
  • a major feature of the detection of the present invention is that the two methods described above are employed to compensate for the disadvantages of measurement and to significantly improve the reliability of measurement and inspection results.
  • the electrode system that forms the basic structure of the reaction reagent-immobilized test paper is based on the reaction principle and manufacturing technology that we have already invented (Japanese Patent Publication 2000-35413 (2000), WO00 / 04378 (2000), PCT / JP99 / 01392 (1999)), which comprises at least a working electrode and a counter electrode formed using a conductive material.
  • the layered structure on which the reaction reagent is immobilized is arranged on the upper surface of the electrode reaction part.
  • this testing system is very small and inexpensive, so it can be deployed in obstetrics, gynecology and pediatrics, and can also be used at home or by individuals. It is.
  • the combination of one measuring device (portable meter) and three kinds of special test strips (sensor tips) is used for screening newborn infants that can be spread worldwide, and for patients and patients with congenital dysbolism.
  • This inspection system is provided for simple and quick inspection.
  • Figure 1 is a schematic diagram of the reaction of the present invention
  • FIG. 2 is an exploded perspective view of main components of the sensor chip in one embodiment
  • FIG. 3 is a cross-sectional view of the sensor chip in FIG.
  • Fig. 4 is a configuration diagram of the sensor chip, the cellular pull meter, and the internal circuit of the cellular meter. The symbols in the above figures are explained as follows:
  • the contents related to the inspection method and the contents related to the inspection device will be described in order.
  • the reaction reagent in the test method will be described below.
  • the dehydrogenase used in the present invention is not particularly limited as long as it is an enzyme that produces a reduced coenzyme using a branched-chain amino acid containing D-Gal and L-Leu and L-Phe as a substrate. There is no particular limitation on the origin.
  • the electron mediator is not particularly limited as long as it is a substance that performs an oxidation-reduction reaction with “reduced coenzyme and tetrazolium salt”.
  • quinones, diaphorase, cytochromes, porogens, phenazines, phenoxazines, phenothiazines, ferricyanides, ferredoxins, pheoctenes and derivatives thereof can be used.
  • phenazines show stable response here, and in particular, 1-methoxy PMS has good storage stability and excellent reactivity with reduced coenzyme and tetrazolium salt.
  • Medier I found it to be a good night.
  • the tetrazolium salt is not particularly limited as long as it produces formazan, and among them, 2- (4-odophenyl) -13- (4-ditrophenyl) 1.51- (2,4-disulfophenyl) 1-2H —Tetrazolim, monosodium salt (WST-1) is a water-soluble and chemically stable formazane formed upon reduction, and the formed formazan is used in the optical and electrochemical detection methods of the present invention. Since they show good response, they have found that they are preferable as the tetrazolium salt in the present invention.
  • reaction reagents By immobilizing the above reaction reagents in advance, it is possible to construct a method of dissolving and mixing just by bringing a biological sample into contact, a series of reactions proceeding, and finally producing formazan. It can be realized by applying and drying the reaction reagent solution on the reaction site. After immobilization, the storage stability is improved by shading and dehumidification.
  • Test paper having a layered structure on which the above-mentioned reaction reagent used in the present invention is immobilized.
  • Sensor chip uses formazan, which is ultimately produced by reaction with a biological sample, in combination with optical and / or electrochemical detection.
  • the electrode system used for the electrochemical detection of the present invention is a conductive substance, and is not particularly limited as long as it is electrochemically stable.
  • the materials are lithium, gold, silver, and silver.
  • Z silver chloride, nickel, platinum, platinum black and palladium, and alloys thereof can be used.
  • carbon materials are inexpensive and chemically stable, and are preferable as working electrodes of the electrode system in the present invention.
  • the carbon material means all materials including carbon.
  • the carbon material that can be used is not particularly limited as long as it is used in a conventional carbon electrode.
  • carbon fiber, carbon black, power-on-first-stroke, glass-on-power-on, graph-eye Can be used.
  • Such a carbon material is formed as an electrode portion on an insulating substrate by a conventional method. Usually, it can be formed by screen-printing a paste made of a carbon material using a resin binder or the like and then heating and drying it.
  • the printing method is not particularly limited to screen printing, and gravure printing, offset printing, inkjet printing, and the like can be applied.
  • the counter electrode is premised on a two-electrode system that also serves as the reference electrode, silver silver chloride is selected here, and the lead that is the connection between the electrode reaction part and the electrochemical detection circuit is the most conductive. Excellent silver was selected here and formed by screen printing.
  • the insulating substrate examples include glass, glass epoxy, ceramics, and plastics, but there is no particular limitation as long as it is a substance that is not affected during the printing of the electrode portion or the addition of the sample.
  • plastic films such as polyester, polyethylene, polyethylene terephthalate (PET), polystyrene, and polypropylene are inexpensive, and PET films are preferred here because of their good adhesion to conductive inks and good workability. I found it.
  • the insulating substrate is selected from a colorless and transparent material, there is no absorption at the measurement wavelength, Requires a window for light source light irradiation.
  • the cover, spacer, and the material that adheres them hold the reaction reagent-immobilized layer without being invaded by the biological sample, and do not interfere with the series of reactions.
  • the reaction reagent immobilization layer consists of three layers: an absorption layer, a development layer, and a reaction layer, and is made of polypropylene, nitrocellulose, and polyethersulfone, respectively. It should be noted that a single-layer structure may be used, and there is no particular limitation as long as the reaction reagent is not deteriorated, the sample separation ability is high, and the affinity with the biological sample is high.
  • the following is a small and portable measuring device (Polymeter) for quantification using a sensor chip.
  • a portable meter can be connected to a sensor chip, has an optical detection circuit and an electrochemical detection circuit, detects formazan concentration, converts it to the concentration of each substrate contained in a biological sample, and performs testing. It has a function to display the result.
  • the optical detection circuit requires a light source for irradiating the formazan absorption wavelength and a light receiving element for the reflected light.
  • the electrochemical detection circuit requires a circuit that applies a constant voltage and a current inspection circuit.
  • the switch is used for power supply and for various settings. Although described in the figure, there is no particular need for automation. Example
  • FIG. 1 shows an example of manufacturing a sensor chip, and is an exploded perspective view of main components.
  • the sensor chip includes a transparent window 15 for optical detection, an electrode system formed by screen printing, a layered structure 6 on which a reaction reagent is immobilized, a spacer 10 and a cover 1. Consists of one.
  • conductive silver ink Nippon Acheson Co., Ltd.
  • PET film PET film
  • Lead 2 was formed.
  • the insulating layer 3 was formed (cured by ultraviolet irradiation) using insulating ink (manufactured by Nippon Acheson Co., Ltd.) while leaving the connection portions to the working electrode 4 and the counter electrode 5. Then, the working electrode 4 is screen-printed using conductive graphite ink (Nippon Acheson Co., Ltd.) and the counter electrode 5 is printed using conductive silver Z silver chloride ink (Nippon Acheson Co., Ltd.) and heated. After drying (120 minutes, 15 minutes), the electrode system was laminated by printing.
  • the buffer component for adjusting the optimal pH of the enzymatic reaction is absorbed in the form of a solution in the polypropylene membrane (manufactured by Nippon Millipore Co., Ltd.) which is the absorption layer 7. Then, it was dried (40 ° C, 15 minutes) and immobilized.
  • WS T-1 (a product of Dojindo Laboratories, Inc.), which is a tetrazolium salt, and oxidized nicotinamide amide adenine dinucleotide (NAD +), which is a dehydrogenase and coenzyme corresponding to each substrate (Oriental Yeast Co., Ltd.) Is dissolved in a phosphate buffer (pH 7.4, 20 mM), absorbed into a polyethersulfone membrane (manufactured by Nippon Pall Co., Ltd.), which is the reaction layer 9, and dried (40 ⁇ , (15 minutes).
  • the reaction reagent immobilization layer 6 which is a layered structure on which the necessary reaction reagents are immobilized, is placed on the printed electrode via a spacer 10 and covered with a cover 11 to form a sensor chip. 17 was set.
  • Example 2 Basic response of sensor chip
  • Example 1 a dedicated sensor chip for GE, MS UD, and PKU inspection was fabricated. It should be noted that only the dehydrogenase specific to each of the substrate of L-Phe and the branched chain amino acid containing D-Ga1, L-Leu was changed, and all the other reaction reagents were the same.
  • the sensor chip for GE inspection includes D—Ga1 dehydrogenase (EC 1.1.1.4 8, Roche Diagnostics Co., Ltd.).
  • L-Leu dehydrogenase (EC 1.4.1.9, manufactured by Toyobo Co., Ltd.) is used for the MS UD inspection sensor chip, and L-P he dehydrogenation is used for the PKU inspection sensor chip.
  • Enzyme (EC 1.4.2.10, manufactured by Unitika Ltd.) was used.
  • Optical detection is performed by irradiating visible light of any wavelength from a light source (manufactured by Ando Electric Co., Ltd.) to the lowermost surface of the reaction reagent immobilization layer arranged on the insulating substrate using an optical fiber, and the amount of reflected light was measured (Advantest Co., Ltd.). After spotting the sample, the sample was allowed to stand for 120 seconds as the time required for the enzyme reaction and the oxidation-reduction reaction, and the color reaction of formazan was measured by colorimetry.
  • a light source manufactured by Ando Electric Co., Ltd.
  • the maximum absorption wavelength shifts with pH.
  • a maximum absorption wavelength was confirmed in a wavelength region of approximately 450 nm to 600 nm.
  • the sample is allowed to stand for 120 seconds as the time required for the enzymatic reaction and redox reaction, and the oxidation potential of formazan +500 mV is applied with reference to the counter electrode. Then, the oxidation current of formazan generated at that time was measured (manufactured by Hokuto Denko KK).
  • Fig. 4 shows a portable meter, which is a measuring device using G, M SUD, and PKU inspection sensor chips, and the measurement procedure is described below.
  • the sample 13 is spotted on the sensor chip 17 to start the measurement. Also in this case, there is no particular limitation on whether to start with the switch 21 or whether to start automatically.
  • the enzymatic reaction and the oxidation-reduction reaction are allowed to proceed for a certain period of time by the timer 25, and then optical and electrochemical detection is performed.
  • Optical detection is performed by irradiating the lowermost surface (optical detection window 15) of the reaction reagent immobilization layer 6 on the insulating substrate 1 with light for a certain period of time (corresponding to 23 in Fig. 4). Then, the amount of reflected light is measured with a light receiving element (equivalent to 24 in Fig. 4).
  • a new fixed voltage is applied to the sensor chip electrode system (corresponding to 23 in FIG. 4). Measure the response current value generated at that time (equivalent to 24 in Fig. 4). The measured values are subjected to various conversions such as current-voltage conversion and analog-digital conversion, and the microcomputer 22 converts the substrate concentration and displays the result on the liquid crystal display screen 20.
  • a buzzer 26 is installed to improve operability, and a battery 27 is driven to improve portability.
  • the portable meter automatically identifies three types of dedicated chips, executes a series of measurements, and displays the results of each.
  • a chip is needed to make it possible to test all three items almost simultaneously, with the aim of improving the complexity of sample collection and shortening the test time by waiting for the end of measurement for each item.
  • the entrance can be made into three channels.
  • Example 3 The basic response was measured using the three types of sensor chips for the GE, MSUD, and PKU inspections manufactured in Example 1 and the cellular pull meter manufactured in Example 3.
  • the measurement procedure was as in Example 3, and after mounting each dedicated chip, each substrate standard solution was spotted.
  • a series of reaction times was set to 120 seconds, and then optical detection was performed, and the detection was performed continuously in the order of electrochemical detection.
  • formazan was electrolytically oxidized, so that optical detection without any change was performed first.
  • optical and electrochemical responses are then compared and the differences are If so, convert to substrate concentration and display the result. If it is out of the standard, display an error.
  • the configuration of the optical detection circuit is as follows.
  • the light source is a high-brightness light emitting diode with a peak wavelength of 590 nm (manufactured by Hewlett-Packard Japan, Ltd.), and the light receiving element is a photodiode (Texas Japan, Inc.). (Instrument Co., Ltd.).
  • the electrochemical detection circuit was composed of various semiconductor elements.
  • the specific shape of the sensor chip is illustrated, but the shape of the electrode, the arrangement of the electrode, the lead and the insulating layer, the shape and the arrangement of the reaction reagent fixing layer, the shape and the arrangement of the force par and the spacer,
  • the outer shape ⁇ is not limited.
  • the specific shape is shown for the night and night, it is not limited to this.

Description

明細書
先天性代謝異常症の検査方法および検査装置 発明の分野
本発明は、 生体試料に含まれる D—ガラクト一ス、 L一口イシンを含む分岐鎖 アミノ酸および L一フエ二ルァラニンを煩雑な前処理を必要とせずに簡便でしか も迅速に定量が可能な測定方法および測定装置に関する。
特に先天性代謝異常症であるガラクト一ス血症、 メープルシロップ尿症および フエ二ルケトン尿症の 3'疾患において、早期発見のための新生児スクリーニング、 あるいは当患者のベッドサイ ド検査、. 日常生活におけるモニタリング等について 利用可能な検査方法および検査装置である。 発明の ·背景
先天性代謝異常症の早期発見を目的とする新生児スクリーニングの世界的な普 及は、 フエ二ルケトン尿症 (phenylketonuria; P K U ) の治療法の発見と乾燥濾 紙血液中の L—フエ二ルァラニン (L一 P h e ) の半定量法が開発されたことに 始まる。
先天性代謝異常症がスクリーニングの対象疾患となった最大の理由は、 早期発 見により患児に正常な発達が期待されるなどの医学的なメリッ トと、 その経済的 効率が有効であることが明らかにされたためである。発見が遅れて障害児となり、 収容施設を整備し、 患児のケアのために高額な医療費を支払う場合と、 早期に発 見し治療することにより健全な成人と.して生育した場合とを比較すると、 後者の 方が極めて経済効率が高く患児の Q 0 Lも向上する。
そのため、 各国では先天性代謝異常症による精神遅滞や発達障害の予防が、 公 衆衛生領域の課題と認識され、 国家レベルや行政的支持のもと新生児スクリー二 ングが展開されている。
ここで、 先天性代謝異常症を代表する P K Uとは、 必須アミノ酸である L一 P h eをチロジンに転換する L一 P h e水酸化酵素の先天的欠損により生じる疾患 で、 体内には L一 P h eが蓄積され、 尿中には L一 P h eのほか多量のフエニル ピルビン酸が排泄される。 臨床症状としては、 精神薄弱などの知能障害、 神経障 害、 メラニン色素欠乏症が認められる。 本症の治療には、 L— P h e量を制限し た食事療法を必要とし、 少なくとも成年期まで、 好ましくは生涯にわたり、 治療 を継続しなければならない。 なお、 L一 P h eは人体にとって必須アミノ酸の一 つであることから、 摂取量は、 脳障害等を引き起こさない最大量と、 身体発育に 必要な最小量の範囲で厳密に維持しなければならない。
また、 母性 P K Uは、 P K Uの女性が妊娠すると母体の血液中 L一 P h e濃度 が高いために、 胎児に発育障害、 知能障害、 小頭症、 心奇形などを発生する。 し かし、 妊娠前から血液中濃度をコント'ロールすることで予防が可能となる。
ここで、 診断のためのスクリーニング検査方法は、 新生児の足かかとを穿刺し 採血濾紙へ染み込ませた乾燥濾紙血液を検体として、 枯草菌と代謝拮抗阻害剤を 用いた細菌成長阻止法 ( bacterial inhibition assay; B I A )が Guthrieら (Pediatrics, Vol.32, p.338 (1963))·により開発されスクリ一ニングが開始された。さらに Guthrie は B I A法の原理を用いて、 L一ヒスチジン、 L一メチォニン、 L一口イシン(L - L e u ) を、 また大腸菌を用いて、 D—ガラクトース (D— G a l ) も定量可 能であることを発見し、 ヒスチジン血症、 ホモシスチン尿症、 メープルシロップ 尿;!正 、 maple syrup urine disease; M S U D )、 ガラク卜ース血症 ( galactosemia; υ· Ε ) のスクリーニングも開始した。
現在のマルチプルスクリーニングのシステムは、 B I Α法あるいは大腸菌とフ ァ一ジを用いた Paigen法 (Journal of Lab. Clin. Med., Vol.99, ρ·895(1982)) により、 1 9 6 0年代に基礎が確立されたものである。 これらの検査方法は、 乾燥濾紙血 液を検体として、 パンチヤーにより打ち抜いた血液ディスクを寒天培地上に並べ 一晩培養した後、 細菌生育円の大きさを判定する非常に簡便な方法であり、 高価 な機器を必要とせずに試薬コストにも優れ、 大量検体の多項目検査処理が可能な 方法である。
しかし、 最終的な検査結果は目視による判定のため、 判定結果の客観性や記録 化が困難である。 その改善としてカメラによる画像化 (日本マス 'スクリ一ニン グ学会誌, Vol.6, ρ·23(1996)) が挙げられ、 定量化と記録化を試みているが、 変動 の大きい細菌の生育の定量化は困難を極め、 さらに簡便性も損なわれている。 一方、 高速液体クロマトグラフィ (Journal of Chromatography, Vol.274, p.318 (1983) , 日本マス ' スクリーニング学会誌, Vol.5, p.86(1995) ) や自動分析装置 (Clinical Chemistry, Vol.30, p.287(1984)) の応用もあるが、 対象疾患がアミノ酸代 謝異常症のみであることや、 高額な測定装置を用いること、 簡便性、 迅速性につ いても問題がある。
そのような中、 最近、 酵素法 (Screening, VoL l,p.63(1992), 医学と薬学, Vol.31, ρ.1237(1994) ) あるいはマイクロプレート蛍光法 (Clinical Chemistry, Vol.35, ρ.1962(1989))と呼ばれる酵素反応とそれに続く蛍光反応をマイクロプレー卜で行 い蛍光強度から検体中の D— G a 1、 L— L e uを^む分岐鎖アミノ酸、 L— P h e、 L 一メチォニンを定量するキッ トが開発された (医学と薬学, Vol.37, ρ.1211(1997)) 0 当キットは検体処理能力の高さに加え、 従来の方法では困難であ つた検査結果の客観的判定である定量化や、 記録化が実現されている。 さらに 3 時間程で検査結果を得ることが可能であり迅速性も大幅に向上している。
以上新生児スクリ一ニングにおける大量検体処理方法については確立されつつ あるが、 糖尿病患者の血糖モニタリ ングに代表されるポイントォブケア検査 (point-of-care testing; P O C T ) 方法を例に挙げると、 簡便性おょぴ迅速性につ いては改善の余地が多分に残されている。
P O C Tは、 診療および看護現場での臨床検査として緊急検査やべッドサイド でのリアルタイムモニタリングが、 簡易、 迅速、 小型機器により実現されている。 現在、 血糖測定に関しては、 数マイクロリッ トルの全血を検体として 3 0秒から 1分ほどで検査結果を得ることができる (例えば W099/51974(1999))。 測定方法 は、 酵素反応とそれに続く電気化学反応 (例えば Analytical Chemistry, Vol.56, p.667(1984), ) もしくは酵素反応とそれに続く呈色反応のどちらかであり (例えば 医学と薬学, Vol.39, p.357(1998))、試薬を含有する試験紙を小型測定機器に装着し、 検体を試験紙に点着させるか、 もしくは検体を試験紙に点着させ測定機器に装着 するだけの至って簡便な操作である。
特に先天性代謝異常症は、 早期発見、 早期治療が最も効果的であるが、 中でも 0 £ゃ1^ S U Dは緊急性の高い疾患であり、 患児の予後を左右するケースも想定 される。 そのため、 採血現場において検査結果が得られる新規検査システムが確立され れば莫大な需要に対する供給であることは明白である。
また、 P K Uおよび母性 P K U検査用として自己測定方法の確立も同様に望ま れている。 発明の要旨
本発明は上記の課題を解決するために、 先天性代謝異常症である G E、 M S U D、 P K Uの 3疾患において、 生体試料中のそれぞれの測定対象物質である、 D 一 G a l 、 L— L e uを含む分岐鎖アミノ酸、 L— P h eを、 簡便 ίこ迅速に検査 結果を提示できる検査方法おょぴ検査装置を提供する。
なお、 生体試料は全血、 血清、 血漿と血液に限定せず、 尿、 唾液などの広範な 体液を用いることが可能である。 また、生体試料のみならず食品中の D— G a 1 、 L— L e uを含む分岐鎖アミノ酸、 L一 P h eの測定も可能である。
本発明の測定原理は、 基質となる D— G a l 、 L一 L e uを含む分岐鎖ァミノ 酸、 L一 P h eに特異的なそれぞれの脱水素酵素と補酵素による酵素反応と、 そ れに続く電子メデイエ一夕とテトラゾリゥム塩による酸化還元反応によって、 基 質濃度に依存した化学的に安定な最終生成物であるホルマザンを検出するもので ある。 その検出方法は、 ホルマザン生成にあたり呈色反応と、 電子授受による酸 化還元反応を有する特徴を生かし、 光学的手法および電気化学的手法の双方もし くはどちらか一方を利用するものである。
また、 本発明の検査方法は、 測定に必要とする反応試薬をあらかじめ固定化し ておくことで、 利用時には試薬調製を不要とし検査実施者の操作を出来る限り簡 略化する。
さらに、 本発明の検査システムは、 上記検査方法を用いた反応試薬を固定化し た試験紙 (センサチップ) と、 光学的および電気化学的検出回路を有する小型測 定装置 (ポータブルメータ) からなり、 その試験紙を測定機器に装着して、 生体 試料である検体を試験紙に点着させるだけで測定が数分で終了し、 検査結果を表 示するものである。
これより、 生体試料の採取現場で検査が実施可能となり、 簡易操作で迅速に検 査結果を得られる検査システムが実現される。
発明の説明
本発明によれば、 先天性代謝異常症である G E、 M S U D、 P K Uの 3疾患に おいて、 生体試料中のそれぞれの測定対象物質である、 D— G a l、 L - L e u を含む分岐鎖アミノ酸、 L一 P h eを、 少なくとも基質である対象物質に特異的 な脱水素酵素と補酵素、 電子メディエー夕とテトラゾリゥム塩を反応試薬として 用い、 基質濃度に依存する最終生成物であるホルマザンを光学的検出および電気 化学的検出の双方もしくはどちらか一方を利用し、 基質濃度に換算する検査方法 および検査装置を提供することである。
本発明の 3疾患に対する簡便かつ迅速な検査方法は、 反応試薬をあらかじめ反 応の場、 例えばキュベッ ト、 チューブ、 ゥエル、 カセット等、 に固定化すること により、 検体である生体試料を点着するだけで、 それら固定化試薬が溶解し混合 されて、 酵素反応と酸化還元反応が順次進行する手順を特徴とするものである。 その後、 最終生成物であるホルマザンを光学的検出および電気化学的検出の双方 もしくはどちらか一方を用いる検査方法である。
さらに本発明の 3疾患に対する検査装置は、 上記検査方法を用いて作製した反 応試薬固定化試験紙 (センサチップ) と、 光学的および電気化学的検出回路を有 する携帯可能な小型測定装置 (ポータブルメータ) からなる。
反応試薬固定化試験紙は、 検体の点着にあたり、 迅速な吸収性と固定化した反 応試薬の溶解性を高めた構造を特徴とする。 検体の展開方向を上方から下方へ向 け、 さらに層状構造とし、 吸収層、 展開層、 反応層を設けてそれぞれの用途に適 した素材を選定した。 また、 この層状構造により検体の分離能も優れたものを作 製でき、 全血に関しては、 血球と思われる有色成分が最下層には現れないことが 挙げられる。
小型測定装置における光学的検出回路は、 ホルマザンの吸光度を指標に定量す るものである (特開平 9-286784(1997), Analyst, Vol.120, p.113(1995)) 0 装置構成 は本発明において新規に考案し、 具体的には、 ホルマザンの特異的な吸収波長を 照射する光源と、 光源からの入射光に対するホルマザン照射後の反射光を受光す る素子とで構成され、 ホルマザン濃度に反比例する反射光量を測定する。 なお、 光源には発光ダイォードゃレーザダイォ一ドを、 受光素子にはフォトダイォード やフォト トランジスタを利用することで比較的安価な半導体素子で光学的検出回 路を構築できる。
次に、 電気化学的検出回路は、 ホルマザンの特異的な酸化電位を電極系により 印加することで、 その際に発生する電気分解酸化電流を測定するものである。 構 成は、 一定電圧を印加する回路と、 電流を測定する回路からなり、 こちらも半導 体素子により安価に小型化が可能である。
' 光学的および電気化学的な 2種類の検出方法 ¾備えることで、 双方の利点を生 かすことができる。検体中に夾雑物質である酸化還元物質が多量に含まれる場合、 電気化学的なバックグラウンド応答を高めてしまい、 本来求めるべき応答を妨害 する。 このような時には、 光学的検出方法が適している。 逆に、 濃色や濁度が著 しい場合、 電気化学的検出方法が有利である。 本発明の検出には、 以上の 2法を 採用することで、 測定における短所を補いあい、 測定および検査結果に対する信 頼性を格段に向上させたことが大きな特徴である。
なお、 反応試薬固定化試験紙の基本構造をなす電極系は、 既に我々が発明した 反 応 原 理 や 作 製 技 術 ( 特 開 2000-35413(2000) , WO00/04378(2000) , PCT/JP99/01392(1999)) を応用しており、 導電性材料を用いて形成された少なく とも作用極と対極からなる。 その電極反応部分の上面に、 反応試薬を固定化した 層状構造体を配置する。
以上、 本発明における先天性代謝異常症の検査方法および検査装置を用いるこ とにより得られる利点を以下に記す。 あらかじめ反応試薬を固定化しておくこと で、 検査実施者の試薬調製を必要としない。 前処理が不要である。 反応試薬固定 化試験紙および測定装置を利用することで、 大がかりな設備を必要としない。 操 作は、 測定装置に試験紙を装着し、 試験紙に検体を付着させるだけで測定が自動 スタートし結果が自動表示されるため、 熟練した技術を必要とすることなく誰に でも実施できる。
具体的な用途としては、 世界的に普及している新生児スクリ一二ングの検査シ ステムにおいて、 検体採取、 採血濾紙等の検体の郵送、 スクリー二 での検査、 検査結果の報告、 以上約 1週間の所要時間を一切省き、 検体採取現場 での検査を実現する。 人件費、 設備投資や維持管理等を考慮すると、 計り知れな い経済効果が期待できる。 一部の国については、 新生児スクリーニングシステム が整備されていないこともあり、 特殊な施設や設備を必要としない本検査システ ムの導入により、 即座に検査を開始することができる。
また、 現在の新生児スクリーニングにおける検査機器に比べると、 本検査シス テムは非常に小型で安価であり、 そのため産科、 婦人科および小児科に配備する ことも、 さらには個人による在宅使用や携帯使用も可能である。
緊急性を要す'る疾患である G Eや M S U Dは、 迅速に検査結桌を提示すること で、 即座に適切な治療を施し患児の予後を最適に導くことができる。
以上、 1台の測定装置 (ポータブルメータ) と 3種類の専用試験紙 (センサチ ップ) の組み合わせにより、 全世界へ普及が図れる新生児スクリーニング用とし て、 また先天性代謝異常症の患児や患者の簡便かつ迅速な検査用として、 本検査 システムを提供する。 図面の簡単な説明
図 1は本発明の反応模式図であり ;
図 2は一実施例におけるセンサチップの主要構成部分の分解斜視図であり ; 図 3は図 2におけるセンサチップの断面図であり ;
図 4はセンサチップとポー夕プルメータおよびポー夕ブルメータ内部回路の構 成図である。 上記図中の符号は次のように説明される :
1は絶縁性 (透明) 基板; 2はリード ; 3は絶縁層 ; 4は作用極; 5は対極; 6 は反応試薬固定化層; 7は吸収層 ; 8は展開層 ; 9は反応層 ; 1 0はスぺ一サ; 1 1はカバー; 1 2は試料供給口 ; 1 3は検体; 1 4は光源 ; 1 5は光学的検出 用窓; 1 6は受光 *子; 1 7はセンサチップ; 1 8はポータブルメータ ; 1 9は チップ揷入口 ; 2 0は液晶表示画面 ; 2 1はスィッチ; 2 2はマイクロコンピュ 一夕 ; 2 3は光源 1 4および電圧印加回路; 2 4は受光素子' 1 6および電流測定 回路; 2 5はタイマ ; 2 6はブザ一 ; 2 7はパッテリである。 好適具体例の説明
本発明において、 検査方法に関する内容および検査装置に関する内容の順に記 す。 まず検査方法における反応試薬について以下に説明する。
本発明に用いられる脱水素酵素としては、 D— G a l、 L— L e uを含む分岐 鎖アミノ酸、 L一 P h eを基質として、 さらに還元型補酵素を生成する酵素であ れば特に制限はなく、 また由来についても特に限定されることはない。
電子メディェ一夕としては、'還元型補酵素およびテトラゾリゥム塩とすみや'か に酸化還元反応を行う物質であれば特に限定はない。 例えばキノン類、 ジァホラ ーゼ、 シトクロム類、 ピオロゲン類、 フエナジン類、 フエノキサジン類、 フエノ チアジン類、 フェリシアン化物、 フェレドキシン類、 フエ口センおよびその誘導 体等を用いることができる。 その中でもフエナジン類がここでは応答の安定性が 見られ、 特に 1—メトキシ P M Sは保存安定性が良いことや還元型補酵素およ びテトラゾリゥム塩との反応性も優れることから、 本発明における電子メデイエ 一夕として好ましいことを見出した。
テトラゾリゥム塩としては、 ホルマザンを生成するものであれば特に限定はな く、 その中でも 2— ( 4—ョードフエニル) 一 3— ( 4—二トロフエニル) 一 5 一 (2, 4 一ジスルホフエニル) 一 2 H—テトラゾリゥム, 1ナトリウム塩 (W S T - 1 ) は還元したときに生成されるホルマザンが水溶性で化学的に安定であ り、 また生成したホルマザンが本発明の光学的および電気化学的検出方法におい て良好な応答を示すことから、 本発明におけるテトラゾリゥム塩として好ましい ことを見出した。
以上の反応試薬をあらかじめ固定化することで、 生体試料を接触させるだけで 溶解、 混合し一連の反応が進行して最終的にホルマザンが生成される方法を構築 できる。 反応試薬溶液を反応の場に塗布、 乾燥することで実現でき、 固定化した 後、 遮光と除湿を行うことで保存安定性が向上する。
次に、 検査装置に関する内容を以下に説明する。
本発明に用いられる上記反応試薬を固定化した層状構造体を有する試験紙 (セ ンサチップ) は、 生体試料との反応により最終的に生成されるホルマザンを、 光 学的および電気化学的検出の双方もしくはどちらか一方の手法を組み合わせ利用 する。
本発明の電気化学的検出に用いられる電極系としては、 導電性物質であり、 電 気化学的に安定であれば特に限定はなく、 材料については力一ボン、 金、 銀、 銀
Z塩化銀、 ニッケル、 白金、 白金黒およびパラジウム等、 ならびにそれらの合金 を使用することができる。 その中でも種々の材料を検討した結果、 カーボン材料 が安価で化学的に安定しており、 本発明における電極系の作用極として好ましい ことを見出した。
ここでの力一ボン材料とは、 カーボンを含む材料全般を意味する。 利用できる カーボン材料は特に限定されるものではなく、 従来のカーボン電極において使用 されているものであれば良く、 例えばカーボンファイバ、 カーボンブラック、 力 一ポンぺ一スト、 グラッシ一力一ボン、 グラフアイ ト等を使用することができる。 このような力一ボン材料は常套の方法によって絶縁性の基板上に電極部分とし て形成される。 通常、 カーボン材料を樹脂パインダ一等によりペースト状にした ものをスクリーン印刷し、 それを加熱乾燥することにより形成できる。
印刷方法としては、 スクリーン印刷に限定されることは特になく、 その他、 グ ラビア印刷、 オフセット印刷、 インクジェット印刷等が応用できる。
対極は、 参照極も兼ねる 2電極系を前提としているため、 ここでは銀 塩化銀 を選択し、また電極反応部分と電気化学的検出回路との接続部分であるリ一ドは、 最も導電性の優れた銀をここでは選択し、 スクリーン印刷により形成した。
絶縁性基板としては、 ガラス、 ガラスエポキシ、 セラミックス、 プラスチック 等が挙げられるが、 電極部分の印刷形成の際や試料の添加の際に侵されない物質 であれば特に限定はない。 例えばポリエステル、 ポリエチレン、 ポリエチレンテ レフタレ一ト (P E T )、 ポリスチレン、 ポリプロピレン等のプラスチックフィル ムが安価であり、 さらに導電性インクとの密着性や加工性の良さから、 ここでは P E Tフィルムが好ましいことを見出した。
なお、 光学的検出に際してはホルマザンの呈色反応を比色定量するため、 前記 絶縁性基板は無色透明である材料を選択し、測定波長における吸収がないことと、 光源光照射用の窓を必要とする。
カバ一とスぺーサおよびそれらを接着する材料は、 検体である生体試料に侵さ れることなく、 反応試薬固定化層を保持し、 一連の反応への阻害がなく、 反応部 分への外部からの接触を保護できれば、 形状、 材質等の限定は特にない。
反応試薬固定化層は、 吸収層、 展開層、 反応層の 3層からなり材質はそれぞれ ポリプロピレン、 ニトロセルロース、 ポリエーテルスルホンである。 なお、 単層 構造でも構わず、 反応試薬の劣化も見られなく、 検体の分離能も高く、 生体試料 との親和性も高ければ、 特に限定はない。
センサチ'ップを利用して定量する際の小型で携帯性を有する測定装置 (ポー夕 ブルメータ) を以下に記す。
. ポータブルメータは、 センサチップとの接続ができ、 光学的検出回路および電 気化学的検出回路を有し、 ホルマザン濃度を検出したのち、 生体試料に含まれる 各基質の濃度に換算して、 検査結果を表示する機能を有する。
光学的検出回路には、 ホルマザンの吸収波長を照射する光源と、 反射光の受光 素子を必要とする。
電気化学的検出回路には、 一定電圧を印加する回路と、 電流検査回路を必要と する。
スィツチは、電源用としてまた各種設定時に使用する。なお図中に記載したが、 自動化を行えば特に必要はない。 実施例
以下に本発明の実施例について具体的に説明するが、 本発明はこれらに限定さ れるものではない。 実施例 1 センサチップの作製
図 1は、 センサチップの一作製例を示したもので、 主要構成部分の分解斜視図 である。 なお、 センサチップは、 光学的検出用の透明な窓 1 5と、 スクリーン印 刷により形成された電極系と、 反応試薬が固定化された層状構造体 6と、 スぺー サ 1 0およびカバー 1 1とからなる。 まず電極系は、 P ETフィルム (東レ (株) 製) の絶縁性基板 1に導電性銀ィ ンク (日本アチソン (株) 製) をスクリーン印刷後、 加熱乾燥 ( 1 20^ 1 5 分間) してリード 2を形成した。 次に作用極 4、 対極 5への各接続部分を残し絶 縁性インク (日本アチソン (株) 製) を用いて絶縁層 3を形成 (紫外線照射によ り硬化) した。 その上に、 導電性グラフアイ トインク (日本アチソン (株) 製) を用いて作用極 4を、 導電性銀 Z塩化銀インク (日本アチソン (株) 製) を用い て対極 5をスクリーン印刷し加熱乾燥 ( 1 2 0で, 1 5分間) して電極系を印刷 により積層形成した。
続いて反応試薬固定化詹 6について、 酵素反応の至適 p Hを調整するた'めの緩 衝成分は、 吸収層 7であるポリプロピレン製メンブレン (日本ミリポア (株) 製) に溶液状で吸収、 乾燥 (40°C, 1 5分間) させ固定化した。
電子メディェ一夕である 1ーメトキシ PMS ((株) 同仁化学研究所製) は、 超純水に溶解させたのち、 展開層 8であるニトロセルロース製メンブレン (日本 ミリポア (株) 製) に吸収、 乾燥 (40°C, 1 5分間) させ固定化した。
テトラゾリゥム塩である WS T— 1 ((株) 同仁化学研究所製) と各基質に対応 する脱水素酵素および補酵素である酸化型ニコチンアミ ドアデニンジヌクレオチ ド (NAD+) (オリエンタル酵母 (株) 製) は、 リン酸緩衝液 (pH 7. 4, 2 0 mM) に溶解させたのち、 反応層 9であるポリエーテルスルホン製メンブレン (日本ポール (株) 製) に吸収、 乾燥 (40^, 1 5分間) させ固定化した。 以上必要とする反応試薬を固定化した層状構造体である反応試薬固定化層 6を、 印刷形成した電極上にスぺーサ 1 0を介して配置し、 カバ一 1 1により被覆して センサチップ 1 7 とした。 実施例 2 センサチップの基本応答
実施例 1における作製手順に従い GE、 MS UD、 PKU検査用の専用センサ チップを作製した。 なお、 D— G a 1、 L一 L e uを含む分岐鎖アミノ酸、 L一 P h eの各基質に特異的な脱水素酵素のみを変更し、 他の反応試薬は全て同一と した。
GE検査用センサチップには、 D— G a 1脱水素酵素 (E C 1. 1. 1. 4 8 , ロシュ · ダイァグノスティックス (株) 製) を使用した。
なお、 リン酸化された G a l (ガラクト一ス— 1一リン酸) も併せて定量する 際は、 アルカリフォスファターゼ (E C 3. 1. 3. 1 ) を共存させることで 可能となる。
M S UD検査用センサチップには、 L一 L e u脱水素酵素 (E C 1. 4. 1. 9, 東洋紡績 (株) 製) を、 P KU検査用センサチップには、 L— P h e脱水素 酵素 (E C 1. 4. 1. 2 0, ュニチカ (株) 製) を用いた。
3種類のセンサチップの基本応答を、 種々の濃度に調製した各基質の標準溶液 を用いて求めた。 '
光学的検出は、 光源 (安藤電気 (株) 製) から任意の波長の可視光を光フアイ パにより絶縁性基板上に配置された反応試薬固定化層の最下面に照射し、 その反 射光量を測定した ((株) アドバンテスト製)。 検体を点着後、 ここでは酵素反応 および酸化還元反応に要する時間として 1 2 0秒間静置し、 ホルマザンの呈色反 応を比色測定した。
ホルマザンの呈色反応は p Hにより極大吸収波長がシフトする。 本発明の利用 p H領域ではおよそ 4 5 0 nmから 6 0 0 n mの波長領域に極大吸収波長が確認 された。
電気化学的検出は前記同様に、 検体を点着後、 酵素反応および酸化還元反応に 要する時間として 1 2 0秒間静置し、 ホルマザンの酸化電位である + 5 0 0 mV を対極を基準に印加してその際に発生したホルマザンの酸化電流を測定した (北 斗電工 (株) 製)。
2 mMまでの濃度領域において、 2種類の検出方法および各センサチップは、 基質濃度に依存的な応答を示した。 実施例 3 ポータブルメータの製作
G E、 M S UDおよび P KU検査用センサチップを用いた測定装置であるポー 夕ブルメータを図 4に示し、 測定手順を以下に説明する。
各センサチップ 1 7を、 チップ揷入口 1 9よりポータブルメータ 1 8に装着す る。 このとき、 スィッチ 2 1によりメータを作動させるか、 もしくは自動作動な のかは特に限定されない。
検体 1 3をセンサチップ 1 7に点着させ測定を開始する。 この際もスィッチ 2 1により開始させるか、 自動開始なのかは特に限定されない。
タイマ 2 5により酵素反応および酸化還元反応をある一定時間進行させて、 そ の後光学的および電気化学的検出を行う。
光学的検出方法は、 絶縁性基板上 1の反応試薬固定化層 6の最下面 (光学的検 出用窓 1 5 ) に光源光をある一定時間照射して (図 4の 2 3に相当)、 その際の反 射光量を受光素子で測定する (図 4の 2 4に相当)。
電気ィ'匕学的検出方法は、センサチップ電極系に対して新定の電圧を印加する(図 4の 2 3に相当)。 その際に生じた応答電流値を測定する (図 4の 2 4に相当)。 それらの測定値を電流—電圧変換おょぴアナログ—デジタル変換等の種々の変 換を行いマイクロコンピュータ 2 2により基質濃度を換算して、 液晶表示画面 2 0に結果表示する。
また、 ブザー 2 6を搭載し操作性を向上させ、 パッテリ 2 7駆動により携帯性 を高めた。
なお、 本ポータブルメータは、 3種類の専用チップを自動識別し、 一連の測定 を実行してそれぞれの結果表示を行う。 また、 複数項目を検査する際、 検体採取 の煩雑さや、 1項目毎に測定終了を待つなど検査時間の短縮等の改善を目的とし て、 全 3項目をほぼ同時に検査可能とするためにチップ揷入口を 3チャンネル化 することも可能である。 実施例 4 センサチップとポータブルメータの基本応答
実施例 1で作製した G E、 M S U Dおよび P K U検査用の 3種類のセンサチッ プと実施例 3で製作したポー夕プルメータを用いて基本応答を測定した。
測定手順は実施例 3に従い、 各専用チップを装着後、 それぞれの基質標準溶液 を点着させた。 ここでは一連の反応時間を 1 2 0秒間とし、 その後光学的検出を 行い電気化学的検出の順に連続的に実施した。 電気化学的検出では、 ホルマザン を電解酸化させるため、 変化を生じさせない光学的検出を先に行った。
続いて、 光学的および電気化学的な各応答を比較し、 その差がある基準内であ れば、' 基質濃度への換算を行い結果表示を行い、 基準外であればエラー表示とす る。
なお、 光学的検出回路における構成は、 ここでは光源にピーク波長 5 9 0 n m の高輝度発光ダイオード (日本ヒューレッ ト ·パッカ一ド (株) 製) と、 受光素 子にフォトダイオード (日本テキサス ·ィンスツルメンッ (株) 製) を利用した。 また、 電気化学的検出回路は、 種々の半導体素子により構成した。
上記実施例では、 センサチップに関して特定の形状を図示したが、 電極形状、 電極、 リードおよび絶縁層の配置、 反応試薬固定化層の形状や配置、 力パーおよ びスぺーサの形状や配置、 外形^は限定されるものではない。 ' また、 ポ一夕プルメ一夕に関しても特定の形状を図示したが、 それに限定され るものではない。
さらなる高精度検出を実現するには、 光学的検出に閧しては測定波長に加え参 照波長用に光源を増やした 2波長測定があり、 電気化学的検出に関しては参照電 極を加えた 3電極系測定がある。

Claims

請求の範囲
1 . 先天性代謝異常症であるガラク 卜一ス血症、 メ一プルシロップ尿症、 フエ二 ルケトン尿症の 3疾患に対して、 同時検査を可能とする検査方法。
2 . 前記ガラクト一ス血症、 メープルシロップ尿症、 フエ二ルケトン尿症の測定 対象物質である D—ガラクト一ス、 L一口イシンを含む分岐鎖アミノ酸、 Lーフ ェニルァラニンを同時に定量することによって、 同時検査を可能とする請求項 1 記載の検査方法。
3 . 前記 D—ガラクトース、 L一口イシンを含む分岐鎖アミノ酸、 L —フエニル ァラニンの定量において、 少なくとも D—ガラクトース脱水素酵素、 L一口イシ ン脱水素酵素、 L一フエ二ルァラニン脱水素酵素の各脱水素酵素と捕酵素と電子 メディエー夕およびテトラゾリゥム塩からなる反応試薬と、 前記生体試料による 酵素反応および酸化還元反応により、 生成したホルマザンの濃度を定量すること によって、 同時検査を可能とする請求項 1または 2に記載の検査方法。
4 . 前記反応試薬を試験紙に固定化することで、 前記生体試料を接触させるだけ で前記反応試薬が溶解し混合されて、 前記酵素反応および前記酸化還元反応を経 て前記ホルマザンが生成されることを特徴とする請求項 1から 3のいずれかに記 載の検査方法。
5 . 前記ホルマザンは、 光学的手法および電気化学的手法の双方もしくはどちら か一方を用いることによって定量が可能となることを特徴とする請求項 1から 4 のいずれかに記載の検査方法。
6 . 前記光学的手法とは、 前記ホルマザンの吸収波長を照射することによる反射 光量を測定することを特徴とする請求項 1から 5のいずれかに記載の検査方法。
7 . 前記電気化学的手法とは、 前記ホルマザンに電極系によりある一定電圧を印 加することで発生した電流を測定することを特徴とする請求項 1から 6のいずれ かに記載の検査方法。
8 . 先天性代謝異常症であるガラクト一ス血症、 メープルシロップ尿症、 フエ二 ルケトン尿症の 3疾患に対する同時検査が可能な手段を有する検査装置。
9 . 前記ガラク トース血症、 メ一プルシロップ尿症、 フエ二ルケトン尿症の測定 対象物質であ'る D—ガラク ト一ス、 L—ロイシンを含む分岐鑌アミノ酸、 Lーフ ェニルァラニンを同時に定量し、 同時検査が可能な手段を有する請求項 8記載の 検査装置。
1 0 . 前記ガラクト一ス血症、 メ一プルシロップ尿症、 フエ二ルケトン尿症の 3 疾患に対する同時検査は、 試験紙と測定装置を用いることを特徴とする請求項 8 または 9 .に記載の検査装置。
1 1 . 前記試験紙は、 前記 D—ガラクト一ス、 L一口イシンを含む分岐鎖ァミノ 酸、 L一フエ二ルァラニンの定量において、 少なくとも D —ガラクトース脱水素 酵素、 L一口イシン脱水素酵素、 L一フエ二ルァラニン脱水素酵素の各脱水素酵 素と補酵素と電子メディエータおよびテトラゾリゥム塩からなる反応試薬を固定 化したことを特徴とする請求項 8から 1 0のいずれかに記載の検査装置。
1 2 . 前記試験紙は、 光学的検出用の窓と電気化学的検出用の電極系を有するこ とを特徴とする請求項 8から 1 1のいずれかに記載の検査装置。
1 3 . 前記電極系は、 少なくとも作用極と対極からなることを特徴とする請求項 8から 1 2のいずれかに記載の検査装置。
1 4 . 前記測定装置は、 前記試験紙を装着して使用し、 光学的検出回路および電 気化学的検出回路の双方もしくはどちらか一方を有することを特徴とする請求項
8から 1 3のいずれかに記載の検査装置。
1 5 . 前記光学的検出回路は、 光源と受光素子からなることを特徴とする請求項 8から 1 4のいずれかに記載の検査装置。
1 6 . 前記電気化学的検出回路は、 電圧印加回路と電流検出回路からなることを 特徴とする請求項 8から 1 5のいずれかに記載の検査装置。
1 7 . 前記測定装置は、 前記装置の装着部に装着されたものを自動識別する機能 を有することを特徵とする請求項 8から 1 6のいずれかに記載の検査装置。
1 8 . 前記 D—ガラク ト一ス、 L—ロイシンを含む分岐鎖アミノ酸、 L一フエ二 ルァラニンの定量における測定対象は、 血漿、 血清、 全血、 唾液、 尿等の生体試 料および食品試料等、 さらに液状化が可能な試料も利用可能であることを特徴と する請求項 8から 1 7のいずれかに記載の検査装置。
PCT/JP2000/005788 2000-08-28 2000-08-28 Procede d'examen de maladies a erreurs innees du metabolisme, et appareil d'examen concu a cet effet WO2002018627A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00955060A EP1314786A4 (en) 2000-08-28 2000-08-28 METHOD AND DEVICE FOR EXAMINING DISEASES WITH SPECIFIED METABOLISM DISORDERS
CN00819857.8A CN1461347A (zh) 2000-08-28 2000-08-28 用于先天性代谢异常的检测方法和检测设备
AU2000267323A AU2000267323A1 (en) 2000-08-28 2000-08-28 Method of examining diseases with inborn errors of metabolism and examination apparatus therefor
PCT/JP2000/005788 WO2002018627A1 (fr) 2000-08-28 2000-08-28 Procede d'examen de maladies a erreurs innees du metabolisme, et appareil d'examen concu a cet effet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005788 WO2002018627A1 (fr) 2000-08-28 2000-08-28 Procede d'examen de maladies a erreurs innees du metabolisme, et appareil d'examen concu a cet effet

Publications (1)

Publication Number Publication Date
WO2002018627A1 true WO2002018627A1 (fr) 2002-03-07

Family

ID=11736395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005788 WO2002018627A1 (fr) 2000-08-28 2000-08-28 Procede d'examen de maladies a erreurs innees du metabolisme, et appareil d'examen concu a cet effet

Country Status (4)

Country Link
EP (1) EP1314786A4 (ja)
CN (1) CN1461347A (ja)
AU (1) AU2000267323A1 (ja)
WO (1) WO2002018627A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086453A1 (fr) 2001-04-20 2002-10-31 Sapporo Immuno Diagnostic Laboratory Instrument servant a prelever et a recuperer une secretion liquide d'une cavite orale
WO2005075970A1 (ja) * 2004-02-06 2005-08-18 Ajinomoto Co., Inc. アミノ酸バイオセンサー、フィッシャー比バイオセンサー、及び健康情報管理システム
JP2006507489A (ja) * 2002-11-14 2006-03-02 ジーメンス アクツィエンゲゼルシャフト 液体試料中の検体を判定するための測定装置
WO2006022113A1 (ja) * 2004-08-24 2006-03-02 Toyama Prefecture His-Tag融合フェニルアラニン脱水素酵素を用いた固定化酵素チップによるL-フェニルアラニンの定量方法
JP2007537456A (ja) * 2004-05-14 2007-12-20 バイエル・ヘルスケア・エルエルシー 生物学的分析物を分析検査するボルタンメトリーシステム
JP2009069085A (ja) * 2007-09-17 2009-04-02 Toyama Univ フェニルアラニンセンサ及びフェニルアラニン測定方法
WO2010070719A1 (ja) * 2008-12-15 2010-06-24 株式会社札幌イムノ・ダイアグノスティック・ラボラトリー バイオセンサおよび基質濃度の測定方法
CN102175627A (zh) * 2011-01-26 2011-09-07 河南农大迅捷测试技术有限公司 多波长多光源漫反射式比色装置及反射率测定方法
JP2012058168A (ja) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd バイオセンサ及びその製造方法
JP2015535077A (ja) * 2012-10-17 2015-12-07 ユニバーシティ オブ メリーランド, オフィス オブ テクノロジー コマーシャライゼーション デバイスおよびアミノアシドパシーの検出のためにデバイスを用いる方法
JP2017513487A (ja) * 2014-04-17 2017-06-01 ユニバーシティー オブ メリーランド,カレッジ パーク アミノ酸代謝異常の検出のためのデバイス、及びデバイスを使用する方法
JP2019516968A (ja) * 2016-04-29 2019-06-20 バービーズ インコーポレイテッドBaebies, Inc. ポイント・オブ・バースシステムおよび器具、生化学カートリッジ、並びに新生児スクリーニング方法
JP2022505175A (ja) * 2018-10-19 2022-01-14 アヴァロン ヘパポク リミテッド ガラクトースの迅速な定量的検出システムおよびその使用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191781B (zh) * 2006-11-29 2012-03-21 合世生医科技股份有限公司 非酵素式尿酸试剂的感测装置、感测试片及其制作方法
CN102816833A (zh) * 2012-08-28 2012-12-12 广州市达瑞抗体工程技术有限公司 一种荧光分析法定量测定新生儿总半乳糖的试剂盒
CN105699448B (zh) 2016-01-14 2018-02-06 京东方科技集团股份有限公司 一种尿液检测方法及尿液检测装置
CN108693146A (zh) * 2017-04-05 2018-10-23 上海点联医疗科技有限公司 掌上型生化反应荧光分析仪
CN111077205A (zh) * 2018-10-19 2020-04-28 阿瓦隆·海帕波有限公司 半乳糖快速检测系统及其应用
CN110018255B (zh) * 2019-04-23 2021-12-24 广州市丰华生物工程有限公司 液质联用同时检测pku、cah和gal的试剂盒及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198666A (ja) * 1993-12-28 1995-08-01 Taiyo Yuden Co Ltd 化学センサプレート及び測定方法
WO1997014965A1 (en) * 1995-10-16 1997-04-24 Lxn Corporation Electrochemical determination of fructosamine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225000A (ja) * 1985-03-28 1986-10-06 Dai Ichi Pure Chem Co Ltd 3α―ヒドロキシステロイドの定量法及びこれに用いる試薬
US5036000A (en) * 1986-12-16 1991-07-30 Enzymatics, Inc. Threshold color control system
US5624813A (en) * 1994-04-21 1997-04-29 Mahant; Vijay K. NAD(P)+ /NAD(P)H based chemiluminescent diagnostics
DE69832909T2 (de) * 1998-07-16 2006-09-14 Sapporo Immuno Diagnostic Laboratory, Sapporo Verfahren zum bestimmen von l-phenylalanin und ein l-phenylalaninsensor
US6720164B1 (en) * 1999-03-19 2004-04-13 Sapporo Immuno Diagnostic Laboratory Method of determining substrate, and biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198666A (ja) * 1993-12-28 1995-08-01 Taiyo Yuden Co Ltd 化学センサプレート及び測定方法
WO1997014965A1 (en) * 1995-10-16 1997-04-24 Lxn Corporation Electrochemical determination of fructosamine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1314786A4 *
U. WENDEL ET AL.: "Neonatal screening for maple syrup disease by an enzyme-mediated colorimetric method", CLINICA CHEMICA ACTA, vol. 219, no. 1-2, 1993, pages 105 - 111, XP002933359 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086453A1 (fr) 2001-04-20 2002-10-31 Sapporo Immuno Diagnostic Laboratory Instrument servant a prelever et a recuperer une secretion liquide d'une cavite orale
JP4808968B2 (ja) * 2002-11-14 2011-11-02 エフ.ホフマン−ラ ロッシュ アーゲー 液体試料中の検体を判定するための測定装置
JP2006507489A (ja) * 2002-11-14 2006-03-02 ジーメンス アクツィエンゲゼルシャフト 液体試料中の検体を判定するための測定装置
US7833397B2 (en) 2004-02-06 2010-11-16 Ajinomoto Co., Inc. Amino-acid biosensor, Fischer-ratio biosensor and health information management system
US8440068B2 (en) 2004-02-06 2013-05-14 Ajinomoto Co., Inc. Amino-acid biosensor, fischer-ratio biosensor and health information management system
WO2005075970A1 (ja) * 2004-02-06 2005-08-18 Ajinomoto Co., Inc. アミノ酸バイオセンサー、フィッシャー比バイオセンサー、及び健康情報管理システム
JPWO2005075970A1 (ja) * 2004-02-06 2007-10-11 味の素株式会社 アミノ酸バイオセンサー、フィッシャー比バイオセンサー、及び健康情報管理システム
JP4711229B2 (ja) * 2004-02-06 2011-06-29 味の素株式会社 アミノ酸バイオセンサー、フィッシャー比バイオセンサー、及び健康情報管理システム
JP4773428B2 (ja) * 2004-05-14 2011-09-14 バイエル・ヘルスケア・エルエルシー 生物学的分析物を分析検査するボルタンメトリーシステム
US10416110B2 (en) 2004-05-14 2019-09-17 Ascensia Diabetes Care Holdings Ag Voltammetric systems for assaying biological analytes
JP2011174943A (ja) * 2004-05-14 2011-09-08 Bayer Healthcare Llc 生物学的分析物を分析検査するボルタンメトリーシステム
JP2007537456A (ja) * 2004-05-14 2007-12-20 バイエル・ヘルスケア・エルエルシー 生物学的分析物を分析検査するボルタンメトリーシステム
US9784706B2 (en) 2004-05-14 2017-10-10 Ascensia Diabetes Care Holdings Ag Voltammetric systems for assaying biological analytes
US8287717B2 (en) 2004-05-14 2012-10-16 Bayer Healthcare Llc Voltammetric systems for assaying biological analytes
US8871079B2 (en) 2004-05-14 2014-10-28 Bayer Healthcare Llc Voltammetric systems for assaying biological analytes
WO2006022113A1 (ja) * 2004-08-24 2006-03-02 Toyama Prefecture His-Tag融合フェニルアラニン脱水素酵素を用いた固定化酵素チップによるL-フェニルアラニンの定量方法
JP4702341B2 (ja) * 2007-09-17 2011-06-15 国立大学法人富山大学 フェニルアラニンセンサ及びフェニルアラニン測定方法
JP2009069085A (ja) * 2007-09-17 2009-04-02 Toyama Univ フェニルアラニンセンサ及びフェニルアラニン測定方法
WO2010070719A1 (ja) * 2008-12-15 2010-06-24 株式会社札幌イムノ・ダイアグノスティック・ラボラトリー バイオセンサおよび基質濃度の測定方法
US9222909B2 (en) 2010-09-13 2015-12-29 Dai Nippon Printing Co., Ltd. Biosensor and method for producing the same
JP2012058168A (ja) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd バイオセンサ及びその製造方法
CN102175627B (zh) * 2011-01-26 2013-05-01 河南农大迅捷测试技术有限公司 多波长多光源漫反射式比色装置及反射率测定方法
CN102175627A (zh) * 2011-01-26 2011-09-07 河南农大迅捷测试技术有限公司 多波长多光源漫反射式比色装置及反射率测定方法
JP2015535077A (ja) * 2012-10-17 2015-12-07 ユニバーシティ オブ メリーランド, オフィス オブ テクノロジー コマーシャライゼーション デバイスおよびアミノアシドパシーの検出のためにデバイスを用いる方法
JP2017513487A (ja) * 2014-04-17 2017-06-01 ユニバーシティー オブ メリーランド,カレッジ パーク アミノ酸代謝異常の検出のためのデバイス、及びデバイスを使用する方法
JP2019516968A (ja) * 2016-04-29 2019-06-20 バービーズ インコーポレイテッドBaebies, Inc. ポイント・オブ・バースシステムおよび器具、生化学カートリッジ、並びに新生児スクリーニング方法
JP7222714B2 (ja) 2016-04-29 2023-02-15 バービーズ インコーポレイテッド ポイント・オブ・バースシステムおよび器具、生化学カートリッジ、並びに新生児スクリーニング方法
JP2022505175A (ja) * 2018-10-19 2022-01-14 アヴァロン ヘパポク リミテッド ガラクトースの迅速な定量的検出システムおよびその使用

Also Published As

Publication number Publication date
EP1314786A4 (en) 2005-01-19
AU2000267323A1 (en) 2002-03-13
EP1314786A1 (en) 2003-05-28
CN1461347A (zh) 2003-12-10

Similar Documents

Publication Publication Date Title
WO2002018627A1 (fr) Procede d'examen de maladies a erreurs innees du metabolisme, et appareil d'examen concu a cet effet
D'Orazio Biosensors in clinical chemistry
US7758744B2 (en) Dual glucose-turbidimetric analytical sensors
JP5148270B2 (ja) 分析システム、装置、及びそのためのカートリッジ
US6984307B2 (en) Dual glucose-hydroxybutyrate analytical sensors
JP4612192B2 (ja) 多化学測定デバイス及び試験片
CN1162994A (zh) 用于分析检测的可定位试条
EP1356282A1 (en) Test strip for simultaneous detection of a plurality of analytes
EP3132049B1 (en) Device and methods of using device for detection of aminoacidopathies
Lai et al. A dry chemistry-based electrochemiluminescence device for point-of-care testing of alanine transaminase
US20090104635A1 (en) Fluorescent Dry Test Strip Biosensor
EP1098193B1 (en) Method for assaying l-phenylalanine and l-phenylalanine sensor
Hu et al. Disposable paper-on-CMOS platform for real-time simultaneous detection of metabolites
CN114878668B (zh) 一种全自动干式三电极电化学发光分析仪及其在电化学发光检测中的应用
CN217931512U (zh) 一种干式三电极电化学发光芯片
Davis Advances in biomedical sensor technology: a review of the 1985 patent literature
CA2512279C (en) Method for preparing lactate biosensing strip
EP2440925A1 (en) Methods and kits for detecting, diagnosing and monitoring diseases
US7364873B2 (en) Method for manufacture of lactate biosensing strip
Sinha et al. Biosensors for Point‐of‐Care Applications: Replacing Pathology Labs by Bedside Devices
EP1578985B1 (en) Lactate biosensing strip
US7319018B2 (en) Lactate biosensing strip with two electrodes
Naghdi et al. Neonatal point-of-care testing
JP2543057B2 (ja) バイオセンサの製造方法およびバイオセンサ用電極板の製造方法
WO2024086700A1 (en) Capture and use of results for diagnostic assays via point-of-collection devices using mobile devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CU IN JP KR MX NO NZ PL RO RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 522533

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000955060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008198578

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000955060

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000955060

Country of ref document: EP