WO2002016914A1 - Fabrication d'un capteur chimique a fibre optique comprenant un indicateur colore, utilisable notamment pour la mesure de l'acidite nitrique - Google Patents

Fabrication d'un capteur chimique a fibre optique comprenant un indicateur colore, utilisable notamment pour la mesure de l'acidite nitrique Download PDF

Info

Publication number
WO2002016914A1
WO2002016914A1 PCT/FR2001/002639 FR0102639W WO0216914A1 WO 2002016914 A1 WO2002016914 A1 WO 2002016914A1 FR 0102639 W FR0102639 W FR 0102639W WO 0216914 A1 WO0216914 A1 WO 0216914A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
nitric acid
colored indicator
hours
indicator
Prior art date
Application number
PCT/FR2001/002639
Other languages
English (en)
Inventor
Marie-Hélène NOIRE
Christophe Bouzon
Thierry Davin
Original Assignee
Commissariat A L'energie Atomique
Compagnie Generale Des Matieres Nucleaires
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique, Compagnie Generale Des Matieres Nucleaires filed Critical Commissariat A L'energie Atomique
Priority to US10/110,202 priority Critical patent/US6864095B2/en
Priority to JP2002521960A priority patent/JP4805526B2/ja
Priority to GB0208415A priority patent/GB2371113B/en
Publication of WO2002016914A1 publication Critical patent/WO2002016914A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2525Stabilizing or preserving

Definitions

  • the present invention relates to the manufacture of chemical fiber optic sensors, useful in particular for measuring nitric acidity.
  • Fiber optic chemical sensors which may be suitable for measuring nitric acid have been described by MH Noire et al, in the following documents: Sensors and Actuators B51, 1998, pages
  • Cyanine R is immobilized in a porous film chemically grafted on the heart of an optical fiber of silica.
  • the chemical fiber optic sensor is coupled to a spectrophotometric device which allows a remote and in situ analysis of the acidity.
  • the sensor operates by attenuated total reflection.
  • the rays coming from a light source propagate, by multiple reflections, in the core of the optical fiber, however passing through a fraction of wavelength in the porous film containing the colored indicator whose color is a function of the acidity of the medium with which it is in contact.
  • the transmitted light representative of the acidity of the medium, is measured by UV-visible spectrophotometry.
  • sol-gel technique is a technique for the chemical synthesis of metal oxides by the gentle route.
  • This technique consists in preparing a soil by acid catalyzed hydrolysis of a solution of an alkoxysilane in an alcohol, containing the colored indicator, in allowing the soil to mature to initiate gelation, then in depositing it on the heart of an optical fiber whose mechanical sheaths and optics were removed on a central part, and dried to form a micro-porous film grafted onto the fiber core, containing the colored indicator.
  • the organic precursor which is tetraethoxysilane leads by hydrolysis and condensation to the formation of an inorganic network of low porosity in which the molecules of the colored indicator are trapped.
  • the optical fiber provided with this porous film is introduced into a cell in which the medium to be measured circulates and which is connected by means of optical fibers to a multi-channel spectrophotometric device equipped with a CCD detector.
  • a multi-channel spectrophotometric device equipped with a CCD detector.
  • the absorbance measured by the detector is representative of the protonated form of the colored indicator and directly related to the concentration of nitric acid in the medium analyzed.
  • the present invention specifically relates to a method of manufacturing a chemical fiber optic sensor by the sol-gel technique, which has a very high stability, that is to say the ability to retain almost entirely the indicator. colored in the porous film, for long periods of time, while letting the protons released by the acid diffuse inside this film.
  • the method of manufacturing a chemical fiber-optic sensor based on silica, usable for the analysis of a chemical species present in a liquid or a gas consists in chemically grafting on the core of the optical fiber.
  • a porous film containing a colored indicator sensitive to the chemical species to be analyzed by performing the following steps: a) preparation of a soil by acid catalyzed hydrolysis of a solution of an alkoxysilane in an alcohol, containing the colored indicator, b) soil ripening, c) deposition of the soil on the core of the optical fiber, and d) drying, and is characterized in that, in step a), the amount of acid used is such that the pH of the aqueous phase of the soil is from 0.44 to 0.72.
  • the choice of the parameters used is very important because these parameters have a direct influence on the structure final of the porous film which must retain the colored indicator.
  • optimal conditions are chosen to obtain a porosity allowing the colored indicator to be fully retained while allowing the species to be analyzed to diffuse, for example the protons released by the acid, inside the film.
  • the choice of the pH of the aqueous phase of the sol is a determining parameter for obtaining the desired characteristics of microporosity of the grafted film containing the colored indicator.
  • Obtaining a macroporous film is not desirable, because it allows the molecules of the colored indicator to diffuse in the solution to be analyzed and to harm the reproducibility and the lifetime of the sensor.
  • the pH of the aqueous phase of the soil is generally adjusted to the desired value by addition of hydrochloric acid.
  • a value of 0.72 corresponds to a percentage of HCl of 2%, 2% meaning 2 moles of HCl per 100 moles of alkoxysilane.
  • Another important parameter for adjusting the porosity of the grafted film to the desired values relates to stage b) of soil curing.
  • this ripening is carried out at a temperature of 40 to 70 ° C, preferably from 50 to 60 ° C, for a period of at most 3 days.
  • the curing time has an influence on the pore size of the dried film.
  • the diameter of the pores increases with the time of ripening. Also, to limit this diameter, a curing time of not more than 3 days and preferably 24 to 50 hours should be chosen.
  • Another parameter which exerts a notable influence on the quality of the porous film is the quantity of water used for the hydrolysis during stage a) of soil preparation.
  • a water / alkoxysilane molar ratio of 4 to 6 is used for hydrolysis.
  • the choice of such a water / alkoxysilane molar ratio makes it possible to stabilize the film density and its porosity characteristics.
  • drying is preferably carried out under vacuum, for a period of 20 to 30 hours, preferably approximately 24 hours.
  • the drying temperature can be 100 ° C.
  • the senor is preferably used after having stored it for at least 3 weeks, protected from light and at ambient temperature.
  • This additional storage step is also important because it allows the deposited film to be stabilized. In fact, drying at 100 ° C., even if it is carried out on thin films, does not allow total condensation of the alkoxy functions. Therefore, the film evolves over time by slow condensation of the remaining alkoxy functions. It is therefore very important to use the sensor after this condensation process has been completed so as • not to encounter reproducibility problems during its characterization.
  • the storage is carried out for a period ranging from 3 weeks to 2 months.
  • This condensation process can also be accelerated by drying under vacuum.
  • the other parameters of the manufacturing process by the sol-gel technique have less influence on the porosity of the deposited film and can be chosen from the values used in the known processes for manufacturing chemical sensors by the sol-gel technique.
  • the alcohol content of the alkoxysilane solution can be such that the alcohol / alkoxysilane molar ratio is approximately 10.
  • the alkoxy groups of the alkoxysilane have from 1 to 4 carbon atoms. Tetraethoxysilane is preferably used.
  • the alcohol used can be an alcohol having from 1 to 4 carbon atoms; preferably, ethanol is used which is best suited for the synthesis of microporous gels.
  • the colored indicator is chosen as a function of the chemical species which must be analyzed by the chemical sensor. When this sensor is intended to measure a nitric acidity in the concentration range from 1 to 10 mol / L, the colored indicator can be Chromoxane Cyanine R or Chromazurol S. Preferably, "Chromoxane Cyanine R is used.
  • the colored indicator can be chosen from Thymol Blue, Phenol Red and Violet of Pyrocatechol.
  • concentrations of colored indicator are chosen so as to obtain a sufficient quantity of indicator in the film. They can be such that the colored indicator / alkoxysilane molar ratio is from 1/300 to 1/700. Preferably, it is 1: 335. For higher levels, there may be the appearance of dimers and / or aggregates.
  • Another subject of the invention is a chemical fiber optic sensor for measuring nitric acidity, obtained by the method described above, the acidity measurement signal of which is stable for at least 1000 hours in 8M acid circulated around the porous film.
  • FIG. 1 schematically represents the sol-gel process implemented in the invention.
  • FIG. 2 schematically illustrates a measurement installation comprising a chemical sensor according to the invention.
  • FIG. 3 represents the absorption spectra of a sensor according to the invention, in pure nitric medium, for acidities ranging from 2 to 10 N relative to a reference 1 N.
  • FIG. 4 illustrates the evolution of the signal transmitted by different sensors as a function of time in hours
  • curves 1 to 4 relate to sensors in accordance with the invention while curves 5 to 8 are given for comparison for sensors not in accordance with the invention.
  • FIG 1 there is shown a sol-gel process for the manufacture of a porous film based on silica containing a colored indicator consisting of Chromoxane Cyanine R (CCR).
  • CCR Chromoxane Cyanine R
  • the starting point is an alkoxysilane which is tetraethoxysilane Si (0Et) 4 in solution in ethanol EtOH, and water H 2 0 and an acid catalyst consisting of hydrochloric acid HCl, as well as the CCR colored indicator.
  • the hydrolysis leads to Si (OH) 4 which by condensation gives a soil in which the CCR molecules are trapped.
  • a gel is obtained as shown in this figure.
  • the sol-gel matrix is prepared at room temperature, in a clean place, protected from drafts, and, if possible, at controlled temperature and hygrometry.
  • an optical fiber such as a silica fiber, comprising an optical sheath made of hard polymer and an outer sheath made of Tefzel, having a total length of 256 mm.
  • the central part of this fiber or active part is stripped, for example over 100 mm, to expose the core of the fiber.
  • the sol-gel deposition is then carried out on the active part of this fiber which has been cleaned, for example with ethanol.
  • This deposition can be carried out by introducing the fiber vertically into a tube containing the soil, then by withdrawing it vertically at a slow and constant speed, for example of 1 mm / s. The ends of the mechanical sheath having soaked in the sol-gel solution are then cleaned with alcohol. After deposition, the coated fiber is dried, for example at a temperature of 100 ° C., in order to obtain adhesion of the film to the fiber and to reduce the porosity.
  • This deposition step is carried out away from drafts to have a uniform deposition thickness during the evaporation of the solvent.
  • the sensors 1 and 2 are prepared from two identical soils, obtained by successively adding, in an airtight opaque glass bottle, absolute ethanol, tetraethoxysilane (TEOS) having a purity of 99%, dilute hydrochloric acid and the CCR colored indicator having a molecular mass M of 536.4 and a purity of 40%.
  • TEOS tetraethoxysilane
  • dilute hydrochloric acid having a molecular mass M of 536.4 and a purity of 40%.
  • an amount of hydrochloric acid is used such that the pH of the aqueous phase of the soil is 0.72, a water / TEOS molar ratio of 6, an ethanol / TEOS molar ratio of 10, and a CCR concentration. representing 1 mole of CCR for 335 moles of TEOS.
  • the mixture is homogenized for 1 hour at room temperature, then it is stored hermetically in an oven at 55 ° C. for a maturing period of 50 hours, before depositing the soil on the fiber by the process described above. above. After depositing the film, drying is carried out under vacuum at 100 ° C. for 24 hours, then the sensor is stored for 3 weeks in an ambient atmosphere.
  • Example 2 The same procedure is followed as in Example 1 to prepare the sensors 3 to 8, using the same process parameters, apart from the pH of the aqueous phase of the sol and the temperature.
  • Table 1 illustrates the values used for the preparation of sensors 1 to 8, for the pH of the aqueous phase and the ripening temperature.
  • the sensors 1 to 4 prepared as described above have the following characteristics.
  • the thickness of the film is of the order of 100 nm for the deposition of a layer of sol. This thickness is measured on optical fiber by scanning electron microscopy (SEM) and on silicon wafer by X-ray reflectometry and ellipsometry. The density of the film is 1.85 g. cm, measured by X-ray reflectometry. The pore volume deducted is 16%.
  • the refractive index of the film is 1.44 against 1.46 for the index of the core of the optical fiber, in fused silica. This value was obtained by ellipsometry on a silicon plate.
  • the device shown in FIG. 2 is used.
  • This device comprises a xenon lamp 1 which sends a beam of light to the sensor 3 in contact with the medium to be measured and to a reference line 5 measuring any fluctuations of the lamp signal.
  • the light beams are then conveyed by optical fibers 7 in a plane field spectrophotometer 9 provided with mirrors and a CCD detector "Charge, Coupled Device", which is a two-dimensional matrix detection system, the columns representing the lengths of waves and the lines representing the position of the 10 fibers (or of the 10 measurement channels), seen by the detector.
  • FIG. 3 shows the absorption spectra obtained for nitric acid concentrations of 2, 5, 8, 10 and 12N.
  • FIG. 4 illustrates the evolution of the signals emitted by the sensors 1 to 8 as a function of time (in hours).
  • FIG. 4 illustrates the evolution of the signals emitted by the sensors 1 to 8 as a function of time (in hours).
  • the sensors 6 and 8 do not exhibit any stability of the signal.

Abstract

L'invention concerne la fabrication d'un capteur chimique utilisable pour mesurer une acidité nitrique. Ce capteur est fabriqué par un procédé sol-gel de dépôt d'un film poreux contenant un indicateur coloré sur le c ur d'une fibre optique. On règle le pH du sol de départ et d'autres conditions de mise en uvre du procédé sol-gel pour obtenir une stabilité du signal (courbes 1 à 4) émis par le capteur en milieu nitrique 8N pendant au moins 1000 heures.

Description

FABRICATION D'UN CAPTEUR CHIMIQUE A FIBRE OPTIQUE
COMPRENANT UN INDICATEUR COLORE, UTILISABLE NOTAMMENT
POUR LA MESURE DE L'ACIDITE NITRIQUE.
DESCRIPTION
Domaine technique
La présente invention concerne la fabrication de capteurs chimiques à fibres optiques, utiles notamment pour la mesure de l'acidité nitrique.
Dans le domaine du retraitement des combustibles nucléaires usés, les exigences de qualité et de maîtrise du procédé imposent de connaître très rapidement, voire en temps réel, les variations éventuelles de paramètres physiques ou chimiques, en particulier l'acidité nitrique. En effet, dans les différentes étapes de retraitement des combustibles usés, la mesure en ligne de l'acidité libre est une donnée importante qui contribue, pour une large part, à la maîtrise des procédés d'extraction, à la réduction notable des effluents et à l'allégement de la charge des laboratoires
État de la technique antérieure
Des capteurs chimiques à fibres optiques pouvant convenir pour la mesure de l'acidité nitrique ont été décrits par M. H. Noire et al, dans les documents suivants : Sensors and Actuators B51, 1998, pages
214-219 [1], et
- Journal of Sol-Gel Science and Technology 17,
2000, pages 131-136 [2] . Ces capteurs mesurent l'absorbance d'un indicateur coloré sensible aux protons libérés par l'acide. L'indicateur coloré, par exemple le Chromoxane
Cyanine R, est immobilisé dans un film poreux greffé chimiquement sur le cœur d'une fibre optique de silice. Le capteur chimique à fibres optiques est couplé à un dispositif spectrophotométrique qui permet une analyse à distance et in situ de l'acidité. Le capteur fonctionne par réflexion totale atténuée. Lorsqu'on utilise ce capteur, les rayons issus d'une source lumineuse se propagent, par réflexions multiples, dans le cœur de la fibre optique, en transitant toutefois selon une fraction de longueur d'onde dans le film poreux contenant l'indicateur coloré dont la couleur est fonction de l'acidité du milieu avec lequel il est en contact. La lumière transmise, représentative de l'acidité du milieu, est mesurée par spectrophotométrie UV-visible.
Le procédé utilisé pour la fabrication de ces capteurs fait appel à la technique sol-gel, qui est une technique de synthèse chimique d'oxydes métalliques par voie douce. Cette technique consiste à préparer un sol par hydrolyse catalysée par un acide d'une solution d'un alcoxysilane dans un alcool, contenant l'indicateur coloré, à laisser mûrir le sol pour initier la gélification, puis à le déposer sur le cœur d'une fibre optique dont les gaines mécanique et optique ont été retirées sur une partie centrale, et à sécher pour former un film micro-poreux greffé sur le cœur de la fibre, contenant l'indicateur coloré.
Dans ce procédé, le précurseur organique qui est le tetraethoxysilane, conduit par hydrolyse et condensation à la formation d'un réseau inorganique de faible porosité dans lequel sont piégées les molécules de l'indicateur coloré.
Pour effectuer une mesure d'acidité, on introduit la fibre optique munie de ce film poreux dans une cellule où circule le milieu à mesurer et qui est reliée par le biais de fibres optiques à un dispositif spectrophotométrique multi-voies équipé d'un détecteur CCD. L'avantage d'un tel dispositif est la possibilité d'assurer le suivi simultané de l'acidité en différents points d'une installation par le biais de plusieurs capteurs.
L'absorbance mesurée par le détecteur est représentative de la forme protonee de l'indicateur coloré et directement reliée à la concentration d'acide nitrique du milieu analysé.
Les capteurs fabriqués jusqu'à présent par ce procédé possèdent des performances analytiques intéressantes mais ils ont l'inconvénient de ne pas posséder de bonnes caractéristiques de reproductibilité et surtout de durée de vie, en raison d'une désorption des molécules d'indicateur coloré depuis le film poreux vers le milieu d'analyse. Exposé de l'invention
La présente invention a précisément pour objet un procédé de fabrication d'un capteur chimique à fibre optique par la technique sol-gel, qui présente une stabilité très élevée, c'est-à-dire la capacité de retenir pratiquement en totalité l'indicateur coloré dans le film poreux, pendant des durées importantes, tout en • laissant diffuser les protons libérés par l'acide à l'intérieur de ce film. Selon l'invention le procédé de fabrication d'un capteur chimique à fibre optique à base de silice, utilisable pour l'analyse d'une espèce chimique présente dans un liquide ou un gaz, consiste à greffer chimiquement sur le cœur de la fibre optique un film poreux contenant un indicateur coloré sensible à l'espèce chimique à analyser, en effectuant les étapes suivantes : a) préparation d'un sol par hydrolyse catalysée par un acide d'une solution d'un alcoxysilane dans un alcool, contenant l'indicateur coloré, b) mûrissement du sol, c) dépôt du sol sur le cœur de la fibre optique, et d) séchage, et se caractérise en ce que, dans l'étape a), la quantité d'acide utilisée est telle que le pH de la phase aqueuse du sol soit de 0,44 à 0,72.
Dans la technique sol-gel, le choix des paramètres utilisés est très important car ces paramètres ont une influence directe sur la structure finale du film poreux qui doit retenir l'indicateur coloré.
Selon l'invention, on choisit des conditions optimales pour obtenir une porosité permettant de retenir totalement l'indicateur coloré tout en laissant diffuser l'espèce à analyser, par exemple les protons libérés par l'acide, à l'intérieur du film.
Ainsi, on a trouvé que le choix du pH de la phase aqueuse du sol était un paramètre déterminant pour obtenir les caractéristiques voulues de microporosité du film greffé contenant l'indicateur coloré .
Le choix de ce paramètre a une influence importante sur le temps de gelification du sol et sur les dimensions de pores du produit séché obtenu ensuite. Ainsi, pour des pH de la solution aqueuse inférieurs à 0,72, on obtient des pores situés dans le domaine microporeux alors que pour des pH supérieurs à 0,72 on est dans le domaine macroporeux.
L'obtention d'un film macroporeux n'est pas souhaitable, car elle permet aux molécules de l'indicateur coloré de diffuser dans la solution à analyser et de nuire à la reproductibilité et à la durée de vie du capteur.
Le pH de la phase aqueuse du sol est généralement réglé à la valeur voulue par addition d'acide chlorhydrique . Une valeur de 0,72 correspond à un pourcentage de HCl de 2 %, 2 % signifiant 2 moles de HCl par 100 moles d' alcoxysilane. Un autre paramètre important pour régler aux valeurs souhaitées la porosité du film greffé concerne l'étape b) de mûrissement du sol. De préférence, on effectue ce mûrissement à une température de 40 à 70°C, de préférence de 50 à 60°C, pendant une durée d'au plus 3 jours.
En effet, on a vérifié que le temps de mûrissement a une influence sur la taille des pores du film séché. Le diamètre des pores augmente avec le temps de mûrissement. Aussi, pour limiter ce diamètre, il convient de choisir un temps de mûrissement ne dépassant pas 3 jours et, de préférence, de 24 à 50 heures.
Un autre paramètre qui exerce une influence notable sur la qualité du film poreux est la quantité d'eau utilisée pour l'hydrolyse lors de l'étape a) de préparation du sol. De préférence, on utilise pour l'hydrolyse un rapport molaire eau/alcoxysilane de 4 à 6. Le choix d'un tel rapport molaire eau/alcoxysilane permet de stabiliser la densité du film et ses caractéristiques de porosité.
Dans le procédé de l'invention, pour la réalisation de l'étape d) , on effectue de préférence le séchage sous vide, pendant une durée de 20 à 30 heures, de préférence d'environ 24 heures. La température de séchage peut être de 100°C.
Selon l'invention, on utilise de préférence le capteur après l'avoir stocké pendant au moins 3 semaines, à l'abri de la lumière et à température ambiante. Cette étape complémentaire de stockage a elle aussi son importance car elle permet de stabiliser le film déposé. En effet, le séchage à 100°C, même s'il est réalisé sur des films fins, ne permet pas une condensation totale des fonctions alcoxy. De ce fait, le film évolue dans le temps par condensation lente des fonctions alcoxy restantes . Il est donc très important d'utiliser le capteur après que ce processus de condensation soit achevé de façon • à ne pas rencontrer des problèmes de reproductibilité lors de sa caractérisation .
De préférence, on réalise le stockage pendant une période allant de 3 semaines à 2 mois. On peut aussi accélérer ce processus de condensation en réalisant le séchage sous vide.
Les autres paramètres du procédé de fabrication par la technique sol-gel ont moins d'influence sur la porosité du film déposé et peuvent être choisis parmi les valeurs retenues dans les procédés connus de fabrication de capteurs chimiques par la technique sol-gel.
Ainsi, le taux d'alcool de la solution d' alcoxysilane peut être tel que le rapport molaire alcool/alcoxysilane soit d'environ 10. Généralement, les groupes alcoxy de l 'alcoxysilane ont de 1 à 4 atomes de carbone. On utilise de préférence le tetraethoxysilane.
L'alcool utilisé peut être un alcool possédant de 1 à 4 atomes de carbone ; de préférence, on utilise l'éthanol qui est le mieux adapté à la synthèse de gels microporeux. Dans le procédé de l'invention, l'indicateur coloré est choisi en fonction de l'espèce chimique qui doit être analysé par le capteur chimique. Lorsque ce capteur est destiné à mesurer une acidité nitrique dans la gamme de concentrations allant de 1 à 10 mol/L, l'indicateur coloré peut être le Chromoxane Cyanine R ou le Chromazurol S. De préférence, on utilise "le Chromoxane Cyanine R.
Lorsque le capteur est destiné à mesurer des acidités nitriques dans une gamme de concentrations plus faibles, par exemple de 0,1 à 2 mol/L, l'indicateur coloré peut être choisi parmi le Bleu de Thymol, le Rouge de Phénol et le Violet de Pyrocatéchol . Les concentrations en indicateur coloré sont choisies de façon à obtenir une quantité suffisante d'indicateur dans le film. Elles peuvent être telles que le rapport molaire indicateur coloré/alcoxysilane soit de 1/300 à 1/700. De préférence, il est de 1 : 335. Pour des taux supérieurs, il peut y avoir apparition de dimères et/ou d'agrégats .
L'invention a encore pour objet un capteur chimique à fibre optique pour la mesure de l'acidité nitrique, obtenu par le procédé décrit ci-dessus, dont le signal de mesure d'acidité est stable pendant au moins 1000 heures dans de l'acide 8M mis en circulation autour du film poreux.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit d'exemples de réalisation donnés bien entendu à titre illustratif et non limitatif, en référence aux dessins annexés.
Brève description des dessins
La figure 1 représente schématiquement le procédé sol-gel mis en œuvre dans l'invention.
La figure 2 illustre schématiquement une installation de mesure comportant un capteur chimique conforme à l'invention.
La figure 3 représente les spectres d'absorption d'un capteur conforme à l'invention, en milieu nitrique pur, pour des acidités allant de 2 à 10 N par rapport à une référence 1 N.
La figure 4 illustre l'évolution du signal transmis par différents capteurs en fonction du temps en heure, les courbes 1 à 4 se rapportent à des capteurs conformes à l'invention alors que les courbes 5 à 8 sont données à titre comparatif pour des capteurs non conformes à l'invention.
Exposé détaillé des modes de réalisation
Sur la figure 1, on a représenté un procédé sol-gel pour la fabrication d'un film poreux à base de silice contenant un indicateur coloré constitué par du Chromoxane Cyanine R (CCR) .
Comme il est illustré sur cette figure, on part d'un alcoxysilane qui est le tetraethoxysilane Si(0Et)4 en solution dans l'éthanol EtOH, et on ajoute de l'eau H20 et un catalyseur acide constitué par de l'acide chlorhydrique HCl, ainsi que l'indicateur coloré CCR.
L'hydrolyse conduit à Si(0H)4 qui par condensation donne un sol dans lequel sont piégées les molécules de CCR. Par mûrissement du sol, on obtient un gel comme représenté sur cette figure. Généralement, la matrice sol-gel est préparée à la température ambiante, dans un endroit propre, à l'abri des courants d'air, et, si possible, à température et hygrométrie contrôlées .
Pour mettre en œuvre le procédé de l'invention, on peut partir d'une fibre optique telle qu'une fibre de silice, comportant une gaine optique en polymère dur et une gaine extérieure en Tefzel, ayant une longueur totale de 256 mm. La partie centrale de cette fibre ou partie active est dénudée, par exemple sur 100 mm, pour mettre à nu le cœur de la fibre. On peut effectuer un premier retrait mécanique de la gaine extérieure de Tefzel, puis un second retrait réalisé par traitement thermique de la gaine optique de polymère dur. On réalise ensuite le dépôt sol-gel sur la partie active de cette fibre qui a été nettoyée, par exemple avec de l'éthanol.
Ce dépôt peut être réalisé en introduisant la fibre verticalement dans un tube contenant le sol, puis en la retirant verticalement à vitesse lente et constante, par exemple de 1 mm/s. Les extrémités de la gaine mécanique ayant trempées dans la solution sol-gel sont ensuite nettoyées à l'alcool. Après dépôt, on procède au séchage de la fibre revêtue, par exemple à une température de 100°C, afin d'obtenir une adhérence du film à la fibre et de diminuer la porosité.
Cette étape de dépôt est menée à l'abri des courants d'air pour avoir une épaisseur de dépôt uniforme lors de 1 ' évaporation du solvant. On peut d'ailleurs effectuer plusieurs dépôts successifs par trempage de la fibre dans le sol pour obtenir l'épaisseur souhaitée.
Les exemples . suivants illustrent la préparation de capteurs par le procédé de l'invention.
Exemple 1
On prépare les capteurs 1 et 2 à partir de deux sols identiques, obtenus en ajoutant successivement dans un flacon hermétique en verre opaque de l'éthanol absolu, du tetraethoxysilane (TEOS) ayant une pureté de 99 %, de l'acide chlorhydrique dilué et l'indicateur coloré CCR ayant une masse moléculaire M de 536,4 et une pureté de 40 %. On utilise pour cette préparation une quantité d'acide chlorhydrique telle que le pH de la phase aqueuse du sol soit de 0,72, un rapport molaire eau/TEOS de 6, un rapport molaire éthanol/TEOS de 10, et une concentration en CCR représentant 1 mole de CCR pour 335 moles de TEOS.
On homogénéise le mélange pendant 1 heure à température ambiante, puis on le stocke hermétiquement à l'étuve à 55°C pour une période de mûrissement de 50 heures, avant d'effectuer le dépôt du sol sur la fibre par le procédé décrit ci-dessus. Après dépôt du film, on réalise un séchage sous vide à 100°C, pendant 24 heures, puis on stocke le capteur pendant 3 semaines en atmosphère ambiante.
Exemple 2
On suit le même mode opératoire que dans 1 ' exemple 1 pour préparer les capteurs 3 à 8 , en utilisant les mêmes paramètres de procédé, mis à part le pH de la phase aqueuse du sol et la température.
Le tableau 1 ci-dessous illustre les valeurs retenues pour la préparation des capteurs 1 à 8, pour le pH de la phase aqueuse et la température de mûrissement .
Tableau 1
Figure imgf000014_0001
Les capteurs 1 à 4 préparés comme il est décrit ci-dessus, ont les caractéristiques suivantes.
- L'épaisseur du film est de l'ordre de 100 nm pour le dépôt d'une couche de sol. Cette épaisseur est mesurée sur fibre optique par microscopie électronique à balayage (MEB) et sur plaque de silicium par réflectométrie X et ellipsométrie . La densité du film est de 1,85 g. cm , mesurée par réflectométrie X. Le volume poreux déduit est de 16 %. - L'indice de réfraction du film est de 1,44 contre 1,46 pour l'indice du cœur de la fibre optique, en silice fondue. Cette valeur a été obtenue par ellipsométrie sur plaque de silicium.
Les capteurs chimiques ainsi obtenus sont ensuite testés en milieu nitrique 8N.
Dans ce but, on utilise le dispositif représenté sur la figure 2. Ce dispositif comprend une lampe au xénon 1 qui envoie un faisceau de lumière sur le capteur 3 en contact avec le milieu à mesurer et sur une ligne de référence 5 mesurant les fluctuations éventuelles du signal de la lampe. Les faisceaux lumineux sont ensuite acheminés par des fibres optiques 7 dans un spectrophotomètre à champ plan 9 muni de miroirs et d'un détecteur CCD « Charge, Coupled Device », qui est un système de détection matriciel à deux dimensions, les colonnes représentant les longueurs d'ondes et les lignes représentant la position des 10 fibres (ou des 10 voies de mesures) , vues par le détecteur.
On obtient ainsi les spectres d'absorption du capteur en milieu HN03 IN qui est la référence et les spectres correspondant aux capteurs en milieu HN03 8N, soit la mesure. On détermine la densité optique sur ces spectres d'absorption à la longueur d'onde du maximum d'absorption situé à
545 nanomètres, par rapport à la référence qui est l'acide nitrique IN. Sur la figure 3, on a représenté les spectres d'absorption obtenus pour des concentrations en acide nitrique de 2 , 5, 8, 10 et 12N.
On vérifie la stabilité du signal émis par chacun des capteurs 1 à 8 en milieu nitrique en mesurant la densité optique au temps tQ/ qui est de 0,14 pour HN03 8N et qui correspond à 100 % du signal, puis on détermine le signal optique en fonction du temps en l'exprimant en pourcentage de la densité optique initiale, mesurée pour la concentration HN03 = 8N.
Les résultats obtenus sont représentés sur la figure 4 qui illustre l'évolution des signaux émis par les capteurs 1 à 8 en fonction du temps (en heures) . Sur cette figure, on voit que les meilleurs résultats sont obtenus avec les capteurs 1 à 4 réalisés à un pH égal ou inférieur à 0,72 et que les capteurs 5 et 7 correspondent aussi à une stabilité moyenne.
En revanche, les capteurs 6 et 8 ne présentent aucune stabilité du signal.
Ainsi, il est vérifié que le choix des paramètres tels que le pH, la température et la durée de mûrissement, conformément à l'invention, joue un rôle très important sur le résultat, en particulier la stabilité du capteur. La réponse des capteurs conformes à l'invention a également été mesurée en présence de cations métalliques tels que Fe3+, Ce3+, U02 2+, Pu (IV), U(IV) , et l'on a vérifié que pour des teneurs en ces
—1 éléments inférieurs à 10 g.L , on obtenait des résultats comparables.
Références citées
[1] : M. H. Noire et al, Sensors and Actuators B51, 1998, pages 214-219.
[2] : M. H. Noire et al, Journal of Sol-Gel Science and Technology 17, 2000, pages 131-136.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un capteur chimique à fibre optique à base de silice, utilisable pour l'analyse d'une espèce chimique présente dans un liquide ou un gaz, consistant à greffer chimiquement sur le cœur de la fibre optique un film poreux contenant un indicateur coloré sensible à l'espèce chimique à analyser, en effectuant les étapes suivantes : a) préparation d'un sol par hydrolyse catalysée par un acide d'une solution d'un alcoxysilane dans un alcool, contenant l'indicateur coloré, b) mûrissement du sol, c) dépôt du sol sur le cœur de la fibre optique, et d) séchage, caractérisé en ce que, dans l'étape a), la quantité d'acide utilisée est telle que le pH de la phase aqueuse du sol soit de 0,44 à 0,72.
2. Procédé selon la revendication 1, dans lequel on réalise l'étape b) de mûrissement du sol à une température de 40 à 70°C pendant une durée d'au plus trois jours.
3. Procédé selon la revendication 2, dans lequel la température de mûrissement est.de 50 à 60°C.
4. Procédé selon la revendication 2 ou 3 , dans lequel la durée de mûrissement du sol est de 24 à 50 heures.
5. Procédé selon la revendication 1 ou 2 , dans lequel on effectue l'étape a) en utilisant pour l'hydrolyse un rapport molaire eau : alcoxysilane de 4 à 6.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel, dans l'étape d) on effectue le séchage sous vide pendant 20 à 30 heures.
7. Procédé selon la revendication 6, dans lequel la durée du séchage est d'environ 24 heures.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel on stocke de plus le capteur pendant au moins trois semaines, avant de l'utiliser.
9. Procédé selon l'une quelconque des revendications 1 et 5, dans lequel on utilise dans l'étape a) une solution de tetraethoxysilane dans l'éthanol ayant un rapport molaire éthanol : tetraethoxysilane d'environ 10.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le rapport molaire indicateur coloré/alcoxysilane est de 1 : 335.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'espèce à analyser est l'acide nitrique dans la gamme de concentrations allant de 1 à 10 mol. L-1.
12. Procédé selon la revendication 11, dans lequel l'indicateur coloré est le Chromoxane Cyanine R.
13. Procédé selon la revendication 11, dans lequel l'indicateur coloré est le Chromazurol S.
14. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'espèce à analyser est l'acide nitrique dans la gamme de concentrations allant de 0,1 à 2 mol. L-1.
15. Procédé selon la revendication 14, dans lequel l'indicateur coloré est choisi parmi le Bleu de Thymol, le Rouge de Phénol et le Violet de Pyrocatéchol .
16. Capteur chimique à fibre optique pour la mesure ' de l'acidité nitrique obtenu par le procédé de la revendication 12, présentant un signal de mesure d'acidité stable, pendant au moins 1000 heures, dans de l'acide nitrique 8M mis en circulation autour du film poreux.
PCT/FR2001/002639 2000-08-22 2001-08-21 Fabrication d'un capteur chimique a fibre optique comprenant un indicateur colore, utilisable notamment pour la mesure de l'acidite nitrique WO2002016914A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/110,202 US6864095B2 (en) 2000-08-22 2001-08-21 Method for making an optical fiber chemical sensor comprising a colored indicator, useful in particular for measuring nitric acid
JP2002521960A JP4805526B2 (ja) 2000-08-22 2001-08-21 特に硝酸度を測定するために用いられる、有色インディケータを含む、光ファイバ化学センサの製造
GB0208415A GB2371113B (en) 2000-08-22 2001-08-21 Production of an optic fibre chemical sensor comprising a coloured indicator, used in particular to measure nitric acidity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/10801 2000-08-22
FR0010801A FR2813393B1 (fr) 2000-08-22 2000-08-22 Fabrication d'un capteur chimique a fibre optique comprenant un indicateur colore, utilisable notamment pour la mesure de l'acidite nitrique

Publications (1)

Publication Number Publication Date
WO2002016914A1 true WO2002016914A1 (fr) 2002-02-28

Family

ID=8853645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/002639 WO2002016914A1 (fr) 2000-08-22 2001-08-21 Fabrication d'un capteur chimique a fibre optique comprenant un indicateur colore, utilisable notamment pour la mesure de l'acidite nitrique

Country Status (7)

Country Link
US (1) US6864095B2 (fr)
JP (1) JP4805526B2 (fr)
CN (1) CN1221801C (fr)
FR (1) FR2813393B1 (fr)
GB (1) GB2371113B (fr)
RU (1) RU2267116C2 (fr)
WO (1) WO2002016914A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519004A (ja) * 2004-01-20 2007-07-12 ゼネラル・エレクトリック・カンパニイ 複数の検体の化学分析用ディスポーザルエレメントを備えたハンドヘルド装置
WO2012069569A1 (fr) * 2010-11-26 2012-05-31 Commissariat à l'énergie atomique et aux énergies alternatives Films minces de silices mesoporeuses comme materiaux sensibles dans des capteurs gravimetriques pour la detection ou le dosage de vapeurs de composes nitres

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399639B2 (en) * 2003-05-04 2008-07-15 Massachusetts Institute Of Technology Sensors, and methods of making and using the same
US7291503B2 (en) * 2003-05-21 2007-11-06 Massachusetts Institute Of Technology Reversible resistivity-based sensors
US7037554B2 (en) * 2003-06-30 2006-05-02 Mississippi State University Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating
US7615377B2 (en) 2003-09-05 2009-11-10 Massachusetts Institute Of Technology Fluorescein-based metal sensors
US7720321B2 (en) * 2007-07-20 2010-05-18 General Electric Company Fiber optic sensor and method for making
CN104515771B (zh) * 2014-12-25 2017-10-17 贵州大学 一种基于光谱显色法的重金属光纤传感器及其制备方法
FR3034686B1 (fr) * 2015-04-13 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede pour greffer un indicateur colore sur un support solide et kit de mise en œuvre
CN106198508B (zh) * 2016-04-21 2018-06-26 中国科学院大连化学物理研究所 一种检测含重金属类农药的方法
RU2732810C1 (ru) * 2020-03-05 2020-09-22 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Узел порционный для измерения показателя кислотности растворов
RU207294U1 (ru) * 2021-07-21 2021-10-21 Ляйсан Ильдаровна Гафурова Волоконно-оптический измеритель кислотности

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439318A2 (fr) * 1990-01-23 1991-07-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Verres sol-gel dopés pour obtenir des interactions chimiques
EP0631127A1 (fr) * 1993-06-24 1994-12-28 ETAT FRANCAIS Représenté par le Délégué Général pour l'Armement Procédé de détection et/ou d'identification d'espèces chimiques ou biologiques à l'aide d'un guide d'onde de type "Sol-Gel"
DE19757496A1 (de) * 1997-12-23 1999-06-24 Studiengesellschaft Kohle Mbh Hochporöse Photokatalysatoren zur Verwertung von sichtbarem Licht

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277968A (ja) * 1990-03-28 1991-12-09 Mitsubishi Heavy Ind Ltd 硝酸溶解性元素あるいは化合物の硝酸溶解状況を把握する溶解モニター
EP0641290B1 (fr) * 1992-05-20 1996-09-11 E.I. Du Pont De Nemours And Company Procede de fabrication de gels inorganiques
JPH09218157A (ja) * 1996-02-05 1997-08-19 Motorola Inc 環境センサとその製造方法
AT405103B (de) * 1996-10-16 1999-05-25 Avl Verbrennungskraft Messtech Sensorschicht zur quantitativen bestimmung zumindest einer chemischen komponente einer gasförmigen oder flüssigen probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439318A2 (fr) * 1990-01-23 1991-07-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Verres sol-gel dopés pour obtenir des interactions chimiques
EP0631127A1 (fr) * 1993-06-24 1994-12-28 ETAT FRANCAIS Représenté par le Délégué Général pour l'Armement Procédé de détection et/ou d'identification d'espèces chimiques ou biologiques à l'aide d'un guide d'onde de type "Sol-Gel"
DE19757496A1 (de) * 1997-12-23 1999-06-24 Studiengesellschaft Kohle Mbh Hochporöse Photokatalysatoren zur Verwertung von sichtbarem Licht

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOIRE M H ET AL: "Optical sensing of high acidity using a sol-gel entrapped indicator", SENSORS AND ACTUATORS B,CH,ELSEVIER SEQUOIA S.A., LAUSANNE, vol. 51, no. 1-3, 31 August 1998 (1998-08-31), pages 214 - 219, XP004154012, ISSN: 0925-4005 *
NOIRÉ M H, COUSTON L, DOUARRE E, AND POUYAT D: "A new Sol-Gel derived optical fiber sensor for high acidity measurements: application in nuclear fuel reprocessing.", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 17, 2000, The Netherlands, pages 131 - 136, XP001002207 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519004A (ja) * 2004-01-20 2007-07-12 ゼネラル・エレクトリック・カンパニイ 複数の検体の化学分析用ディスポーザルエレメントを備えたハンドヘルド装置
WO2012069569A1 (fr) * 2010-11-26 2012-05-31 Commissariat à l'énergie atomique et aux énergies alternatives Films minces de silices mesoporeuses comme materiaux sensibles dans des capteurs gravimetriques pour la detection ou le dosage de vapeurs de composes nitres
FR2968081A1 (fr) * 2010-11-26 2012-06-01 Commissariat Energie Atomique Films minces de silices mesoporeuses comme materiaux sensibles dans des capteurs chimiques pour la detection ou le dosage de vapeurs de composes nitres

Also Published As

Publication number Publication date
JP4805526B2 (ja) 2011-11-02
US20020182740A1 (en) 2002-12-05
CN1221801C (zh) 2005-10-05
GB2371113B (en) 2004-04-21
FR2813393B1 (fr) 2002-10-18
CN1388896A (zh) 2003-01-01
JP2004507733A (ja) 2004-03-11
RU2002110445A (ru) 2004-01-20
GB2371113A (en) 2002-07-17
FR2813393A1 (fr) 2002-03-01
RU2267116C2 (ru) 2005-12-27
GB0208415D0 (en) 2002-05-22
US6864095B2 (en) 2005-03-08

Similar Documents

Publication Publication Date Title
WO2002016914A1 (fr) Fabrication d'un capteur chimique a fibre optique comprenant un indicateur colore, utilisable notamment pour la mesure de l'acidite nitrique
EP2300539B1 (fr) Detecteurs nanoporeux de composes aromatiques monocycliques
McDonagh et al. Characterisation of sol-gel-derived silica films
EP2423668B1 (fr) Système et procédé de détection d'analytes présents dans un échantillon gazeux
Krihak et al. Highly sensitive, all solid state fibre optic oxygen sensor based on the sol-gel coating technique
FR2952436A1 (fr) Materiau et procede pour pieger, detecter et quantifier des composes aromatiques heterocycliques et autres.
WO2007069275A2 (fr) Fibre optique presentant une perte par l'hydrogene reduite et procede de production de cette fibre optique
CN113155778A (zh) 一种氧气传感器及其制备方法、氧气检测系统
EP3294680A1 (fr) Fibre optique ruban en verre photosensible
Li et al. Surface plasmon resonance sensing performance and adsorption law of self-assembly glucose-sensitive membrane
EP2643270B1 (fr) Preparation de sols d'oxydes metalliques stables, utiles notamment pour la fabrication de films minces a proprietes optiques et resistants a l'abrasion
CA2629817A1 (fr) Oxyfluorure sous forme de film et procede de preparation
WO2010040910A1 (fr) Monolithes de silice de haute pureté et son procédé de synthèse
FR2704851A1 (fr) Procédé de fabrication de verres denses transparents obtenus à partir d'alcoxydes de silicium ou de métal par voie sol-gel, et verres obtenus selon ce procédé.
FR3034870A1 (fr) Capteur chimique de type optode, son procede de preparation et ses utilisations
FR3031592A1 (fr) Materiau de detection de composes du phenol et ses applications
FR2809720A1 (fr) Preformes et fibres optiques revetues d'alumines et/ou de silice
CN116081957B (zh) 一种多孔薄膜及其制备方法和用途
EP0631127A1 (fr) Procédé de détection et/ou d'identification d'espèces chimiques ou biologiques à l'aide d'un guide d'onde de type "Sol-Gel"
FR2762097A1 (fr) Dispositif optique a revetement antireflechissant, materiau de revetement et procede de revetement correspondants
Trikur et al. Effect of Ammonia on Optical Parameters of Detergent-Modified Magenta Membrane Films in a Sol-Gel Matrix
Kiernan Oxygen sensitivity of ruthenium-doped sol-gel derived silica films
Aneesh et al. Comprehensive experimental study to develop nanoparticle based optical fiber humidity sensor with linear response over large dynamic range
JPH09183633A (ja) 低反射ガラスの製造方法
WO2006040828A1 (fr) Procede de fabrication de lentille grin et lentille grin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN GB JP RU US

ENP Entry into the national phase

Ref country code: GB

Ref document number: 200208415

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10110202

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 521960

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002110445

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 018025900

Country of ref document: CN