WO2002003145A1 - Appareil et procede d'enregistrement d'information optique, appareil et procede de reproduction d'information optique, et appareil et procede d'enregistrement/reproduction d'information optique - Google Patents

Appareil et procede d'enregistrement d'information optique, appareil et procede de reproduction d'information optique, et appareil et procede d'enregistrement/reproduction d'information optique Download PDF

Info

Publication number
WO2002003145A1
WO2002003145A1 PCT/JP2001/005389 JP0105389W WO0203145A1 WO 2002003145 A1 WO2002003145 A1 WO 2002003145A1 JP 0105389 W JP0105389 W JP 0105389W WO 0203145 A1 WO0203145 A1 WO 0203145A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
information
recording
reproduction
reference light
Prior art date
Application number
PCT/JP2001/005389
Other languages
English (en)
French (fr)
Inventor
Hideyoshi Horimai
Original Assignee
Optware Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optware Corporation filed Critical Optware Corporation
Priority to CA002414907A priority Critical patent/CA2414907A1/en
Priority to EP01941202A priority patent/EP1306732A4/en
Priority to AU2001274600A priority patent/AU2001274600A1/en
Priority to EA200201260A priority patent/EA200201260A1/ru
Priority to US10/332,057 priority patent/US7065032B2/en
Publication of WO2002003145A1 publication Critical patent/WO2002003145A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • G11B7/00781Auxiliary information, e.g. index marks, address marks, pre-pits, gray codes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/128Modulators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/10Modulation characteristics, e.g. amplitude, phase, polarisation
    • G03H2210/12Phase modulating object, e.g. living cell
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/202D object
    • G03H2210/222D SLM object wherein the object beam is formed of the light modulated by the SLM
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/19Microoptic array, e.g. lens array

Definitions

  • the present invention relates to an optical information recording apparatus and method, an optical information reproducing apparatus and method, and an optical information recording and reproducing apparatus and method.
  • the present invention relates to an optical information recording apparatus and method for recording information on an optical information recording medium using holography, an optical information reproducing apparatus and method for reproducing information from an optical information recording medium using holography, and holography.
  • the present invention relates to an optical information recording / reproducing apparatus and method for recording information on an optical information recording medium and reproducing information from the optical information recording medium.
  • Holographic recording in which information is recorded on a recording medium using holography, is generally performed by superimposing light having image information and reference light inside the recording medium, and forming an interference pattern formed at that time on the recording medium. This is done by writing.
  • the recording medium is irradiated with reference light, and the image information is reproduced by diffraction due to the interference pattern.
  • volume holography especially digital volume holography, for ultra-high density optical recording has been developed in the practical range and has attracted attention.
  • Volume holography is a method of writing a three-dimensional pattern by actively utilizing the thickness direction of the recording medium, increasing the diffraction efficiency by increasing the thickness, and increasing the recording capacity by using multiplex recording.
  • Digital Polymorph Holography is a computer-oriented holographic recording method that uses the same recording medium and recording method as volume holography, but limits the image information to be recorded to binary digital patterns. is there.
  • image information such as an analog picture is once digitized, developed into two-dimensional digital pattern information, and recorded as image information. You. At the time of reproduction, this digital pattern information is read out and decoded to return to the original image information and displayed.
  • information light is generated by spatially modulating the light intensity based on the information to be recorded.
  • Information is recorded by recording an interference pattern between the light beam and the recording reference light on a recording medium.
  • the recording medium is irradiated with reproduction reference light.
  • the reproduction reference light is diffracted by the interference pattern to generate reproduction light corresponding to the information light.
  • the reproduction light is light whose light intensity is spatially modulated, like the information light.
  • the information light and the recording reference light are formed at a predetermined angle to each other during recording so that the reproduction light and the reproduction reference light can be spatially separated during reproduction.
  • the light is incident on a recording medium. Accordingly, the reproduction light generated at the time of reproduction proceeds in a direction forming a predetermined angle with respect to the reproduction reference light, so that the reproduction light and the reproduction reference light can be spatially separated.
  • the information light and the recording reference light are made to enter the recording medium so as to form a predetermined angle with each other, and at the time of reproduction, the reproduction light and the reproduction reference light are spatially separated. In this case, there is a problem that an optical system for recording and reproduction becomes large. Disclosure of the invention
  • An object of the present invention is to record or reproduce information by using holography, to reduce the size of an optical system for recording or reproduction, and to improve the SN ratio of reproduced information. It is an object of the present invention to provide an optical information recording apparatus and method, an optical information reproducing apparatus and method, and an optical information recording and reproducing apparatus and method that can be performed.
  • An optical information recording device of the present invention is an optical information recording device for recording information on an optical information recording medium having an information recording layer on which information is recorded using holography,
  • Information light generating means for generating information light by spatially modulating the phase of light based on information to be recorded
  • Recording reference light generating means for generating a recording reference light
  • information is recorded on the information recording layer of the optical information recording medium by the information light and the recording reference light whose light phase is spatially modulated based on the information to be recorded. .
  • the recording optical system irradiates the information light and the recording reference light from the same side of the information recording layer so that the information light and the recording reference light are coaxially arranged. May go.
  • the information light generating means may set the phase of the modulated light to one of two values, or to any one of three or more values. You may.
  • the recording reference light generating means may generate a recording reference light whose phase is spatially modulated.
  • the information light generating means may spatially modulate the phase of the light according to the phase modulation pattern determined based on the information to be recorded and the phase modulation pattern of the recording reference light.
  • the optical information recording apparatus of the present invention further comprises a floating head body which houses the information light generating means, the recording reference light generating means, and the recording optical system, and floats from the optical information recording medium. May be provided.
  • An optical information recording method is an optical information recording method for recording information on an optical information recording medium having an information recording layer on which information is recorded by using holography, the method comprising: Generating the information light by spatially modulating the phase of the light by using
  • information is recorded on the information recording layer of the optical information recording medium by the information light and the recording reference light whose phases are spatially modulated based on the information to be recorded. .
  • the recording procedure is performed by irradiating the information light and the recording reference light from the same side of the information recording layer so that the information light and the recording reference light are coaxially arranged. Is also good.
  • the phase of the modulated light in the procedure for generating the information light, may be set to any one of two values, or may be set to any one of three or more values. May be.
  • the step of generating the recording reference light may include generating the recording reference light whose phase is spatially modulated.
  • the procedure for generating the information light may be such that the phase of the light is spatially modulated according to the phase modulation pattern determined based on the information to be recorded and the phase modulation pattern of the recording reference light. Good.
  • An optical information reproducing apparatus provides an information recording layer on which information is recorded by an interference pattern caused by interference between an information light whose light phase is spatially modulated based on information to be recorded and a recording reference light.
  • An optical information reproducing apparatus for reproducing information using holography from an optical information recording medium provided with: Reproducing reference light generating means for generating a reproducing reference light,
  • the information recording layer is irradiated with the reproduction reference light generated by the reproduction reference light generating means, and the reproduction light generated from the information recording layer by the irradiation of the reproduction reference light is collected.
  • a reproduction optical system that generates a combined light by superimposing the light and the reference light for reproduction;
  • the reference light for reproduction is irradiated to the information recording layer of the optical information recording medium, and thereby the reproduction light is generated from the information recording layer.
  • This reproduction light is light whose phase is spatially modulated according to the recorded information.
  • the reproduction light and the reproduction reference light are superimposed to generate a combined light.
  • This combined light is light whose intensity is spatially modulated in accordance with the recorded information.
  • the information is reproduced by detecting the combined light.
  • the reproduction optical system performs irradiation of the reproduction reference light and collection of the reproduction light on the same surface of the information recording layer so that the reproduction reference light and the reproduction light are coaxially arranged. You may go from the side.
  • the reproduction reference light generating means may generate the reproduction reference light whose phase is spatially modulated.
  • the optical information reproducing apparatus of the present invention may further include a floating head main body that houses a reproducing reference light generating unit, a recording / reproducing optical system, and a detecting unit, and floats above the optical information recording medium.
  • An optical information reproducing method provides an information recording layer on which information is recorded by an interference pattern caused by interference between an information beam whose phase is spatially modulated based on information to be recorded and a recording reference beam.
  • An optical information reproducing method for reproducing information using holography from an optical information recording medium provided with:
  • the information recording layer is irradiated with the reference light for reproduction, and the reproduction light generated from the information recording layer by the irradiation of the reference light for reproduction is collected.
  • the reference light for reproduction is applied to the information recording layer of the optical information recording medium, and thereby the reproduction light is generated from the information recording layer.
  • This reproduction light is light whose phase is spatially modulated according to the recorded information.
  • the reproduction light and the reproduction reference light are superimposed to generate a combined light.
  • This combined light is light whose intensity is spatially modulated in accordance with the recorded information.
  • the information is reproduced by detecting the combined light.
  • the reproducing procedure includes irradiating the reproducing reference light and collecting the reproducing light on the same side of the information recording layer so that the reproducing reference light and the reproducing light are coaxially arranged. You may go more.
  • the step of generating the reproduction reference light may include generating the reproduction reference light whose phase is spatially modulated.
  • An optical information recording / reproducing apparatus records information on an optical information recording medium having an information recording layer on which information is recorded using holography, and reproduces information from the optical information recording medium. Guangqian report recording and playback device for
  • Information light generating means for generating information light by spatially modulating the phase of light based on information to be recorded
  • Recording reference light generating means for generating a recording reference light
  • Reproducing reference light generating means for generating a reproducing reference light
  • the information light generated by the information light generating means and the recording reference light generation means are recorded on the information recording layer so that the information is recorded by the interference pattern between the information light and the recording reference light. Irradiates the information recording layer with the recording reference light generated by the means, and irradiates the information recording layer with the reproduction reference light generated by the reproduction reference light generating means when reproducing the information.
  • a recording / reproducing optical system that collects reproduction light generated from the information recording layer by being irradiated with the reference light, and superimposes the reproduction light and the reproduction reference light to generate a combined light;
  • Detecting means for detecting the combined light generated by the recording / reproducing optical system It is provided with.
  • the information recording layer of the optical information recording medium when recording information, is formed by the information light in which the phase of the light is spatially modulated based on the information to be recorded and the recording reference light. Information is recorded.
  • the information recording layer of the optical information recording medium is irradiated with the reference light for reproduction, and thereby the reproduction light is generated from the information recording layer.
  • the reproduction light is light whose phase is spatially modulated according to the recorded information.
  • the reproduction light and the reproduction reference light are superimposed to generate a combined light. This combined light is light whose intensity is spatially modulated according to the recorded information.
  • the information is reproduced by detecting the combined light.
  • the recording / reproducing optical system includes an information beam, a recording reference beam, and a reproducing beam such that the information beam, the recording reference beam, the reproduction reference beam, and the reproduction beam are coaxially arranged.
  • the irradiation of the reference light and the collection of the reproduction light may be performed from the same side of the information recording layer.
  • the information light generation means, the recording reference light generation means, and the reproduction reference light generation means respectively generate linearly polarized information light, recording reference light, and reproduction reference light having the same polarization direction, and perform recording.
  • the reproducing optical system converts the information light and the recording reference light from the first linearly polarized light to circularly polarized light and irradiates the information recording layer with the information light and the reproduction light generated from the information recording layer from the circularly polarized light.
  • a quarter-wave plate that converts the polarization direction to the second linear polarization that is orthogonal to the first linear polarization, and information light before passing through the quarter-wave plate due to the difference in the polarization direction
  • a polarization separation optical element for separating the optical paths of the recording reference light and the reproduction reference light from the optical path of the return light from the optical information recording medium after passing through the quarter wavelength plate may be provided.
  • the recording reference light generating means generates the recording reference light whose phase is spatially modulated, and the reproducing reference light generating means has the phase spatially modulated.
  • the reproduced reference light may be generated.
  • the information light generating means may spatially modulate the light phase according to the phase modulation pattern determined based on the information to be recorded and the phase modulation pattern of the recording reference light.
  • the optical information recording / reproducing apparatus of the present invention further contains an information light generating means, a recording reference light generating means, a reproducing reference light generating means, a recording / reproducing optical system, and a detecting means, and floats from the optical information recording medium. May be provided.
  • the optical information recording / reproducing method of the present invention records information on an optical information recording medium provided with an information recording layer on which information is recorded using holography, and reproduces information from the optical information recording medium.
  • the information recording layer is irradiated with the reference light for reproduction, and the reproduction light generated from the information recording layer by the irradiation of the reference light for reproduction is collected, and the reproduction light and the reference light for reproduction are superimposed.
  • the optical information recording / reproducing method of the present invention when information is recorded, the information recording layer of the optical information recording medium is recorded on the information recording layer by the information light whose phase is spatially modulated based on the information to be recorded and the recording reference light. Information is recorded.
  • the information recording layer of the optical information recording medium is irradiated with the reference light for reproduction, and thereby the reproduction light is generated from the information recording layer.
  • the reproduction light is light whose phase is spatially modulated according to the recorded information.
  • the reproduction light and the reproduction reference light are superimposed to generate a combined light. This combined light is light whose intensity is spatially modulated according to the recorded information.
  • the information is reproduced by detecting the combined light.
  • the irradiation of the information light, the recording reference light, and the reproduction reference light is performed so that the information light, the recording reference light, the reproduction reference light, and the reproduction light are coaxially arranged.
  • the collection of the reproduction light may be performed from the same side of the information recording layer.
  • the step of generating the recording reference light includes the steps of generating a recording reference light whose phase is spatially modulated, and generating the reproduction reference light.
  • a spatially modulated reproduction reference light may be generated.
  • the information In the procedure of generating light the phase of the light may be spatially modulated according to the phase modulation pattern determined based on the information to be recorded and the phase modulation pattern of the recording reference light.
  • FIG. 1 is an explanatory diagram showing the principle of recording of information in the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the principle of information reproduction in the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a waveform diagram for explaining in detail the principle of information reproduction in the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a sectional view showing an optical head in the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view showing an optical head in the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a plan view showing the appearance of the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram for explaining an example of a method of generating tracking error information and a method of tracking service according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram for explaining an example of a method of generating tracking error information and a method of a tracking service according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a main part of the phase spatial light modulator according to the first embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing a phase spatial light modulator and its peripheral circuits according to the first embodiment of the present invention.
  • FIG. 11 is a plan view of a thin-film coil in the phase spatial light modulator shown in FIG.
  • FIG. 12 is an explanatory view showing the structure of a one-dimensional magnetic photonic crystal.
  • FIG. 13 is an explanatory diagram for explaining the operation of the phase spatial light modulator shown in FIG.
  • FIG. 14 is a cross-sectional view showing another example of the configuration of the phase spatial light modulator according to the first embodiment of the present invention.
  • FIG. 15 is an explanatory diagram for explaining the operation of the phase spatial light modulator shown in FIG.
  • FIG. 16 is an explanatory diagram for explaining the operation of the phase spatial light modulator shown in FIG.
  • FIG. 17 is an explanatory diagram showing the principle of recording information in the optical information recording / reproducing apparatus according to the second embodiment of the present invention.
  • FIG. 18 is an explanatory diagram showing the principle of information reproduction in the optical information recording / reproducing apparatus according to the second embodiment of the present invention.
  • FIG. 19 is a waveform diagram for explaining in detail the principle of information reproduction in the optical information recording / reproducing apparatus according to the second embodiment of the present invention.
  • FIG. 20 is a sectional view showing an optical head in the optical information recording / reproducing apparatus according to the third embodiment of the present invention.
  • FIG. 21 is an explanatory diagram for describing an example of a method for generating focus error information according to the third embodiment of the present invention.
  • FIG. 1 is an explanatory diagram showing a principle of information recording in an optical information recording / reproducing apparatus according to a first embodiment of the present invention.
  • the optical information recording medium 1 according to the present embodiment includes a disc-shaped transparent substrate 2 formed by a poly-polycarbonate, etc.
  • An information recording layer 3, an air gap layer 4, and a reflective film 5 are provided on the side opposite to the light incident / exit side in order from the transparent substrate 2.
  • the information recording layer 3 is a layer on which information is recorded using holography, and when irradiated with light, a hologram whose optical characteristics such as refractive index, dielectric constant, and reflectivity change according to the intensity of the light It is made of material.
  • the hologram material include photopolymers HRF-600 (product name) manufactured by Dupont and photopolymer UL SH-500 (product name) manufactured by Aprils. ) Etc. are used.
  • the reflection film 5 is made of, for example, aluminum. In the optical information recording medium 1, the information recording layer 3 and the reflection film 5 may be adjacent to each other without providing the air gap layer 4.
  • the information light and the recording reference light are generated, and the information light and the recording light are recorded on the information recording layer 3 in such a manner that the information is recorded by an interference pattern due to the interference between the information light and the recording reference light.
  • the information recording layer 3 of the optical information recording medium 1 is irradiated with the reference light for use.
  • Information light is generated by spatially modulating the phase of light based on information to be recorded.
  • FIG. 1 shows a part of an example of a recording / reproducing optical system in the optical information recording / reproducing apparatus according to the present embodiment.
  • the recording / reproducing optical system in this example includes an objective lens 11 facing the transparent substrate 2 side of the optical information recording medium 1 and an objective lens 11 side of the objective lens 11 opposite to the optical information recording medium 1. And a beam splitter 12 and a phase spatial light modulator 13 arranged in this order.
  • the beam splitter 12 has a semi-reflective surface 12 a whose normal direction is inclined by 45 ° with respect to the optical axis direction of the objective lens 11.
  • the 1 further includes a photodetector 14 arranged in a direction in which return light from the optical information recording medium 1 is reflected by the semi-reflective surface 12 a of the beam splitter 12. have.
  • the phase spatial light modulator 13 has a large number of pixels arranged in a lattice, and by selecting the phase of the emitted light for each pixel, the phase of the light can be spatially modulated. It has become.
  • the photodetector 14 has a large number of pixels arranged in a lattice, and can detect the intensity of light received for each pixel.
  • the information light and the recording reference light are generated by the phase spatial light modulator 13.
  • Coherent parallel light having a constant phase and intensity is incident on the phase spatial light modulator 13.
  • the phase spatial light modulator 13 selects the phase of the emitted light for each pixel based on the information to be recorded in one half area 13 A, thereby changing the phase of the light spatially.
  • the information light is generated by optical modulation, and in the other half area 13B, the reference light for recording is generated with the same phase of the emitted light for all pixels.
  • the phase spatial light modulator 13 changes the phase of the modulated light for each pixel with respect to the first phase and the reference phase whose phase difference with respect to a predetermined reference phase is +7 tZ2 (rad).
  • the phase difference is set to one of the second phases that is 1 (rad).
  • the phase difference between the first phase and the second phase is ⁇ (rad).
  • the phase spatial light modulator 13 may set the phase of the modulated light to any one of three or more values for each pixel in the region 13A.
  • the phase spatial light modulator 13 sets the phase of the outgoing light of all pixels to the first phase at which the phase difference with respect to a predetermined reference phase is + ⁇ 2 (rad). I'm sorry.
  • the phase spatial light modulator 13 may set the phase of the light emitted from all the pixels in the region 13B as the second phase, or may be different from the first phase and the second phase. It may be the phase of.
  • the first phase is represented by a symbol "+”
  • the second phase is represented by a symbol "1”.
  • the maximum value of the intensity is represented by "1”
  • the minimum value of the intensity is represented by "0".
  • phase spatial light modulator 1 Of the light incident on 3, the light that has passed through the area 13A has its phase spatially modulated based on the information to be recorded, and becomes information light 22A.
  • the intensity locally decreases at the boundary between the pixel of the first phase and the pixel of the second phase.
  • the phase is not spatially modulated and becomes the recording reference light 22B.
  • the information light 22 A and the recording reference light 22 B enter the beam splitter 12, and partially pass through the semi-reflective surface 12 a, and further converge after passing through the objective lens 11.
  • the optical information recording medium 1 is emitted as 3 A and the converging recording reference light 23 B.
  • the information light 23 A and the recording reference light 23 B pass through the information recording layer 3 and converge so as to have the smallest diameter on the interface between the air gap layer 4 and the reflective film 5. Is reflected by The information light 24 A and the reference light 24 B for recording after being reflected by the reflection film 5 are diffused light and pass through the information recording layer 3 again.
  • the information light 23 A before being reflected by the reflection film 5 and the recording reference light 24 B after being reflected by the reflection film 5 interfere with each other to form an interference pattern.
  • the information light 24 A after being reflected by the projection film 5 and the recording reference light 23 B before being reflected by the reflection film 5 interfere with each other to form an interference pattern. Then, these interference patterns are volumetrically recorded in the information recording layer 3.
  • the information light 24 A and the recording reference light 24 B after being reflected by the reflection film 5 are emitted from the optical information recording medium 1, and are collimated by the objective lens 11 and the parallel light beam 25 A and the recording reference light. Illumination is 25 B. These lights 25 A and 25 B enter the beam splitter 12, and a part thereof is reflected by the semi-reflective surface 12 a and received by the photodetector 14.
  • the reproduction reference light is generated, and the reproduction reference light is applied to the information recording layer 3 of the optical information recording medium 1, and the information recording layer is irradiated with the reproduction reference light.
  • the reproduction light generated from step 3 is collected, the reproduction light and the reproduction reference light are superimposed to generate a combined light, and the combined light is detected.
  • FIG. 2 is an explanatory diagram showing the principle of information reproduction in the optical information recording / reproducing apparatus according to the present embodiment.
  • FIG. 2 like FIG. 1, shows a part of an example of the recording / reproducing optical system in the optical information recording / reproducing apparatus according to the present embodiment.
  • the representation of phase and intensity in FIG. 2 is the same as in FIG.
  • coherent parallel light 31 having a constant phase and intensity is incident on the phase spatial light modulator 13 when information is reproduced.
  • the phase spatial light modulator 13 sets the phase of the emitted light for all pixels to the first phase at which the phase difference with respect to a predetermined reference phase is + 7T Z 2 (rad).
  • the reference light 32 is generated.
  • This reference beam for reproduction 32 enters the beam splitter 12, a part of which passes through the semi-reflective surface 12 a, and further becomes the reference beam for reproduction 33 which converges after passing through the objective lens 11.
  • the optical information recording medium 1 is irradiated.
  • the reproduction reference light 33 passes through the information recording layer 3, converges on the boundary surface between the air gap layer 4 and the reflection film 5 so as to have the smallest diameter, and is reflected by the reflection film 5.
  • the reference light for reproduction after being reflected by the reflective film 5 becomes diffused light and passes through the information recording layer 3 again.
  • the reproduction reference light 33 before being reflected by the reflection film 5 generates reproduction light traveling on the opposite side to the reflection film 5, and also generates the reproduction light after being reflected by the reflection film 5.
  • the reproduction reference light generates reproduction light traveling toward the reflection film 5 side.
  • the reproduction light traveling to the opposite side of the reflection film 5 is emitted from the optical information recording medium 1 as it is, and the reproduction light traveling to the reflection film 5 is reflected by the reflection film 5 and exits from the optical information recording medium 1. Is done.
  • the return light 34 from the optical information recording medium 1 includes the reproduction light and the reproduction reference light after being reflected by the reflective film 5.
  • the return light 34 is converted into parallel light return light 35 by the objective lens 11 and enters the beam splitter 12.
  • the light is partially reflected by the semi-reflective surface 12 a and received by the photodetector 14.
  • the return light 35 incident on the photodetector 14 includes a reproduction light 36 and a reproduction reference light 37 after being reflected by the reflection film 5.
  • the reproduction light 36 is light whose phase is spatially modulated according to the information recorded on the information recording layer 3. In FIG. 2, for convenience, the reproduction light 36 and the reproduction reference light 37 are separated, and the phase and intensity are shown for each.
  • the reproduction light 36 and the reference light for reproduction 37 are superimposed to generate a combined light, and the combined light is received by the photodetector 14.
  • the synthesized light is light whose intensity is spatially modulated according to the recorded information. Therefore, the two-dimensional pattern of the intensity of the combined light is detected by the photodetector 14, whereby the information is reproduced.
  • the information light, the recording reference light, the reproduction reference light, and the reproduction light are arranged coaxially.
  • the irradiation of the information light, the recording reference light, and the reproduction reference light and the collection of the reproduction light are performed from the same side of the information recording layer 3.
  • the information beam 23 A and the recording reference beam 23 B illuminated on the information recording layer 3 are light beams having a semicircular cross section, which are circular in cross section. It is coaxial because it constitutes half of each light beam.
  • FIG. 3 shows the intensity of the reproduction light 36, the reference light for reproduction 37, and the combined light.
  • (a) is the intensity of the reproduction light 36
  • (b) is the phase of the reproduction light 36
  • (C) is the intensity of the reproduction reference light 37
  • (d) is the reproduction reference light 37
  • (E) represents the intensity of the combined light.
  • Fig. 3 shows the phase of each pixel of the information light, the first phase where the phase difference with respect to the reference phase is + T / 2 (rad) and the phase difference with respect to the reference phase is 1 tZ2 (rad).
  • An example is shown for a case in which one of the second phases is set. Accordingly, in the example shown in FIG.
  • the phase of each pixel of the reproduction light 36 is one of the first phase and the second phase similarly to the information light.
  • the phase of each pixel of the reproduction reference light 37 is all the first phase.
  • the intensity of the reproduction light 36 is equal to the intensity of the reference light for reproduction 37, as shown in FIG. 3 (e)
  • the pixel in which the phase of the reproduction light 36 is the first phase is obtained.
  • the intensity of the combined light Is larger than the intensity of the reproduction light 36 and the intensity of the reproduction reference light 37, and in a pixel in which the phase of the reproduction light 36 is the second phase, the intensity of the combined light is zero in principle.
  • phase of the reproduction beam and the phase of the composite beam are set, including the case where the phase of the information beam is set to one of two values during recording and the case where the phase of the information beam is set to one of three or more values.
  • the relationship with the strength of the sheet will be described in detail.
  • Synthetic light is obtained by superimposing two light waves, reproduction light and reproduction reference light. Therefore, both the amplitude of the reproduction light and the amplitude of the reference light for reproduction are a. Assuming that the phase difference between the reproduction light and the reference light for reproduction is ⁇ , the intensity I of the combined light is expressed by the following equation (1).
  • the phase of the reference light for reproduction is constant regardless of the pixel, it can be seen from the above equation that the intensity I of the combined light changes according to the phase of the reproduction light. If the phase of the information light is set to any one of n values (n is an integer of 2 or more) within the range of, for example, + 7TZ 2 (rad) to 1 7t 2 (rad), the combined light The intensity I is also one of the n values.
  • the information to be recorded is detected by detecting the two-dimensional pattern of the intensity of the combined light generated by superimposing the reproduction light and the reference light for reproduction.
  • the information recorded on the information recording layer 3 can be reproduced by an interference pattern due to interference between the information light whose light phase is spatially modulated based on the information and the recording reference light.
  • the optical information recording / reproducing apparatus includes the optical information recording apparatus according to the present embodiment and the optical information reproducing apparatus according to the present embodiment.
  • FIG. 4 is a sectional view showing an optical head in the optical information recording / reproducing apparatus according to the present embodiment.
  • an optical information recording medium 1 having positioning information is used. That is, in the optical information recording medium 1 according to the present embodiment, as shown in FIG. 4, a plurality of address sensors extending linearly in the radial direction are provided on the boundary surface between the air gap layer 4 and the reflection film 5. Poliers 6 are provided at predetermined angular intervals I have. The fan-shaped section between the adjacent address and support areas 6 is the data area 7.
  • information for performing tracking support by the sampled support method and address information are recorded in advance by emboss pits or the like. As will be described later, focus support is not performed in the present embodiment.
  • the optical information recording / reproducing apparatus includes an optical head 40 arranged to face the transparent substrate 2 of the optical information recording medium 1.
  • the optical head 40 has a floating head main body 41 that accommodates components to be described later and that floats above the optical information recording medium 1.
  • a semiconductor laser 43 is fixed to the bottom of the head body 41 via a support 42, and a reflection-type phase spatial light modulator 44 and a photodetector 45 are fixed to the bottom. I have.
  • a microphone aperture lens array 46 is attached to the light receiving surface of the photodetector 45.
  • a prism block 48 is provided above the phase spatial light modulator 44 and the photodetector 45.
  • a collimator lens 47 is provided near the semiconductor laser 43 end of the prism block 48.
  • An opening is formed in the surface of the head main body 41 facing the optical information recording medium 1, and an objective lens 50 is provided in this opening.
  • a quarter-wave plate 49 is provided between the objective lens 50 and the prism block 48.
  • the phase spatial light modulator 44 has a large number of pixels arranged in a lattice pattern, and sets the phase of the emitted light for each pixel to one of two values different from each other by ⁇ (rad).
  • the phase of light can be spatially modulated.
  • the phase spatial light modulator 44 further rotates the polarization direction of the output light by 90 ° with respect to the polarization direction of the incident light.
  • the photodetector 45 has a large number of pixels arranged in a lattice, and can detect the intensity of light received for each pixel.
  • the microlens array 46 has a plurality of microlenses arranged at positions facing the light receiving surface of each pixel of the photodetector 45.
  • a CCD solid-state image sensor or a MOS solid-state image sensor is used as the photodetector 45.
  • a photodetector 45 a smart photosensor in which an MS solid-state imaging device and a signal processing circuit are integrated on a single chip (for example, see “ ⁇ P 1 us E, September 1996 , No. 202, pages 93-99 J.)
  • This smart optical sensor has a high transfer rate and a high-speed arithmetic function.
  • the use of the prism block enables high-speed reproduction, for example, reproduction at a transfer rate on the order of G bits / second
  • the prism block 48 includes a polarizing beam splitter surface 48 a and a reflection surface 48.
  • the polarization beam splitter surface 48a and the reflection surface 48b have the polarization beam splitter surface 48a disposed closer to the collimator lens 47.
  • the polarization beam splitter surface 48a and the reflection The surface 48b has a collimator lens whose normal direction is The lenses 47 are tilted by 45 ° with respect to the optical axis direction and are arranged in parallel with each other.
  • the phase spatial light modulator 44 is disposed below the polarization beam splitter surface 48a, and the photodetector 45 is disposed below the reflection surface 48b.
  • the quarter-wave plate 49 and the objective lens 50 are arranged at a position above the polarization beam splitter surface 48a. Note that the collimator lens 47 and the objective lens 50 may be holo-drum lenses.
  • the prism block 48 corresponds to the polarization splitting optical element in the present invention. That is, the polarization beam splitter surface 48 a of the prism block 48 has an information light before passing through the quarter-wave plate 49 depending on the polarization direction, as will be described in detail later.
  • the optical path of the recording reference light and the reproduction reference light is separated from the optical path of the return light from the optical information recording medium 1 after passing through the quarter-wave plate 49.
  • FIG. 5 is a perspective view showing an optical head in the optical information recording / reproducing apparatus according to the present embodiment.
  • the flying head main body 41 has two rail portions 51 provided so as to protrude on a surface facing the optical information recording medium 1.
  • the surface of the rail portion 51 on the optical information recording medium 1 side is an air bearing surface.
  • a tapered portion 52 is formed so as to be more distant from the optical information recording medium 1 toward the end portion.
  • the head body 41 is attached to the air bearing surface and optical information
  • the recording medium 1 floats above the optical information recording medium 1 while forming a minute gap between the optical information recording medium 1 and the recording medium 1.
  • the objective lens 50 is arranged between the two rail portions 51.
  • the size of the gap between the air bearing surface and the optical information recording medium 1 when the head body 41 floats is about 0.05 m and is stable. Therefore, in the optical head 40 according to the present embodiment, the distance between the objective lens 50 and the optical information recording medium 1 is kept substantially constant when the head main body 41 flies, so that no focus support is required. It has become.
  • FIG. 6 is a plan view showing the appearance of the optical information recording / reproducing apparatus according to the present embodiment.
  • the optical information recording / reproducing apparatus includes a spindle 54 on which the optical information recording medium 1 is mounted, and a spindle motor (not shown) for rotating the spindle 54.
  • the optical information recording / reproducing apparatus further includes a carriage 55 whose front end moves in the track traverse direction of the optical information recording medium 1, and a voice coil motor 56 that drives the carriage 55.
  • the optical head 40 is attached to the tip of the carriage 55. In the optical information recording / reproducing apparatus, the optical head 40 is moved by the carriage 55 and the poise coil motor 56 in the cross direction of the track of the optical information recording medium 1 so that the track is changed or the tracking servo is performed. It has become.
  • the semiconductor laser 43 emits coherent S-polarized light.
  • S-polarized light is linearly polarized light whose polarization direction is perpendicular to the plane of incidence (the paper surface in FIG. 4), and P-polarized light described later is linearly polarized light whose polarization direction is parallel to the plane of incidence.
  • the S-polarized laser light emitted from the semiconductor laser 43 is collimated by the collimator lens 47 and is incident on the polarization beam splitter surface 48 a of the prism block 48.
  • the light is reflected at 8a and enters the phase spatial light modulator 44.
  • the light emitted from the phase spatial light modulator 44 becomes information light in which the phase of the light is spatially modulated based on the information to be recorded in one half area, and all the pixels are emitted in the other half area. Becomes the recording reference light having the same phase of the emitted light.
  • the output light of the phase spatial light modulator 44 has a polarization direction rotated by 90 ° and is a P-polarized light. Becomes
  • the information light and the recording reference light that are emitted from the phase spatial light modulator 44 are P-polarized light, they pass through the polarization beam splitter surface 48 a of the prism block 48 and have a quarter wavelength.
  • the light passes through the plate 49 and becomes circularly polarized light.
  • the information light and the recording reference light are condensed by the objective lens 50 and irradiated on the optical information recording medium 1.
  • the information light and the recording reference light pass through the information recording layer 3, converge so as to have the smallest diameter on the boundary between the air gap layer 4 and the reflection film 5, and are reflected by the reflection film 5.
  • the information light and the recording reference light that have been reflected by the reflection film 5 become diffused light and pass through the information recording layer 3 again.
  • the output of the semiconductor laser 43 is set to a high output for recording, an interference pattern due to interference between the information light and the recording reference light is recorded on the information recording layer 3 as described with reference to FIG. Is done.
  • the return light from the optical information recording medium 1 is converted into parallel light by the objective lens 50, passes through a quarter-wave plate 49, and becomes S-polarized light.
  • This return light is reflected by the polarization beam splitter surface 48 a of the prism block 48, further reflected by the reflection surface 48 b, passes through the microlens array 46, and enters the photodetector 45.
  • the output of the semiconductor laser 43 is set to a low output for reproduction during the period when the light beam from the objective lens 50 passes through the address and the servo area 6 of the optical information recording medium 1.
  • the phase spatial light modulator 44 emits light having the same phase for all pixels without modulating the phase of light. Address information and tracking error information can be obtained based on the output of the photodetector 45 at this time.
  • the output of the semiconductor laser 43 is set to a low output for reproduction.
  • the S-polarized laser light emitted from the semiconductor laser 43 is collimated by the collimating lens 47 and is incident on the polarization beam splitter surface 48 a of the prism block 48.
  • the light is reflected by the surface 48 a and enters the phase spatial light modulator 44.
  • the light emitted from the phase spatial light modulator 44 becomes the reference light for reproduction, in which the phase of the emitted light is the same for all pixels.
  • the light emitted from the phase spatial light modulator 44 has a polarization direction of The light is rotated 90 ° to become P-polarized light.
  • the reference light for reproduction which is the light emitted from the phase spatial light modulator 44, is P-polarized light, it passes through the polarization beam splitter surface 48 a of the prism block 48 and forms a quarter-wave plate 4. After passing through 9, it becomes circularly polarized light.
  • the reference light for reproduction is condensed by the objective lens 50 and irradiated on the optical information recording medium 1.
  • This reference light for reproduction passes through the information recording layer 3, converges on the boundary surface between the air gap layer 4 and the reflection film 5 so as to have the smallest diameter, and is reflected by the reflection film 5.
  • the reference light for reproduction after being reflected by the reflection film 5 becomes light to be diffused and passes through the information recording layer 3 again. As described with reference to FIG. 2, reproduction light is generated from the information recording layer 3 by the reproduction reference light.
  • the return light from the optical information recording medium 1 includes reproduction light and reproduction reference light.
  • This return light is collimated by the objective lens 50, passes through the quarter-wave plate 49, and becomes S-polarized light.
  • This return light is reflected by the polarization beam splitter surface 48a of the prism block 48, further reflected by the reflection surface 48b, and enters the photodetector 45 via the microlens array 46.
  • the information recorded on the optical information recording medium 1 can be reproduced based on the output of the photodetector 45.
  • the address information and tracking are performed based on the output of the photodetector 45. Error information can be obtained.
  • the address / servo area 6 of the optical information recording medium 1 contains the light beam 82 along the track 80 as positioning information used for tracking servo.
  • Two pits 81A, one pit 81B, and one pit 81C are formed in this order from the near side in the traveling direction.
  • the two pits 81A are arranged symmetrically with respect to the track 80 at the position indicated by the symbol A in FIG.
  • the pit 81B is arranged at a position indicated by reference numeral B in FIG.
  • the pit 81C is located at the position indicated by the symbol C in FIG. It is arranged at a position shifted to the opposite side from B.
  • the light detection when the light beam 82 passes through the positions A, B, and C is performed.
  • the total amount of light received by the detector 45 is as shown in FIG. 7 (b). That is, the amount of light received when passing through position A is the largest, and the amount of light received when passing through position B and the amount of light received when passing through position C are equal to each other and smaller than the amount of light received when passing through position A.
  • FIG. 8 (a) when the light beam 82 is shifted toward the pit 81C with respect to the track 80, the light beam 82 is moved to each position A,
  • the total amount of light received by the photodetector 45 when passing through B and C is as shown in FIG. 8 (b). That is, the amount of light received when passing through position A is the largest, then the amount of light received when passing through position C is the largest, and the amount of light received when passing through position B is the smallest.
  • the absolute value of the difference between the amount of light received when passing through position B and the amount of light received when passing through position C increases as the amount of deviation of light beam 82 from track 80 increases.
  • the amount of light received when passing through the position A is the largest, and then the amount of light received when passing through the position B.
  • the amount of light is large, and the amount of light received when passing through position C is the smallest.
  • the absolute value of the difference between the amount of light received when passing through position B and the amount of light received when passing through position C increases as the amount of deviation of light beam 82 from track 80 increases.
  • the direction and magnitude of the shift of the light beam 82 with respect to the track 80 can be determined from the difference between the amount of light received when passing through the position B and the amount of light received when passing through the position C. Therefore, the difference between the amount of light received when passing through position B and the amount of light received when passing through position C can be used as the tracking error signal.
  • the pit 81A serves as a reference for the evening timing for detecting the amount of light received when passing through position B and the amount of light received when passing through position C.
  • the tracking service in this example is performed as follows. First, the timing at which the total amount of received light of the photodetector 45 first reaches a peak, that is, the timing at the time of passing the position A, is detected. Next, the timing when passing through position B and the timing when passing through position C are predicted based on the timing when passing through position A. Next, at each predicted timing, the amount of received light when passing through position B and the amount of received light when passing through position C are detected. I do. Finally, the difference between the amount of light received when passing through position B and the amount of light received when passing through position C is detected, and this is used as a tracking error signal. And the light beam 8 2 is always on track 8
  • the voice coil motor 5 based on the tracking error signal
  • the method of generating the tracking error information and the method of the tracking service in the present embodiment are not limited to the above-described methods, and for example, a push-pull method may be used.
  • a row of pits along the track direction is formed in the address area 6 as positioning information used for the tracking servo, and the pit row is incident on the light receiving surface of the photodetector 45. Detects changes in the shape of light and generates tracking error information.
  • phase spatial light modulator 44 in this example utilizes the magneto-optical effect.
  • Figure 9 shows the phase spatial light modulator 4 in this example.
  • FIG. 10 is a cross-sectional view showing a main part of FIG. 4.
  • FIG. 10 is an explanatory diagram showing the phase spatial light modulator 44 and its peripheral circuits in this example.
  • the phase spatial light modulator 44 in this example is made of a magneto-optical material, and the direction of magnetization is set independently of each other.
  • a magnetization setting layer 111 including a plurality of pixels for rotating the polarization direction in accordance with the direction of magnetization with respect to the light to be emitted, and a plurality of pixels provided for the respective pixels of the magnetization setting layer 111.
  • a thin-film coil as a plurality of magnetic field generating elements for generating a magnetic field for independently setting the direction of magnetization in the pixel; a thin-film coil provided between the magnetization setting layer and a thin-film coil; And a reflective layer 113 for reflecting light.
  • the magnetization setting layer 111 is provided with a domain wall movement suppressing unit 111b that suppresses the movement of the domain wall at a boundary position between the pixels that are in contact with each other.
  • the domain wall movement suppressing portions 1 1 1b may be, for example, protrusions as shown in FIG.
  • reference numeral 111a Is a pixel whose magnetization is downward (hereinafter, It is also called an off pixel.
  • reference numeral 11 a denotes a pixel whose magnetization is upward (hereinafter, also referred to as an on pixel).
  • FIG. 11 is a plan view of the thin-film coil 112.
  • reference numeral 111A denotes an area of one pixel.
  • the upper surface of the magnetization setting layer 111 is a surface on which light is incident.
  • the magnetization setting layer 111 has a property of transmitting at least light to be used.
  • the thin-film coil 112 is arranged via the reflective layer 113 so as to be adjacent to the surface of the magnetization setting layer 111 opposite to the surface on which light is incident.
  • the reflection layer 113 has conductivity. One end, for example, the inner end of each thin film coil 112 is connected to the reflective layer 113. Terminals 114 are connected to the other end of each thin film coil 112, for example, to the outer end.
  • the reflection layer 113 also serves as one of two conductive paths for supplying electricity to the thin-film coil 112.
  • the terminal 114 constitutes the other of the two conductive paths for energizing the thin-film coil 112.
  • the phase spatial light modulator 44 is further made of a soft magnetic material, is disposed on the opposite side of the thin film coil 112 from the magnetization setting layer 111, and receives the magnetic field generated by the thin film coil 111. around the corresponding magnetic path 1 2 t thin film coil 1 1 2 and a magnetic path forming unit 1 1 5 which forms part of 0, the terminal 1 1 4 and the magnetic path forming portion 1 1 5, dielectric layer 1 1 6 is formed.
  • the phase spatial light modulator 44 is further made of a soft magnetic material and provided so as to be adjacent to the surface of the magnetization setting layer 1 11 opposite to the thin film coil 1 1 2, and the thin film coil 1 1 2 And a soft magnetic layer 117 forming another part of the magnetic path 120 corresponding to the magnetic field generated by the magnetic field.
  • the soft magnetic layer 117 has a light-transmitting property with respect to at least the light to be used.
  • each thin-film coil 112 is independently energized to each thin-film coil 112 by terminal 114, reflection layer 113 and wiring connected thereto.
  • the driving unit 102 To the drive unit 102 for performing the operation.
  • the driving unit 102 generates a positive or negative pulse-like current at a cycle of, for example, nanosecond 2 to supply.
  • the drive unit 102 is controlled by the control unit 103.
  • the magnetization setting layer 111 has a large coercive force He, -He.
  • He coercive force
  • -He coercive force
  • the magnetization setting layer 111 is magnetized in the positive direction, the magnetization direction is reversed when a negative magnetic field whose absolute value exceeds He is applied, and when the magnetization is set in the negative direction, When a positive magnetic field whose absolute value exceeds He is applied, the direction of magnetization is reversed.
  • the thin-film coil 112 generates a positive or negative magnetic field whose absolute value exceeds Hc.
  • the coercive force of the soft magnetic layer 117 is extremely small, and the magnetization direction is easily reversed in the soft magnetic layer 117 by a small applied magnetic field.
  • the characteristics of the magnetic path forming portion 115 are the same as those of the soft magnetic layer 117.
  • the material of the magnetization setting layer 111 may be a magneto-optical material having a magneto-optical effect, and in particular, a magnetic garnet thin film or a one-dimensional magnetic photonic crystal is preferably used.
  • a typical example of the magnetic garnet thin film is a rare earth iron-based garnet thin film.
  • a method for producing a magnetic garnet thin film for example, a single crystal magnetic film is formed on a substrate such as gadolinium gallium garnet (GGG) by a liquid phase epitaxial growth method (LPE method) or a sputtering method.
  • LPE method liquid phase epitaxial growth method
  • a sputtering method There is a method of forming a one-net thin film.
  • FIG. 12 is an explanatory diagram showing the structure of a one-dimensional magnetic photonic crystal.
  • This one-dimensional magnetic photonic crystal 130 has a structure in which a dielectric multilayer film is formed on both sides of the magnetic layer 131.
  • the material of the magnetic layer 131 rare earth iron garnet, bismuth-substituted rare earth iron garnet, or the like is used.
  • the dielectric multilayer film is composed of, for example, by laminating S 1 0 2 film 1 3 2 and T a 2 0 5 film 1 3 3 alternately.
  • the period of the layer structure in the one-dimensional magnetic photonic crystal 130 is on the order of the wavelength of light used. With this one-dimensional magnetic photonic crystal 130, a large Faraday rotation angle can be obtained.
  • phase spatial light modulator 44 in this example may be manufactured by forming all the components in a monolithic manner, or may be manufactured by dividing into a plurality of portions and then combining a plurality of portions. May be.
  • Phase spatial light modulator 4 4 In this case, for example, the portion from the soft magnetic layer 117 to the reflective layer 113 may be divided into another portion. Further, all the components of the phase spatial light modulator 44 in this example can be manufactured using a semiconductor manufacturing process.
  • phase spatial light modulator 44 in this example, a positive or negative pulse current is selectively supplied to the thin film coil 112 according to the modulation information, and as a result, the magnetization setting layer 1 is supplied by the thin film coil 112. 11.
  • a magnetic field is applied to each pixel independently. According to a simple calculation, by supplying a pulse current with a peak value of about 40 mA to the thin-film coil 112, a pulse-like magnetic field of about 100 oo e is applied to the center of the thin-film coil 112. A field can be generated, and the magnetization in each pixel can be reversed by this magnetic field.
  • the light passing through the magnetization setting layer 111 is given a rotation in the polarization direction according to the direction of magnetization in each pixel of the magnetization setting layer 111, that is, Faraday rotation. For example, if the polarization direction of the light passing through the pixel 11 1 a, whose magnetization is upward, is rotated by +0 F , the pixel 11 1 a with magnetization downward.
  • the light passing through the magnetization setting layer 1 1 1 is reflected by the reflection layer 1 1 3, passes through the magnetization setting layer 1 1 1 and the soft magnetic layer 1 1 ⁇ again, and is emitted from the phase spatial light modulator 4 4 4 You.
  • Light that passes through the magnetization setting layer 1 11 after being reflected by the reflection layer 1 13 has the same Faraday effect as when passing through the magnetization setting layer 1 1 1 before reaching the reflection layer 1 1 3. , Rotation of the polarization direction according to the direction of magnetization in each pixel of the magnetization setting layer 111 is given.
  • the polarization direction of the light passing through the ON pixel 1 1 1a is rotated by + ⁇ ⁇
  • the polarization direction of the light passing through the OFF pixel 1 1 1a is rotated by + ⁇ ⁇
  • the polarization direction of the light passing through the OFF pixel 1 1a is rotated by +20 F
  • the OFF pixel 1 1 The polarization direction of the light emitted from the phase spatial light modulator 44 after passing back and forth twice through 1a is rotated by 20 F.
  • the rotation angle of the polarization direction of the light that has passed twice through the ON pixel 1 1 1 a, back and forth + 20 F is set to 90 °, and the OFF pixel llla.
  • the rotation angle of the polarization direction of the light that has passed twice back and forth twice—20 F is assumed to be 190 °.
  • S-polarized light emitted from the semiconductor laser 43 and reflected by the polarization beam splitter surface 48 a of the prism block 48 enters the phase spatial light modulator 44. I do.
  • This light passes through the magnetization setting layer 111 of the phase spatial light modulator 44, is reflected by the reflection layer 113, passes through the magnetization setting layer 111 again, and returns to the prism block 48.
  • the light that has passed twice through the ON pixel 1 1 1a, in a round trip has its polarization direction rotated 90 ° to become P-polarized light, and has passed through the OFF pixel 1 1 1 a 0 twice in a round trip.
  • the polarized light is rotated by ⁇ 90 ° in the polarization direction to become P-polarized light (represented by a symbol P ′ in FIG. 13). Therefore, all the return light from the phase spatial light modulator 44 passes through the polarization beam splitter surface 48a.
  • the return light from the phase spatial light modulator 44 is all P-polarized light, but the light that has passed through the ON pixel 1 1 1a, and the OFF pixel 1 1 1a.
  • the phase of light passing through is different by ⁇ (ra d). Therefore, the phase spatial light modulator 44 in this example rotates the polarization direction of the output light by 90 ° with respect to the polarization direction of the incident light, and sets the phase of the output light for each pixel by ⁇ (rad) with respect to each other. By setting it to one of two different values, the phase of light can be spatially modulated.
  • the magnetization setting is performed by independently setting the magnetization direction in each pixel of the magnetization setting layer 111 by the thin film coil 112.
  • the light incident on the layer 111 is spatially modulated by rotating the polarization direction corresponding to the direction of magnetization in each pixel to the light incident on the layer 111.
  • Switching of the magnetization direction in each pixel of the magnetization setting layer 111 can be performed in about several nanoseconds.
  • the thin film coil 112 is provided for each pixel so that the magnetization direction in each pixel can be set independently, so that the magnetization directions in all pixels are Can be set at the same time. Therefore, in the phase spatial light modulator 44 of the present example, the overall response time of the phase spatial light modulator 44 can be set to about several nanoseconds in the same manner as the response time of the pixel unit. It is possible to obtain a large operation speed.
  • phase spatial light modulator 44 in the present example has a simple structure without a mechanical driving portion and does not include a fluid such as liquid crystal, so that it has high reliability. Further, the phase spatial light modulator 44 in this example has a simple structure and can be mass-produced using a semiconductor manufacturing process, so that the manufacturing cost can be reduced.
  • the reflection layer 113 also serves as one of the two conductive paths for supplying electricity to the thin-film coil 112, the structure is simplified. be able to.
  • the state of the material and the state of the magnetization in the pixels of the magnetization setting layer 111 can be made uniform.
  • the thin-film coil 112 for switching the state of the pixel is provided with respect to the surface of the magnetization setting layer 111 opposite to the surface on which light is incident. Since the thin-film coils 112 are arranged adjacent to each other with the reflective layer 113 interposed therebetween, the thin-film coil 112 does not affect the modulated light. From these facts, according to the phase spatial light modulator 44 of the present example, it is possible to prevent the emitted light from becoming non-uniform due to causes other than the modulation information.
  • phase spatial light modulator 44 of the present example since no transparent electrode is disposed on the light path, there is no deterioration in characteristics due to light scattering, which is particularly advantageous for miniaturization of pixels.
  • the thin-film coil thus, a magnetic field for setting the direction of magnetization in each pixel of the magnetization setting layer 111 is generated, so that the current for inverting the magnetization in the pixel can be reduced.
  • the soft magnetic layer 1 17 forming a part of the magnetic path 120 corresponding to the magnetic field generated by the thin film coil 112 and the magnetic path forming section Since 1 and 5 are provided the magnetic flux can be effectively reduced.
  • the magnetomotive force generated by the thin-film coil 112 can be effectively used for setting the magnetization in the pixel.
  • phase spatial light modulator 44 in this example, unless the thin-film coil 112 is driven, the state of magnetization in each pixel of the magnetization setting layer 111 is maintained. 4 4 allows modulation information to be held.
  • phase spatial light modulator 44 sets the phase of the emitted light to one of two values for each pixel
  • the optical information recording / reproducing apparatus instead of the spatial light modulator 44, a device that can set the phase of the emitted light to any one of three or more values for each pixel may be used.
  • FIG. 14 shows an example of a configuration of a phase spatial light modulator that can set the phase of emitted light to any one of three or more values for each pixel.
  • the phase spatial light modulator 144 includes two glass substrates 151 and 152 arranged so as to face each other. Transparent electrodes 15 3 and 15 4 are formed on the mutually facing surfaces of the glass substrates 15 1 and 15 2, respectively.
  • the glass substrates 15 1 and 15 2 are separated at predetermined intervals by a spacer 15.
  • a liquid crystal is sealed in a space formed by the glass substrates 151, 152 and the spacer 155, and a liquid crystal layer 157 is formed.
  • the alignment portion 156 can be formed, for example, by performing evaporation of an evaporation material from an oblique direction with respect to the glass substrate 152.
  • the liquid crystal molecules 157 a in the liquid crystal layer 157 are oriented so that the major axis direction is oriented in the longitudinal direction of the orientation part 156, that is, obliquely with respect to the glass substrate 156. .
  • the liquid crystal molecule 157a has a positive dielectric anisotropy.
  • a reflective film 158 is formed on the outer surface of the glass substrate 152.
  • phase spatial light modulator 144 shown in FIG. 14 will be described with reference to FIGS. 15 and 16.
  • Light enters the phase spatial light modulator 144 from the glass substrate 151 side passes through the glass substrate 151, the liquid crystal layer 157, and the glass substrate 152, and reflects light. The light is reflected at 58 and is emitted again through the glass substrate 152, the liquid crystal layer 157, and the glass substrate 151.
  • the transparent electrodes 15 3 and 15 4 can apply a voltage between the transparent electrodes 15 3 and 15 4 independently for each pixel.
  • the liquid crystal molecules 157 a have glass substrate 15 1, 1 It is oriented so as to be directed obliquely to 52.
  • a voltage V sufficient to change the alignment direction of the liquid crystal molecules 157a is applied between the transparent electrodes 15 3 and 15, at least a part of the liquid crystal In the molecule 157a, the orientation direction changes so that the major axis direction approaches the direction perpendicular to the glass substrates 151, 152.
  • the liquid crystal molecules 157a closer to the glass substrate 151 where the alignment portions 156 are not formed tend to change the alignment direction.
  • the number of liquid crystal molecules 157a whose orientation changes and the amount of change in the orientation increase.
  • the orientation direction of the liquid crystal molecule 157a changes, the angle between the polarization direction of the incident light and the long axis direction of the liquid crystal molecule 157a changes.
  • the refractive index of the liquid crystal molecule 157a differs depending on whether the polarization direction of the light passing therethrough is parallel to or perpendicular to the long axis direction of the liquid crystal molecule 157a. Therefore, light that has passed through the liquid crystal layer 157 to which the voltage V has been applied has a phase difference with respect to light that has passed through the liquid crystal layer 157 to which no voltage V has been applied. Within a predetermined range of the voltage V, the phase difference increases as the voltage V increases.
  • the phase difference increases as the thickness of the liquid crystal layer 157 increases. Therefore, if the thickness of the liquid crystal layer 157 and the maximum value of the voltage V are set so that the maximum value of the phase difference when the light passes through the liquid crystal layer 157 twice in a round trip is ⁇ (rad), By controlling the voltage V, the phase difference can be set arbitrarily in the range of 0 to t (rad).
  • the phase spatial light modulator 144 sets the phase of the outgoing light for each pixel to 3 Can be set to any of one or more values.
  • phase spatial light modulator 144 does not rotate the polarization direction of the light
  • the S-polarized light from block 48 is converted into circularly-polarized light by a quarter-wave plate and is incident on the phase spatial light modulator 144, and is output from the phase spatial light modulator 144.
  • the circularly polarized light may be converted to P-polarized light by a quarter-wave plate and transmitted through the polarized beam splitter surface 48a.
  • phase spatial light modulator that can set the phase of the emitted light to any one of three or more values for each pixel is not limited to the phase spatial light modulator 144 using a liquid crystal described above.
  • a mirror device may be used to adjust the position of the reflection surface for each pixel in the traveling direction of incident light using a mirror device.
  • the information light whose optical phase is spatially modulated based on the information to be recorded and the recording reference light are used to record the information of the optical information recording medium 1.
  • the recording layer 3 information is recorded on the information recording layer 3 by an interference pattern due to interference between the information light and the recording reference light.
  • the information recording layer 3 is irradiated with the reference light for reproduction, whereby the reproduction light generated from the information recording layer 3 and the reference light for reproduction are superimposed to generate a combined light. Then, the synthesized light is detected and the information is reproduced.
  • the present embodiment it is not necessary to separate the reproduction light from the reproduction reference light at the time of reproducing the information. Therefore, at the time of recording information, it is not necessary to make the information light and the recording reference light incident on the recording medium so as to form a predetermined angle with each other. In fact, in this embodiment, irradiation and reproduction of the information light, the recording reference light, and the reproduction reference light are performed so that the information light, the recording reference light, the reproduction reference light, and the reproduction light are coaxially arranged. Light is collected from the same side of the information recording layer 3. Therefore, according to the present embodiment, the optical system for recording and reproduction can be made small.
  • the reproducing light and the reference light for reproduction are separated, and only the reproducing light is used. Therefore, when the reference light for reproduction also enters the photodetector for detecting the reproduction light, the SN ratio of the reproduction information is deteriorated.
  • the present embodiment since information is reproduced using the reproduction light and the reproduction reference light, the SN ratio of the reproduction information is not degraded by the reproduction reference light. Therefore, according to the present embodiment, it is possible to improve the SN ratio of the reproduction information.
  • the optical head 40 includes a flying head main body 41 that houses a recording / reproducing optical system. Therefore, according to the present embodiment, the distance between the objective lens 50 of the recording / reproducing optical system and the optical information recording medium 1 is kept substantially constant, so that a focus servo is not required.
  • the information light and the reproduction light use one bit of information per pixel. Will be carried.
  • the phase of the information light is set to one of three or more values, it becomes possible to carry information of plural bits per pixel in the information light and the reproduction light.
  • the phase of the information light is set to one of eight values
  • the information light and the reproduction light carry 3 bits of information per pixel.
  • one piece of data may be represented by a plurality of pixels in the information light and the reproduction light. For example, if the phase of the information beam is set to one of eight values and four pixels represent one data, these four pixels can represent 12-bit data.
  • optical information recording / reproducing apparatus Next, an optical information recording / reproducing apparatus according to a second embodiment of the present invention will be described.
  • multiplex recording by the phase encoding multiplex system and reproduction of information multiplex-recorded in this manner are performed using the recording reference light and the reproduction reference light whose phases are spatially modulated. It is something that can be done.
  • the configuration of the optical information recording / reproducing device according to the present embodiment is the same as that of the first embodiment.
  • FIG. 17 shows the recording / reproduction in the optical information recording / reproducing apparatus according to the present embodiment.
  • 2 shows a part of an example of a raw optical system.
  • the configuration of the optical system shown in FIG. 17 is the same as that in FIG.
  • the incident light of the phase spatial light modulator 13, the output light of the phase spatial light modulator 13, the incident light of the objective lens 11 before being irradiated on the optical information recording medium 1 and
  • the optical information reflected by the semi-reflective surface 12 a of the beam splitter 12 shows the phase and intensity of the return light from the recording medium 1.
  • the way of expressing the phase and intensity of light in FIG. 17 is the same as in FIG.
  • the coherent parallel light 21 having a constant phase and intensity is incident on the phase spatial light modulator 13.
  • One half region 13 A of the phase spatial light modulator 13 has a phase of 1/3 A by selecting the phase of outgoing light for each pixel from binary or three or more values based on information to be recorded.
  • a spatially modulated information beam 22A is generated.
  • the area 13 A is defined as the phase of the emitted light for each pixel, the first phase at which the phase difference with respect to a predetermined reference phase is + ⁇ 2 (rad), and the reference phase.
  • the phase of light is spatially modulated by setting the phase difference to one of the second phases at which the phase difference is 1/2 (rad).
  • the other half region 13 B of the phase spatial light modulator 13 has a spatially shifted phase by selecting the phase of the emitted light from two or more values for each pixel.
  • a modulated recording reference beam 22B is generated.
  • the region 13B sets the phase of the outgoing light for each pixel to one of the reference phase, the first phase, and the second phase so that the light It is assumed that the phase is spatially modulated.
  • the information light 22 A and the recording reference light 22 B enter the beam splitter 12, a portion of which passes through the semi-reflective surface 12 a, and further passes through the objective lens 11, and converges on the information light
  • the optical information recording medium 1 is irradiated as 23 A and converging recording reference light 23 B.
  • the information beam 23 A and the recording reference beam 23 B pass through the information recording layer 3, converge so as to have the smallest diameter on the boundary surface between the air gap layer 4 and the reflection film 5, and return at the reflection film 5. Fired.
  • the information light 24 A and the recording reference light 24 B after being reflected by the reflection film 5 become diffused light and pass through the information recording layer 3 again.
  • the information light 23 A before being reflected by the reflection film 5 and the recording reference light 24 B after being reflected by the reflection film 5 interfere with each other to form an interference pattern.
  • the information light 24 A after being reflected by the projection film 5 and the recording reference light 23 B before being reflected by the reflection film 5 interfere with each other to form an interference pattern. Then, these interference patterns are volumetrically recorded in the information recording layer 3.
  • the information light 24 A and the recording reference light 24 B after being reflected by the reflection film 5 are emitted from the optical information recording medium 1, and are collimated by the objective lens 11 and the parallel light beam 25 A and the recording reference light. Illumination is 25 B. These lights 25 A and 25 B enter the beam splitter 12, a part of which is reflected by the semi-reflective surface 12 a and received by the photodetector 14.
  • FIG. 18 shows a part of an example of the recording / reproducing optical system in the optical information recording / reproducing apparatus according to the present embodiment, similarly to FIG. In FIG.
  • a coherent parallel light 31 having a constant phase and intensity is incident on the phase spatial light modulator 13.
  • the half area 13B in the phase spatial light modulator 13 is similar to the recording reference light 22B by selecting the phase of the emitted light from two values or three or more values for each pixel.
  • the reproduction reference light 32 Bt whose phase is spatially modulated by the modulation pattern is generated.
  • the half region 13 A of the phase spatial light modulator 13 is configured such that the phase of the emitted light is selected from two values or three or more values for each pixel, so that the reproduction reference light 3 2 B,
  • the phase is spatially modulated in a point-symmetric pattern with respect to the optical axis position of the optical system that irradiates the information recording layer 3 with the recording reference light and the reproduction reference light for the modulation pattern of that generates a reference beam 3 2 B 2.
  • These reference beams for reproduction 3 2 B and 3 2 B 2 are incident on the beam splitter 12, and some of them pass through the semi-reflective surface 12 a and then pass through the objective lens 11 and converge for reproduction.
  • three The illuminated light 33 B,, 33 B 2 is applied to the optical information recording medium 1.
  • the reference light beams for reproduction 3 3 B, 3 B 2 pass through the information recording layer 3, converge so as to have the smallest diameter at the boundary between the air gap layer 4 and the reflection film 5, and are reflected by the reflection film 5. Is done.
  • the reference light for reproduction after being reflected by the reflection film 5 becomes diffused light and passes through the information recording layer 3 again.
  • the reproduction reference light 33 B 2 before being reflected by the reflection film 5 generates reproduction light traveling to the opposite side to the reflection film 5, and the reproduction light after reflected by the reflection film 5.
  • the reproduction reference light 3 3 B 2 generates reproduction light traveling toward the reflection film 5 side.
  • the reproduction light traveling to the side opposite to the reflection film 5 is emitted from the optical information recording medium 1 as it is, and the reproduction light traveling to the reflection film 5 is reflected by the reflection film 5 and transmitted from the optical information recording medium 1. Is emitted.
  • These reproduced lights are both represented by reference numeral 34A.
  • the reproduction reference light 33 B before being reflected by the reflection film 5 generates reproduction light traveling on the opposite side to the reflection film 5, and the reflection light is reflected by the reflection film 5.
  • the reproduction reference light 33 B which has been emitted, generates reproduction light that travels toward the reflection film 5 side.
  • the reproduction light traveling to the opposite side to the reflection film 5 is emitted from the optical information recording medium 1 as it is, and the reproduction light traveling to the reflection film 5 side is reflected by the reflection film 5 and becomes the optical information recording medium 1. Is emitted.
  • These reproduction light are both represented by reference numeral 34 A 2.
  • the reproduction reference light 33B is reflected by the reflection film 5, and becomes the reproduction reference light 34B, which travels in the same direction as the reproduction light 34A.
  • the reproduction-specific reference light 33 B 2 is reflected by the reflection film 5, a reproduction-specific reference light 34 B 2 traveling in the same direction as the reproduction light 34 A 2.
  • reproduction light 34A ,, 34 A 2 and the reproduction-specific reference light 34, 34 B 2 is reproduced light 3 5 A of the parallel light by the objective lens 1 1,, 3 5 A 2 and the reproducing reference beam 3 5 B, , 35 B 2 and enter the beam splitter 12, a part of which is reflected by the semi-reflective surface 12 a and received by the photodetector 14.
  • Reproduction light 3 5 A,, 3 5A 2 are both phase like the recording time of the information light is spatially modulated light.
  • the reproduction light 3 5 A,, the modulation pattern of 3 5 A 2 phase becomes point symmetry to each other.
  • a synthetic light generated by superimposing the reproduction light 35A, and the reproduction reference light 35B is incident.
  • the other half area of the photodetector 14, combined light and reproducing light 3 5A 2 and reproduction-specific reference light 3 5 B 2 is generated superposed is incident.
  • Each of these two types of combined light is light whose intensity is spatially modulated in accordance with the recorded information.
  • the intensity modulation patterns of the two types of combined light are point-symmetric with each other.
  • the information can be reproduced by detecting a two-dimensional pattern having an intensity of one of the two types of combined light in the photodetector 14.
  • the information is reproduced by detecting a two-dimensional pattern of the intensity of the combined light generated by superimposing the reproduction light 35A and the reproduction reference light 35B.
  • FIG. 19 (a) is the intensity of the reproduction light, (b) is the phase of the reproduction light, (c) is the intensity of the reference light for reproduction, (d) is the phase of the reference light for reproduction, and (e) Represents the intensity of the combined light.
  • the phase of each pixel of the information light is set to one of the first phase and the second phase, and the phase of each pixel of the recording reference light and the reproduction reference light is set as a reference.
  • An example is shown in the case where the phase is set to any one of the first phase and the second phase.
  • the phase of the reproduction light for each pixel is one of the first phase and the second phase, similarly to the information light. Therefore, the phase difference between the reproduction light and the reproduction reference light is zero, ⁇ ⁇ / 2 (rad), or ⁇ 7t (rad).
  • the intensity of the combined light is the phase difference between the reproduction light and the reproduction reference light. Pixel is zero, the phase difference between the reproduced light and the reference light for reproduction is ⁇ ⁇ (rad) .In principle, the pixel becomes zero, and the phase difference between the reproduced light and the reference light for reproduction is zero.
  • the intensity is 2 of the intensity at the pixel where the phase difference is zero.
  • the intensity at the pixel where the phase difference is ⁇ ⁇ (rad) is represented by “0”
  • the intensity at the pixel where the phase difference is ⁇ 7tZ 2 (rad) is represented by “1”
  • the intensity at the pixel where the phase difference is zero is represented by "2".
  • the intensity of the combined light for each pixel becomes ternary.
  • the intensity "0" corresponds to the 2-bit data "0 0”
  • the intensity "1" corresponds to the 2-bit data "01”.
  • the strength "2" can correspond to the 2-bit data "10”.
  • the intensity of each pixel of the combined light becomes binary as in the examples shown in FIGS. 1 to 3.
  • the amount of information carried by the combined light can be increased while maintaining the same intensity and phase of the reproduction light. As a result, the recording density of the optical information recording medium 1 can be improved.
  • Equation (1) shows that the intensity I of the combined light changes according to the phase difference between the reproduction light and the reference light for reproduction. Therefore, the absolute value of the phase difference between the reproduction light and the reference light for reproduction, that is, the absolute value of the phase difference between the information light and the reference light for reproduction, is n (n Is an integer of 2 or more.) If this value is set, the intensity I of the combined light will also be n.
  • information is recorded in the information recording layer 3 of the optical information recording medium 1 by using the information light whose phase is spatially modulated and the recording reference light whose phase is spatially modulated.
  • the modulation pattern of the phase of the information light is determined based on the information to be recorded and the modulation pattern of the phase of the recording reference light used for recording the information. This will be described in detail with reference to FIG. Since the information recorded on the information recording layer 3 is reproduced based on the pattern of the intensity of the combined light, the information to be recorded has the intensity of the desired combined light as shown in FIG. 19 (e). Converted to the pattern data.
  • the modulation pattern of the phase of the recording reference light is the same as the modulation pattern of the phase of the reproduction reference light as shown in FIG. 19 (d).
  • the modulation pattern of the phase of the information light consists of the desired pattern of the intensity of the combined light as shown in Fig. 19 (e) and the reproduction reference pattern as shown in Fig. 19 (d).
  • the phase modulation using the data and the data of the modulation pattern of the phase of the reference light for recording is the same as the modulation pattern of the phase of the desired reproduction light as shown in FIG. It is determined so that the modulation pattern becomes a simple one.
  • the information light for which the phase modulation pattern has been determined as described above and the recording reference light are used.
  • a synthesized light having an intensity pattern as shown in FIG. 19 (e) is obtained.
  • the information recorded in the information recording layer 3 is reproduced based on the pattern of the intensity of the combined light.
  • the modulation pattern of the phase of the recording reference light and the phase of the reproduction reference light may be created based on the unique information of the individual who is the user.
  • the unique information of the individual includes a password, a fingerprint, and a voiceprint. There are iris patterns and so on. In this case, only a specific individual who has recorded information on the optical information recording medium 1 can reproduce the information.
  • the recording reference light and the reproduction reference light whose phases are spatially modulated are used.
  • Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment.
  • FIG. 20 is a sectional view showing an optical head in the optical information recording / reproducing apparatus according to the present embodiment.
  • an optical head 60 is provided instead of the optical head 40 according to the first embodiment.
  • the optical head 60 has a predetermined structure in an optical head main body 61 for housing the recording / reproducing optical system, a direction perpendicular to the optical information recording medium 1, and a direction traversing tracks on the optical information recording medium 1.
  • the light head main body 61 can be moved within the range.
  • the configuration of the recording / reproducing optical system according to the present embodiment is the same as that of the first embodiment.
  • FIG. 21 is an explanatory diagram showing the outline of the incident light on the light receiving surface of the photodetector 45.
  • focus error information is generated based on the size of the contour of incident light on the light receiving surface of the photodetector 45 as follows. First, when the light beam from the objective lens 50 is in a focused state in which the light beam converges on the interface between the air gap layer 4 and the reflective film 5 in the optical information recording medium 1 so as to have the smallest diameter, the light detection is performed.
  • the contour of the incident light on the light receiving surface of the detector 45 is the contour indicated by reference numeral 70 in FIG. If the position where the light beam from the objective lens 50 has the smallest diameter is shifted toward the near side from the boundary surface between the air gap layer 4 and the reflection film 5, the contour of the incident light on the light receiving surface of the photodetector 45 Has a smaller diameter as indicated by reference numeral 71 in FIG. Conversely, if the position where the light beam from the objective lens 50 has the smallest diameter is shifted farther than the boundary surface between the air gap layer 4 and the reflection film 5, the light is incident on the light receiving surface of the photodetector 45. The outline of the light has a larger diameter as indicated by reference numeral 72 in FIG.
  • a focus error signal can be obtained by detecting a signal corresponding to a change in the diameter of the contour of the incident light on the light receiving surface of the photodetector 45 based on the in-focus state. Specifically, for example, Based on the in-focus state, a focus error signal can be generated based on the increase / decrease number of pixels corresponding to a bright portion on the light receiving surface of the photodetector 45.
  • the optical head 62 is arranged so that the light beam is always focused on the optical head body in the direction perpendicular to the optical information recording medium 1 based on the focus error signal so that the light beam is always in focus. 6 Adjust the position of 1 to perform focus servo.
  • the actuators 62 perform tracking services by adjusting the position of the optical head body 61 in the cross-track direction based on the tracking gel signal so that the light beam always follows the track. .
  • the focus support and the tracking support are not performed. Address ⁇ Support area The state at the time of passing 6 is retained.
  • the address information and the like are recorded in advance in the address space 6 of the optical information recording medium 1 by embossing, but without emboss pits,
  • the address information and the like may be recorded in the following manner.
  • an optical information recording medium 1 having no air gap layer 4 and having an information recording layer 3 and a reflective film 5 adjacent to each other is used.
  • a portion of the information recording layer 3 close to the reflection film 5 is selectively irradiated with high-power laser light, and the refractive index of the portion is selectively changed. Formatting is performed by recording the address information and the like by changing.
  • the information of the optical information recording medium is formed by the information light in which the phase of the light is spatially modulated based on the information to be recorded and the recording reference light.
  • Information is recorded on the recording layer.
  • the information recording layer is irradiated with the reproduction reference light, whereby the reproduction light generated from the information recording layer and the reproduction reference light are superimposed and synthesized. It is possible to generate light and detect this combined light to reproduce information.
  • the present invention it is not necessary to separate the reproduction light and the reproduction reference light at the time of reproducing the information, and the recording medium is formed so that the information light and the recording reference light form a predetermined angle with each other at the time of recording the information. There is no need to make the light incident on Therefore, according to the present invention, information can be recorded using holography, and the optical system for recording can be made smaller. Further, according to the present invention, it is possible to reproduce information by using the reproduction light and the reproduction reference light at the time of reproducing the information, so that the reproduction reference light degrades the SN ratio of the reproduction information. And the SN ratio of the playback information can be improved.
  • the irradiation of the information light and the recording reference light may be performed from the same surface side of the information recording layer so that the reference light is coaxially arranged. In this case, it is possible to make the optical system for recording smaller.
  • a recording reference light whose phase is spatially modulated may be used.
  • the optical information recording apparatus of the present invention may include a floating head body that houses the information light generating means, the recording reference light generating means, and the recording / reproducing optical system, and floats from the optical information recording medium. . In this case, no focus support is required.
  • information is recorded by an interference pattern by interference between an information light whose light phase is spatially modulated based on information to be recorded and a recording reference light.
  • the reproduced information recording layer is irradiated with the reproduction reference light, the reproduction light generated from the information recording layer is collected, and the reproduction light and the reproduction reference light are overlapped to generate a combined light. This combined light is detected. Therefore, in the present invention, there is no need to separate the reproduction light and the reproduction reference light. Therefore, according to the present invention, information can be reproduced using holography, and the optical system for reproduction can be made small. Further, according to the present invention, since information is reproduced using the reproduction light and the reproduction reference light, the SN ratio of the reproduction information is not degraded by the reproduction reference light, and the SN ratio of the reproduction information is improved. It will be possible to
  • the irradiation of the reproduction reference light and the collection of the reproduction light are performed on the same information recording layer so that the reproduction reference light and the reproduction light are coaxially arranged. You may make it perform from a surface side. In this case, it is possible to make the optical system for reproduction smaller.
  • a reproduction reference light whose phase is spatially modulated may be used.
  • the information multiplexed and recorded by the phase encoding multiplexing method can be reproduced.
  • the optical information reproducing apparatus of the present invention comprises a reproducing reference light generating means, a recording / reproducing optical system and And a floating type head body which houses the detecting means and floats from the optical information recording medium. In this case, no focus support is required.
  • the optical information recording / reproducing apparatus or method of the present invention when information is recorded, the optical information is spatially modulated based on the information to be recorded by the information light and the recording reference light.
  • the information is recorded on the information recording layer of the recording medium, and at the time of reproducing the information, the information recording layer is irradiated with a reference light for reproduction, thereby reproducing light emitted from the information recording layer is collected, The reproduction light and the reproduction reference light are superimposed to generate a combined light, and the combined light is detected. Therefore, in the present invention, it is not necessary to separate the reproduction light and the reproduction reference light, and it is not necessary to make the information light and the recording reference light enter the recording medium at a predetermined angle with each other at the time of recording information. .
  • information can be recorded and reproduced using holography, and the optical system for recording and reproduction can be made smaller. Further, according to the present invention, at the time of reproducing information, the information is reproduced by using the reproduction light and the reproduction reference light. Therefore, the SN ratio of the reproduction information is not degraded by the reproduction reference light. It is possible to improve the SN ratio of information.
  • the information light, the recording reference light, and the reproduction light are arranged so that the information light, the recording reference light, the reproduction reference light, and the reproduction light are coaxially arranged. Irradiation of the reference light and collection of the reproduction light may be performed from the same side of the information recording layer. In this case, the optical system for recording and reproduction can be made smaller.
  • a recording reference light and a reproduction reference light whose phases are spatially modulated may be used.
  • the optical information recording / reproducing apparatus of the present invention houses an information light generating means, a recording reference light generating means, a reference light generating means for reproduction, a recording / reproducing optical system and a detecting means, and floats from the optical information recording medium. May be provided. In this case, the four force service is unnecessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)

Description

明 細 書
光情報記録装置および方法、 光情報再生装置および方法、 ならびに光情報記録再 生装置および方法 技術分野
本発明は、 ホログラフィを利用して光情報記録媒体に情報を記録する光情報記 録装置および方法、 ホログラフィを利用して光情報記録媒体から情報を再生する 光情報再生装置および方法、 ならびにホログラフィを利用して光情報記録媒体に 情報を記録すると共に光情報記録媒体から情報を再生する光情報記録再生装置お よび方法に関する。 背景技術
ホログラフィを利用して記録媒体に情報を記録するホログラフィック記録は、 一般的に、 イメージ情報を持った光と参照光とを記録媒体の内部で重ね合わせ、 そのときにできる干渉パターンを記録媒体に書き込むことによって行われる。 記 録された情報の再生時には、 その記録媒体に参照光を照射することにより、 干渉 パターンによる回折によりィメージ情報が再生される。 近年では、 超高密度光記録のために、 ボリュームホログラフィ、 特にデジタル ボリュームホログラフィが実用域で開発され注目を集めている。 ボリュームホロ グラフィとは、 記録媒体の厚み方向も積極的に活用して、 3次元的に千渉パター ンを書き込む方式であり、 厚みを増すことで回折効率を高め、 多重記録を用いて 記録容量の増大を図ることができるという特徴がある。 そして、 デジタルポリュ ームホログラフィとは、 ボリュームホログラフィと同様の記録媒体と記録方式を 用いつつも、 記録するィメ一ジ情報は 2値化したデジタルパターンに限定した、 コンピュータ指向のホログラフィック記録方式である。 このデジタルポリユーム ホログラフィでは、 例えばアナログ的な絵のような画像情報も、 一旦デジタイズ して、 2次元デジタルパターン情報に展開し、 これをイメージ情報として記録す る。 再生時は、 このデジタルパターン情報を読み出してデコードすることで、 元 の画像情報に戻して表示する。 これにより、 再生時に信号対雑音比 (以下、 S N 比と記す。) が多少悪くても、 微分検出を行ったり、 2値化データをコード化しェ ラー訂正を行ったりすることで、 極めて忠実に元の情報を再現することが可能に なる。
ところで、 ホログラフィを利用して情報の記録および再生を行う従来の光情報 記録再生方法では、 記録しょうとする情報に基づいて光の強度を空間的に変調し て情報光を生成し、 この情報光と記録用参照光との干渉パ夕一ンを記録媒体に記 録することによって情報を記録するようになっている。 このようにして記録され た情報を再生する際には、 記録媒体に再生用参照光を照射する。 そして、 この再 生用参照光が干渉パターンによって回折されて、 情報光に対応する再生光が生成 される。 この再生光は、 情報光と同様に、 光の強度が空間的に変調された光であ る。
ところで、 従来の光情報記録再生方法では、 再生光を検出する光検出器に、 再 生用参照光も入射してしまうと、 再生情報の S N比が劣化するという問題点があ つた。 そのため、 従来の光情報記録再生方法では、 再生時に再生光と再生用参照 光とを空間的に分離できるように、 記録時には、 情報光と記録用参照光とを互い に所定の角度をなすように記録媒体に入射させる場合が多い。 これにより再生時 に発生する再生光は、 再生用参照光に対して所定の角度をなす方向に進むため、 再生光と再生用参照光とを空間的に分離することが可能になる。
しかしながら、 上述のように、 記録時に情報光と記録用参照光とを互いに所定 の角度をなすように記録媒体に入射させ、 再生時に再生光と再生用参照光とを空 間的に分離するようにした場合には、 記録再生のための光学系が大型化するとい う問題点がある。 発明の開示
本発明の目的は、ホログラフィを利用して情報の記録または再生を行うと共に、 記録または再生のための光学系を小さく構成でき、 且つ再生情報の S N比を向上 させることができるようにした光情報記録装置および方法、 光情報再生装置およ び方法、 ならびに光情報記録再生装置および方法を提供することにある。 本発明の光情報記録装置は、 ホログラフィを利用して情報が記録される情報記 録層を備えた光情報記録媒体に対して情報を記録するための光情報記録装置であ つて、
記録する情報に基づいて光の位相を空間的に変調することによって情報光を生 成する情報光生成手段と、
記録用参照光を生成する記録用参照光生成手段と、
情報記録層に情報光と記録用参照光との干渉による干渉パターンによつて情報 が記録されるように、 情報光生成手段によって生成された情報光と記録用参照光 生成手段によって生成された記録用参照光とを情報記録層に照射する記録光学系 と
を備えたものである。
本発明の光情報記録装置では、 記録する情報に基づいて光の位相が空間的に変 調された情報光と記録用参照光とによって、 光情報記録媒体の情報記録層に情報 が記録される。
本発明の光倩報記録装置において、 記録光学系は、 情報光および記録用参照光 が同軸的に配置されるように、 情報光および記録用参照光の照射を情報記録層の 同一面側より行ってもよい。
また、 本発明の光情報記録装置において、 情報光生成手段は、 変調後の光の位 相を 2つの値のいずれかに設定してもよいし、 3つ以上の値のいずれかに設定し てもよい。
また、 本発明の光情報記録装置において、 記録用参照光生成手段は、 位相が空 間的に変調された記録用参照光を生成してもよい。 この場合、情報光生成手段は、 記録する情報と記録用参照光の位相の変調パターンとに基づいて決定された位相 の変調パターンに従って光の位相を空間的に変調するようにしてもよい。
また、 本発明の光情報記録装置は、 更に、 情報光生成手段、 記録用参照光生成 手段および記録光学系を収納し、 光情報記録媒体より浮上する浮上型へッド本体 を備えていてもよい。
本発明の光情報記録方法は、 ホログラフィを利用して情報が記録される情報記 録層を備えた光情報記録媒体に対して情報を記録する光情報記録方法であって、 記録する情報に基づいて光の位相を空間的に変調することによって情報光を生 成する手順と、
記録用参照光を生成する手順と、
情報記録層に情報光と記録用参照光との干渉による干渉パターンによつて情報 が記録されるように、 情報光と記録用参照光とを情報記録層に照射する記録手順 と
を備えたものである。
本発明の光情報記録方法では、 記録する情報に基づいて光の位相が空間的に変 調された情報光と記録用参照光とによって、 光情報記録媒体の情報記録層に情報 が記録される。
本発明の光情報記録方法において、 記録手順は、 情報光および記録用参照光が 同軸的に配置されるように、 情報光および記録用参照光の照射を情報記録層の同 一面側より行ってもよい。
また、 本発明の光情報記録方法において、 情報光を生成する手順は、 変調後の 光の位相を 2つの値のいずれかに設定してもよいし、 3つ以上の値のいずれかに 設定してもよい。
また、 本発明の光情報記録方法において、 記録用参照光を生成する手順は、 位 相が空間的に変調された記録用参照光を生成してもよい。 この場合、 情報光を生 成する手順は、 記録する情報と記録用参照光の位相の変調パターンとに基づいて 決定された位相の変調パターンに従って光の位相を空間的に変調するようにして もよい。
本発明の光情報再生装置は、 記録する情報に基づいて光の位相が空間的に変調 された情報光と記録用参照光との干渉による干渉パターンによつて情報が記録さ れた情報記録層を備えた光情報記録媒体より、 ホログラフィを利用して、 情報を 再生するための光情報再生装置であって、 再生用参照光を生成する再生用参照光生成手段と、
再生用参照光生成手段によって生成された再生用参照光を情報記録層に対して 照射すると共に、 再生用参照光が照射されることによって情報記録層より発生さ れる再生光を収集し、 この再生光と再生用参照光とを重ね合わせて合成光を生成 する再生光学系と、
再生光学系によって生成された合成光を検出する検出手段と
を備えたものである。
本発明の光情報再生装置では、 再生用参照光が光情報記録媒体の情報記録層に 対して照射され、 これにより、 情報記録層より再生光が発生される。 この再生光 は、 記録された情報に対応して光の位相が空間的に変調された光である。 この再 生光と再生用参照光とが重ね合わせられて合成光が生成される。 この合成光は、 記録された情報に対応して、 強度が空間的に変調された光である。 この合成光が 検出されることにより、 情報が再生される。
本発明の光情報再生装置において、 再生光学系は、 再生用参照光および再生光 が同軸的に配置されるように、 再生用参照光の照射と再生光の収集とを情報記録 層の同一面側より行ってもよい。
また、 本発明の光情報再生装置において、 再生用参照光生成手段は、 位相が空 間的に変調された再生用参照光を生成してもよい。
また、 本発明の光情報再生装置は、 更に、 再生用参照光生成手段、 記録再生光 学系および検出手段を収納し、 光情報記録媒体より浮上する浮上型ヘッド本体を 備えていてもよい。
本発明の光情報再生方法は、 記録する情報に基づいて光の位相が空間的に変調 された情報光と記録用参照光との干渉による干渉パターンによつて情報が記録さ れた情報記録層を備えた光情報記録媒体より、 ホログラフィを利用して、 情報を 再生する光情報再生方法であって、
再生用参照光を生成する手順と、
再生用参照光を情報記録層に対して照射すると共に、 再生用参照光が照射され ることによって情報記録層より発生される再生光を収集し、 この再生光と再生用 参照光とを重ね合わせて合成光を生成する再生手順と、
合成光を検出する手順と
を備えたものである。
本発明の光情報再生方法では、 再生用参照光が光情報記録媒体の情報記録層に 対して照射され、 これにより、 情報記録層より再生光が発生される。 この再生光 は、 記録された情報に対応して光の位相が空間的に変調された光である。 この再 生光と再生用参照光とが重ね合わせられて合成光が生成される。 この合成光は、 記録された情報に対応して、 強度が空間的に変調された光である。 この合成光が 検出されることにより、 情報が再生される。
本発明の光情報再生方法において、 再生手順は、 再生用参照光および再生光が 同軸的に配置されるように、 再生用参照光の照射と再生光の収集とを情報記録層 の同一面側より行ってもよい。
また、 本発明の光情報再生方法において、 再生用参照光を生成する手順は、 位 相が空間的に変調された再生用参照光を生成してもよい。
本発明の光情報記録再生装置は、 ホログラフィを利用して情報が記録される情 報記録層を備えた光情報記録媒体に対して情報を記録すると共に、 光情報記録媒 体より情報を再生するための光倩報記録再生装置であって、
記録する情報に基づいて光の位相を空間的に変調することによって情報光を生 成する情報光生成手段と、
記録用参照光を生成する記録用参照光生成手段と、
再生用参照光を生成する再生用参照光生成手段と、
情報の記録時には、 情報記録層に情報光と記録用参照光との干渉による千渉パ ターンによって情報が記録されるように、 情報光生成手段によって生成された情 報光と記録用参照光生成手段によって生成された記録用参照光とを情報記録層に 照射し、 情報の再生時には、 再生用参照光生成手段によって生成された再生用参 照光を情報記録層に対して照射すると共に、 再生用参照光が照射されることによ つて情報記録層より発生される再生光を収集し、 この再生光と再生用参照光とを 重ね合わせて合成光を生成する記録再生光学系と、
記録再生光学系によって生成された合成光を検出する検出手段と を備えたものである。
本発明の光情報記録再生装置では、 情報の記録時には、 記録する情報に基づい て光の位相が空間的に変調された情報光と記録用参照光とによって、 光情報記録 媒体の情報記録層に情報が記録される。 また、 情報の再生時には、 再生用参照光 が光情報記録媒体の情報記録層に対して照射され、 これにより、 情報記録層より 再生光が発生される。 この再生光は、 記録された情報に対応して光の位相が空間 的に変調された光である。 この再生光と再生用参照光とが重ね合わせられて合成 光が生成される。 この合成光は、 記録された情報に対応して、 強度が空間的に変 調された光である。 この合成光が検出されることにより、 情報が再生される。 本発明の光情報記録再生装置において、 記録再生光学系は、 情報光、 記録用参 照光、 再生用参照光および再生光が同軸的に配置されるように、 情報光、 記録用 参照光および再生用参照光の照射と再生光の収集とを情報記録層の同一面側より 行ってもよい。 この場合、 情報光生成手段、 記録用参照光生成手段、 再生用参照 光生成手段は、 それぞれ、 偏光方向が同じ直線偏光の情報光、 記録用参照光、 再 生用参照光を生成し、 記録再生光学系は、 情報光および記録用参照光を第 1の直 線偏光から円偏光に変換して情報記録層に対して照射すると共に、 情報記録層よ り発生される再生光を円偏光から、 第 1の直線偏光に対して偏光方向が直交する 第 2の直線偏光に変換する 4分の 1波長板と、 偏光方向の違いによって、 4分の 1波長板を通過する前の情報光、 記録用参照光および再生用参照光の光路と 4分 の 1波長板を通過した後の光情報記録媒体からの戻り光の光路とを分離する偏光 分離光学素子とを有していてもよい。
また、 本発明の光情報記録再生装置において、 記録用参照光生成手段は、 位相 が空間的に変調された記録用参照光を生成し、 再生用参照光生成手段は、 位相が 空間的に変調された再生用参照光を生成してもよい。 この場合、 情報光生成手段 は、 記録する情報と記録用参照光の位相の変調パターンとに基づいて決定された 位相の変調パターンに従って光の位相を空間的に変調するようにしてもよい。 また、 本発明の光情報記録再生装置は、 更に、 情報光生成手段、 記録用参照光 生成手段、 再生用参照光生成手段、 記録再生光学系および検出手段を収納し、 光 情報記録媒体より浮上する浮上型へッド本体を備えていてもよい。 本発明の光情報記録再生方法は、 ホログラフィを利用して情報が記録される情 報記録層を備えた光情報記録媒体に対して情報を記録すると共に、 光情報記録媒 体より情報を再生する光情報記録再生方法であって、
記録する情報に基づいて光の位相を空間的に変調することによって情報光を生 成する手順と、
記録用参照光を生成する手順と、
情報記録層に情報光と記録用参照光との干渉による千渉パターンによって情報 が記録されるように、 情報光と記録用参照光とを情報記録層に照射する記録手順 と、
再生用参照光を生成する手順と、
再生用参照光を情報記録層に対して照射すると共に、 再生用参照光が照射され ることによって情報記録層より発生される再生光を収集し、 この再生光と再生用 参照光とを重ね合わせて合成光を生成する再生手順と、
合成光を検出する手順と
を備えたものである。
本発明の光情報記録再生方法では、 情報の記録時には、 記録する情報に基づい て光の位相が空間的に変調された情報光と記録用参照光とによって、 光情報記録 媒体の情報記録層に情報が記録される。 また、 情報の再生時には、 再生用参照光 が光情報記録媒体の情報記録層に対して照射され、 これにより、 情報記録層より 再生光が発生される。 この再生光は、 記録された情報に対応して光の位相が空間 的に変調された光である。 この再生光と再生用参照光とが重ね合わせられて合成 光が生成される。 この合成光は、 記録された情報に対応して、 強度が空間的に変 調された光である。 この合成光が検出されることにより、 情報が再生される。 本発明の光情報記録再生方法において、 情報光、 記録用参照光、 再生用参照光 および再生光が同軸的に配置されるように、 情報光、 記録用参照光および再生用 参照光の照射と再生光の収集は、 情報記録層の同一面側より行われてもよい。 また、本発明の光情報記録再生方法において、記録用参照光を生成する手順は、 位相が空間的に変調された記録用参照光を生成し、 再生用参照光を生成する手順 は、 位相が空間的に変調された再生用参照光を生成してもよい。 この場合、 情報 光を生成する手順は、 記録する情報と記録用参照光の位相の変調パターンとに基 づいて決定された位相の変調パターンに従って光の位相を空間的に変調するよう にしてもよい。
本発明のその他の目的、 特徴および利益は、 以下の説明を以つて十分明白にな るであろう。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係る光情報記録再生装置における倩報 の記録の原理を示す説明図である。
第 2図は、 本発明の第 1の実施の形態に係る光情報記録再生装置における情報 の再生の原理を示す説明図である。
第 3図は、 本発明の第 1の実施の形態に係る光情報記録再生装置における情報 の再生の原理を詳しく説明するための波形図である。
第 4図は、 本発明の第 1の実施の形態に係る光情報記録再生装置における光へ ッドを示す断面図である。
第 5図は、 本発明の第 1の実施の形態に係る光情報記録再生装置における光へ ッドを示す斜視図である。
第 6図は、 本発明の第 1の実施の形態に係る光情報記録再生装置の外観を示す 平面図である。
第 7図は、 本発明の第 1の実施の形態におけるトラッキングエラー情報の生成 方法とトラッキングサーポの方法の一例を説明するための説明図である。
第 8図は、 本発明の第 1の実施の形態におけるトラッキングエラ一情報の生成 方法とトラツキングサーポの方法の一例を説明するための説明図である。
第 9図は、 本発明の第 1の実施の形態における位相空間光変調器の要部を示す 断面図である。
第 1 0図は、 本発明の第 1の実施の形態における位相空間光変調器とその周辺 回路を示す説明図である。
第 1 1図は、 第 9図に示した位相空間光変調器における薄膜コイルの平面図で ある。 第 1 2図は、 1次元磁性フォ卜ニック結晶の構造を示す説明図である。
第 1 3図は、 第 9図に示した位相空間光変調器の作用について説明するための 説明図である。
第 1 4図は、 本発明の第 1の実施の形態における位相空間光変調器の構成の他 の例を示す断面図である。
第 1 5図は、 第 1 4図に示した位相空間光変調器の作用について説明するため の説明図である。
第 1 6図は、 第 1 4図に示した位相空間光変調器の作用について説明するため の説明図である。
第 1 7図は、 本発明の第 2の実施の形態に係る光情報記録再生装置における情 報の記録の原理を示す説明図である。
第 1 8図は、 本発明の第 2の実施の形態に係る光情報記録再生装置における情 報の再生の原理を示す説明図である。
第 1 9図は、 本発明の第 2の実施の形態に係る光情報記録再生装置における情 報の再生の原理を詳しく説明するための波形図である。
第 2 0図は、 本発明の第 3の実施の形態に係る光情報記録再生装置における光 へッドを示す断面図である。
第 2 1図は、 本発明の第 3の実施の形態におけるフォーカスエラー情報の生成 方法の一例を説明するための説明図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照して詳細に説明する。
[第 1の実施の形態]
第 1図は、 本発明の第 1の実施の形態に係る光情報記録再生装置における情報 の記録の原理を示す説明図である。 始めに、 第 1図を参照して、 本実施の形態において用いられる光情報記録媒体 の構成について説明する。 本実施の形態における光情報記録媒体 1は、 ポリ力一 ポネ一ト等によって形成された円板状の透明基板 2と、 この透明基板 2における 光の入出射側とは反対側に、 透明基板 2から順に配置された情報記録層 3、 エア ギャップ層 4、 反射膜 5を備えている。 情報記録層 3は、 ホログラフィを利用し て情報が記録される層であり、 光が照射されたときに光の強度に応 て屈折率、 誘電率、 反射率等の光学的特性が変化するホログラム材料によって形成されてい る。 ホログラム材料としては、 例えば、 デュポン (D u p o n t ) 社製フォトポ リマ (p h o t o p o l yme r s) HRF— 6 0 0 (製品名) や、 アプリリス (Ap r i l s ) 社製フォトポリマ UL SH— 5 0 0 (製品名)等が使用される。 反射膜 5は、 例えばアルミニウムによって形成されている。 なお、 光情報記録媒 体 1では、 エアギャップ層 4を設けずに、 情報記録層 3と反射膜 5とが隣接する ようにしてもよい。
次に、 本実施の形態に係る光情報記録再生装置における情報の記録の原理、 す なわち本実施の形態に係る光情報記録方法について説明する。本実施の形態では、 情報光と記録用参照光を生成し、 情報記録層 3に情報光と記録用参照光との干渉 による干渉パターンによつて情報が記録されるように、 情報光と記録用参照光と を光情報記録媒体 1の情報記録層 3に照射する。 情報光は、 記録する情報に基づ いて光の位相を空間的に変調することによって生成される。
以下、 第 1図を参照して、 本実施の形態に係る光情報記録方法について詳しく 説明する。 なお、 第 1図では、 本実施の形態に係る光情報記録再生装置における 記録再生光学系の一例における一部を示している。 この例における記録再生光学 系は、 光情報記録媒体 1の透明基板 2側に対向する対物レンズ 1 1と、 この対物 レンズ 1 1における光情報記録媒体 1とは反対側に、 対物レンズ 1 1側から順に 配設されたビームスプリッタ 1 2および位相空間光変調器 1 3を有している。 ビ 一ムスプリッタ 1 2は、 その法線方向が対物レンズ 1 1の光軸方向に対して 4 5 ° 傾けられた半反射面 1 2 aを有している。第 1図に示した記録再生光学系は、 更に、 光情報記録媒体 1からの戻り光がビ一ムスプリッ夕 1 2の半反射面 1 2 a で反射される方向に配置された光検出器 14を有している。 位相空間光変調器 1 3は、 格子状に配列された多数の画素を有し、 各画素毎に出射光の位相を選択す ることによって、 光の位相を空間的に変調することができるようになつている。 また、 光検出器 1 4は、 格子状に配列された多数の画素を有し、 各画素毎に受光 した光の強度を検出できるようになつている。
第 1図に示した例では、 位相空間光変調器 1 3によって、 情報光と記録用参照 光とを生成するようになっている。 位相空間光変調器 1 3には、 位相および強度 が一定でコヒーレントな平行光が入射されるようになっている。 情報の記録時に おいて、 位相空間光変調器 1 3は、 一方の半分の領域 1 3 Aでは、 記録する情報 に基づいて画素毎に出射光の位相を選択することによって、 光の位相を空間的に 変調して情報光を生成し、 他方の半分の領域 1 3 Bでは、 全ての画素について出 射光の位相を同一にして記録用参照光を生成する。
位相空間光変調器 1 3は、 領域 1 3Aでは、 画素毎に、 変調後の光の位相を、 所定の基準位相に対する位相差が + 7tZ2 ( r a d) となる第 1の位相と基準位 相に対する位相差が一 ( r a d) となる第 2の位相のいずれかに設定する ようになつている。 第 1の位相と第 2の位相との位相差は π ( r a d) である。 なお、 位相空間光変調器 1 3は、 領域 1 3 Aにおいて、 画素毎に、 変調後の光の 位相を 3つ以上の値のいずれかに設定してもよい。 また、 位相空間光変調器 1 3 は、 領域 1 3 Bでは、 全ての画素の出射光の位相を、 所定の基準位相に対する位 相差が +πΖ2 ( r a d) となる第 1の位相とするようになつている。 なお、 位 相空間光変調器 1 3は、 領域 1 3 Bにおいて、 全ての画素の出射光の位相を第 2 の位相としてもよいし、 第 1の位相および第 2の位相のいずれとも異なる一定の 位相としてもよい。
第 1図中には、 位相空間光変調器 1 3の入射光、 位相空間光変調器 1 3の出射 光、 光情報記録媒体 1に照射される前における対物レンズ 1 1の入射光、 および ビームスプリッタ 1 2の半反射面 1 2 aで反射された光情報記録媒体 1からの戻 り光の位相および強度を示している。 なお、 第 1図では、 第 1の位相を記号 "+ " で表し、 第 2の位相を記号 "一" で表している。 また、 第 1図では、 強度の最大 値を " 1" で表し、 強度の最小値 "0" で表している。
第 1図に示した例では、 情報の記録時には、 位相空間光変調器 1 3に、 位相お よび強度が一定でコヒ一レントな平行光 2 1が入射される。 位相空間光変調器 1 3に入射した光のうち領域 1 3 Aを通過した光は、 記録する情報に基づいて位相 が空間的に変調されて情報光 2 2 Aとなる。 なお、 情報光 2 2 Aにおいて、 第 1 の位相の画素と第 2の位相の画素との境界部分では局所的に強度が低下する。 一 方、 位相空間光変調器 1 3に入射した光のうち領域 1 3 Bを通過した光は、 位相 が空間的に変調されず、 記録用参照光 2 2 Bとなる。 これら情報光 2 2 Aおよび 記録用参照光 2 2 Bはビームスプリッタ 1 2に入射し、 一部が半反射面 1 2 aを 通過し、 更に対物レンズ 1 1を通過して収束する情報光 2 3 Aおよび収束する記 録用参照光 2 3 Bとなって、 光情報記録媒体 1に照射される。 情報光 2 3 Aおよ ぴ記録用参照光 2 3 Bは、 情報記録層 3を通過し、 エアギャップ層 4と反射膜 5 の境界面上で最も小径になるように収束し、 反射膜 5で反射される。 反射膜 5で 反射された後の情報光 2 4 Aおよび記録用参照光 2 4 Bは、拡散する光となって、 再度、 情報記録層 3を通過する。
情報記録層 3では、 反射膜 5で反射される前の情報光 2 3 Aと反射膜 5で反射 された後の記録用参照光 2 4 Bとが干渉して干渉パターンを形成すると共に、 反 射膜 5で反射された後の情報光 2 4 Aと反射膜 5で反射される前の記録用参照光 2 3 Bとが千渉して干渉パターンを形成する。 そして、 これらの干渉パターンが 情報記録層 3内に体積的に記録される。
反射膜 5で反射された後の情報光 2 4 Aと記録用参照光 2 4 Bは、 光情報記録 媒体 1より出射され、 対物レンズ 1 1によって平行光の情報光 2 5 Aと記録用参 照光 2 5 Bとなる。 これらの光 2 5 A , 2 5 Bは、 ビ一ムスプリッタ 1 2に入射 し、 一部が半反射面 1 2 aで反射されて、 光検出器 1 4によって受光される。 次に、 本実施の形態に係る光情報記録再生装置における情報の再生の原理、 す なわち本実施の形態に係る光情報再生方法について説明する。本実施の形態では、 再生用参照光を生成し、 この再生用参照光を光情報記録媒体 1の情報記録層 3に 対して照射すると共に、 再生用参照光が照射されることによって情報記録層 3よ り発生される再生光を収集し、 この再生光と再生用参照光とを重ね合わせて合成 光を生成し、 この合成光を検出する。
以下、 第 2図を参照して、 本実施の形態に係る光情報再生方法について詳しく 説明する。 第 2図は、 本実施の形態に係る光情報記録再生装置における情報の再 生の原理を示す説明図である。 なお、 第 2図では、 第 1図と同様に、 本実施の形 態に係る光情報記録再生装置における記録再生光学系の一例における一部を示し ている。
また、 第 2図中には、 位相空間光変調器 1 3の入射光、 位相空間光変調器 1 3 の出射光、 光情報記録媒体 1に照射される前における対物レンズ 1 1の入射光、 およびビームスプリッタ 1 2の半反射面 1 2 aで反射された光情報記録媒体 1か らの戻り光の位相および強度を示している。 第 2図における位相および強度の表 し方は、 第 1図と同様である。
第 2図に示した例では、 情報の再生時には、 位相空間光変調器 1 3に、 位相お よび強度が一定でコヒーレントな平行光 3 1が入射される。 情報の再生時におい て、 位相空間光変調器 1 3は、 全ての画素について出射光の位相を、 所定の基準 位相に対する位相差が + 7T Z 2 ( r a d ) となる第 1の位相にして再生用参照光 3 2を生成する。 この再生用参照光 3 2はピームスプリッタ 1 2に入射し、 一部 が半反射面 1 2 aを通過し、 更に対物レンズ 1 1を通過して収束する再生用参照 光 3 3となって、 光情報記録媒体 1に照射される。 再生用参照光 3 3は、 情報記 録層 3を通過し、 エアギャップ層 4と反射膜 5の境界面上で最も小径になるよう に収束し、 反射膜 5で反射される。 反射膜 5で反射された後の再生用参照光は、 拡散する光となって、 再度、 情報記録層 3を通過する。
情報記録層 3では、 反射膜 5で反射される前の再生用参照光 3 3によって、 反 射膜 5とは反対側に進行する再生光が発生すると共に、 反射膜 5で反射された後 の再生用参照光によって、 反射膜 5側に進行する再生光が発生する。 反射膜 5と は反対側に進行する再生光は、 そのまま光情報記録媒体 1より出射され、 反射膜 5側に進行する再生光は、 反射膜 5で反射されて、 光情報記録媒体 1より出射さ れる。
このように、 再生時には、 光情報記録媒体 1からの戻り光 3 4は、 再生光と、 反射膜 5で反射された後の再生用参照光とを含んだものとなる。 戻り光 3 4は、 対物レンズ 1 1によって平行光の戻り光 3 5とされてビームスプリッタ 1 2に入 射し、 一部が半反射面 1 2 aで反射されて、 光検出器 1 4によって受光される。 光検出器 1 4に入射する戻り光 3 5は、 再生光 3 6と、 反射膜 5で反射された後 の再生用参照光 3 7とを含んでいる。 再生光 3 6は、 情報記録層 3に記録された 情報に対応して光の位相が空間的に変調された光である。 第 2図では、 便宜上、 再生光 3 6と再生用参照光 3 7とを分け、 それぞれについて位相および強度を示 している。 しかし、 実際には、 再生光 3 6と再生用参照光 3 7とが重ね合わせら れて合成光が生成され、 この合成光が光検出器 1 4によって受光される。 合成光 は、 記録された情報に対応して、 強度が空間的に変調された光となる。 従って、 光検出器 1 4によって合成光の強度の 2次元パターンが検出され、 これにより情 報が再生される。
第 1図および第 2図に示したように、 本実施の形態に係る光情報記録再生装置 では、 情報光、 記録用参照光、 再生用参照光および再生光が同軸的に配置される ように、 情報光、 記録用参照光および再生用参照光の照射と再生光の収集は、 情 報記録層 3の同一面側より行われる。 なお、 第 1図において、 情報記録層 3に照 射される情報光 2 3 Aと記録用参照光 2 3 Bは、 断面が半円形状の光ビームとな るが、 これらは、 断面が円形の光ビームの半分ずつを構成するので、 同軸的であ る。
ここで、 第 3図を参照して、 上記再生光 3 6、 再生用参照光 3 7および合成光 について詳しく説明する。 第 3図において、 (a ) は再生光 3 6の強度、 (b ) は 再生光 3 6の位相、 (C ) は再生用参照光 3 7の強度、 (d ) は再生用参照光 3 7 の位相、 (e ) は合成光の強度を表している。 第 3図は、 情報光の各画素毎の位相 を、 基準位相に対する位相差が + T / 2 ( r a d ) となる第 1の位相と基準位相 に対する位相差が一 t Z 2 ( r a d ) となる第 2の位相のいずれかに設定した場 合についての例を示している。 従って、 第 3図に示した例では、 再生光 3 6の各 画素毎の位相は、 情報光と同様に、 第 1の位相と第 2の位相のいずれかになる。 また、 再生用参照光 3 7の各画素毎の位相は全て第 1の位相となっている。 ここ で、 再生光 3 6の強度と再生用参照光 3 7の強度が等しいとすれば、 第 3図 (e ) に示したように、 再生光 3 6の位相が第 1の位相となる画素では、 合成光の強度 は再生光 3 6の強度および再生用参照光 3 7の強度よりも大きくなり、 再生光 3 6の位相が第 2の位相となる画素では、 原理的には合成光の強度はゼロとなる。 次に、 記録時に情報光の位相を 2つの値のいずれかに設定する場合と情報光の 位相を 3つ以上の値のいずれかに設定する場合とを含めて、 再生光の位相と合成 光の強度との関係について詳しく説明する。
合成光は、再生光と再生用参照光という 2つの光波を重ね合わせたものである。 従って、 再生光の振幅および再生用参照光の振幅を共に a。 とし、 再生光と再生 用参照光との位相差を δとすると、 合成光の強度 Iは次の式 (1) で表される。
I = 2 a0 2 + 2 a0 2 c o s 5
= 2 a。2 ( l + c o s 5)
= 4 a0 2 c o s 2 (6/2) ··· ( 1 )
再生用参照光の位相は画素に依らずに一定であるから、 上式より、 再生光の位 相に応じて合成光の強度 Iが変化することが分かる。 また、 情報光の位相を、 例 えば + 7TZ 2 ( r a d) から一 7tノ 2 ( r a d) の範囲内で、 n (nは 2以上の 整数) 値のいずれかに設定すれば、 合成光の強度 Iも n値のいずれかになる。 このように、 本実施の形態に係る光情報記録方法では、 再生光と再生用参照光 と重ね合わせて生成される合成光の強度の 2次元パターンを検出することによつ て、 記録する情報に基づいて光の位相が空間的に変調された情報光と記録用参照 光との干渉による干渉パターンによつて情報記録層 3に記録された情報を再生す ることができる。
次に、本実施の形態に係る光情報記録再生装置の構成について説明する。なお、 本実施の形態に係る光情報記録再生装置は、 本実施の形態に係る光情報記録装置 と本実施の形態に係る光情報再生装置とを含んでいる。
第 4図は本実施の形態に係る光情報記録再生装置における光ヘッドを示す断面 図である。 第 4図に示したように、 本実施の形態では、 位置決め情報を有する光 情報記録媒体 1を用いる。 すなわち、 本実施の形態における光情報記録媒体 1で は、 第 4図に示したように、 エアギャップ層 4と反射膜 5の境界面に、 半径方向 に線状に延びる複数のァドレス ·サ一ポエリァ 6が所定の角度間隔で設けられて いる。 隣り合うアドレス ·サ一ポエリア 6間の扇形の区間はデータエリア 7にな つている。 アドレス ·サーポエリア 6には、 サンプルドサ一ポ方式によってトラ ッキングサ一ポを行うための情報とァドレス情報とが、 予めエンボスピット等に よって記録されている。 なお、 後述するが、 本実施の形態ではフォーカスサ一ポ は行わない。
第 4図に示したように、 本実施の形態に係る光情報記録再生装置は、 光情報記 録媒体 1の透明基板 2に対向するように配置される光へッド 4 0を備えている。 この光ヘッド 4 0は、 後述する各要素を収納し、 光情報記録媒体 1より浮上する 浮上型ヘッド本体 4 1を有している。 このヘッド本体 4 1内の底部には、 支持台 4 2を介して半導体レーザ 4 3が固定されていると共に、 反射型の位相空間光変 調器 4 4と光検出器 4 5が固定されている。 光検出器 4 5の受光面には、 マイク 口レンズアレイ 4 6が取り付けられている。 また、 ヘッド本体 4 1内において、 位相空間光変調器 4 4および光検出器 4 5の上方にはプリズムブロック 4 8が設 けられている。 プリズムブロック 4 8の半導体レーザ 4 3側の端部近傍にはコリ メータレンズ 4 7が設けられている。 また、 ヘッド本体 4 1の光情報記録媒体 1 に対向する面には開口部が形成され、 この開口部に対物レンズ 5 0が設けられて いる。 この対物レンズ 5 0とプリズムブロック 4 8との間には 4分の 1波長板 4 9が設けられている。
位相空間光変調器 4 4は、 格子状に配列された多数の画素を有し、 各画素毎に 出射光の位相を、 互いに π ( r a d ) だけ異なる 2つの値のいずれかに設定する ことによって、 光の位相を空間的に変調することができるようになつている。 位 相空間光変調器 4 4は、 更に、 入射光の偏光方向に対して、 出射光の偏光方向を 9 0 ° 回転させるようになつている。
光検出器 4 5は、 格子状に配列された多数の画素を有し、 各画素毎に受光した 光の強度を検出できるようになつている。 また、 マイクロレンズアレイ 4 6は、 光検出器 4 5の各画素の受光面に対向する位置に配置された複数のマイクロレン ズを有している。
光検出器 4 5としては、 C C D型固体撮像素子や M O S型固体撮像素子を用い ることができる。 また、 光検出器 4 5として、 M〇 S型固体撮像素子と信号処理 回路とが 1チップ上に集積されたスマート光センサ (例えば、 文献 「〇 P 1 u s E , 1 9 9 6年 9月, N o . 2 0 2 , 第 9 3〜 9 9ページ J 参照。) を用いて もよい。 このスマート光センサは、 転送レートが大きく、 高速な演算機能を有す るので、 このスマート光センサを用いることにより、 高速な再生が可能となり、 例えば、 Gビット /秒オーダの転送レートで再生を行うことが可能となる。 プリズムブロック 4 8は、 偏光ビームスプリッタ面 4 8 aと反射面 4 8 bを有 している。 偏光ビームスプリッタ面 4 8 aと反射面 4 8 bのうち偏光ビームスプ リッタ面 4 8 aがコリメータレンズ 4 7寄りに配置されている。 偏光ビームスプ リツタ面 4 8 aと反射面 4 8 bは、 共にその法線方向がコリメータレンズ 4 7の 光軸方向に対して 4 5 ° 傾けられ、 且つ互いに平行に配置されている。
位相空間光変調器 4 4は偏光ビ一ムスプリッタ面 4 8 aの下方の位置に配置さ れ、 光検出器 4 5は反射面 4 8 bの下方の位置に配置されている。 また、 4分の 1波長板 4 9と対物レンズ 5 0は、 偏光ビームスプリッタ面 4 8 aの上方の位置 に配置されている。 なお、 コリメ一タレンズ 4 7や対物レンズ 5 0は、 ホロダラ ムレンズであってもよい。
プリズムブロック 4 8は、 本発明における偏光分離光学素子に対応する。 すな わち、 プリズムブロック 4 8の偏光ビームスプリッタ面 4 8 aは、 後で詳しく説 明するように、 偏光方向の違いによって、 4分の 1波長板 4 9を通過する前の情 報光、 記録用参照光および再生用参照光の光路と 4分の 1波長板 4 9を通過した 後の光情報記録媒体 1からの戻り光の光路とを分離する。
第 5図は本実施の形態に係る光情報記録再生装置における光へッドを示す斜視 図である。 第 5図に示したように、 浮上型ヘッド本体 4 1は、 光情報記録媒体 1 に対向する面において突出するように設けられた 2つのレール部 5 1を有してい る。 レール部 5 1の光情報記録媒体 1側の面はエアベアリング面となっている。 レール部 5 1における空気流入側の端部の近傍には、 端部側ほど光情報記録媒体 1より離れるように形成されたテーパー部 5 2が設けられている。 へッド本体 4 1は、 テーパー部 5 2より流入する空気によって、 エアベアリング面と光情報記 録媒体 1との間に微小な空隙を形成しながら、 光情報記録媒体 1より浮上するよ うになっている。対物レンズ 5 0は、 2つのレ一ル部 5 1の間に配置されている。 へッド本体 4 1の浮上時におけるエアベアリング面と光情報記録媒体 1との間の 空隙の大きさは 0 . 0 5 m程度であり、 且つ安定している。 従って、 本実施の 形態における光ヘッド 4 0では、 ヘッド本体 4 1の浮上時には対物レンズ 5 0と 光情報記録媒体 1との間の距離がほぼ一定に保たれるので、 フォーカスサ一ポが 不要になっている。
第 6図は本実施の形態に係る光情報記録再生装置の外観を示す平面図である。 第 6図に示したように、 光情報記録再生装置は、 光情報記録媒体 1が取り付けら れるスピンドル 5 4と、 このスピンドル 5 4を回転させる図示しないスピンドル モータとを備えている。 光情報記録再生装置は、 更に、 先端部が光情報記録媒体 1のトラック横断方向に移動するキャリッジ 5 5と、 このキャリッジ 5 5を駆動 するボイスコイルモータ 5 6とを備えている。 光へッド 4 0は、 キヤリッジ 5 5 の先端部に取りつけられている。 光情報記録再生装置では、 キャリッジ 5 5およ びポイスコイルモータ 5 6によって、 光ヘッド 4 0が光情報記録媒体 1のトラッ ク横断方向に移動され、 トラックの変更やトラッキングサーポが行われるように なっている。
次に、 情報の記録時における光ヘッド 4 0の作用について説明する。 半導体レ 一ザ 4 3は、 コヒ一レントな S偏光の光を出射する。 なお、 S偏光とは偏光方向 が入射面 (第 4図おける紙面) に垂直な直線偏光であり、 後述する P偏光とは偏 光方向が入射面に平行な直線偏光である。
半導体レーザ 4 3より出射された S偏光のレーザ光は、 コリメータレンズ 4 7 によって平行光とされ、 プリズムブ口ック 4 8の偏光ビームスプリッタ面 4 8 a に入射し、 この偏光ビームスプリッ夕面 4 8 aで反射されて、 位相空間光変調器 4 4に入射する。 位相空間光変調器 4 4の出射光は、 一方の半分の領域では、 記 録する情報に基づいて光の位相が空間的に変調された情報光となり、 他方の半分 の領域では、 全ての画素について出射光の位相が同一の記録用参照光となる。 ま た、 位相空間光変調器 4 4の出射光は、 偏光方向が 9 0 ° 回転されて P偏光の光 となる。
位相空間光変調器 4 4の出射光である情報光および記録用参照光は、 P偏光で あるので、 プリズムブロック 4 8の偏光ビ一ムスプリッタ面 4 8 aを透過し、 4 分の 1波長板 4 9を通過して円偏光の光となる。 この情報光および記録用参照光 は、 対物レンズ 5 0によって集光されて光情報記録媒体 1に照射される。 この情 報光および記録用参照光は、 情報記録層 3を通過し、 エアギャップ層 4と反射膜 5の境界面上で最も小径になるように収束し、 反射膜 5で反射される。 反射膜 5 で反射された後の情報光および記録用参照光は、 拡散する光となって、 再度、 情 報記録層 3を通過する。 半導体レーザ 4 3の出力が記録用の高出力に設定される と、 第 1図を参照して説明したように、 情報記録層 3に情報光と記録用参照光と の干渉による干渉パターンが記録される。
光情報記録媒体 1からの戻り光は、 対物レンズ 5 0によって平行光とされ、 4 分の 1波長板 4 9を通過して S偏光の光となる。 この戻り光は、 プリズムブロッ ク 4 8の偏光ビームスプリッタ面 4 8 aで反射され、 更に反射面 4 8 bで反射さ れ、 マイクロレンズアレイ 4 6を経て、 光検出器 4 5に入射する。
なお、 情報の記録時において、 対物レンズ 5 0からの光ビームが光情報記録媒 体 1のァドレス ·サーポエリァ 6を通過する期間では、 半導体レーザ 4 3の出力 は、 再生用の低出力に設定されると共に、 位相空間光変調器 4 4は、 光の位相を 変調せずに、 全ての画素について位相が同一の光を出射する。 このときの光検出 器 4 5の出力に基づいて、 アドレス情報およびトラッキングエラー情報を得るこ とができる。
次に、 情報の再生時における光ヘッド 4 0の作用について説明する。 情報の再 生時には、 半導体レーザ 4 3の出力は、 再生用の低出力に設定される。 半導体レ 一ザ 4 3より出射された S偏光のレーザ光は、 コリメ一夕レンズ 4 7によって平 行光とされ、 プリズムブロック 4 8の偏光ビームスプリッタ面 4 8 aに入射し、 この偏光ビームスプリッタ面 4 8 aで反射されて、 位相空間光変調器 4 4に入射 する。 位相空間光変調器 4 4の出射光は、 全ての画素について出射光の位相が同 一の再生用参照光となる。 また、 位相空間光変調器 4 4の出射光は、 偏光方向が 9 0 ° 回転されて P偏光の光となる。
位相空間光変調器 4 4の出射光である再生用参照光は、 P偏光であるので、 プ リズムブ口ック 4 8の偏光ビームスプリッタ面 4 8 aを透過し、 4分の 1波長板 4 9を通過して円偏光の光となる。 この再生用参照光は、 対物レンズ 5 0によつ て集光されて光情報記録媒体 1に照射される。 この再生用参照光は、 情報記録層 3を通過し、 エアギャップ層 4と反射膜 5の境界面上で最も小径になるように収 束し、 反射膜 5で反射される。 反射膜 5で反射された後の再生用参照光は、 拡散 する光となって、 再度、 情報記録層 3を通過する。 第 2図を参照して説明したよ うに、 再生用参照光によって、 情報記録層 3より再生光が発生される。
光情報記録媒体 1からの戻り光は、 再生光と再生用参照光とを含む。 この戻り 光は、 対物レンズ 5 0によって平行光とされ、 4分の 1波長板 4 9を通過して S 偏光の光となる。 この戻り光は、 プリズムブロック 4 8の偏光ピームスプリッタ 面 4 8 aで反射され、 更に反射面 4 8 bで反射され、 マイクロレンズアレイ 4 6 を経て、 光検出器 4 5に入射する。 この光検出器 4 5の出力に基づいて、 光情報 記録媒体 1に記録された情報を再生することができる。
なお、 情報の再生時において、 対物レンズ 5 0からの光ビームが光情報記録媒 体 1のァドレス ·サーポエリァ 6を通過する期間では、 光検出器 4 5の出力に基 づいて、 ァドレス情報およびトラッキングエラー情報を得ることができる。
次に、 第 7図および第 8図を参照して、 本実施の形態におけるトラッキングェ ラ一情報の生成方法とトラッキングサーポの方法の一例について説明する。 この 例では、 光情報記録媒体 1のアドレス ·サーポエリア 6には、 トラッキングサー ポに用いられる位置決め情報として、 第 7図 (a ) に示したように、 トラック 8 0に沿って光ビーム 8 2の進行方向の手前側から順に、 2つのピット 8 1 A、 1 つのピット 8 1 B、 1つのピット 8 1 Cが形成されている。 2つのピット 8 1 A は、 第 7図において符号 Aで示した位置においてトラック 8 0を挟んで対称な位 置に配置されている。 ピット 8 1 Bは、 第 7図において符号 Bで示した位置にお いてトラック 8 0に対して片側にずれた位置に配置されている。ピット 8 1 Cは、 第 7図において符号 Cで示した位置において、 トラック 8 0に対してピット 8 1 Bとは反対側にずれた位置に配置されている。
第 7図 (a ) に示したように、 光ビーム 8 2がトラック 8 0上を正確に進行す る場合には、 光ビーム 8 2が各位置 A , B, Cを通過する際の光検出器 4 5の全 受光量は、 第 7 ( b ) 図に示したようになる。 すなわち、 位置 A通過時の受光量 が最も大きく、 位置 B通過時の受光量と位置 C通過時の受光量は互いに等しく且 つ位置 A通過時の受光量よりも小さくなる。
一方、 第 8図 (a ) に示したように、 光ビーム 8 2がトラック 8 0に対してピ ッ卜 8 1 C寄りにずれて進行する場合には、 光ビーム 8 2が各位置 A, B , Cを 通過する際の光検出器 4 5の全受光量は、 第 8図 (b ) に示したようになる。 す なわち、 位置 A通過時の受光量が最も大きく、 次に位置 C通過時の受光量が大き く、 位置 B通過時の受光量は最も小さくなる。 位置 B通過時の受光量と位置 C通 過時の受光量との差の絶対値は、 光ビーム 8 2のトラック 8 0からのずれ量が大 きくなるほど大きくなる。
なお、 図示しないが、 光ビーム 8 2がトラック 8 0に対してピット 8 1 B寄り にずれて進行する場合には、 位置 A通過時の受光量が最も大きく、 次に位置 B通 過時の受光量が大きく、 位置 C通過時の受光量は最も小さくなる。 位置 B通過時 の受光量と位置 C通過時の受光量との差の絶対値は、 光ビーム 8 2のトラック 8 0からのずれ量が大きくなるほど大きくなる。 '
以上のことから、 位置 B通過時の受光量と位置 C通過時の受光量との差から、 トラック 8 0に対する光ビーム 8 2のずれの方向および大きさが分かる。従って、 位置 B通過時の受光量と位置 C通過時の受光量との差をトラッキングエラ一信号 とすることができる。 ピット 8 1 Aは、 位置 B通過時の受光量と位置 C通過時の 受光量を検出する夕イミングの基準となる。
本例におけるトラッキングサーポは、具体的には、以下のようにして行われる。 まず、 光検出器 4 5の全受光量が最初にピークに達するタイミング、 すなわち位 置 A通過時のタイミングを検出する。 次に、 位置 A通過時のタイミングを基準に して、位置 B通過時のタイミングと位置 C通過時のタイミングを予測する。次に、 予測した各タイミングで、 位置 B通過時の受光量と位置 C通過時の受光量を検出 する。 最後に、 位置 B通過時の受光量と位置 C通過時の受光量との差を検出し、 これをトラッキングエラ一信号とする。 そして、 光ビーム 8 2が常にトラック 8
0に追従するように、 トラッキングエラー信号に基づいてボイスコイルモータ 5
6が駆動されて、 トラッキングサ一ポが行われる。 なお、 光ビーム 8 2がデータ エリア 7を通過する際には、 トラッキングサーポは行われず、 直前のアドレス - サーポエリァ 6通過時の状態が保持される。
なお、 本実施の形態におけるトラッキングエラー情報の生成方法とトラツキン ダサーポの方法は、上記の方法に限らず、例えばプッシュプル法を用いてもよい。 この場合には、 アドレス 'サ一ポエリア 6には、 トラッキングサーポに用いられ る位置決め情報として、 トラック方向に沿った一列のピット列を形成しておき、 光検出器 4 5の受光面における入射光の形状の変化を検出して、 トラッキングェ ラー情報を生成する。
次に、 第 9図および第 1 0図を参照して、 本実施の形態における位相空間光変 調器 4 4の構成の一例について説明する。 本例における位相空間光変調器 4 4は 磁気光学効果を利用するものである。 第 9図は本例における位相空間光変調器 4
4の要部を示す断面図、 第 1 0図は本例における位相空間光変調器 4 4とその周 辺回路を示す説明図である。
第 9図および第 1 0図に示したように、本例における位相空間光変調器 4 4は、 光磁気材料よりなり、 それぞれ独立に磁化の方向が設定され、 磁気光学効果によ り、 入射する光に対して磁化の方向に応じた偏光方向の回転を与える複数の画素 を含む磁化設定層 1 1 1と、 この磁化設定層 1 1 1の各画素毎に対応するように 設けられ、 各画素における磁化の方向を独立に設定するための磁界を発生する複 数の磁界発生素子としての薄膜コイル 1 1 2と、 磁化設定層 1 1 1と薄膜コイル 1 1 2との間に設けられ、 光を反射する反射層 1 1 3とを備えている。
磁化設定層 1 1 1には、 憐接する画素の境界位置に、 磁壁の移動を抑止する磁 壁移動抑止部 1 1 1 bが設けられている。 磁壁移動抑止部 1 1 1 bは、 例えば第 9図に示したような突起でもよい。
第 9図および第 1 0図において、 符号 1 1 1 a。 は磁化が下向きの画素 (以下、 オフの画素とも言う。) を示し、 符号 1 1 1 a , は磁化が上向きの画素 (以下、 ォ ンの画素とも言う。) を示している。
第 1 1図は、 薄膜コイル 1 1 2の平面図である。 第 1 1図において、 符号 1 1 1 Aは 1画素の領域を表している。
第 9図および第 1 0図において、 磁化設定層 1 1 1の上側の面が、 光の入射す る面になっている。 磁化設定層 1 1 1は、 少なくとも使用する光に対して透光性 を有している。 薄膜コイル 1 1 2は、 反射層 1 1 3を介して、 磁化設定層 1 1 1 における光の入射する面とは反対側の面に隣接するように配置されている。
反射層 1 1 3は、 導電性を有している。 各薄膜コイル 1 1 2の一方の端部、 例 えば内側の端部は、 反射層 1 1 3に接続されている。 各薄膜コイル 1 1 2の他方 の端部、 例えば外側の端部には、 それぞれ端子 1 1 4が接続されている。 反射層 1 1 3は、 薄膜コイル 1 1 2に通電するための 2つの導電路のうちの一方を兼ね ている。 端子 1 1 4は、 薄膜コイル 1 1 2に通電するための 2つの導電路のうち の他方を構成する。
位相空間光変調器 4 4は、 更に、 軟磁性材料よりなり、 薄膜コイル 1 1 2にお ける磁化設定層 1 1 1とは反対側に配置され、 薄膜コイル 1 1 2によって発生さ れる磁界に対応する磁路 1 2 0の一部を形成する磁路形成部 1 1 5を備えている t 薄膜コイル 1 1 2、 端子 1 1 4および磁路形成部 1 1 5の周囲には、 絶縁層 1 1 6が形成されている。
位相空間光変調器 4 4は、 更に、 軟磁性材料よりなり、 磁化設定層 1 1 1にお ける薄膜コイル 1 1 2とは反対側の面に隣接するように設けられ、 薄膜コイル 1 1 2によって発生される磁界に対応する磁路 1 2 0の他の一部を形成する軟磁性 層 1 1 7を備えている。 軟磁性層 1 1 7は、 少なくとも使用する光に対して透光 性を有している。
第 1 0図に示したように、 各薄膜コイル 1 1 2は、 それぞれ、 端子 1 1 4、 反 射層 1 1 3およびこれらに接続された配線によって、 各薄膜コイル 1 1 2に独立 に通電するための駆動部 1 0 2に接続されるようになっている。駆動部 1 0 2は、 例えばナノ秒オーダ一の周期で、 正または負のパルス状の電流を薄膜コイル 1 1 2に供給するようになつている。 また、 駆動部 1 0 2は制御部 1 0 3によって制 御されるようになっている。
磁化設定層 1 1 1は、 大きな保磁力 H e , —H eを有している。 そして、 磁化 設定層 1 1 1は、 正方向に磁化されているときには、 絶対値が H eを越える負の 磁界が印加されると磁化の方向が反転し、 負方向に磁化されているときには、 絶 対値が H eを越える正の磁界が印加されると磁化の方向が反転する。 薄膜コイル 1 1 2は、 絶対値が H cを越える正または負の磁界を発生する。 これに対し、 軟 磁性層 1 1 7の保磁力は極めて小さく、 軟磁性層 1 1 7では小さな印加磁界によ つて容易に磁化の方向が反転する。 磁路形成部 1 1 5の特性も、 軟磁性層 1 1 7 と同様である。
磁化設定層 1 1 1の材料としては、 磁気光学効果を有する光磁気材料であれば よいが、 特に、 磁性ガーネット薄膜または 1次元磁性フォトニック結晶を用いる のが好ましい。
磁性ガーネット薄膜の代表的なものとしては、 希土類鉄系ガーネット薄膜があ る。 磁性ガ一ネット薄膜を作製する方法としては、 例えば、 ガドリニウムガリウ ムガーネット (G G G ) 等の基板の上に、 液相ェピタキシャル成長法 (L P E法) またはスパッタ法によつて単結晶の磁性ガ一ネット薄膜を形成する方法がある。 第 1 2図は、 1次元磁性フォトニック結晶の構造を示す説明図である。 この 1 次元磁性フォトニック結晶 1 3 0は、 磁性体層 1 3 1の両面側に誘電体多層膜を 形成した構造を有している。 磁性体層 1 3 1の材料には、 希土類鉄ガ一ネットゃ ビスマス置換希土類鉄ガーネット等が用いられる。 誘電体多層膜は、 例えば S 1 02 膜 1 3 2と T a 2 05膜 1 3 3を交互に積層して構成される。 1次元磁性フォ トニック結晶 1 3 0における層構造の周期は、使用する光の波長オーダーである。 この 1次元磁性フォトニック結晶 1 3 0では、 大きなファラデー回転角を得るこ とが可能になる。
なお、 本例における位相空間光変調器 4 4は、 全ての構成要素をモノリシック に形成して製造してもよいし、 複数の部分に分けて形成した後、 複数の部分を組 み合わせて製造してもよい。 位相空間光変調器 4 4を複数の部分に分けて形成す る場合には、 例えば、 軟磁性層 1 1 7から反射層 1 1 3までの部分と、 他の部分 とに分けてもよい。 また、 本例における位相空間光変調器 4 4の構成要素は、 全 て半導体製造プロセスを用いて製造することが可能である。
次に、 第 1 3図を参照して、 本例における位相空間光変調器 4 4の作用につい て説明する。 本例における位相空間光変調器 4 4では、 変調情報に従って選択的 に、 薄膜コイル 1 1 2に正または負のパルス電流が供給され、 その結果、 薄膜コ ィル 1 1 2によって磁化設定層 1 1 1の各画素に対して独立に磁界が印加される。 簡単な計算によれば、 尖頭値 4 0 m A程度のパルス電流を薄膜コイル 1 1 2に供 給することにより、 薄膜コイル 1 1 2の中心部に 1 0 O O e程度のパルス状の磁 界を発生させることができ、 この磁界によって各画素における磁化を反転させる ことができる。
各画素では、 それまでの磁化の方向と反対方向の磁界が印加されると、 印加磁 界と同じ方向の磁化の磁区が生じ、 この磁区が拡大する。 この磁区の拡大は、 磁 壁が磁壁移動抑止部 1 1 l bに達すると停止する。 その結果、 1つの画素全体が 印加磁界と同じ方向の磁化となる。 このようにして、 薄膜コイル 1 1 2によって 磁化設定層 1 1 1の各画素に対して独立に磁界を印加することにより、 磁化設定 層 1 1 1の各画素における磁化の方向が独立に設定される。
軟磁性層 1 1 7側より位相空間光変調器 4 4に入射した光は、 軟磁性層 1 1 7 を通過した後、 磁化設定層 1 1 1を通過する。 この磁化設定層 1 1 1を通過する 光には、 ファラデー効果により、 磁化設定層 1 1 1の各画素における磁化の方向 に応じた偏光方向の回転、 すなわちファラデー回転が与えられる。 例えば、 磁化 が上向きのオンの画素 1 1 1 a , を通過する光の偏光方向が + 0 F だけ回転され るとすると、 磁化が下向きのオフの画素 1 1 1 a。 を通過する光の偏光方向は一
Θ , だけ回転される。
磁化設定層 1 1 1を通過した光は、 反射層 1 1 3で反射され、 再度、 磁化設定 層 1 1 1と軟磁性層 1 1 Ίを通過し、 位相空間光変調器 4 4より出射される。 反 射層 1 1 3で反射されてから磁化設定層 1 1 1を通過する光には、 反射層 1 1 3 に達する前に磁化設定層 1 1 1を通過する際と同様に、 ファラデー効果により、 磁化設定層 1 1 1の各画素における磁化の方向に応じた偏光方向の回転が与えら れる。 従って、 上述のように、 オンの画素 1 1 1 a, を通過する光の偏光方向が + θν だけ回転され、オフの画素 1 1 1 a„ を通過する光の偏光方向が一 eF だけ 回転されるとすると、 オンの画素 1 1 l a, を往復で 2回通過して位相空間光変 調器 44より出射される光の偏光方向は + 2 0F だけ回転され、 オフの画素 1 1 1 a。 を往復で 2回通過して位相空間光変調器 44より出射される光の偏光方向 は一 20F だけ回転される。
位相空間光変調器 44では、 磁化設定層 1 1 1において、 オンの画素 1 1 1 a , を往復で 2回通過した光の偏光方向の回転角度 + 20F を 9 0° とし、 オフの 画素 l l l a。 を往復で 2回通過した光の偏光方向の回転角度— 2 0F を一 9 0 ° としている。
第 1 3図に示したように、 位相空間光変調器 44には、 半導体レ一ザ 43より 出射され、 プリズムブ口ック 48の偏光ビームスプリッタ面 48 aで反射された S偏光の光が入射する。 この光は、 位相空間光変調器 44の磁化設定層 1 1 1を 通過し、 反射層 1 1 3で反射され、 再度、 磁化設定層 1 1 1を通過して、 プリズ ムブロック 48に戻ってくる。 ここで、 オンの画素 1 1 1 a, を往復で 2回通過 した光は、偏光方向が 9 0 ° 回転されて P偏光の光となり、 オフの画素 1 1 1 a0 を往復で 2回通過した光は、 偏光方向が— 9 0 ° 回転されて P偏光の光 (第 1 3 図では符号 P 'で表す。) となる。 従って、 位相空間光変調器 44からの戻り光は、 全て偏光ピ一ムスプリッタ面 48 aを透過する。
位相空間光変調器 44からの戻り光は、 全て P偏光であるが、 オンの画素 1 1 1 a, を通過した光とオフの画素 1 1 1 a。 を通過した光とでは、 位相が π ( r a d) だけ異なっている。 従って、 本例における位相空間光変調器 44は、 入射 光の偏光方向に対して出射光の偏光方向を 9 0 ° 回転させると共に、 各画素毎に 出射光の位相を、 互いに π (r a d) だけ異なる 2つの値のいずれかに設定する ことによって光の位相を空間的に変調することができる。
本例における位相空間光変調器 44では、 薄膜コイル 1 1 2によって磁化設定 層 1 1 1の各画素における磁化の方向を独立に設定することによって、 磁化設定 層 1 1 1に入射する光に対して各画素における磁化の方向に応じた偏光方向の回 転を与えて、 磁化設定層 1 1 1に入射する光を空間的に変調する。 磁化設定層 1 1 1の各画素における磁化の方向の切り替えは、 数ナノ秒程度で行うことができ る。 しかも、 本例における位相空間光変調器 4 4では、 各画素毎に薄膜コイル 1 1 2を設け、各画素における磁化の方向を独立に設定できるようにしているので、 全ての画素における磁化の方向の設定を同時に行うことが可能である。 従って、 本例における位相空間光変調器 4 4では、 位相空間光変調器 4 4の全体の応答時 間を、 画素単位の応答時間と同様に数ナノ秒程度とすることが可能となり、 極め て大きな動作速度を得ることが可能となる。
また、 本例における位相空間光変調器 4 4は、 機械的な駆動部分のない簡単な 構造であると共に、 液晶のような流動体を含まないので、 信頼性が高い。 また、 本例における位相空間光変調器 4 4は、 構造が簡単で、 半導体製造プロセスを用 いて量産が可能であるので、 製造コストを低減することができる。
また、 本例における位相空間光変調器 4 4では、 反射層 1 1 3が、 薄膜コイル 1 1 2に通電するための 2つの導電路のうちの一方を兼ねているので、 構造を簡 単にすることができる。
また、 本例における位相空間光変調器 4 4では、 磁化設定層 1 1 1の画素内に おける材料の状態および磁化の状態を均一にできる。 また、 本例における位相空 間光変調器 4 4では、 画素の状態を切り替えるための薄膜コイル 1 1 2が、 磁化 設定層 1 1 1における光の入射する面とは反対側の面に対して反射層 1 1 3を介 して隣接するように配置されているので、 薄膜コイル 1 1 2が変調される光に影 響を与えることがない。 これらのことから、 本例における位相空間光変調器 4 4 によれば、 変調情報以外の原因で出射光が不均一になることを防止することがで さる。
また、 本例における位相空間光変調器 4 4では、 光の経路に透明電極が配置さ れることがないため、 光の散乱による特性の劣化がなく、 特に画素の微細化に有 利である。
また、 本例における位相空間光変調器 4 4によれば、 薄膜コイル 1 1 2によつ て、 磁化設定層 1 1 1の各画素における磁化の方向を設定するための磁界を発生 するようにしたので、 画素における磁化を反転させるための電流を小さくするこ とができる。
また、 本例における位相空間光変調器 4 4では、 薄膜コイル 1 1 2によって発 生される磁界に対応する磁路 1 2 0の一部を形成する軟磁性層 1 1 7と磁路形成 部 1 1 5とを備えているので、 磁束を有効に絞ることができる。 その結果、 本例 における位相空間光変調器 4 4では、 薄膜コイル 1 1 2によって発生される起磁 力を有効に、 画素における磁化の設定のために利用することができる。
また、 本例における位相空間光変調器 4 4では、 薄膜コイル 1 1 2を駆動しな ければ、 磁化設定層 1 1 1の各画素における磁化の状態は保持されるので、 位相 空間光変調器 4 4によって変調情報を保持することができる。
上述の位相空間光変調器 4 4は、 各画素毎に出射光の位相を 2つの値のいずれ かに設定するものであつたが、本実施の形態に係る光情報記録再生装置において、 この位相空間光変調器 4 4の代りに、 各画素毎に出射光の位相を 3つ以上の値の いずれかに設定できるものを用いてもよい。
第 1 4図は、 各画素毎に出射光の位相を 3つ以上の値のいずれかに設定できる 位相空間光変調器の構成の一例を示している。 この位相空間光変調器 1 4 4は、 互いに対向するように配置された 2枚のガラス基板 1 5 1, 1 5 2を備えている。 ガラス基板 1 5 1, 1 5 2の互いに対向する面には、 それぞれ透明電極 1 5 3 , 1 5 4が形成されている。 ガラス基板 1 5 1, 1 5 2は、 スぺ一サ 1 5 5によつ て所定の間隔で隔てられている。 ガラス基板 1 5 1, 1 5 2およぴスぺーサ 1 5 5によって形成される空間には、 液晶が封入されて、 液晶層 1 5 7が形成されて いる。 また、 ガラス基板 1 5 2の液晶層 1 5 7側の面には、 斜め方向に突き出た 柱状の多数の配向部 1 5 6が形成されている。 この配向部 1 5 6は、 例えばガラ ス基板 1 5 2に対して斜め方向から蒸着物質の蒸着を行うことで形成することが できる。 液晶層 1 5 7内の液晶分子 1 5 7 aは、 その長軸方向が配向部 1 5 6の 長手方向を向くように、 すなわちガラス基板 1 5 2に対して斜め方向を向くよう に配向する。 なお、 液晶分子 1 5 7 aは、 誘電異方性が正であるものとする。 ま た、 ガラス基板 1 5 2の外側の面には反射膜 1 5 8が形成されている。
次に、 第 1 5図および第 1 6図を参照して、 第 1 4図に示した位相空間光変調 器 1 4 4の作用について説明する。 光は、 位相空間光変調器 1 4 4に対して、 ガ ラス基板 1 5 1側より入射し、 ガラス基板 1 5 1、 液晶層 1 5 7、 ガラス基板 1 5 2を通過し、 反射膜 1 5 8で反射され、 再度、 ガラス基板 1 5 2、 液晶層 1 5 7、 ガラス基板 1 5 1を通過して出射される。 透明電極 1 5 3 , 1 5 4は、 各画 素毎に独立に、 透明電極 1 5 3, 1 5 4間に電圧を印加することができる。
第 1 5図に示したように、 透明電極 1 5 3, 1 5 4間に電圧 Vを印加しない状 態では、 液晶分子 1 5 7 aは、 その長軸方向がガラス基板 1 5 1 , 1 5 2に対し て斜め方向を向くように配向する。 これに対し、 第 1 6 に示したように、 透明 電極 1 5 3, 1 5 間に、 液晶分子 1 5 7 aの配向方向を変えるのに十分な電圧 Vを印加すると、 少なくとも一部の液晶分子 1 5 7 aでは、 その長軸方向がガラ ス基板 1 5 1 , 1 5 2に対して垂直な方向に近づくように、配向方向が変化する。 この場合、 配向部 1 5 6が形成されていないガラス基板 1 5 1に近い液晶分子 1 5 7 aほど配向方向が変化しやすい。 また、 電圧 Vが大きくなるほど配向方向が 変化する液晶分子 1 5 7 aの数およぴ配向方向の変化量が増加する。
液晶分子 1 5 7 aの配向方向が変化すると、 入射する光の偏光方向と液晶分子 1 5 7 aの長軸方向とのなす角度が変化する。 液晶分子 1 5 7 aは、 それを通過 する光の偏光方向が液晶分子 1 5 7 aの長軸方向に平行な場合と垂直な場合とで 屈折率が異なる。 従って、 電圧 Vが印加された状態の液晶層 1 5 7を通過した光 は、 電圧 Vが印加されない状態の液晶層 1 5 7を通過した光に対して位相差を有 する。 電圧 Vの所定の範囲内では、 電圧 Vが大きいほど位相差も大きくなる。 ま た、 電圧 Vが一定の場合では、 液晶層 1 5 7の厚みが大きいほど位相差も大きく なる。 従って、 光が液晶層 1 5 7を往復で 2回通過する際の位相差の最大値が π ( r a d ) となるように液晶層 1 5 7の厚みと電圧 Vの最大値を設定すれば、 電 圧 Vを制御することによって、 位相差を 0〜; t ( r a d ) の範囲で任意に設定す ることができる。
以上の作用により、 位相空間光変調器 1 4 4は、 各画素毎に出射光の位相を 3 つ以上の値のいずれかに設定することができる。
なお、 位相空間光変調器 1 4 4は光の偏光方向を回転させないので、 位相空間 光変調器 4 4の代りに位相空間光変調器 1 4 4を用いる場合には、 第 4図におけ るプリズムプロック 4 8の偏光ビームスプリッタ面 4 8 aを半反射面に変更する t あるいは、 プリズムブロック 4 8と位相空間光変調器 1 4 4との間に、 4分の 1 波長板を設け、 プリズムブロック 4 8からの S偏光の光を 4分の 1波長板によつ て円偏光の光に変換して位相空間光変調器 1 4 4に入射させ、 位相空間光変調器 1 4 4からの円偏光の光を 4分の 1波長板によって P偏光の光に変換して、 偏光 ビ一ムスプリッタ面 4 8 aを透過させるようにしてもよい。
各画素毎に出射光の位相を 3つ以上の値のいずれかに設定できる位相空間光変 調器としては、 上述の液晶を用いた位相空間光変調器 1 4 4に限らず、 例えば、 マイクロミラ一デバイスを用いて、 入射光の進行方向について、 各画素毎に反射 面の位置を調整するようにした構成したものでもよい。
以上説明したように、 本実施の形態では、 情報の記録時には、 記録する情報に 基づいて光の位相が空間的に変調された情報光と記録用参照光とを、 光情報記録 媒体 1の情報記録層 3に照射して、 情報光と記録用参照光との干渉による干渉パ ターンによって情報記録層 3に情報を記録する。 また、 情報の再生時には、 再生 用参照光を情報記録層 3に照射し、 これによつて情報記録層 3より発生される再 生光と再生用参照光とを重ね合わせて合成光を生成し、 この合成光を検出して情 報を再生する。
従って、 本実施の形態によれば、 情報の再生時に再生光と再生用参照光とを分 離する必要がない。 そのため、 情報の記録時に、 情報光と記録用参照光とを互い に所定の角度をなすように記録媒体に入射させる必要もない。 実際、 本実施の形 態では、 情報光、 記録用参照光、 再生用参照光および再生光が同軸的に配置され るように、 情報光、 記録用参照光および再生用参照光の照射と再生光の収集とが 情報記録層 3の同一面側より行われる。 従って、 本実施の形態によれば、 記録お よび再生のための光学系を小さく構成することができる。
また、 従来の再生方法では、 再生光と再生用参照光とを分離して、 再生光のみ を検出するため、再生光を検出する光検出器に再生用参照光も入射してしまうと、 再生情報の S N比が劣化するという問題点があった。 これに対し、 本実施の形態 では、 再生光と再生用参照光とを用いて情報を再生するので、 再生用参照光によ つて再生情報の S N比が劣化するということがない。 従って、 本実施の形態によ れば、 再生情報の S N比を向上させることができる。
また、 本実施の形態に係る光情報記録再生装置では、 光ヘッド 4 0は、 記録再 生光学系を収納する浮上型ヘッド本体 4 1を備えている。 従って、 本実施の形態 によれば、 記録再生光学系の対物レンズ 5 0と光情報記録媒体 1との間の距離が ほぼ一定に保たれるので、 フォーカスサーポが不要になる。
また、 本実施の形態に係る光情報記録再生装置において、 情報光の位相を 2つ の値のいずれかに設定する場合には、 情報光および再生光は、 1画素当たり 1ビ ッ卜の情報を担持することになる。 情報光の位相を 3つ以上の値のいずれかに設 定する場合には、 情報光および再生光に、 1画素当たり複数ビットの情報を担持 させることも可能になる。 例えば、 情報光の位相を 8つの値のいずれかに設定す る場合には、 情報光および再生光は、 1画素当たり 3ビットの情報を担持するこ とになる。 また、 情報光および再生光において、 複数の画素で 1つのデータを表 すようにしてもよい。 例えば、 情報光の位相を 8つの値のいずれかに設定し、 4 つの画素で 1つのデ一タを表すようにすれば、 これら 4つの画素で 1 2ビットの データを表すことができる。
[第 2の実施の形態]
次に、本発明の第 2の実施の形態に係る光情報記録再生装置について説明する。 本実施の形態は、 位相が空間的に変調された記録用参照光および再生用参照光を 用いて、 位相符号化多重方式による多重記録と、 このように多重記録された情報 の再生とを行うことができるようにしたものである。 本実施の形態に係る光情報 記録再生装置の構成は、 第 1の実施の形態と同様である。
以下、 第 1 7図を参照して、 本実施の形態に係る光情報記録再生装置における 情報の記録の原理、 すなわち本実施の形態に係る光情報記録方法について説明す る。 なお、 第 1 7図は、 本実施の形態に係る光情報記録再生装置における記録再 生光学系の一例における一部を示している。 第 1 7図に示した光学系の構成は第 1図と同様である。 第 1 7図中には、 位相空間光変調器 1 3の入射光、 位相空間 光変調器 1 3の出射光、 光情報記録媒体 1に照射される前における対物レンズ 1 1の入射光、 およびビ一ムスプリッタ 1 2の半反射面 1 2 aで反射された光情報 記録媒体 1からの戻り光の位相および強度を示している。 第 1 7図における光の 位相および強度の表し方は第 1図と同様である。
情報の記録時には、 位相空間光変調器 1 3に、 位相および強度が一定でコヒー レントな平行光 2 1が入射される。 位相空間光変調器 1 3における一方の半分の 領域 1 3 Aは、 記録する情報に基づいて画素毎に出射光の位相を 2値または 3つ 以上の値の中から選択することによって、 位相が空間的に変調された情報光 2 2 Aを生成する。 ここでは、 説明を簡単にするために、 領域 1 3 Aは、 各画素毎に 出射光の位相を、 所定の基準位相に対する位相差が + π Ζ 2 ( r a d ) となる第 1の位相と基準位相に対する位相差が一 / 2 ( r a d ) となる第 2の位相のい ずれかに設定することによって、光の位相を空間的に変調するものとする。一方、 位相空間光変調器 1 3における他方の半分の領域 1 3 Bは、 各画素毎に出射光の 位相を 2値または 3つ以上の値の中から選択することによって、 位相が空間的に 変調された記録用参照光 2 2 Bを生成する。 ここでは、説明を簡単にするために、 領域 1 3 Bは、 各画素毎に出射光の位相を、 基準位相と第 1の位相と第 2の位相 のいずれかに設定することによって、 光の位相を空間的に変調するものとする。 情報光 2 2 Aおよび記録用参照光 2 2 Bはビ一ムスプリッタ 1 2に入射し、 一 部が半反射面 1 2 aを通過し、 更に対物レンズ 1 1を通過して収束する情報光 2 3 Aおよび収束する記録用参照光 2 3 Bとなって、 光情報記録媒体 1に照射され る。 情報光 2 3 Aおよび記録用参照光 2 3 Bは、 情報記録層 3を通過し、 エアギ ヤップ層 4と反射膜 5の境界面上で最も小径になるように収束し、 反射膜 5で反 射される。反射膜 5で反射された後の情報光 2 4 Aおよび記録用参照光 2 4 Bは、 拡散する光となって、 再度、 情報記録層 3を通過する。
情報記録層 3では、 反射膜 5で反射される前の情報光 2 3 Aと反射膜 5で反射 された後の記録用参照光 2 4 Bとが干渉して干渉パターンを形成すると共に、 反 射膜 5で反射された後の情報光 2 4 Aと反射膜 5で反射される前の記録用参照光 2 3 Bとが千渉して干渉パターンを形成する。 そして、 これらの干渉パターンが 情報記録層 3内に体積的に記録される。
反射膜 5で反射された後の情報光 2 4 Aと記録用参照光 2 4 Bは、 光情報記録 媒体 1より出射され、 対物レンズ 1 1によって平行光の情報光 2 5 Aと記録用参 照光 2 5 Bとなる。 これらの光 2 5 A , 2 5 Bは、 ビームスプリッタ 1 2に入射 し、 一部が半反射面 1 2 aで反射されて、 光検出器 1 4によって受光される。 次に、 第 1 8図を参照して、 本実施の形態に係る光情報記録再生装置における 情報の再生の原理、 すなわち本実施の形態に係る光情報再生方法について説明す る。 第 1 8図では、 第 1 7図と同様に、 本実施の形態に係る光情報記録再生装置 における記録再生光学系の一例における一部を示している。 また、 第 1 8図中に は、 位相空間光変調器 1 3の入射光、 位相空間光変調器 1 3の出射光、 光情報記 録媒体 1に照射される前における対物レンズ 1 1の入射光、 およびビ一ムスプリ ッタ 1 2の半反射面 1 2 aで反射された光情報記録媒体 1からの戻り光の位相お よび強度を示している。 第 1 8図における位相および強度の表し方は、 第 1 7図 と同様である。
情報の再生時には、 位相空間光変調器 1 3に、 位相および強度が一定でコヒー レントな平行光 3 1が入射される。 位相空間光変調器 1 3における半分の領域 1 3 Bは、 画素毎に出射光の位相を 2値または 3つ以上の値の中から選択すること によって、 記録用参照光 2 2 Bと同様の変調パ夕一ンで位相が空間的に変調され た再生用参照光 3 2 B t を生成する。 一方、 位相空間光変調器 1 3における半分 の領域 1 3 Aは、 画素毎に出射光の位相を 2値または 3つ以上の値の中から選択 することによって、 再生用参照光 3 2 B , の変調パターンに対して、 記録用参照 光および再生用参照光を情報記録層 3に照射する光学系の光軸の位置を中心とし て点対称なパターンで位相が空間的に変調された再生用参照光 3 2 B 2 を生成す る。
これらの再生用参照光 3 2 Bい 3 2 B 2 はビームスプリッ夕 1 2に入射し、一 部が半反射面 1 2 aを通過し、 更に対物レンズ 1 1を通過して収束する再生用参 照光 3 3 B, , 3 3 B2 となって、 光情報記録媒体 1に照射される。 再生用参照光 3 3 B, , 3 3 B2 は、 情報記録層 3を通過し、 エアギャップ層 4と反射膜 5の境 界面上で最も小径になるように収束し、 反射膜 5で反射される。 反射膜 5で反射 された後の再生用参照光は、 拡散する光となって、 再度、 情報記録層 3を通過す る。
情報記録層 3では、反射膜 5で反射される前の再生用参照光 33 B2 によって、 反射膜 5とは反対側に進行する再生光が発生すると共に、 反射膜 5で反射された 後の再生用参照光 3 3 B2 によって、 反射膜 5側に進行する再生光が発生する。 反射膜 5とは反対側に進行する再生光は、 そのまま光情報記録媒体 1より出射さ れ、 反射膜 5側に進行する再生光は、 反射膜 5で反射されて、 光情報記録媒体 1 より出射される。 これらの再生光を共に符号 34 A, で表す。
また、 情報記録層 3では、 反射膜 5で反射される前の再生用参照光 3 3 B, に よって、 反射膜 5とは反対側に進行する再生光が発生すると共に、 反射膜 5で反 射された後の再生用参照光 3 3 B, によって、 反射膜 5側に進行する再生光が発 生する。 反射膜 5とは反対側に進行する再生光は、 そのまま光情報記録媒体 1よ り出射され、 反射膜 5側に進行する再生光は、 反射膜 5で反射されて、 光情報記 録媒体 1より出射される。 これらの再生光を共に符号 34 A2 で表す。
一方、 再生用参照光 33 B, は、 反射膜 5で反射されて、 再生光 34 A, と同 じ方向に進む再生用参照光 34 B, となる。 また、 再生用参照光 33 B2 は、 反 射膜 5で反射されて、 再生光 34 A2 と同じ方向に進む再生用参照光 34 B2 と なる。
これらの再生光 34A,, 34 A2 および再生用参照光 34 , 34 B2 は、 対物レンズ 1 1によって平行光の再生光 3 5 A, , 3 5 A2 および再生用参照光 3 5 B, , 3 5 B2 とされてビームスプリッタ 1 2に入射し、 一部が半反射面 1 2 a で反射されて、 光検出器 14によって受光される。
再生光 3 5 A, , 3 5A2 は、 いずれも、 記録時の情報光と同様に位相が空間的 に変調された光となる。 ただし、 再生光 3 5 A, , 3 5 A2 の位相の変調パターン は互いに点対称となる。 光検出器 1 4の一方の半分の領域には、再生光 3 5 A, と再生用参照光 3 5 B, とが重ね合わせられて生成される合成光が入射する。 光検出器 14の他方の半分 の領域には、 再生光 3 5A2 と再生用参照光 3 5 B2 とが重ね合わせられて生成 される合成光が入射する。 これらの 2種類の合成光は、 いずれも、 記録された情 報に対応して、 強度が空間的に変調された光となる。 ただし、 2種類の合成光の 強度の変調パターンは互いに点対称となる。 従って、 光検出器 14において、 2 種類の合成光のうちのいずれか一方の強度の 2次元パターンを検出することによ つて情報を再生することができる。 ここでは、 再生光 35A, と再生用参照光 3 5 B, とが重ね合わせられて生成される合成光の強度の 2次元パターンを検出す ることによって情報を再生するものとする。
次に、 第 1 9図を参照して、 上記再生光、 再生用参照光および合成光について 詳しく説明する。 第 1 9図において、 (a) は再生光の強度、 (b) は再生光の位 相、 (c ) は再生用参照光の強度、 (d) は再生用参照光の位相、 (e) は合成光の 強度を表している。 第 1 9図は、 情報光の各画素毎の位相を、 第 1の位相と第 2 の位相のいずれかに設定し、 記録用参照光および再生用参照光の各画素毎の位相 を、 基準位相、 第 1の位相および第 2の位相のいずれかに設定した場合について の例を示している。 この場合、 再生光の各画素毎の位相は、 情報光と同様に、 第 1の位相と第 2の位相のいずれかになる。 従って、 再生光と再生用参照光との位 相差は、 ゼロ、 ±ττ/2 ( r a d), ± 7t ( r a d) のいずれかになる。 ここで、 再生光の強度と再生用参照光の強度が等しいとすれば、 第 1 9図 (e) に示した ように、 合成光の強度は、 再生光と再生用参照光との位相差がゼロとなる画素で は最も大きくなり、 再生光と再生用参照光との位相差が ±ττ ( r a d) なる画素 では原理的にはゼロとなり、 再生光と再生用参照光との位相差が ±πΖ2 ( r a d) となる画素では、 位相差がゼロとなる画素における強度の 1 /2となる。 第 1 9図 (e) では、 位相差が ±ττ (r a d) となる画素における強度を "0" で 表し、 位相差が ± 7tZ 2 (r a d) となる画素における強度を " 1" で表し、 位 相差がゼロとなる画素における強度を "2" で表している。
第 1 7図ないし第 1 9図に示した例では、合成光の画素毎の強度が 3値になる。 そして、 例えば、 第 1 9図 (e) に示したように、 強度 "0" は 2ビットのデー 夕 "0 0" に対応させ、 強度 " 1" は 2ビットのデ一夕 " 0 1 " に対応させ、 強 度 "2" は 2ビッ卜のデータ " 1 0" に対応させることができる。 このように、 第 1 7図ないし第 1 9図に示した例では、 第 1図ないし第 3図に示した例のよう に合成光の画素毎の強度が 2値になる場合に比べて、 再生光の強度や位相を同様 にしながら、 合成光が担持する情報量を増加させることができ、 その結果、 光情 報記録媒体 1の記録密度を向上させることができる。
再生光と再生用参照光との位相差を δとすると、 合成光の強度 Iは前出の式 (1 ) で表される。 式 (1) より、 再生光と再生用参照光との位相差に応じて合 成光の強度 Iが変化することが分かる。 従って、 再生光と再生用参照光との位相 差の絶対値、 すなわち、 情報光と再生用参照光との位相差の絶対値が、 例えばゼ 口から 7Τ ( r a d) の範囲内で n (nは 2以上の整数) 値になるようにすれば、 合成光の強度 Iも n値となる。
ところで、 本実施の形態のように、 位相が空間的に変調された情報光と位相が 空間的に変調された記録用参照光とを用いて、 光情報記録媒体 1の情報記録層 3 に情報を記録する場合には、 記録すべき情報と、 その情報を記録する際に用いる 記録用参照光の位相の変調パターンとに基づいて、 情報光の位相の変調パターン を決定する。 このことを、 第 1 9図を参照して詳しく説明する。 情報記録層 3に 記録された情報は合成光の強度のパターンに基づいて再生されるので、 記録すぺ き情報は、 第 1 9図 (e) に示したような所望の合成光の強度のパターンのデ一 夕に変換される。 記録用参照光の位相の変調パターンは、 第 1 9図 (d) に示し たような再生用参照光の位相の変調パターンと同様である。 情報光の位相の変調 パターンは、 第 1 9図 (e) に示したような所望の合成光の強度のパターンのデ 一夕と、 第 1 9図 (d) に示したような再生用参照光および記録用参照光の位相 の変調パターンのデータとを用いた位相的な演算により、 第 1 9図 (b) に示し たような所望の再生光の位相の変調パターンと同じか、 点対称な変調パターンに なるように決定される。
上述のようにして位相の変調パ夕ーンが決定された情報光と記録用参照光とを 用いて情報が記録された情報記録層 3に対して、 第 1 9図 (d ) に示したような、 記録用参照光と同様の位相の変調パターンを有する再生用参照光を照射してもよ い。 このようにした場合には、 第 1 9図 (e ) に示したような強度のパターンを 有する合成光が得られる。 この合成光の強度のパターンに基づいて、 情報記録層 3に記録された情報が再生される。
記録用参照光および再生用参照光の位相の変調パターンは、 ユーザとなる個人 の固有の情報に基づいて作成するようにしてもよレ^個人の固有の情報としては、 暗証番号、 指紋、 声紋、 虹彩のパターン等がある。 このようにした場合には、 光 情報記録媒体 1に情報を記録した特定の個人のみが、 その情報を再生することが 可能になる。
以上説明したように、 本実施の形態によれば、 位相が空間的に変調された記録 用参照光および再生用参照光を用いるようにしたので、 位相符号化多重方式によ る多重記録と、このように多重記録された情報の再生とを行うことが可能になる。 本実施の形態におけるその他の構成、 作用および効果は、 第 1の実施の形態と 同様である。
[第 3の実施の形態]
次に、本発明の第 3の実施の形態に係る光情報記録再生装置について説明する。 第 2 0図は、 本実施の形態に係る光情報記録再生装置における光ヘッドを示す断 面図である。 本実施の形態に係る光情報記録再生装置では、 第 1の実施の形態に おける光ヘッド 4 0の代りに光ヘッド 6 0が設けられている。 この光ヘッド 6 0 は、 記録再生光学系を収納する光ヘッド本体 6 1と、 光情報記録媒体 1に対して 垂直な方向と、 光情報記録媒体 1におけるトラックを横断する方向とについて、 それぞれ所定の範囲内で光へッド本体 6 1を移動可能なァクチユエ一夕 6 2とを 備えている。 本実施の形態における記録再生光学系の構成は、 第 1の実施の形態 と同様である。
本実施の形態では、 対物レンズ 5 0からの光ビームが光情報記録媒体 1のアド レス ·サーポエリァ 6を通過する期間において、光検出器 4 5の出力に基づいて、 アドレス情報、 トラッキングエラー情報およびフォーカスサーポ情報を得る。 本 実施の形態におけるトラッキングエラー情報の生成方法は、 第 1の実施の形態と 同様である。
次に、 第 2 1図を参照して、 本実施の形態におけるフォーカスエラー情報の生 成方法の一例について説明する。 第 2 1図は、 光検出器 4 5の受光面における入 射光の輪郭を示す説明図である。 本例におけるフォーカスエラー情報の生成方法 では、 以下のようにして、 光検出器 4 5の受光面における入射光の輪郭の大きさ に基づいてフォーカスエラー情報を生成する。 まず、 対物レンズ 5 0からの光ビ ームが、 光情報記録媒体 1におけるエアギャップ層 4と反射膜 5の境界面上で最 も小径になるように収束する合焦状態のときには、 光検出器 4 5の受光面におけ る入射光の輪郭は、 第 2 1図において符号 7 0で示した輪郭となるものとする。 対物レンズ 5 0からの光ビームが最も小径となる位置がエアギャップ層 4と反射 膜 5の境界面よりも手前側へずれた場合には、 光検出器 4 5の受光面における入 射光の輪郭は、第 2 1図において符号 7 1で示したように径が小さくなる。逆に、 対物レンズ 5 0からの光ビームが最も小径となる位置がエアギャップ層 4と反射 膜 5の境界面よりも奥側へずれた場合には、 光検出器 4 5の受光面における入射 光の輪郭は、第 2 1図において符号 7 2で示したように径が大きくなる。従って、 合焦状態を基準として、 光検出器 4 5の受光面における入射光の輪郭の径の変化 に応じた信号を検出することによってフォーカスエラー信号を得ることができる 具体的には、 例えば、 合焦状態を基準として、 光検出器 4 5の受光面における明 部に対応する画素の増減数に基づいてフォーカスエラー信号を生成することがで きる。
本実施の形態では、 ァクチユエ一夕 6 2は、 光ビームが常に合焦状態となるよ うに、 フォーカスエラー信号に基づいて、 光情報記録媒体 1に対して垂直な方向 についての光へッド本体 6 1の位置を調整して、 フォーカスサーポを行う。 また、 ァクチユエ一夕 6 2は、 光ビームが常にトラックに追従するように、 トラツキン グエラ一信号に基づいて、 トラック横断方向についての光ヘッド本体 6 1の位置 を調整して、 トラッキングサーポを行う。 なお、 光ビームがデ一タエリア 7を通 過する際には、 フォーカスサ一ポおよびトラッキングサーポは行われず、 直前の アドレス ·サ一ポエリア 6通過時の状態が保持される。
本実施の形態におけるその他の構成、 作用および効果は第 1または第 2の実施 の形態と同様である。
なお、 本発明は、 上記各実施の形態に限定されず、 種々の変更が可能である。 例えば、 上記各実施の形態では、 光情報記録媒体 1におけるァドレス ·サ一ポェ リア 6に、 ァドレス情報等を予めエンボスピッ卜によって記録しておくようにし たが、 予めエンボスピットを設けずに、 以下のようにしてアドレス情報等を記録 するようにしてもよい。 この場合には、 光情報記録媒体 1として、 エアギャップ 層 4がなく、情報記録層 3と反射膜 5とが隣接した構成のものを用いる。そして、 この光情報記録媒体 1のアドレス ·サーポエリア 6において、 情報記録層 3の反 射膜 5に近い部分に選択的に高出力のレーザ光を照射して、 その部分の屈折率を 選択的に変化させることによってァドレス情報等を記録してフォーマッティング を行う。
以上説明したように、 本発明の光情報記録装置またはその方法では、 記録する 情報に基づいて光の位相が空間的に変調された情報光と記録用参照光とによって、 光情報記録媒体の情報記録層に情報を記録する。 これにより、 本発明によれば、 情報の再生時には、 再生用参照光を情報記録層に照射し、 これによつて情報記録 層より発生される再生光と再生用参照光とを重ね合わせて合成光を生成し、 この 合成光を検出して情報を再生することが可能になる。そのため、本発明によれば、 情報の再生時に再生光と再生用参照光とを分離する必要がなくなり、 情報の記録 時に情報光と記録用参照光とを互いに所定の角度をなすように記録媒体に入射さ せる必要もなくなる。 従って、 本発明によれば、 ホログラフィを利用して情報の 記録を行うことができると共に、 記録のための光学系を小さく構成することが可 能になる。 また、 本発明によれば、 情報の再生時に再生光と再生用参照光とを用 いて情報を再生することが可能になるので、 再生用参照光によって再生情報の S N比が劣化するということがなくなり、 再生情報の S N比を向上させることが可 能になる。
また、 本発明の光情報記録装置またはその方法において、 情報光および記録用 参照光が同軸的に配置されるように、 情報光および記録用参照光の照射を情報記 録層の同一面側より行うようにしてもよい。 この場合には、 記録のための光学系 をより小さく構成することが可能になる。
また、 本発明の光情報記録装置もしくはその方法において、 位相が空間的に変 調された記録用参照光を用いるようにしてもよい。 この場合には、 位相符号化多 重方式による多重記録を行うことが可能になる。
また、 本発明の光情報記録装置は、 情報光生成手段、 記録用参照光生成手段お よび記録再生光学系を収納し、 光情報記録媒体より浮上する浮上型へッド本体を 備えてもよい。 この場合には、 フォーカスサ一ポが不要になる。
また、 本発明の光情報再生装置またはその方法では、 記録する情報に基づいて 光の位相が空間的に変調された情報光と記録用参照光との千渉による千渉パター ンによって情報が記録された情報記録層に対して再生用参照光を照射し、 これに よって情報記録層より発生される再生光を収集し、 この再生光と再生用参照光と を重ね合わせて合成光を生成し、 この合成光を検出する。そのため、 本発明では、 再生光と再生用参照光とを分離する必要がない。 従って、 本発明によれば、 ホロ グラフィを利用して情報の再生を行うことができると共に、 再生のための光学系 を小さく構成することが可能になる。 また、 本発明によれば、 再生光と再生用参 照光とを用いて情報を再生するので、 再生用参照光によって再生情報の S N比が 劣化するということがなくなり、 再生情報の S N比を向上させることが可能にな る。
また、 本発明の光情報再生装置またはその方法において、 再生用参照光および 再生光が同軸的に配置されるように、 再生用参照光の照射と再生光の収集とを情 報記録層の同一面側より行うようにしてもよい。 この場合には、 再生のための光 学系をより小さく構成することが可能になる。
また、 本発明の光情報再生装置またはその方法において、 位相が空間的に変調 された再生用参照光を用いるようにしてもよい。 この場合には、 位相符号化多重 方式によつて多重記録された情報の再生が可能になる。
また、 本発明の光情報再生装置は、 再生用参照光生成手段、 記録再生光学系お よび検出手段を収納し、 光情報記録媒体より浮上する浮上型へッド本体を備えて もよい。 この場合には、 フォーカスサ一ポが不要になる。
また、 本発明の光情報記録再生装置もしくはその方法において、 情報の記録時 には、 記録する情報に基づいて光の位相が空間的に変調された情報光と記録用参 照光とによって、 光情報記録媒体の情報記録層に情報を記録し、 情報の再生時に は、 情報記録層に対して再生用参照光を照射し、 これによつて情報記録層より発 生される再生光を収集し、 この再生光と再生用参照光とを重ね合わせて合成光を 生成し、 この合成光を検出する。 そのため、 本発明では、 再生光と再生用参照光 とを分離する必要がなく、 情報の記録時に情報光と記録用参照光とを互いに所定 の角度をなすように記録媒体に入射させる必要もない。従って、本発明によれば、 ホログラフィを利用して情報の記録および再生を行うことができると共に、 記録 および再生のための光学系を小さく構成することが可能になる。 また、 本発明に よれば、情報の再生時には再生光と再生用参照光とを用いて情報を再生するので、 再生用参照光によつて再生情報の S N比が劣化するということがなく、 再生情報 の S N比を向上させることが可能になる。
また、 本発明の光情報記録再生装置またはその方法において、 情報光、 記録用 参照光、 再生用参照光および再生光が同軸的に配置されるように、 情報光、 記録 用参照光および再生用参照光の照射と再生光の収集とを情報記録層の同一面側よ り行うようにしてもよい。 この場合には、 記録および再生のための光学系をより 小さく構成することが可能になる。
また、 本発明の光情報記録再生装置もしくはその方法において、 位相が空間的 に変調された記録用参照光および再生用参照光を用いるようにしてもよい。 この 場合には、 位相符号化多重方式による多重記録と、 このように多重記録された情 報の再生とを行うことが可能になる。
また、 本発明の光情報記録再生装置は、 情報光生成手段、 記録用参照光生成手 段、 再生用参照光生成手段、 記録再生光学系および検出手段を収納し、 光情報記 録媒体より浮上する浮上型ヘッド本体を備えてもよい。 この場合には、 フォー力 スサーポが不要になる。 以上の説明に基づき、 本発明の種々の態様や変形例を実施可能であることは明 らかである。 従って、 以下の請求の範囲の均等の範囲において、 上記の最良の形 態以外の形態でも本発明を実施することが可能である。

Claims

請 求 の 範 囲
1 . ホログラフィを利用して情報が記録される情報記録層を備えた光情報記録 媒体に対して情報を記録するための光情報記録装置であって、
記録する情報に基づいて光の位相を空間的に変調することによって情報光を生 成する情報光生成手段と、
記録用参照光を生成する記録用参照光生成手段と、
前記情報記録層に情報光と記録用参照光との干渉による千渉パターンによって 情報が記録されるように、 前記情報光生成手段によつて生成された情報光と前記 記録用参照光生成手段によって生成された記録用参照光とを前記情報記録層に照 射する記録光学系と
を備えたことを特徴とする光情報記録装置。
2 . 前記記録光学系は、 情報光および記録用参照光が同軸的に配置されるよう に、 情報光および記録用参照光の照射を前記情報記録層の同一面側より行うこと を特徴とする請求項 1記載の光情報記録装置。
3 . 前記情報光生成手段は、 変調後の光の位相を 2つの値のいずれかに設定す ることを特徴とする請求項 1記載の光情報記録装置。
4 . 前記情報光生成手段は、 変調後の光の位相を 3つ以上の値のいずれかに設 定することを特徴とする請求項 1記載の光情報記録装置。
5 . 前記記録用参照光生成手段は、 位相が空間的に変調された記録用参照光を 生成することを特徴とする請求項 1記載の光情報記録装置。
6 . 前記情報光生成手段は、 記録する情報と記録用参照光の位相の変調パター ンとに基づいて決定された位相の変調パターンに従って光の位相を空間的に変調 することを特徴とする請求項 5記載の光情報記録装置。
7 . 更に、 前記情報光生成手段、 記録用参照光生成手段および記録光学系を収 納し、 光情報記録媒体より浮上する浮上型へッド本体を備えたことを特徴とする 請求項 1記載の光情報記録装置。
8 . ホログラフィを利用して情報が記録される情報記録層を備えた光情報記録 媒体に対して情報を記録する光情報記録方法であつて、 記録する情報に基づいて光の位相を空間的に変調することによって情報光を生 成する手順と、
記録用参照光を生成する手順と、
前記情報記録層に情報光と記録用参照光との干渉による千渉パターンによって 情報が記録されるように、 前記情報光と前記記録用参照光とを前記情報記録層に 照射する記録手順と
を備えたことを特徴とする光情報記録方法。
9 . 前記記録手順は、情報光および記録用参照光が同軸的に配置されるように、 情報光おょぴ記録用参照光の照射を前記情報記録層の同一面側より行うことを特 徵とする請求項 8記載の光情報記録方法。
1 0 . 前記情報光を生成する手順は、 変調後の光の位相を 2つの値のいずれかに 設定することを特徴とする請求項 8記載の光情報記録方法。
1 1 . 前記情報光を生成する手順は、 変調後の光の位相を 3つ以上の値のいずれ かに設定することを特徵とする請求項 8記載の光情報記録方法。
1 2 . 前記記録用参照光を生成する手順は、 位相が空間的に変調された記録用参 照光を生成することを特徴とする請求項 8記載の光情報記録方法。
1 3 . 前記情報光を生成する手順は、 記録する情報と記録用参照光の位相の変調 パターンとに基づいて決定された位相の変調パターンに従って光の位相を空間的 に変調することを特徴とする請求項 1 2記載の光情報記録方法。
1 4 . 記録する情報に基づいて光の位相が空間的に変調された情報光と記録用参 照光との干渉による干渉パターンによつて情報が記録された情報記録層を備えた 光情報記録媒体より、 ホログラフィを利用して、 情報を再生するための光情報再 生装置であって、
再生用参照光を生成する再生用参照光生成手段と、
前記再生用参照光生成手段によって生成された再生用参照光を前記情報記録層 に対して照射すると共に、 再生用参照光が照射されることによって前記情報記録 層より発生される再生光を収集し、 この再生光と再生用参照光とを重ね合わせて 合成光を生成する再生光学系と、
前記再生光学系によって生成された合成光を検出する検出手段と を備えたことを特徴とする光情報再生装置。
1 5 . 前記再生光学系は、 再生用参照光および再生光が同軸的に配置されるよう に、 再生用参照光の照射と再生光の収集とを前記情報記録層の同一面側より行う ことを特徴とする請求項 1 4記載の光情報再生装置。
1 6 . 前記再生用参照光生成手段は、 位相が空間的に変調された再生用参照光を 生成することを特徴とする請求項 1 4記載の光情報再生装置。
1 7 . 更に、 前記再生用参照光生成手段、 再生光学系および検出手段を収納し、 光情報記録媒体より浮上する浮上型ヘッド本体を備えたことを特徴とする請求項 1 4記載の光情報再生装置。
1 8 . 記録する情報に基づいて光の位相が空間的に変調された情報光と記録用参 照光との干渉による干渉パターンによって情報が記録された情報記録層を備えた 光情報記録媒体より、 ホログラフィを利用して、 情報を再生する光情報再生方法 であって、
再生用参照光を生成する手順と、
前記再生用参照光を前記情報記録層に対して照射すると共に、 再生用参照光が 照射されることによって前記情報記録層より発生される再生光を収集し、 この再 生光と再生用参照光とを重ね合わせて合成光を生成する再生手順と、
前記合成光を検出する手順と
を備えたことを特徴とする光情報再生方法。
1 9 . 前記再生手順は、再生用参照光および再生光が同軸的に配置されるように、 再生用参照光の照射と再生光の収集とを前記情報記録層の同一面側より行うこと を特徴とする請求項 1 8記載の光情報再生方法。
2 0 . 前記再生用参照光を生成する手順は、 位相が空間的に変調された再生用参 照光を生成することを特徴とする請求項 1 8記載の光情報再生方法。
2 1 . ホログラフィを利用して情報が記録される情報記録層を備えた光情報記録 媒体に対して情報を記録すると共に、 光情報記録媒体より情報を再生するための 光情報記録再生装置であって、
記録する情報に基づいて光の位相を空間的に変調することによつて情報光を生 成する情報光生成手段と、 記録用参照光を生成する記録用参照光生成手段と、
再生用参照光を生成する再生用参照光生成手段と、
情報の記録時には、 前記情報記録層に情報光と記録用参照光との干渉による干 渉パターンによって情報が記録されるように、 前記情報光生成手段によって生成 された情報光と前記記録用参照光生成手段によって生成された記録用参照光とを 前記情報記録層に照射し、 情報の再生時には、 前記再生用参照光生成手段によつ て生成された再生用参照光を前記情報記録層に対して照射すると共に、 再生用参 照光が照射されることによつて前記情報記録層より発生される再生光を収集し、 この再生光と再生用参照光とを重ね合わせて合成光を生成する記録再生光学系と, 前記記録再生光学系によって生成された合成光を検出する検出手段と
を備えたことを特徵とする光情報記録再生装置。
2 2 . 前記記録再生光学系は、 情報光、 記録用参照光、 再生用参照光および再生 光が同軸的に配置されるように、 情報光、 記録用参照光および再生用参照光の照 射と再生光の収集とを前記情報記録層の同一面側より行うことを特徴とする請求 項 2 1記載の光情報記録再生装置。
2 3 . 前記情報光生成手段、 記録用参照光生成手段、 再生用参照光生成手段は、 それぞれ、 偏光方向が同じ直線偏光の情報光、 記録用参照光、 再生用参照光を生 成し、
前記記録再生光学系は、 情報光および記録用参照光を第 1の直線偏光から円偏 光に変換して前記情報記録層に対して照射すると共に、 前記情報記録層より発生 される再生光を円偏光から、 第 1の直線偏光に対して偏光方向が直交する第 2の 直線偏光に変換する 4分の 1波長板と、 偏光方向の違いによって、 前記 4分の 1 波長板を通過する前の情報光、 記録用参照光および再生用参照光の光路と前記 4 分の 1波長板を通過した後の光情報記録媒体からの戻り光の光路とを分離する偏 光分離光学素子とを有する
ことを特徴とする請求項 2 2記載の光情報記録再生装置。
2 4 . 前記記録用参照光生成手段は、 位相が空間的に変調された記録用参照光を 生成し、 前記再生用参照光生成手段は、 位相が空間的に変調された再生用参照光 を生成することを特徴とする請求項 2 1記載の光情報記録再生装置。
2 5 . 前記情報光生成手段は、 記録する情報と記録用参照光の位相の変調パター ンとに基づいて決定された位相の変調パターンに従って光の位相を空間的に変調 することを特徴とする請求項 2 4記載の光情報記録再生装置。
2 6 . 更に、 前記情報光生成手段、 記録用参照光生成手段、 再生用参照光生成手 段、 記録再生光学系および検出手段を収納し、 光情報記録媒体より浮上する浮上 型へッド本体を備えたことを特徴とする請求項 2 1記載の光情報記録再生装置。
2 7 . ホログラフィを利用して情報が記録される情報記録層を備えた光情報記録 媒体に対して情報を記録すると共に、 光情報記録媒体より情報を再生する光情報 記録再生方法であって、
記録する情報に基づいて光の位相を空間的に変調することによって情報光を生 成する手順と、
記録用参照光を生成する手順と、
前記情報記録層に情報光と記録用参照光との干渉による干渉パターンによって 情報が記録されるように、 前記情報光と前記記録用参照光とを前記情報記録層に 照射する記録手順と、
再生用参照光を生成する手順と、
前記再生用参照光を前記情報記録層に対して照射すると共に、 再生用参照光が 照射されることによって前記情報記録層より発生される再生光を収集し、 この再 生光と再生用参照光とを重ね合わせて合成光を生成する再生手順と、
前記合成光を検出する手順と
を備えたことを特徴とする光情報記録再生方法。
2 8 . 情報光、 記録用参照光、 再生用参照光および再生光が同軸的に配置される ように、 情報光、 記録用参照光および再生用参照光の照射と再生光の収集は、 前 記情報記録層の同一面側より行われることを特徴とする請求項 2 7記載の光情報 記録再生方法。
2 9 . 前記記録用参照光を生成する手順は、 位相が空間的に変調された記録用参 照光を生成し、 前記再生用参照光を生成する手順は、 位相が空間的に変調された 再生用参照光を生成することを特徴とする請求項 2 7記載の光情報記録再生方法
3 0 . 前記情報光を生成する手順は、 記録する情報と記録用参照光の位相の変調 パターンとに基づいて決定された位相の変調パターンに従って光の位相を空間的 に変調することを特徴とする請求項 2 9記載の光情報記録再生方法。
PCT/JP2001/005389 2000-07-05 2001-06-25 Appareil et procede d'enregistrement d'information optique, appareil et procede de reproduction d'information optique, et appareil et procede d'enregistrement/reproduction d'information optique WO2002003145A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002414907A CA2414907A1 (en) 2000-07-05 2001-06-25 Apparatus and method for recording optical information, apparatus and method for reproducing optical information, and apparatus and method for recording/reproducing optical information
EP01941202A EP1306732A4 (en) 2000-07-05 2001-06-25 DEVICE AND METHOD FOR RECORDING OPTICAL INFORMATION, DEVICE AND METHOD FOR PLAYING OPTICAL INFORMATION AND DEVICE AND METHOD FOR RECORDING / PLAYING OPTICAL INFORMATION
AU2001274600A AU2001274600A1 (en) 2000-07-05 2001-06-25 Apparatus and method for recording optical information, apparatus and method for reproducing optical information, and apparatus and method for recording/reproducing optical information
EA200201260A EA200201260A1 (ru) 2000-07-05 2001-06-25 Устройство и способ записи оптической информации, устройство и способ воспроизведения оптической информации и устройство и способ записи/воспроизведения оптической информации
US10/332,057 US7065032B2 (en) 2000-07-05 2001-06-25 Apparatus and method for recording/reproducing optical information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-203563 2000-07-05
JP2000203563 2000-07-05
JP2000-315224 2000-10-16
JP2000315224A JP3639202B2 (ja) 2000-07-05 2000-10-16 光情報記録装置および方法、光情報再生装置および方法、ならびに光情報記録再生装置および方法

Publications (1)

Publication Number Publication Date
WO2002003145A1 true WO2002003145A1 (fr) 2002-01-10

Family

ID=26595416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005389 WO2002003145A1 (fr) 2000-07-05 2001-06-25 Appareil et procede d'enregistrement d'information optique, appareil et procede de reproduction d'information optique, et appareil et procede d'enregistrement/reproduction d'information optique

Country Status (9)

Country Link
US (1) US7065032B2 (ja)
EP (1) EP1306732A4 (ja)
JP (1) JP3639202B2 (ja)
KR (1) KR20030019468A (ja)
CN (1) CN1451105A (ja)
AU (1) AU2001274600A1 (ja)
CA (1) CA2414907A1 (ja)
EA (1) EA200201260A1 (ja)
WO (1) WO2002003145A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386698C (zh) * 2003-03-28 2008-05-07 清华大学 一种全息光栅制作中的实时潜像自监测用的光学方法

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797713B1 (ko) * 2004-06-07 2008-01-23 삼성전기주식회사 1차원 회절형 광변조기를 이용한 광기록 장치
JP2001256654A (ja) * 2000-03-13 2001-09-21 Optware:Kk 光情報記録装置、光情報再生装置、光情報記録再生装置および光情報記録媒体
JP3655819B2 (ja) * 2000-08-07 2005-06-02 株式会社オプトウエア 光情報記録装置および方法、光情報再生装置および方法、ならびに光情報記録再生装置および方法
US7619819B2 (en) * 2002-08-20 2009-11-17 Illumina, Inc. Method and apparatus for drug product tracking using encoded optical identification elements
US7508608B2 (en) 2004-11-17 2009-03-24 Illumina, Inc. Lithographically fabricated holographic optical identification element
US7923260B2 (en) * 2002-08-20 2011-04-12 Illumina, Inc. Method of reading encoded particles
US7872804B2 (en) 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
US7900836B2 (en) 2002-08-20 2011-03-08 Illumina, Inc. Optical reader system for substrates having an optically readable code
US7164533B2 (en) * 2003-01-22 2007-01-16 Cyvera Corporation Hybrid random bead/chip based microarray
US7901630B2 (en) 2002-08-20 2011-03-08 Illumina, Inc. Diffraction grating-based encoded microparticle assay stick
JP2004139023A (ja) * 2002-08-21 2004-05-13 Sony Corp ホログラム記録装置、ホログラム記録方法、およびホログラム記録媒体
US20100255603A9 (en) * 2002-09-12 2010-10-07 Putnam Martin A Method and apparatus for aligning microbeads in order to interrogate the same
US7092160B2 (en) 2002-09-12 2006-08-15 Illumina, Inc. Method of manufacturing of diffraction grating-based optical identification element
JP2004144847A (ja) * 2002-10-22 2004-05-20 Sony Corp ホログラフィック情報記録装置及びホログラフィック情報記録方法、並びにホログラフィック情報再生装置及びホログラフィック情報再生方法
JP4200026B2 (ja) * 2003-02-06 2008-12-24 新オプトウエア株式会社 光情報記録媒体
US7433293B2 (en) 2003-05-30 2008-10-07 Memory-Tech Corporation Optical disc recording medium and method of manufacturing the same
US7411708B2 (en) * 2003-10-08 2008-08-12 Stx Aprilis, Inc. Method and apparatus for phase-encoded homogenized Fourier transform holographic data storage and recovery
JP2007513458A (ja) * 2003-12-08 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ホログラフィック記憶装置
EP1716564A4 (en) * 2004-02-18 2008-06-04 Samsung Electronics Co Ltd MEDIUM hologram recording
US7433123B2 (en) * 2004-02-19 2008-10-07 Illumina, Inc. Optical identification element having non-waveguide photosensitive substrate with diffraction grating therein
KR100619052B1 (ko) * 2004-03-09 2006-08-31 삼성전자주식회사 홀로그램 메모리 매체, 그 기록장치 및 재생장치
JP2005292765A (ja) * 2004-03-09 2005-10-20 Samsung Electronics Co Ltd ホログラムメモリ媒体および記録装置、再生装置
JP2005292687A (ja) 2004-04-05 2005-10-20 Sony Corp インライン方式スペックル多重ホログラム装置及びインライン方式スペックル多重ホログラム方法
KR100797714B1 (ko) * 2004-06-07 2008-01-23 삼성전기주식회사 비트 단위로 저장하기 위한 광기록 장치
KR20070067685A (ko) * 2004-08-30 2007-06-28 Intelligentdisc, Inc. 컨텐츠 관리 방법 및 컨텐츠 배신 방법
DE602005015338D1 (de) * 2004-08-31 2009-08-20 Alps Electric Co Ltd Hologramm-wiedergabekopf
US7604173B2 (en) * 2004-11-16 2009-10-20 Illumina, Inc. Holographically encoded elements for microarray and other tagging labeling applications, and method and apparatus for making and reading the same
CA2587674A1 (en) 2004-11-16 2006-05-26 Illumina, Inc. Method and apparatus for reading coded microbeads
US20060134324A1 (en) * 2004-11-17 2006-06-22 Illumina, Inc. Filament with easily removed protective coating and methods for stripping the same
JP2006155831A (ja) * 2004-11-30 2006-06-15 Fujitsu Ltd ホログラム記録媒体及びホログラム記録再生装置
US7535434B2 (en) * 2005-01-25 2009-05-19 The Boeing Company Light emission control for forming two-dimensional and three-dimensional images
US7623279B1 (en) * 2005-11-22 2009-11-24 Inphase Technologies, Inc. Method for holographic data retrieval by quadrature homodyne detection
JP2006251675A (ja) * 2005-03-14 2006-09-21 Fujitsu Ltd 光記録媒体の再生装置、記録再生装置、再生方法
JP2006276373A (ja) * 2005-03-29 2006-10-12 Sony Corp ホログラム記録装置及び位相マスク
JP2006276666A (ja) * 2005-03-30 2006-10-12 Fujitsu Ltd ホログラム記録装置
WO2006123269A2 (en) * 2005-05-17 2006-11-23 Koninklijke Philips Electronics N.V. Medhod for reading-out phase-modulation recorded data in a holographic medium
JP2007058992A (ja) * 2005-08-24 2007-03-08 Fujifilm Corp 光記録方法、光記録装置、光記録媒体及び光記録再生方法
WO2007049336A1 (ja) * 2005-10-25 2007-05-03 Fujitsu Limited ホログラム記録装置
JP4605105B2 (ja) * 2005-12-26 2011-01-05 富士ゼロックス株式会社 ホログラム再生方法及び装置
JP4605007B2 (ja) * 2005-12-26 2011-01-05 富士ゼロックス株式会社 ホログラム記録再生方法及び装置
JP4548333B2 (ja) * 2005-12-26 2010-09-22 富士ゼロックス株式会社 データ再生方法及び装置
US20070160106A1 (en) * 2006-01-06 2007-07-12 Inphase Technologies External cavity laser with a tunable holographic element
JP2007317284A (ja) 2006-05-25 2007-12-06 Hitachi Ltd 光ディスク装置
JP4605104B2 (ja) * 2006-06-19 2011-01-05 富士ゼロックス株式会社 ホログラム再生方法及び装置
EP1873765A1 (en) * 2006-06-27 2008-01-02 Deutsche Thomson-Brandt Gmbh Holographic storage system based on common path interferometry
JP4899713B2 (ja) * 2006-08-16 2012-03-21 新オプトウエア株式会社 光情報再生装置
EP1895519A1 (en) 2006-09-01 2008-03-05 Deutsche Thomson-Brandt Gmbh Holographic storage system using destructive interference for pixel detection
JP4225346B2 (ja) * 2006-12-14 2009-02-18 ソニー株式会社 再生装置、再生方法
JP4524689B2 (ja) 2007-02-20 2010-08-18 ソニー株式会社 ホログラム再生装置およびホログラム再生方法並びに位相変調素子
JP4830971B2 (ja) * 2007-05-22 2011-12-07 ソニー株式会社 記録装置、記録再生方法、再生方法
JP4407724B2 (ja) 2007-06-18 2010-02-03 ソニー株式会社 記録再生装置、記録再生方法、再生装置、再生方法
JP2009020305A (ja) * 2007-07-12 2009-01-29 Sony Corp 記録再生装置、記録再生方法、記録装置、記録方法、再生装置、再生方法
US8070919B2 (en) * 2007-07-16 2011-12-06 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for preparing one dimensional spin photonic crystal device and one dimensional spin photonic crystal device prepared by the same
JP2009048681A (ja) * 2007-08-15 2009-03-05 Sony Corp ホログラム記録再生装置
JP4502028B2 (ja) * 2008-02-28 2010-07-14 ソニー株式会社 再生方法
US9734858B2 (en) 2008-06-08 2017-08-15 Utsunomiya University Optical information recording/reproduction method and device
JP4524708B2 (ja) * 2008-06-19 2010-08-18 ソニー株式会社 再生装置、再生方法
AU2010292939B2 (en) * 2009-09-09 2014-09-18 Absolute Software Corporation Alert for real-time risk of theft or loss
US8817585B2 (en) * 2010-10-19 2014-08-26 National University Corporation Hokkaido University Holographic memory reproduction device and holographic memory reproduction method, demodulation device and demodulation method, and observation device and observation method
JP2012174290A (ja) * 2011-02-17 2012-09-10 Hitachi Media Electoronics Co Ltd 光ピックアップ装置および光ディスク装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266274A (ja) * 1993-03-11 1994-09-22 Toppan Printing Co Ltd ホログラフィック立体ハ−ドコピ−の作成方法および装置
JPH10302293A (ja) * 1997-04-22 1998-11-13 Sony Corp 光情報記録装置および方法、光情報再生装置および方法ならびに光情報記録媒体
JPH11311938A (ja) * 1998-02-27 1999-11-09 Hideyoshi Horigome 光情報記録装置、光情報再生装置および光情報記録再生装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544856B2 (ja) * 1974-01-17 1979-03-10
US4224480A (en) * 1976-02-18 1980-09-23 Matsushita Electric Industrial Co., Ltd. Holographic playback system using a charge storage sensor and binary decoding
JPS6034754B2 (ja) * 1976-02-18 1985-08-10 松下電器産業株式会社 ホログラム記録装置
US5319629A (en) * 1988-08-25 1994-06-07 Sparta, Inc. Content addressable optical data storage system
US4993789A (en) * 1988-09-15 1991-02-19 Jonathan R. Biles Dual wavelength polarization selective holographic optical element
JPH0352126A (ja) 1989-07-19 1991-03-06 Matsushita Electric Ind Co Ltd 光ヘッド
JPH03288338A (ja) 1990-04-04 1991-12-18 Matsushita Electric Ind Co Ltd 光記録再生装置
US5377176A (en) * 1993-07-14 1994-12-27 Tamarack Storage Devices Method and apparatus for isolating data storage regions in a thick holographic storage media
US5719691A (en) * 1995-05-05 1998-02-17 Lucent Technologies Inc. Phase correlation multiplex holography
JP3452113B2 (ja) * 1996-08-30 2003-09-29 ソニー株式会社 光情報記録装置および方法、光情報再生装置および方法ならびに光情報記録媒体
US5886971A (en) * 1996-09-27 1999-03-23 Digital Optics Corporation Optical head structures including support substrates adjacent transparent substrates and related methods
JPH11133842A (ja) 1997-10-24 1999-05-21 Sony Corp 光情報記録装置、光情報再生装置および光情報記録媒体
KR100508418B1 (ko) * 1997-11-06 2005-11-24 후지제롯쿠스 가부시끼가이샤 광헤드및광디스크장치
EA003068B1 (ru) 1998-02-27 2002-12-26 Оптуэр Корпорейшн Устройство и способ записи и считывания оптической информации (варианты)
HU9801029D0 (en) * 1998-05-05 1998-06-29 Optilink Ab Method and system for recording information on a holographic card

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266274A (ja) * 1993-03-11 1994-09-22 Toppan Printing Co Ltd ホログラフィック立体ハ−ドコピ−の作成方法および装置
JPH10302293A (ja) * 1997-04-22 1998-11-13 Sony Corp 光情報記録装置および方法、光情報再生装置および方法ならびに光情報記録媒体
JPH11311938A (ja) * 1998-02-27 1999-11-09 Hideyoshi Horigome 光情報記録装置、光情報再生装置および光情報記録再生装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"O plus E", KABUSHIKI KAISHA SHINHGIJUTSU COMMUNICATIONS, no. 201, August 1996 (1996-08-01), pages 103 - 108, XP002947208 *
JUN AMAKO AND TOMIO SHONEHARA: "Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator", APPLIED OPTICS, vol. 30, no. 32, 10 November 1991 (1991-11-10), pages 4622 - 4628, XP002947207 *
See also references of EP1306732A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386698C (zh) * 2003-03-28 2008-05-07 清华大学 一种全息光栅制作中的实时潜像自监测用的光学方法

Also Published As

Publication number Publication date
EA200201260A1 (ru) 2003-06-26
US20040100892A1 (en) 2004-05-27
JP2002083431A (ja) 2002-03-22
CN1451105A (zh) 2003-10-22
EP1306732A1 (en) 2003-05-02
AU2001274600A1 (en) 2002-01-14
KR20030019468A (ko) 2003-03-06
US7065032B2 (en) 2006-06-20
CA2414907A1 (en) 2002-12-31
JP3639202B2 (ja) 2005-04-20
EP1306732A4 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP3639202B2 (ja) 光情報記録装置および方法、光情報再生装置および方法、ならびに光情報記録再生装置および方法
WO2002031822A1 (fr) Appareil et procede d'enregistrement d'information optique, appareil et procede de reproduction d'information optique, appareil et procede d'enregistrement/reproduction d'information optique, et support d'enregistrement d'information optique
JP3639212B2 (ja) 光情報記録方法
US20060067179A1 (en) Optical information recording device and optical information reproduction device
EP1732067A1 (en) Hologram record carrier, hologram apparatus and recording method
KR20020082867A (ko) 광정보 기록장치, 광정보 재생장치, 광정보 기록재생장치및 광정보 기록매체
WO2001073773A1 (fr) Capteur optique
US20080273444A1 (en) Holographic Record Carrier
JPH11126335A (ja) 光情報記録媒体、光情報記録装置および方法ならびに光情報再生装置および方法
JPH10302293A (ja) 光情報記録装置および方法、光情報再生装置および方法ならびに光情報記録媒体
JP2002368329A (ja) コヒーレント光生成装置および方法ならびに光情報記録装置および方法
JP4162899B2 (ja) 光情報記録装置および方法、光情報再生装置および方法、ならびに光情報記録再生装置および方法
JP3693990B2 (ja) 光情報記録装置および光情報再生装置
JPH11133842A (ja) 光情報記録装置、光情報再生装置および光情報記録媒体
JP4045384B2 (ja) 光情報記録装置および方法ならびに光情報記録再生装置および方法
US7408865B2 (en) Optical information recording apparatus and optical information reproducing apparatus using holography
JP4548762B2 (ja) 光情報記録媒体
JP2004139711A (ja) 光情報記録装置および光情報再生装置
JPH10293520A (ja) 光情報記録装置および光情報再生装置
JPH11133845A (ja) 光情報記録媒体の複製方法および装置
JP2003263749A (ja) 光情報記録装置および光情報記録再生装置
JPH09282730A (ja) 光情報検出装置
JP2005203095A (ja) 光情報記録装置及び光情報記録再生装置
JP2000105950A (ja) 光磁気ディスク装置
JP2003263772A (ja) 光情報記録装置および光情報記録装置における光学系調整方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001941202

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200201260

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 1020027018011

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2414907

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10332057

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001274600

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 018151035

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027018011

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001941202

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027018011

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001941202

Country of ref document: EP