WO2002002669A1 - Verbessertes verfahren zur einstufigen herstellung von polytetrahydrofuran und tetrahydrofuran-copolymeren - Google Patents

Verbessertes verfahren zur einstufigen herstellung von polytetrahydrofuran und tetrahydrofuran-copolymeren Download PDF

Info

Publication number
WO2002002669A1
WO2002002669A1 PCT/EP2001/007427 EP0107427W WO0202669A1 WO 2002002669 A1 WO2002002669 A1 WO 2002002669A1 EP 0107427 W EP0107427 W EP 0107427W WO 0202669 A1 WO0202669 A1 WO 0202669A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
polymerization
tetrahydrofuran
catalyst
polytetrahydrofuran
Prior art date
Application number
PCT/EP2001/007427
Other languages
English (en)
French (fr)
Inventor
Gerd Bohner
Thomas Domschke
Rolf-Hartmuth Fischer
Martin Haubner
Christoph Sigwart
Ulrich Steinbrenner
Christian Tragut
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2002507918A priority Critical patent/JP2004502806A/ja
Priority to KR10-2003-7000013A priority patent/KR20030016366A/ko
Priority to US10/312,851 priority patent/US6716937B2/en
Priority to EP01945325A priority patent/EP1299449A1/de
Publication of WO2002002669A1 publication Critical patent/WO2002002669A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/20Tetrahydrofuran

Definitions

  • the invention relates to a process for the preparation of polytetrahydrofuran or tetrahydrofuran copolymers by polymerizing tetrahydrofuran over an acidic, heterogeneous catalyst in the presence of at least one telogen and / or comonomer selected from alpha, omega-diols, water, polytetrahydrofuran of average molecular weight from 200 to 700 daltons and / or cyclic ethers with recycling at least a portion of the unreacted tetrahydrofuran.
  • PTHF Polytetrahydrofuran - hereinafter referred to as polyoxybutylene glycol
  • PTHF Polytetrahydrofuran
  • plastics and synthetic fiber industry as a versatile intermediate and is used, among other things, for the production of polyurethane, polyester and polyamide elastomers.
  • PTHF Polytetrahydrofuran
  • it is a valuable auxiliary in many application fields, for example as a dispersing agent or when decolorizing (deinking) waste paper.
  • PTHF is usually produced industrially by polymerizing tetrahydrofuran - hereinafter referred to as THF for short - on suitable catalysts.
  • the chain length of the polymer chains can be controlled by adding suitable reagents and the average molecular weight can thus be set to the desired value. The control is done by selecting the type and amount of the telogen.
  • reagents are called chain termination reagents or "telogens”. By choosing suitable telogens, additional functional groups can be introduced at one or both ends of the polymer chain.
  • telogens For example, by using carboxylic acids or carboxylic anhydrides as telogens, the mono- or diesters of PTHF can be produced, which then have to be converted to PTHF by saponification or transesterification. These processes are therefore known as two-stage PTHF processes.
  • telogens not only act as chain termination reagents, but are also incorporated into the growing polymer chain of the PTHF. They not only have the function of a telogen, but are also a comonomer and can therefore be called both telogens and comonomers with the same authorization.
  • comonomers are telogens with two hydroxyl groups like the diols (dialcohols). These can be, for example, ethylene glycol, propylene glycol, butylene glycol, 1, 3-propanediol, 1, -butanediol, 2-butyn-1, 4-diol, 1, 6-hexanediol or low molecular weight PTHF.
  • Cyclic ethers such as 1,2-alkylene oxides, for example ethylene oxide or propylene oxide, 2-methyltetrahydrofuran or 3-methyltetrahydrofuran, are also suitable as comonomers.
  • 1,2-alkylene oxides for example ethylene oxide or propylene oxide
  • 2-methyltetrahydrofuran or 3-methyltetrahydrofuran are also suitable as comonomers.
  • comonomers With the exception of water, 1,4-butanediol and low molecular weight PTHF, the use of such comonomers leads to the preparation of tetrahydrofuran copolymers - hereinafter referred to as THF copolymers - and in this way makes it possible to chemically modify PTHF.
  • tetrahydrofuran z. B polymerized in the presence of fluorosulfonic acid to polytetrahydrofuran esters and then hydrolyzed to polytetrahydrofuran. Furthermore, tetrahydrofuran z. B. polymerized with acetic anhydride in the presence of acidic catalysts to polytetrahydrofuran diacetate and then z. B. transesterified with methanol to polytetrahydrofuran.
  • a disadvantage of such processes is that two-stage work is required and that by-products such as. B. hydrofluoric acid and methyl acetate.
  • the one-step synthesis of PTHF is carried out by THF polymerization with water, 1,4-butanediol or low molecular weight PTHF as a telogen on acidic catalysts.
  • PTHF trifluoride
  • Both homogeneous systems dissolved in the reaction system and heterogeneous, that is to say largely undissolved, systems are known as catalysts.
  • EP-B-126 471 describes water-containing heteropolyacids, such as, for example, tungstophosphoric acid for single-stage PTHF synthesis with water as telogen
  • EP-B-158 229 discloses the same catalysts for single-stage PTHF synthesis with diols such as 1,4-butanediol as homogeneous catalysts.
  • two liquid phases form, a catalyst-containing phase in which, in addition to THF, the majority of the heteropolyacid and water are found, and an organic phase which mainly contains THF, PTHF and residual amounts of the catalyst. Since the removal of the homogeneous catalyst is complex, the heterogeneously catalyzed processes for single-stage PTHF synthesis and for the direct synthesis of THF copolymers have gained in importance.
  • PTHF can be produced from THF and water with the aid of super acidic Nafion® ion exchange resins.
  • DE-A 44 33 606 describes, inter alia, a process for the preparation of PTHF, by the polymerization of tetrahydrofuran over a heterogeneous catalyst in the presence of one of the telogens, water, 1,4-butanediol, PTHF having a molecular weight of 200 to 5,700 daltons or mixtures thereof Telogens, the catalyst being a supported catalyst which contains a catalytically active amount of an oxygen-containing tungsten or molybdenum compound or mixtures of these compounds on an oxidic support material and after application of the precursor compounds of the oxygen-containing molybdenum and / or tungsten compounds from 500 ° C. to 1000 ° C has been calcined. From DE-A 196 49 803 it is known / to increase the activity of the catalysts described in DE-A 44
  • Polytetrahydrofuran and THF copolymer sales products must have a certain average molecular weight, predominantly in the range between 650 and 5000 daltons, and a narrow molecular weight distribution. At the same time, they must not exceed certain color number limits. The color number must be below 40, preferably below 20 APHA. 5
  • a disadvantage of the known homogeneously or heterogeneously catalyzed processes for the single-stage synthesis of PTHF or of THF copolymers is that not all of the above-mentioned properties of the PTHF and / or the THF copolymers required for the sales products are realized at the same time to let.
  • Numerous post-treatment processes for cleaning and reducing the color number of the PTHFs and / or the THF copolymers are known, in which the products obtained from the polymerization, for example as in EP-A 424 791, are post-treated with hydrogen in the presence of a hydrogenation catalyst become.
  • the object of the present invention was to find an economical, one-step process which makes it possible to obtain both PTHF and THF copolymers with a narrow molecular weight distribution and a low color number in a high space-time yield and with high selectivity.
  • At least one distillation stage is separated into a distillation residue containing the polymerization product and at least one tetrahydrofuran fraction is carried out and the tetrahydrofuran fraction is at least partially returned to the polymerization and
  • the process according to the invention for the one-step synthesis of PTHF and THF copolymers makes it possible to obtain both PTHF and THF copolymers with a narrow molecular weight distribution and a low color number in a high space-time yield and with high selectivity without a separate aftertreatment process.
  • the recycling of the separated tetrahydrofuran contributes to the economy of the process according to the invention.
  • a polymerization product is first obtained by cationic polymerization of tetrahydrofuran over an acidic heterogeneous catalyst in the presence of at least one telogen and / or copolymer from the group of alpha, omega-diols, water, polytetrahydrofuran with a molecular weight of 200 to 700 daltons and / or cyclic Made of ethers.
  • Acid heterogeneous catalysts are preferably used as polymerization catalysts, the acid centers of the acid strength Ho ⁇ +2 in a concentration of at least 0.005 mmol / g catalyst, particularly preferably an acid strength H 0 ⁇ +1.5 in a concentration of at least 0.01 mmol / g catalyst.
  • sulfonated zirconium dioxide can be used as polymerization catalysts, alpha- Polymers containing fluorosulfonic acids, supported catalysts made of an oxidic support material, which contain a catalytically active amount of a tungsten or molybdenum compound or mixtures of such compounds, are used, supported catalysts made of an oxidic support material containing a catalytically active amount of a tungsten or molybdenum compound or mixtures contain such compounds, are preferred.
  • Sulphate-doped zirconium dioxide which is suitable for the process according to the invention can be produced, for example, by the process described in US Pat. No. 5,149,862.
  • polymers containing alpha-fluorosulfonic acid can also be used as the polymerization catalyst.
  • polymers containing perfluorinated alpha-fluorosulfonic acid which are marketed, for example, under the name Nafion by E.I. du Pont de Nemours and Company are sold as a commercial product.
  • Suitable supported catalysts made of an oxidic support material which contain oxygen-containing molybdenum or tungsten compounds or mixtures of such compounds as catalytically active compounds and which, if desired, can also be additionally doped with sulfate or phosphate groups are described in DE-A 44 33 606, to which explicit reference is made here. As in DE 19641481, which is expressly referred to here, these catalysts can be pretreated with a reducing agent, preferably with hydrogen.
  • the supported catalysts described in German patent application DE 19649803, to which reference is expressly made here are suitable which contain as the active composition a catalytically active amount of at least one oxygen-containing molybdenum and / or tungsten compound and which, after preparation of the precursor compounds of the active composition, on the support material - Precursors have been calcined at temperatures from 500 ° C to 1000 ° C, which contain a promoter, which includes at least one element or a compound of an element of the 2nd, 3rd - loaned the anthanids, 5th, 6th, 7th , 8th or 14th group of the Periodic Table of the Elements.
  • These catalysts generally contain 0.01 to 30% by weight, preferably 0.05 to 20% by weight and particularly preferably 0.1 to 15% by weight, of the promoter, calculated as the sum of its constituents in the form of their elements and based on the total weight of the catalyst.
  • the catalysts which can be used according to the invention and are known from DE-A 44 33 606 and DE 196 49 803 generally contain 0.1 to 50% by weight of the catalytically active, oxygen-containing compounds of molybdenum or tungsten or the mixtures of the catalytically active, oxygen-containing compounds of these metals, in each case based on the total weight of the catalyst and since the chemical structure of the catalytically active, oxygen-containing compounds of molybdenum and / or tungsten has not hitherto been known exactly, calculated in each case as M0O 3 or WO 3 .
  • catalysts which can be used according to the invention and which contain at least one catalytically active, oxygen-containing molybdenum and / or tungsten compound on an oxidic support and which after application of the Precursor compounds of the catalytically active compounds on the support material or a support material precursor have been calcined at temperatures of 400 ° C. to 900 ° C., which have a porosity of the catalyst with transport pores each having a diameter of ⁇ 25 ⁇ m and a volume of these transport pores of at least 50 mm 3 / g.
  • the catalysts described in these two parallel applications contain 0.1 to 70% by weight, preferably 5 to 40% by weight and particularly preferably 10 to 35% by weight of the catalytically active oxygen-containing molybdenum and / or tungsten compound ( en), calculated as M0O 3 and / or WO 3 and based on the total weight of the catalyst.
  • Suitable oxidic supports for the oxygen-containing molybdenum or tungsten compounds or mixtures of such compounds as catalysts containing catalytically active compounds are, for example, zirconium dioxide, titanium dioxide, hafnium oxide, yttrium oxide, iron (III) oxide, aluminum oxide, tin (IV) oxide, silicon dioxide, zinc oxide or mixtures of these oxides.
  • zirconium dioxide, titanium dioxide and / or silicon dioxide are particularly preferred, and titanium dioxide is particularly preferred.
  • phyllosilicates or zeolites activated by acid treatment can, if desired, be used as heterogeneous catalysts in the process according to the invention.
  • Layered silicates which are preferred are those of the montmorillonite-saponite, kaolin-serpentine or palygorskite-sepiolite group, particularly preferably montmorillonite, hectorite, kaolin, attapulgite or sepiolite, as described, for example, in Klockmann's textbook on mineralogy, 16th edition , F. Euke Verlag 1978, pages 739-765.
  • Montmorillonite can be used as under the name Tonsil ®, Terrana ® or Granosil ® or as catalysts of the types Tonsil ® K 10, KSF-0, KO or KS in Sud-Chemie AG, Kunststoff, are available.
  • Attasorb ® RVM and LVM Attasorb ® proper procedure appropriate Attapulgite example by Engelhard Corporation, Iselin, USA, - for use in the fiction,.
  • Zeolites are a class of aluminum hydrosilicates that, due to their special chemical structure in the crystal, form three-dimensional networks with defined pores and channels. Natural or synthetic zeolites are suitable for the inventive method, said zeolites having a SiO 2 -Al 2 ⁇ 3 molar ratio of 4: 1 is preferred, with a SiO 2 -Al 2 ⁇ 3 molar ratio of 6: 1 to 100 1 to 90 1 are particularly preferred: 1 and more preferably having a SiO 2 -Al 2 ⁇ 3 molar ratio of 10: 1 to 80 wt.
  • the primary crystallites of these zeolites preferably have a particle size of up to 0.5 ⁇ m, preferably 0.1 ⁇ m and particularly preferably 0.05 ⁇ m.
  • the zeolites which can be used in the process according to the invention are used in the so-called H form. This is characterized in that azide OH groups are present in the zeolite. If the zeolites are not already produced in H form during their production, they can easily be broken down by acid treatment with, for example, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid or by thermal treatment of suitable precursor zeolites which contain, for example, ammonium ions, for example by heating Temperatures of 450 to 600 ° C, preferably 500 to 550 ° C, are converted into the catalytically active H form.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid
  • suitable precursor zeolites which contain, for example, ammonium ions
  • heterogeneous catalysts which can be used according to the invention can be in the form of powder, for example when carrying out the process in suspension mode, or expediently as shaped articles, for example in the form of cylinders, balls, rings, spirals or 5 chips, in particular in the case of a fixed bed arrangement of the catalyst, in the process according to the invention are used, the use as a shaped body in a fixed bed being preferred.
  • THF can in principle be used as the monomer 10.
  • Suitable telogens and / or comonomers in the process according to the invention are saturated or unsaturated, unbranched or branched alpha, omega-C 2 to C 2 -diols, water, polytetrahydrofuran with a molecular weight of 200 to 700 daltons, cyclic ethers or their mixtures.
  • telogens for the production of PTHF and THF copolymers
  • 8-octanediol 1,10-decanediol, 2-butyn-l, 4-diol and neopentyl glycol or mixtures thereof
  • Cyclic ethers which can be polymerized to open the ring, preferably three-membered, four-membered and five-membered rings such as 1,2-alkylene oxides, for example ethylene oxide, are suitable as comonomers
  • oxetane substituted oxetanes such as 3,3-dimethyloxetane
  • the THF derivatives 2-methyltetrahydrofuran or 3-methyltetrahydrofuran suitable, 2-methyltetrahydrofuran or 3-methyltetrahydrofuran being particularly preferred.
  • telogen is expediently fed to the polymerization in solution in the THF, a telogen content of 0.04 to 17 mol%, based on tetrahydrofuran, being preferred.
  • Comonomers are also expediently fed to the polymerization in solution in THF, the comonomer content up to 30 mol%, preferably
  • Control 45 of the THF copolymers The more telogen the reaction mixture contains, the lower the average molecular weight of the PTHF or the THF copolymers in question. Depending on the telogen content of the polymerization mixture, PTHF and THF copolymers with average molecular weights of 650 to 5000 Daltons, preferably from 650 to 3000 Daltons and particularly preferably from 1000 to 3000 Daltons can be produced.
  • the polymerization is generally carried out at temperatures from 0 to 80 ° C., preferably at 25 to 75 ° C., and particularly preferably at 40 to 70 ° C.
  • the pressure used is generally not critical to the result of the polymerization, which is why work is generally carried out at atmospheric pressure or under the autogenous pressure of the polymerization system.
  • the polymerization is advantageously carried out under an inert gas atmosphere.
  • inert gases e.g. Nitrogen, carbon dioxide or the noble gases are used, nitrogen is preferably used.
  • the polymerization can also be carried out in the presence of hydrogen at hydrogen pressures of 0.1 to 10 bar.
  • the process according to the invention is preferably operated continuously with all of its stages. However, it is also possible to operate the polymerization stage and / or one, more or all of the work-up stages of the process according to the invention batchwise, but preferably at least the polymerization is carried out continuously.
  • the reaction can be carried out in conventional reactors or reactor arrangements suitable for continuous processes in suspension or fixed bed mode, for example in loop reactors or stirred reactors in suspension mode or in fixed bed mode in tubular reactors or fixed bed reactors, the fixed bed mode being preferred.
  • the catalyst can, if desired, be pretreated after it has been introduced into the reactor.
  • Pre-treatment of the catalyst is, for example, drying with gases heated to 80-200 ° C., preferably 100 to 150 ° C., such as air or nitrogen, or pre-treatment with a reducing agent, as described in DE 196 41 481 for the invention preferred supported catalysts, which contain a catalytically active amount of at least one oxygen-containing molybdenum and / or tungsten compound, are described as the active composition.
  • gases heated to 80-200 ° C. preferably 100 to 150 ° C., such as air or nitrogen
  • pre-treatment with a reducing agent as described in DE 196 41 481 for the invention preferred supported catalysts, which contain a catalytically active amount of at least one oxygen-containing molybdenum and / or tungsten compound, are described as the active composition.
  • the catalyst can also be used without pretreatment.
  • the polymerization reactor can be operated in a bottom mode, ie the reaction mixture is conducted from bottom to top, or in a trickle mode, ie the reaction mixture is passed through the reactor from top to bottom.
  • the starting material mixture (feed) of THF and telogen and / or comonomer is fed continuously to the polymerization reactor, the catalyst loading being 0.05 to 0.8 kg THF / (lh), preferably 0.1 to 0.6 kg THF / (lh) and particularly preferably 0.15 to 0.5 kg THF / (lh).
  • the polymerization reactor can be operated in a single pass, that is to say without product recirculation, or in circulation, that is to say the polymerization mixture leaving the reactor is operated in a circuit.
  • the ratio of circulation to inlet is less than or equal to 100: 1, preferably less than 50: 1 and particularly preferably less than 40: 1.
  • the concentration of the alpha, omega-diol, water, polytetrahydrofuran with an average molecular weight of 200 to 700 daltons or of their mixture in the feed mixture (feed) fed to the polymerization reactor is between 0.02 and 20 mol%, preferably 0, 05 to 15 mol%, particularly preferably 0.1 to 10 mol%, based on the THF used.
  • the polymerization discharge is fed directly to processing stage a).
  • the suspended and / or dissolved catalyst fractions and / or catalyst secondary products separated in workup stage a) are, for example, finely divided, suspended or emulsified catalyst abrasion, which consists of unchanged catalyst, the catalyst support and / or the catalyst active component consists.
  • the catalyst is unchanged, carrier components and / or the oxygen-containing molybdenum or tungsten active components.
  • catalyst secondary products are, for example, dissolved cations or anions of the active components, such as. B.
  • sulfonic acid-containing ion exchangers such as Nafion ® may be fluoride ions and / or sulfonic acids
  • sulfate-doped metal oxides to sulfuric acid and / or metal cations or anions act.
  • the catalyst fractions and / or catalyst secondary products can be separated off from the polymerization discharge by filtration, such as, for example, ultrafiltration, adsorption on solid adsorbents and / or with the aid of ion exchangers, filtration and adsorption on solid adsorbents being preferred.
  • filtration such as, for example, ultrafiltration, adsorption on solid adsorbents and / or with the aid of ion exchangers, filtration and adsorption on solid adsorbents being preferred.
  • the adsorption on the solid adsorbent mentioned can also be combined with a neutralization of the polymerization output with acids or bases.
  • the adsorption is preferably carried out on activated carbon and / or metal oxides and / or ion exchangers at temperatures of 25 to 75 ° C., preferably at 30 ° C. to 70 ° C.
  • the separation in processing stage a) is particularly preferably carried out on ion exchangers and / or activated carbon.
  • the preferred metal oxides are sodium hydroxide, aluminum oxide, silicon dioxide, titanium dioxide, zirconium dioxide, lanthanum oxide and / or calcium oxide use.
  • Suitable activated carbon can be obtained, for example, from Merck, Darmstadt or in the form of the commercial product activated carbon type CPG UF 8x30 from Chemviron Carbon.
  • Suitable ion exchangers are, for example, anion exchangers such as the commercial product Lewatit MP 600, which can be obtained from Bayer AG, Leverkusen, and mixed ion exchangers, such as the commercial product Serdolit®, which is available from Serva,
  • the inventive separation of the catalyst fractions and / or catalyst secondary products by adsorption on solid adsorbents is preferred in a fixed bed at a load of generally 0.2 to 5 kg / (l * h), in particular 0.4 to 4 kg / ( l * h) (kg of polymer discharge per 1 adsorbent per hour) used.
  • the processing stage b) can be operated batchwise or continuously, preferably continuously. It serves for the extensive to complete separation of the unreacted tetrahydrofuran from PTHF or from the THF copolymers by distillation.
  • the THF removal in the work-up stage b) can in principle be carried out in one distillation stage, but preferably in several, preferably two or three, stages, it being advantageous to work at different pressures.
  • the design of work-up stage b) of the process according to the invention depends on the telogen used in the polymerization.
  • suitable columns or evaporators such as e.g. Falling film evaporators or thin film evaporators in question. Separating plate columns can also advantageously be used.
  • stage b) Possible processing variants of stage b) for the use of THF and water as telogen in the polymerization are explained in more detail below.
  • the main amount of unreacted THF is separated off at atmospheric pressure in a continuously operated distillation column.
  • the catalyst-free polymerization discharge obtained with water as telogen in processing stage a) which has a polymer content of usually 2 to 25% and Water content of max.
  • a head temperature of 66 to 67 ° C and a bottom temperature of 100 to 200 ° C, preferably 120 to 180 ° C the majority of water in a mixture with tetrahydrofuran is distilled off overhead.
  • the tetrahydrofuran fraction obtained as a distillate is condensed and then wholly or partly returned to the polymerization.
  • the THF / PTHF mixture obtained in the bottom of the column as a distillation residue contains, depending on the selected bottom temperature, about 2 to 20% by weight of THF and usually up to max. approx. 300 ppm water, each based on the THF / PTHF mixture.
  • the main amount of unreacted THF can also be separated off at atmospheric pressure in a thin-film evaporator, preferably in a falling-film evaporator with circulation, which is operated at 100 to 200 ° C., preferably 120-180 ° C.
  • the composition of the tetrahydrofuran fraction obtained as a distillate and of the THF / PTHF mixture obtained as a distillation residue corresponds to that described above.
  • the distillation residue obtained from the first distillation stage is then largely completely freed of residual amounts of tetrahydrofuran in a falling film evaporator at 120 to 160 ° C., in particular approx. 130 ° C. and 50 to 200 rabar, in particular 70 to 150 mbar ,
  • the THF fraction obtained as a distillate, which mainly consists of THF, can be wholly or partly returned to the polymerization.
  • stage b For the use of THF and diols as telogens in the polymerization, the following processing variants of stage b) are possible. It was recognized according to the invention that the water content of the polymerization discharge when using diols as telogens in the polymerization is usually higher than the water content of the feed. In the reprocessing variants, discharge options for water are therefore taken into account.
  • the removal of the main amount of unreacted THF at normal pressure and removal of the main amount of water can be carried out in a continuously operated distillation column, preferably in a separating plate column.
  • the catalyst-free polymerization output obtained with diols as telogens in processing stage a), which has a polymer content of usually 2 to 25% and water contents of max. contains about 500 ppm, fed into a distillation column via a side inlet.
  • a head temperature of approx. 66 to 67 ° C and a bottom temperature of 100 to 200 ° C, preferably 120 to 180 ° C the catalyst-free polymerization discharge is separated in the column into a THF / water mixture as top product, which contains the main amount of water in a concentration of max.
  • a THF fraction which contains the main amount of THF, is largely anhydrous and generally contains less than 100 ppm, preferably ⁇ 50 ppm water, and can therefore be wholly or partly recycled into the polymerization.
  • the distillation residue in the bottom of the column is a THF / PTHF mixture which, depending on the bottom temperature selected, contains about 2 to 20% by weight of THF and a water content of max. has about 100 ppm.
  • the bulk of the unreacted can be separated.
  • THF at normal pressure can also be carried out in a thin-film evaporator, preferably in a falling-film evaporator with circulation, which is operated at 100 to 200 ° C., preferably 120-180 ° C.
  • the catalyst-free polymerization output obtained under a) is separated into a water-containing THF fraction as the distillate and a THF / diol / PTHF mixture as the distillation residue.
  • the water-containing THF fraction can then in a distillation column preferably at normal pressure and at about 63 to 65 ° C top temperature and about 70 ° C bottom temperature in a THF / water mixture with a max. Water content of approx. 5% as distillate and a largely anhydrous tetrahydrofuran fraction as distillation residue, as bottom or side draw from the column. This largely anhydrous THF fraction can be wholly or partly returned to the polymerization.
  • the THF / diol / PTHF mixture obtained as the distillation residue after the respective first distillation stage is then preferably in vacuo in a falling film evaporator at 120 to 160 ° C., in particular approximately 130 ° C. and 50 to 200 mbar, in particular 70 to 150 mbar largely completely freed from residual amounts of tetrahydrofuran.
  • the THF fraction obtained as a distillate which mainly consists of THF and, depending on the vapor pressure of the diols used, may still have small amounts of diol, can be recycled in whole or in part into the polymerization.
  • distillation residue from work-up stage b) before the transfer to work-up stage c) with alkanes, such as, for example, pentane, hexane, heptane or octane, as described in EP-A 153 794, by the content of to reduce cyclic oligomers.
  • alkanes such as, for example, pentane, hexane, heptane or octane, as described in EP-A 153 794
  • processing stage c) the distillation residue from processing stage b) is then converted into at least one further distillation stage at a pressure of 0.1 to 50 mbar, preferably 0.1 to 10 mbar, particularly preferably 0.1 to 5 mbar, and a 5th Temperature of 180 to 280 ° C, preferably 200 to 250 ° C, particularly preferably 230 to 250 ° C low molecular weight polytetrahydrofuran or low molecular weight tetrahydrofuran copolymers of an average molecular weight of 200 to 700 daltons separated and polytetrahydrofuran or tetrahydrofuran copolymers of an average
  • telogens 10 molecular weight from 650 to 5000 daltons.
  • diols used as telogens are almost completely distilled off from the product of value under the distillation conditions.
  • Simple evaporators such as thin-film evaporators, falling-film evaporators or short-path evaporators, can be used as distillation apparatus.
  • the low molecular weight polytetrahydrofuran and / or tetrahydrofuran copolymer of an average molecular weight of 200 to 700 daltons containing distillate of workup stage c) can, if desired, be wholly or partly fed into the polymerization.
  • PTHF and / or the THF copolymers with average molecular weights of 25,650 to 5,000 daltons are obtained as the distillation residue of work-up stage c).
  • Figure 1 shows a schematic representation of the implementation of the method according to the invention.
  • the average molecular weight (M n ) of the PTHF obtained was determined by gel permeation chromatography (GPC) and is defined by the equation
  • Mw and Mn were determined by GPC using a standardized PTHF for calibration.
  • the number average M n according to the equation was obtained from the chromatograms obtained
  • ci stands for the concentration of the individual polymer species i in the polymer mixture obtained and in Mi means the molecular weight of the individual polymer species i.
  • the catalyst was prepared by adding 124.7 kg of titanium dioxide (water content of 23.3% by weight), 25.5 kg of tungstic acid (H 2 WO 4 ) and 6.0 kg of tartaric acid to a solution of 146 kg of 87% Phosphoric acid (H 3 PO 4 ) in 45.5 kg water. This mixture was rolled for 0.5 hours, extruded into strands 4.5 mm in diameter and dried at 120 ° C. for 2 hours. The catalyst was then calcined at 690 ° C. for 3 hours. The catalyst had a tungsten content, calculated as wolf amtrioxide, of 20% by weight based on the total weight of the catalyst.
  • 1,4-butanediol-containing THF (feed) per hour were passed continuously over 28 kg of the W 3 / Ti O 2 catalyst prepared according to Example 1, which was arranged as a fixed bed in a 30 1-tube reactor ,
  • the feed contained 0.36% by weight of 1,4-butanediol, corresponding to a 1,4-butanediol supply of 25 g / h, and approximately 40 ppm of water.
  • the reactor was operated in circulation mode with a circulation at a circulation / feed ratio of 100: 1.
  • the reaction discharge of the polymerization reactor was passed at 60 ° C and a load of 2.8 kg feed / (1 * h) over activated carbon (Che viron Carbon; type CPG UF 8 x 30), which was in a 2.5 1 container Fixed bed was arranged.
  • the activated carbon-treated mixture was then passed into a distillation column with 32 theoretical plates via a side inlet. At a bottom temperature of 115 ° C. and a pressure of 1100 mbar, 0.08 kg of a THF / water mixture with a water content of approx. 2% by weight was separated off at the top of the column.
  • Example 2 The reaction conditions of Example 2 were maintained, but the amount of butanediol fed per hour in the polymerization was reduced from 25 g to 21.9 g. After working up the polymerization discharge as described in Example 2, PTHF with an average molecular weight M n 2900, a dispersity D of 2.3 and a color number of 5 APHA were obtained. The space-time yield was 18.6 g of PTHF 2900 / (1 * h), the THF conversion was 7.8%.
  • Example 4 Example 4
  • Example 2 The conditions of Example 2 were maintained, but the amount of butanediol recycled per hour was increased to 27 g. After working up the polymerization discharge as described in Example 2, PTHF with an average molecular weight Mn 1810, a dispersity D of 1.9 and a color number of 6 APHA were obtained. The space-time yield achieved was 10.3 g of PTHF 1810 / (1 * h), the THF conversion was 4.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

Gegenstand der vorliegenden Erfindung ist Verfahren zur einstufigen Herstellung von Polytetrahydrofuran und/oder Tetrahydrofuran-Copolymeren eines mittleren Molekulargewichts von 650 bis 5000 Dalton durch die Polymerisation von Tetrahydrofuran an einem sauren heterogenen Katalysator in Gegenwart mindestens eines Telogens und/oder Comonomers aus der Gruppe der alpha, omega Diole, Wasser, Polytetrahydrofuran eines Molekulargewichts von 200 bis 700 Dalton und/oder der cyclischen Ether, dadurch gekennzeichnet, dass a) die im Polymerisationsaustrag enthaltenen suspendierten und/oder gelösten Katalysatoranteile und/oder Katalysatorfolgeprodukte abgetrennt werden, b) aus dem erhaltenen katalysatorfreien Polymerisationsaustrag in mindestens einer Destillationsstufe eine Auftrennung in einen das Polymerisationsprodukt enthaltenden Destillationsrückstand und mindestens eine Tetrahydrofuranfraktion durchgeführt wird und die Tetrahydrofuranfraktion zumindest teilweise in die Polymerisation zurückgeführt wird und c) aus dem Destillationsrückstand der Aufarbeitungsstufe b) niedermolekulares Polytetrahydrofuran und/oder Tetrahydrofuran-Copolymere eines mittleren Molekulargewichts von 200 bis 700 Dalton abgetrennt wird und Polytetrahydrofuran und/oder Tetrahydrofuran-Copolymeren eines mittleren Molekulargewichts von 650 bis 5000 Dalton gewonnen wird.

Description

Verbessertes Verfahren zur einstufigen Herstellung von Polytetrahydrofuran und Tetrahydrofuran-Copolymeren
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Polytetrahydrofuran oder Tetrahydrofuran-Copolymeren durch Polymeri - sation von Tetrahydrofuran an einem sauren, heterogenen Katalysa- tor in Gegenwart mindestens eines Telogens und/oder Comonomers ausgewählt aus alpha, omega-Diolen, Wasser, Polytetrahydrofuran eines mittleren Molekulargewichts von 200 bis 700 Dalton und/oder cyclischen Ethern unter Rückführung mindestens einer Teilmenge des nicht umgesetzten Tetrahydrofurans .
Polytetrahydrofuran - im folgenden PTHF genannt - das auch als Polyoxybutylenglykol bekannt ist, wird in der Kunststoff- und Kunstfaserindustrie als vielseitiges Zwischenprodukt verwendet und dient unter anderem zur Herstellung von Polyurethan-, Poly- ester- und Polyamid-Elastomeren. Daneben ist es, wie auch einige seiner Derivate, in vielen Anwendungsfeidern ein wertvoller Hilfsstoff, so zum Beispiel als Dispergiermittel oder beim Entfärben (Deinken) von Altpapier.
PTHF wird technisch üblicherweise durch Polymerisation von Tetrahydrofuran - im folgenden kurz THF genannt - an geeigneten Katalysatoren hergestellt. Durch Zugabe geeigneter Reagenzien kann die Kettenlänge der Polymerketten gesteuert werden und so das mittlere Molekulargewicht auf den gewünschten Wert einge- stellt werden. Die Steuerung erfolgt dabei durch Wahl von Art und Menge des Telogens. Solche Reagenzien werden Kettenabbruchreagenzien oder "Telogene" genannt. Durch die Wahl geeigneter Telogene können zusätzlich funktioneile Gruppen an ein oder beiden Enden der Polymerkette eingeführt werden.
So können zum Beispiel durch Verwendung von Carbonsäuren oder Carbonsäureanhydriden als Telogene die Mono- oder Diester des PTHFs hergestellt werden, die anschließend durch Verseifung oder Umesterung in PTHF umgewandelt werden müssen. Man bezeichnet diese Verfahren daher als zweistufige PTHF-Verfahren.
Andere Telogene wirken nicht nur als Kettenabbruchreagenzien, sondern werden auch in die wachsende Polymerisatkette des PTHFs eingebaut. Sie haben nicht nur die Funktion eines Telogens, son- dern sind gleichzeitig ein Comonomer und können daher mit gleicher Berechtigung sowohl als Telogene wie auch als Comonomere bezeichnet werden. Beispiele für solche Comonomere sind Telogene mit zwei Hydroxygruppen wie die Diole (Dialkohole) . Dies können beispielsweise Ethylenglykol, Propylenglykol , Butylenglykol, 1, 3-Propandiol, 1, -Butandiol, 2-Butin-l, 4-diol, 1, 6-Hexandiol oder niedermolekulares PTHF sein. Weiterhin sind als Comonomere cyclische Ether wie 1, 2-Alkylenoxide, zum Beispiel Ethylenoxid oder Propylenoxid, 2-Methyltetrahydrofuran oder 3-Methyltetra- hydrofuran geeignet. Die Verwendung solcher Comonomere führt mit Ausnahme von Wasser, 1,4-Butandiol und niedermolekularem PTHF zur Herstellung von Tetrahydrofuran-Copolymeren - im folgenden THF- Copolymere genannt - und ermöglicht es auf dieser Weise, PTHF chemisch zu modifizieren.
Großtechnisch werden ganz überwiegend zweistufige Verfahren durchgeführt, bei denen Tetrahydrofuran z. B. in Gegenwart von Fluorsulfonsäure zu Polytetrahydrofuran-Estern polymerisiert und anschließend zu Polytetrahydrofuran hydrolysiert wird. Weiterhin wird Tetrahydrofuran z. B. mit Acetanhydrid in Gegenwart von sauren Katalysatoren zu Polytetrahydrofuran-Diacetat polymerisiert und anschließend z. B. mit Methanol zu Polytetra- hydrofuran umgeestert. Nachteilig an derartigen Verfahren ist, daß zweistufig gearbeitet werden muss und dass Nebenprodukte wie z. B. Flußsäure und Methylacetat anfallen.
Die einstufige Synthese von PTHF wird durch THF-Polymerisation mit Wasser, 1,4-Butandiol oder niedermolekularem PTHF als Telogen an sauren Katalysatoren durchgeführt. Als Katalysatoren sind sowohl homogene im ReaktionsSystem gelöste Systeme als auch heterogene, das heißt weitgehend ungelöste Systeme, bekannt.
EP-B-126 471 beschreibt wasserhaltige Heteropolysäuren, wie beispielsweise Wolframatophosphorsäure zur einstufigen PTHF-Syn- these mit Wasser als Telogen und EP-B-158 229 offenbart die gleichen Katalysatoren zur einstufigen PTHF-Synthese mit Diolen wie 1,4-Butandiol als homogene Katalysatoren. Unter den beschriebenen Reaktionsbedingungen bilden sich zwei flüssige Phasen aus, eine katalysatorhaltige Phase, in der sich neben THF die Hauptmenge der Heteropolysäure und des Wassers findet und eine organische Phase, die hauptsächlich THF, PTHF und Restmengen des Katalysators enthält. Da die Abtrennung des homogenen Katalysators auf- wendig ist, haben die heterogen katalysierten Verfahren zur einstufigen PTHF-Synthese sowie zur direkten Synthese von THF-Copo- lymeren an Bedeutung gewonnen.
Nach US-A 4 120 903 kann PTHF aus THF und Wasser mit Hilfe von supersauren Nafion®-Ionenaustauscherharzen hergestellt werden. DE-A 44 33 606 beschreibt unter anderem ein Verfahren zur Herstellung von PTHF, durch die Polymerisation von Tetrahydrofuran an einem heterogenen Katalysator in Gegenwart eines der Telogene Wasser, 1, 4-Butandiol, PTHF eines Molekulargewichts von 200 bis 5 700 Dalton oder Gemischen dieser Telogene, wobei der Katalysator ein Trägerkatalysator ist, der eine katalytisch aktive Menge einer Sauerstoffhaltigen Wolfram- oder Molybdänverbindung oder Gemische dieser Verbindungen auf einem oxidischen Trägermaterial enthält und nach Aufbringung der Vorläuferverbindungen der sauer- 0 stoffhaltigen Molybdän- und/oder Wolframverbindungen von 500°C bis 1000°C kalziniert worden ist. Aus DE-A 196 49 803 ist es bekannt/ die Aktivität der in der DE-A 44 33 606 beschriebenen Katalysatoren durch Promotoren zu steigern.
5 US-A 5 149 862 beschreibt sulfatdotiertes Zirkondioxid als sauren heterogenen Katalysator für die Polymerisation von Tetrahydrofuran.
Polytetrahydrofuran- und THF-Copolymer-Verkaufsprodukte müssen 0 ein bestimmtes mittleres Molekulargewicht, überwiegend im Bereich zwischen 650 und 5000 Dalton und eine enge Molgewichtsverteilung besitzen. Gleichzeitig dürfen sie bestimmte Farbzahl-Grenzwerte nicht übersteigen. So muß die Farbzahl unter 40, bevorzugt unter 20 APHA, liegen. 5
Nachteilig an den bekannten homogen oder heterogen-katalysierten Verfahren zur einstufigen Synthese von PTHF bzw. von THF-Copoly- eren ist es, dass sich nicht gleichzeitig alle vorstehend genannten, für die Verkaufsprodukte erforderlichen Eigenschaften 0 des PTHFs und/oder der THF-Copolymere verwirklichen lassen. So sind zahlreiche Nachbehandlungsverfahren zur Reinigung und Reduzierung der Farbzahl der PTHFs und/oder der THF-Copolymere bekannt, bei denen die aus der Polymerisation erhaltenen Produkte, beispielweise wie in der EP-A 424 791 mit Wasserstoff in Gegen- 5 wart eines Hydrierkatalysators, nachbehandelt werden.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein wirtschaftliches, einstufiges Verfahren zu finden, das es ermöglicht sowohl PTHF als auch THF-Copolymere mit enger Molgewichts - 0 Verteilung und geringer Farbzahl in hoher Raum-Zeit-Ausbeute und mit hoher Selektivität zu gewinnen.
Dementsprechend wurde ein Verfahren zur einstufigen Herstellung von Polytetrahydrofuran (PTHF) und/oder Tetrahydrofuran-Copolyme- 5 ren (THF-Copolymeren) durch die Polymerisation von Tetrahydrofuran an einem sauren heterogenen Katalysator in Gegenwart mindestens eines Telogens und/oder Comonomers aus der Gruppe der alpha, omega-Diole, Wasser, Polytetrahydrofuran eines Molekulargewichts von 200 bis 700 Dalton und/oder der cyclischen Ether gefunden, das dadurch gekennzeichnet ist, dass
a) die im Polymerisationsaustrag enthaltenen suspendierten und/ oder gelösten Katalysatoranteile und/oder Katalysatorfolge- Produkte abgetrennt werden,
b) aus dem erhaltenen katalysatorfreien Polymerisationsaustrag in mindestens einer Destillationsstufe eine Auftrennung in einen das Polymerisationsprodukt enthaltenden Destillations - rückstand und mindestens eine Tetrahydrofuranfraktion durchgeführt wird und die Tetrahydrofuranfraktion zumindest teilweise in die Polymerisation zurückgeführt wird und
c) aus dem Destillationsrückstand der Aufarbeitungsstufe b) niedermolekulares Polytetrahydrofuran oder Tetrahydrofuran- Copolymere eines mittleren Molekulargewichts von 200 bis 700 Dalton abgetrennt werden und PTHF und/oder THF-Copolymere eines mittleren Molekulargewichts von 650 bis 5000 Dalton gewonnen werden.
Das erfindungsgemäße Verfahren zur einstufigen Synthese von PTHF und THF-Copolymeren ermöglicht es ohne ein gesondertes Nachbe- handlungsverfahren sowohl PTHF als auch THF-Copolymere mit enger Molgewichtsverteilung und geringer Farbzahl in hoher Raum-Zeit- Ausbeute und mit hoher Selektivität zu gewinnen. Die Rückführung des abgetrennten Tetrahydrofurans trägt zur Wirtschaftlichkeit des erfindungsgemäßen Verfahrens bei.
Erfindungsgemäß wird zunächst ein Polymerisationsprodukt durch kationische Polymerisation von Tetrahydrofuran an einem sauren heterogenen Katalysator in Gegenwart mindestens eines Telogens und/oder Copolymers aus der Gruppe der alpha, omega-Diole, Was- ser, Polytetrahydrofuran eines Molekulargewichts von 200 bis 700 Dalton und/oder cyclischen Ethern hergestellt.
Als Polymerisationskatalysatoren werden dabei bevorzugt saure heterogene Katalysatoren verwendet, die Säurezentren der Säure- stärke Ho< +2 in einer Konzentration von mindestens 0,005 mmol/g Katalysator, besonders bevorzugt einer Säurestärke H0< +1,5 in einer Konzentration von mindestens 0,01 mmol/g Katalysator, aufweisen.
Als Polymerisationskatalysatoren können in dem erfindungsgemäßen Verfahren sulf tdotiertes Zirkondioxid, gewünschtenfalls durch Säurebehandlung aktivierte Schichtsilikate oder Zeolithe, alpha- Fluorsulfonsäuren enthaltende Polymere, Trägerkatalysatoren aus einem oxidischen Trägermaterial, die eine katalytisch aktive Menge einer Wolfram- oder MolybdänVerbindung oder Gemische solcher Verbindungen enthalten, verwendet werden, wobei Träger- katalysatoren aus einem oxidischen Trägermaterial, die eine katalytisch aktive Menge einer Wolfram- oder Molybdänverbindung oder Gemische solcher Verbindungen enthalten, bevorzugt sind.
Sulfatdotiertes Zirkoniumdioxid, das für das erfindungsgemäße Verfahren geeignet ist, kann beispielsweise nach dem in der US-A 5 149 862 beschriebenen Verfahren hergestellt werden.
Neben sulfatdotiertem Zirkoniumdioxid können auch alpha-Fluorsul - fonsäure enthaltende Polymere als Polymerisationskatalysator verwendet werden. Bevorzugt sind perfluorhaltige alpha-Fluorsul- fonsäure enthaltende Polymere, die zum Beispiel unter der Be- Zeichnung Nafion von der Firma E.I. du Pont de Nemours and Company als Handelsprodukt vertrieben werden.
Geeignete Trägerkatalysatoren aus einem oxidischen Träger- material, die Sauerstoffhaltige Molybdän- oder Wolframverbindungen oder Gemische solcher Verbindungen als katalytisch aktive Verbindungen enthalten und die weiterhin gewünschtenfalls zusätzlich mit Sulfat- oder Phosphatgruppen dotiert sein können, sind in der DE-A 44 33 606, auf die hier ausdrücklich Bezug genommen wird, beschrieben. Diese Katalysatoren können wie in der DE 19641481 auf die hier ausdrücklich Bezug genommen wird, mit einem Reduktionsmittel, bevorzugt mit Wasserstoff, vorbehandelt werden.
Weiterhin sind die in der deutschen Patentanmeldung DE 19649803, auf die hier ausdrücklich Bezug genommen wird, beschriebenen Trägerkatalysatoren geeignet, die als Aktivmasse eine katalytisch aktive Menge mindestens einer Sauerstoffhaltigen Molybdän- und/ oder Wolframverbindung enthalten und die nach Aufbereitung der Vorläuferverbindungen der Aktivmasse auf den Trägermaterial- Vorläufer bei Temperaturen von 500°C bis 1000°C kalziniert worden sind, die einen Promotor enthalten, welcher mindestens ein Element oder eine Verbindung eines Elements der 2., 3. einschließ - lieh der anthaniden, 5., 6., 7., 8. oder 14. Gruppe des Periodensystems der Elemente umfaßt. Diese Katalysatoren enthalten im allgemeinen 0,01 bis 30 Gew.-%, vorzugsweise 0,05 bis 20 Gew.-% und besonders bevorzugt 0,1 bis 15 Gew.-% an Promotor, berechnet als Summe seiner Bestandteile in Form ihrer Elemente und bezogen auf das Gesamtgewicht des Katalysators. Die aus der DE-A 44 33 606 und der DE 196 49 803 bekannten erfindungsgemäß anwendbaren Katalysatoren enthalten im allgemeinen 0,1 bis 50 Gew.-% der katalytisch aktiven, Sauerstoffhaltigen Verbindungen des Molybdäns oder Wolframs oder der Gemische der katalytisch aktiven, Sauerstoffhaltigen Verbindungen dieser Metalle, jeweils bezogen auf das Gesamtgewicht des Katalysators und da die chemische Struktur der katalytisch aktiven, sauer- stoffhaltigen Verbindungen des Molybdäns und/oder Wolframs bislang nicht genau bekannt ist, jeweils berechnet als M0O3 bzw. WO3.
In der parallelen deutschen Anmeldung "Katalysator und Verfahren zur Herstellung von Polytetrahydrofuran" mit gleichem Anmeldetag sind erfindungsgemäß anwendbare Katalysatoren, die auf einem oxidischen Träger mindestens eine katalytisch aktive, Sauerstoff - haltige Molybdän- und/oder Wolframverbindung enthalten beschrieben, bei denen der Gehalt an Molybdän und/oder Wolfram, bezogen auf den bei 400°C unter Stickstoff getrockneten Katalysator, x μmol (Wolfram und/oder Molybdän) /m2 Oberfläche mit 10,1 < x < 20,9 beträgt. Durch die gezielte Einstellung des Verhältnisses des Wolfram und/oder Molybdän-Gehaltes zur BE -Oberfläche konnte die Katalysatoraktivität deutlich gesteigert werden.
Weiterhin sind in der zweiten parallelen deutschen Anmeldung "Verbesserter Katalysator und Verfahren zur Herstellung von Poly- tetrahydrofuran" mit gleichem Anmeldetag erfindungsgemäß anwendbare Katalysatoren, die auf einem oxidischen Träger mindestens eine katalytisch aktive, sauerstoffhaltige Molybdän- und/oder Wolframverbindung enthalten und die nach Aufbringen der Vorläuferverbindungen der katalytisch aktiven Verbindungen auf das Trägermaterial oder einen Trägermaterial-Vorläufer bei Temperaturen von 400°C bis 900°C kalziniert worden sind, beschrieben, welche eine Porosität des Katalysators mit Transportporen jeweils eines Durchmessers von < 25 im und ein Volumen dieser Transport- poren von mindestens 50 mm3/g aufweisen.
Die in diesen beiden parallelen Anmeldungen beschriebenen Katalysatoren enthalten 0,1 bis 70 Gew. -%, vorzugsweise 5 bis 40 Gew. -% und besonders bevorzugt 10 bis 35 Gew. -% der katalytisch aktiven sauerstoffhaltigen Molybdän- und/oder Wolfram- Verbindung (en) , berechnet als M0O3 und/oder WO3 und bezogen auf das Gesamtgewicht des Katalysators.
Geeignete oxidische Träger für die sauerstoffhaltigen Molybdänoder Wolframverbindungen oder Gemische solcher Verbindungen als katalytisch aktive Verbindungen enthaltenden Katalysatoren sind z.B. Zirkoniumdioxid, Titandioxid, Hafniumoxid, Yttriumoxid, Eisen (III) oxid, Aluminiumoxid, Zinn (IV) oxid, Siliziumdioxid, Zink- oxid oder Gemische dieser Oxide. Besonders bevorzugt sind Zirkoniumdioxid, Titandioxid und/oder Siliciumdioxid, insbesondere bevorzugt ist Titandioxid.
Neben den vorstehend genannten Polymerisationskatalysatoren können in dem erfindungsgemäßen Verfahren gewünschtenfalls durch Säurebehandlung aktivierte Schichtsilikate oder Zeolithe als heterogener Katalysator eingesetzt werden. Als Schichtsilikate werden bevorzugt solche der Montmorillonit-Saponit-, Kaolin-Serpen- tin- oder Palygorskit-Sepiolith-Gruppe, besonders bevorzugt Mont- morillonit, Hectorit, Kaolin, Attapulgit oder Sepiolith, wie sie beispielsweise in Klockmanns Lehrbuch der Mineralogie, 16. Auflage, F. Euke Verlag 1978, Seiten 739 - 765 beschrieben werden, verwendet .
In dem erfindungsgemäßen Verfahren können zum Beispiel solche Montmorillonite eingesetzt werden, wie sie unter der Bezeichnung Tonsil®, Terrana® oder Granosil® oder als Katalysatoren der Typen Tonsil® K 10, KSF-0, KO oder KS bei der Firma Süd-Chemie AG, München, erhältlich sind. Für die Verwendung in dem erfindungs - gemäßen Verfahren geeignete Attapulgite werden beispielsweise von der Firma Engelhard Corporation, Iselin, USA, unter den Handelsbezeichnungen Attasorb® RVM und Attasorb® LVM vertrieben.
Als Zeolithe wird eine Klasse von Aluminiumhydrosilikaten bezeichnet, die aufgrund ihrer besonderen chemischen Struktur im Kristall dreidimensionale Netzwerke mit definierten Poren und Kanälen ausbildet. Für das erfindungsgemäße Verfahren sind natürliche oder synthetische Zeolithe geeignet, wobei Zeolithe mit einem Siθ2-Al2θ3-Molverhältnis von 4:1 bis 100:1 bevorzugt, mit einem Siθ2-Al2θ3-Molverhältnis 6:1 bis 90:1 besonders bevorzugt und mit einem Siθ2-Al2θ3-Molverhältnis 10:1 bis 80:1 insbesondere bevorzugt sind. Die Primärkristallite dieser Zeolithe haben bevorzugt eine Teilchengröße von bis zu 0,5 μm, vorzugsweise von 0,1 μm und besonders bevorzugt 0,05 μ .
Die in dem erfindungsgemäßen Verfahren einsetzbaren Zeolithe werden in der sogenannten H-Form eingesetzt. Diese ist dadurch gekennzeichnet, daß im Zeolith azide OH-Gruppen vorliegen. Falls die Zeolithe nicht schon bei ihrer Herstellung in H-Form anfallen, können sie leicht durch Säurebehandlung mit zum Beispiel Mineralsäuren wie Salzsäure, Schwefelsäure, Phosphorsäure oder durch thermische Behandlung geeigneter Vorlaufer-Zeolithe, die zum Beispiel Ammoniumionen enthalten, beispielsweise durch Erhit- zen auf Temperaturen von 450 bis 600°C, vorzugsweise 500 bis 550°C, in die katalytisch aktive H-Form umgewandelt werden. Die erfindungsgemäß anwendbaren heterogenen Katalysatoren können in Form von Pulver, beispielsweise bei der Durchführung des Verfahrens in Suspensionsfahrweise, oder zweckmäßigerweise als Formkörper, z.B. in Form von Zylindern, Kugeln, Ringen, Spiralen oder 5 Splitt, insbesondere bei einer Festbettanordnung des Katalysators, im erfindungsgemäßen Verfahren eingesetzt werden, wobei der Einsatz als Formkörper im Festbett bevorzugt ist.
Als Monomer kann grundsätzlich jedes beliebige THF eingesetzt 10 werden. Bevorzugt wird jedoch handelsübliches durch Säurebehandlung, wie beispielweise in der EP-A 003 112 beschrieben, oder destillativ vorgereinigtes THF eingesetzt.
Als Telogene und/oder Comonomere eignen sich in dem erfindungs - 15 gemäßen Verfahren gesättigte oder ungesättigte, unverzweigte oder verzweigte alpha, omega-C2- bis Cι2-Diole, Wasser, Polytetrahydrofuran eines Molekulargewichts von 200 bis 700 Dalton, cyclische Ether oder deren Gemische.
20 Als Telogene zur Herstellung von PTHF und THF-Copolymeren dienen bevorzugt Wasser, Ethylenglykol, 1, 3-Propandiol, 1, -Butandiol, 1, 5-Pentandiol, 1, 6-Hexandiol, Polytetrahydrofuran eines Molekulargewichts von 200 bis 700 Dalton, 1, 8-Octandiol, 1,10-Decan- diol, 2-Butin-l, 4-diol und Neopentylglykol oder deren Gemische,
25 wobei Wasser, 1, 4-Butandiol und/oder Polytetrahydrofuran eines Molekulargewichts von 200 bis 700 Dalton besonders bevorzugt sind. Als Comonomere sind cyclische Ether, die sich ringöffnend polymerisieren lassen, bevorzugt dreigliedrige, vier- und fünf- gliedrige Ringe wie 1, 2-Alkylenoxide, zum Beispiel Ethylenoxid
30 oder Propylenoxid, Oxetan, substituierte Oxetane wie 3,3-Dime- thyloxetan, die THF-Derivate 2-Methyltetrahydrofuran oder 3-Methyltetrahydrofuran, geeignet, wobei 2-Methyltetrahydrofuran oder 3-Methyltetrahydrofuran besonders bevorzugt sind.
35 Das Telogen wird zweckmäßigerweise gelöst im THF der Polymerisation zugeführt, wobei ein Telogengehalt von 0,04 bis 17 mol-%, bezogen auf Tetrahydrofuran, bevorzugt ist. Comonomere werden ebenfalls zweckmäßigerweise gelöst in THF der Polymerisation zugeführt, wobei der Comonomerengehalt bis zu 30 mol-%, bevorzugt
40 20 mol-%, bezogen auf Tetrahydrofuran, betragen kann. Es ist jedoch auch möglich dem Polymerisationsreaktor THF und das Telogen und/oder das Comonomer getrennt zuzuführen. Da das Telogen den Abbruch der Polymerisation bewirkt, läßt sich über die eingesetzte Telogenmenge das mittlere Molekulargewicht des PTHF oder
45 der THF-Copolymere steuern. Je mehr Telogen im Reaktionsgemisch enthalten ist, desto niedriger wird das mittlere Molekulargewicht des PTHF oder der betreffenden THF-Copolymere. Je nach Telogen- gehalt der Polymerisationsmischung können PTHF und THF-Copolymere mit mittleren Molekulargewichten von 650 bis 5000 Dalton, bevorzugt von 650 bis 3000 Dalton und insbesondere bevorzugt von 1000 bis 3000 Dalton hergestellt werden.
Die Polymerisation wird im allgemeinen bei Temperaturen von 0 bis 80°C, bevorzugt bei 25 bis 75 °C, und besonders bevorzugt bei 40 bis 70°C durchgeführt. Der angewandte Druck ist in der Regel für das Ergebnis der Polymerisation unkritisch, weshalb im allge- meinen bei Atmosphärendruck oder unter dem Eigendruck des Polymerisationssystems gearbeitet wird.
Zur Vermeidung der Bildung von Etherperoxiden wird die Polymerisation vorteilhaft unter einer Inertgasatmosphäre vollzogen. Als Inertgase können z.B. Stickstoff, Kohlendioxid oder die Edelgase dienen, bevorzugt wird Stickstoff verwendet.
Die Polymerisation kann auch in Gegenwart von Wasserstoff bei Wasserstoffdrucken von 0,1 bis 10 bar durchgeführt werden.
Das erfindungsgemäße Verfahren wird bevorzugt mit all seinen Stufen kontinuierlich betrieben. Es ist jedoch auch möglich die Polymerisationstufe und/oder eine, mehrere oder alle der Aufarbeitungsstufen des erfindungsgemäßen Verfahrens diskontinuierlich zu betreiben, wobei jedoch bevorzugt zumindest die Polymerisation kontinuierlich betrieben wird.
Dabei kann die Umsetzung in herkömmlichen für kontinuierliche Verfahren geeigneten Reaktoren oder Reaktoranordnungen in Suspensions- oder Festbettfahrweise, beispielsweise in Schlaufenreaktoren oder Rührreaktoren bei Suspensionsfahrweise oder bei Festbettfahrweise in Rohrreaktoren oder Festbettreaktoren ausgeführt werden, wobei die Festbettfahrweise bevorzugt ist.
Zum Betrieb des kontinuierlichen Polymerisationsreaktors oder der Polymerisationsreaktoranordnung kann der Katalysator gewünschten- falls nach dem Einfüllen in den Reaktor vorbehandelt werden. Als Vorbehandlung des Katalysators kommen beispielweise das Trocknen mit auf 80-200°C, bevorzugt auf 100 bis 150°C, erwärmten Gasen wie zum Beispiel Luft oder Stickstoff oder die Vorbehandlung mit einem Reduktionsmittel, wie dies in der DE 196 41 481 für die erfindungsgemäß bevorzugten Trägerkatalysatoren, welche als Aktivmasse eine katalytisch aktive Menge mindestens einer sauerstoffhaltigen Molybdän- und/oder Wolframverbindung enthalten, beschrieben ist, in Frage. Selbstverständlich kann der Katalysator jedoch auch ohne Vorbehandlung eingesetzt werden. In der bevorzugten Festbettfahrweise kann der Polymerisations- reaktor in Sumpffahrweise, d.h. das Reaktionsgemisch wird von unten nach oben geführt, oder in Rieselfahrweise, d.h. das Reaktionsgemisch wird von oben nach unten durch den Reaktor geführt, betrieben werden. Das Eduktgemisch (Feed) aus THF und Telogen und/oder Comonomer wird dem Polymerisationsreaktor kontinuierlich zugeführt, wobei die Katalysatorbelastung 0,05 bis 0,8 kg THF/(l-h), bevorzugt 0,1 bis 0,6 kg THF/(l-h) und besonders bevorzugt 0,15 bis 0,5 kg THF/(l-h), beträgt.
Weiterhin kann der Polymerisationsreaktor im geraden Durchgang, das heißt ohne Produktrückführung, oder im Umlauf, das heißt das den Reaktor verlassende Polymerisationsgemisch wird dabei im Kreislauf betrieben werden. Bei der Umlauffahrweise beträgt das Verhältnis von Umlauf zu Zulauf kleiner oder gleich 100 : 1, bevorzugt kleiner 50 : 1 und besonders bevorzugt kleiner 40 : 1.
Die Konzentration des alpha, omega-Diols, Wassers, Polytetra- hydrofurans mit einem mittleren Molekulargewicht von 200 bis 700 Dalton oder von deren Gemisch in dem dem Polymerisationsreaktor zugeführten Eduktgemisch (Feed) liegt zwischen 0,02 bis 20 mol%, bevorzugt bei 0,05 bis 15 mol%, besonders bevorzugt bei 0,1 bis 10 mol%, bezogen auf das eingesetzte THF.
Wurde die Polymerisation in Suspensionsfahrweise durchgeführt, ist es zur Aufarbeitung des Polymerisationsaustrags erforderlich den überwiegenden Teil des Polymerisationskatalysator beispielweise durch Filtration, Dekantieren oder Zentrifugieren vom Polymerisationsgemisch abzutrennen und den erhaltenen Polymerisati- onsaustrag Aufarbeitungsstufe a) zuzuführen. In der bevorzugten Festbettfahrweise wird der Polymerisationsaustrag direkt Aufarbeitungsstufe a) zugeführt.
Aus dem erhaltenen Polymerisationsaustrag, der überwiegend aus PTHF und/oder THF-Copolymeren, niedermolekularem PTHF und/oder THF-Copolymeren, Wasser, nichtumgesetztem Diol und/oder cycli- schem Ether und THF besteht, werden bevorzugt sodann in Aufarbeitungsstufe a) des erfindungsgemäßen Verfahrens die enthaltenen suspendierten und/oder gelösten Katalysatoranteile und/oder Kata- lysatorfolgeprodukte abgetrennt.
Es ist jedoch prinzipiell auch möglich die Abtrennung der suspendierten und/oder gelösten Katalysatoranteile und/oder Katalysatorfolgeprodukte erst nach der destillativen Auftrennung des Po- lymerisationsaustrags in einen das Polymerisationsprodukt enthaltenden Destillationsrückstand und mindestens eine Tetrahydrofuranf aktion, also nach Aufarbeitungsstufe b) , durchzuführen, wobei in diesem Fall die Abtrennung der Katalysatoranteile und/ oder Katalysatorfolgeprodukte bevorzugt nach der ersten Destillationsstufe erfolgt.
Bei den in Aufarbeitungsstufe a) abgetrennten suspendierten und/ oder gelösten Katalysatoranteilen und/oder Katalysatorfolgeprodukten handelt es sich zum Beispiel um feinteiligen, suspendierten oder emulgierten Katalysator-Abrieb, der aus unverändertem Katalysator, dem Katalysator-Träger und/oder der Katalysator-Ak- tivkomponente besteht. Im Falle der Trägerkatalysatoren aus einem oxidischen Trägermaterial, die sauerstoffhaltige Molybdän- oder Wolframverbindungen oder Gemische solcher Verbindungen als katalytisch aktive Verbindungen enthalten, handelt es sich demnach um unveränderten Katalysator, um Trägeranteile und/oder die sauer- Stoffhaltigen Molybdän- oder Wolfram-Aktivkomponenten. Unter Katalysator-Folgeprodukten sind zum Beispiel gelöste Kationen oder Anionen der Aktivkomponenten, wie z. B. Wolfram- oder Molybdän- Kationen, oder Molybdat- oder Wolframat-Anionen zu verstehen. Im Falle von Sulfonsäuregruppen enthaltenden Ionentauschern wie Nafion® kann es sich um Fluoridionen und/oder Sulfonsäuren, im Fall von sulfatdotierten Metalloxiden um Schwefelsäure und/oder Metall-Kationen oder -Anionen handeln.
Obwohl die Menge an derartigen Katalysator-Anteilen und/oder Ka- talysator-Folgeprodukten gering ist und in der Regel 0,1 Gew.-%, im allgemeinen 0,01 Gew.-%, bezogen auf den Polymerisations-Aus - trag, nicht übersteigt, wurde erfindungsgemäß erkannt, daß sie abgetrennt werden müssen. Sie würden sonst nach der Abtrennung von nicht umgesetztem THF im PTHF verbleiben und die Kennzahlen und damit auch die Eigenschaften des PTHF verändern.
Die Abtrennung der Katalysator-Anteile und/oder Katalysatorfolgeprodukte aus dem Polymerisationsaustrag kann durch Filtration, wie zum Beispiel Ultrafiltration, Adsorption an festen Adsorpti- onsmitteln und/oder mit Hilfe von Ionentausehern erfolgen wobei Filtration und Adsorption an festen Adsorptionsmitteln bevorzugt ist.
Die Adsorption an den genannten festen Adsorptionsmitel kann auch mit einer Neutralisation des Polymerisationsaustrags mit Säuren oder Basen kombiniert werden.
Die Adsorption erfolgt bevorzugt an Aktivkohle und/oder Metall- oxiden und/oder Ionentauschern bei Temperaturen von 25 bis 75 °C, bevorzugt bei 30 °C bis 70 °C. Besonders bevorzugt erfolgt die Abtrennung in Aufarbeitungsstufe a) an Ionenaustauschern und/ oder Aktivkohle. Als Metalloxide finden bevorzugt Natrium- hydroxid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkondioxid, Lanthanoxid und/oder Calciumoxid Verwendung.
Geignete Aktivkohle kann beispielsweise von der Firma Merck, Darmstadt oder in Form des Handelsproduktes Aktivkohle Typ CPG UF 8x30 von der Firma Chemviron Carbon bezogen werden.
Geeignete lonentauscher sind beispielsweise Anionentauscher wie das Handelsprodukt Lewatit MP 600, der von der Firma Bayer AG, Leverkusen, bezogen werden kann, gemischte lonentauscher wie zum Beispiel das Handelsprodukt Serdolit ®, das von der Firma Serva,
Heidelberg bezogen werden kann, oder Molekularsiebe mit Porengrößen von 3 bis 10 Ä.
Die erfindungsgemäße Abtrennung der Katalysator-Anteile und/oder Katalysatorfolgeprodukte durch Adsorption an festen Adsorptions- mitteln wird bevorzugt im Festbett bei einer Belastung von im allgemeinen 0,2 bis 5 kg/(l*h), insbesondere 0,4 bis 4 kg/(l*h) (kg Polymerisationsaustrag pro 1 Adsorptionsmittel pro Stunde) , verwendet .
Die Aufarbeitungsstufe b) kann sowohl diskontinuierlich als auch kontinuierlich, bevorzugt kontinuierlich betrieben werden. Sie dient der weitgehenden bis vollständigen destillativen Abtrennung des nichtumgesetzten Tetrahydrofurans von PTHF bzw. von den THF- Copolymeren. Die THF-Abtrennung in der Aufarbeitungsstufe b) kann prinzipiell in einer Destillationsstufe, bevorzugt jedoch in mehreren, bevorzugt zwei oder drei Destillationsstufen durchgeführt werden, wobei man vorteilhaft bei unterschiedlichen Drucken arbeitet.
Die Ausgestaltung der Aufarbeitungsstufe b) des erfindungsgemäßen Verfahrens ist abhängig vom Telogen, das in der Polymerisation verwendet wird. Je nach Trennaufgabe kommen als Destillationsapparate geeignete Kolonnen oder Verdampfer wie z.B. Fallfilmverdampfer oder Dünnschichtverdampfer in Frage. Vorteilhaft können auch Trennblechkolonnen eingesetzt werden.
Für den Einsatz von THF und Wasser als Telogen in der Polymerisation sind mögliche Aufarbeitungsvarianten der Stufe b) im folgenden näher erläutert.
Die Abtrennung der Hauptmenge an nicht-umgesetztem THF bei Normaldruck wird in einer kontinuierlich betriebenen Destillations - kolonne durchgeführt. Hierzu wird der mit Wasser als Telogen in Aufarbeitungsstufe a) erhaltene katalysatorfreie Polymerisationsaustrag, der einen Polymergehalt von üblicherweise 2 bis 25 % und Wassergehalte von max. ca. 300 ppm Wasser enthält, über einen seitlichen Zulauf in eine Destillationkolonne gefahren. Bei einer Kopfteperatur von 66 bis 67°C und einer Sumpftemperatur von 100 bis 200°C, bevorzugt 120 bis 180°C, wird die Hauptmenge an Wasser im Gemisch mit Tetrahydrofuran über Kopf abdestilliert. Die als Destillat anfallende Tetrahydrofuranfraktion wird kondensiert und anschließend ganz oder teilweise in die Polymerisation zurückgeführt. Das im Sumpf der Kolonne als Destillationsrückstand anfallende THF/PTHF-Gemisch enthält je nach gewählter Sump - temperatur ca. 2 bis 20 Gew.-% THF und üblicherweise bis max. ca. 300 ppm Wasser, jeweils bezogen auf das THF/PTHF-Gemisch.
Alternativ kann die Abtrennung der Hauptmenge an nicht-umgesetz- tem THF bei Normaldruck auch in einem Dünnschichtverdamp er, bevorzugt in einem Fallfilmverdamp er mit Umlauf durchgeführt werden, der bei 100 bis 200°C, bevorzugt 120 - 180°C betrieben wird. Die Zusammensetzung der als Destillat anfallenden Tetrahydrofuranfraktion und des als Destillationsrückstand anfallenden THF/PTHF-Gemischs entspricht der oben beschriebenen.
Der aus der ersten Destillationsstufe anfallende Destillations - rückstand wird anschließend im Vakuum bevorzugt in einem Fall- filmverdampfer bei 120 bis 160 °C, insbesondere ca. 130 °C und 50 bis 200 rabar, insbesondere 70 bis 150 mbar weitgehend vollständig von Restmengen an Tetrahydrofuran befreit. Die hierbei als Destillat anfallende THF-Fraktion, die überwiegend aus THF besteht, kann ganz oder teilweise in die Polymerisation zurückgeführt werden.
Für den Einsatz von THF und Diolen als Telogenen in der Polymerisation kommen folgende Aufarbeitungsvarianten der Stufe b) in Frage. Es wurde erfindungsgemäß erkannt, dass der Wassergehalt des Polymerisationsaustrags bei Einsatz von Diolen als Telogene in der Polymerisation üblicherweise höher ist, als der Wasserge- halt des Feeds . In den Aufarbeitungsvarianten sind daher Aus- schleusungsmöglichkeiten für Wasser berücksichtigt.
Die Abtrennung der Hauptmenge an nicht-umgesetztem THF bei Normaldruck und Ausschleusung der Hauptmenge Wasser kann in einer kontinuierlich betriebenen Destillationskolonne, bevorzugt in einer Trennblechkolonne durchgeführt werden. Hierzu wird der mit Diolen als Telogene in Aufarbeitungsstufe a) erhaltene katalysatorfreie Polymerisationsaustrag, der einen Polymergehalt von üblicherweise 2 bis 25 % und Wassergehalte von max. ca. 500 ppm enthält, über einen seitlichen Zulauf in eine Destillationkolonne gefahren. Bei einer Kopf emperatur von ca. 66 bis 67°C und einer Sumpftemperatur von 100 bis 200 °C, bevorzugt 120 bis 180°C erfolgt in der Kolonne eine Auftrennung des katalysatorfreien Polymerisationsaustrags in ein THF-Wasser-Gemisch als Kopf- produkt, das die Hauptmenge an Wasser in einer Konzentration von max. ca. 5 % enthält. Im Seitenabzug fällt eine THF-Fraktion, die die Hauptmenge an THF enthält, weitgehend wasserfrei ist und im allgemeinen weniger als 100 ppm, bevorzugt < 50 ppm Wasser enthält, und daher ganz oder teilweise in die Polymerisation zurückgeführt werden kann. Als Destillationsrückstand fällt im Sumpf der Kolonne ein THF/PTHF-Gemisch an, das je nach gewählter Sumpf - temperatur ca. 2 bis 20 Gew.-% THF enthält und einen Wassergehalt von max. ca. 100 ppm aufweist.
Alternativ kann die Abtrennung der Hauptmenge an nicht-umgesetz- tem. THF bei Normaldruck auch in einem Dünnschichtverdampfer, bevorzugt in einem Fallfilmverdampfer mit Umlauf durchgeführt werden, der bei 100 bis 200°C, bevorzugt 120 - 180°C betrieben wird. Der unter a) erhaltene katalysatorfreie Polymerisationsaustrag wird hierbei in eine wasserenthaltende THF-Fraktion als Destillat und ein THF/Diol/PTHF-Gemisch als Destillationsrückstand getrennt. Die wasserenthaltende THF-Fraktion kann anschließend in einer Destillationskolonne bevorzugt bei Normaldruck und bei ca. 63 bis 65°C Kopftemperatur und ca. 70°C Sumpftemperatur in ein THF/Wasser-Gemisch mit einem max. Wassergehalt von ca. 5 % als Destillat und eine weitgehend wasserfreie Tetrahydrofuran-Frak- tion als Destillationsrückstand, als Sumpf- oder Seitenabzug der Kolonne getrennt werden. Diese weitgehend wasserfreie THF-Fraktion kann ganz oder teilweise in die Polymerisation zurückgeführt werden.
Das nach der jeweils ersten Destillationsstufe als Destillations- rückstand anfallende THF/Diol/PTHF-Gemisch wird anschließend im Vakuum bevorzugt in einem Fallfilmverdampfer bei 120 bis 160 °C, insbesondere ca. 130 °C und 50 bis 200 mbar, insbesondere 70 bis 150 mbar weitgehend vollständig von Rest-Mengen an Tetrahydro- furan befreit. Die hierbei als Destillat anfallende THF-Fraktion, die überwiegend aus THF besteht und je nach Dampfdruck der eingesetzten Diole noch geringe Diol-Mengen aufweisen kann, kann ganz oder teilweise in die Polymerisation zurückgeführt werden.
Es ist weiterhin gewünschtenfalls möglich, den Destillationsrückstand der Aufarbeitungsstufe b) vor der Überführung in Aufarbeitungsstufe c) mit Alkanen, wie beispielsweise Pentan, Hexan, Heptan oder Octan, zu extrahieren wie dies in der EP-A 153 794 beschrieben ist, um den Gehalt an cyclischen Oligomeren zu redu- zieren. In Aufarbeitungsstufe c) wird aus dem Destillationsrückstand der Aufarbei ungsstufe b) sodann in mindestens einer weiteren Destillationsstufe bei einem Druck von 0,1 bis 50 mbar, bevorzugt 0,1 bis 10 mbar, besonders bevorzugt 0,1 bis 5 mbar, und einer 5 Temperatur von 180 bis 280 °C, bevorzugt 200 bis 250 °C, besonders bevorzugt 230 bis 250 °C niedermolekulares Polytetrahydrofuran oder niedermolekulare Tetrahydrofuran-Copolymere eines mittleren Molekulargewichts von 200 bis 700 Dalton abgetrennt und Polytetrahydrofuran oder Tetrahydrofuran-Copolymeren eines mittleren
10 Molekulargewichts von 650 bis 5000 Dalton gewonnen. Üblicherweise werden unter den Destillationsbedingungen die als Telogene eingesetzten Diole praktisch vollständig vom Wertprodukt abdestilliert. Als Destillationsapparate können einfache Verdampfer, wie Dünnfilmverdampfer, Fallfilmverdampfer oder Kurzweg-
15 destillationsapparaturen eingesetzt werden.
Das niedermolekulare Polytetrahydrofuran und/oder Tetrahydrofu- ran-Copolymer eines mittleren Molekulargewichts von 200 bis 700 Dalton enthaltende Destillat der Aufarbeitungsstufe c) kann 20 gewünschtenfalls ganz oder teilweise in den Polymerisation zugeführt werden.
Als Destillationsrückstand der Aufarbeitungsstufe c) wird PTHF und/oder die THF-Copolymere mit mittleren Molekulargewichten von 25 650 bis 5000 Dalton erhalten.
Beispiele
Die Erfindung wird im weiteren anhand von Beispielen sowie unter 30 Bezugnahme auf eine Zeichnung näher erläutert. Abbildung 1 (Abb. 1) zeigt eine schematische Darstellung der Durchführung des erfindungsgemäßen Verfahrens.
Molekulargewichtsbestimmung 35
Das mittlere Molekulargewicht (Mn) des erhaltenen PTHF wurde durch Gelpermeationschromatographie (GPC) ermittelt und ist definiert durch die Gleichung
40 Mn = ∑ci / Σ (ci / i) ,
in der c für die Konzentration der einzelnen Polymerspezies i im erhaltenen Polymergemisch steht und in der Mi das Molekulargewicht der einzelnen Polymerspezies i bedeutet. 45 Die Dispersität D als Maß für die Molekulargewichtsverteilung der gemäß den Beispielen hergestellten Polymeren wurde aus dem Verhältnis von Gewichtsmittel des Molekulargewichts (Mw) und Zahlenmittel des Molekulargewichts (Mn) nach der Gleichung
D = Mw / Mn
errechnet. Mw und Mn wurden mittels GPC bestimmt, wobei ein standardisiertes PTHF zur Eichung verwendet wurde. Aus den erhaltenen Chromatogrammen wurde das Zahlenmittel Mn nach der Gleichung
Mn = ∑ci / Σ (Ci / Mi)
und das Gewichtsmittel Mw nach der Gleichung
Mw = (Σ (ci* Mi)) / ∑ci
berechnet, in der ci für die Konzentration der einzelnen Polymer- species i im erhaltenen Polymergemisch steht und in der Mi das Mo- lekulargewicht der einzelnen Polymerspecies i bedeutet.
Bestimmung der Farbzahl
Die Bestimmung der Farbzahl wird in den Normen DIN 53409 und ASTM-D-1209 beschrieben.
Beispiel 1: Herstellung des Katalysators
Der Katalysator wurde hergestellt durch Zugabe von 124,7 kg Titandioxid (Wassergehalt von 23,3 Gew.-%), 25,5 kg Wolframsäure (H2WO4) und 6,0 kg Weinsäure zu einer Lösung von 146 kg 87%iger Phosphorsäure (H3PO4) in 45,5 kg Wasser. Diese Mischung wurde 0,5 Stunden gekollert, in Strängen von 4,5 mm Durchmesser extrudiert und 2h bei 120°C getrocknet. Anschließend wurde der Katalysator 3 h bei 690°C calciniert. Der Katalysator hatte einen Wolframgehalt, berechnet als Wolf amtrioxid, von 20 Gew.-% bezogen auf das Gesamtgewicht des Katalysators.
Beispiele 2 bis 4: Einstufige kontinuierliche Herstellung von PTHF 1800, PTHF 2000 und PTHF 2900
Die Versuchsdurchführung der Beispiele 2, 3 und 4 erfolgte nach dem in Abb. 1 dargestellten Schema. Alle Verfahrensschritte wurden mit 2 als Schutzgas durchgeführt. Beispiel 2
Bei 60 °C wurden kontinuierlich 7 kg 1,4-Butandiol-haltiges THF (Feed) pro Stunde über 28 kg des nach Beispiel 1 hergestellten Wθ3/Tiθ2~Katalysators, der als Festbett in einem 30 1-Rohrreaktor angeordnet war, geleitet. Der Feed enthielt 0,36 Gew.-% 1.4-Butandiol, entsprechend einer 1, 4-Butandiolzufuhr von 25 g/h, und ca. 40 ppm Wasser. Der Reaktor wurde in Sumpffahrweise mit Umlauf bei einem Umlauf/Zulauf-Verhältnis von 100 : 1 betrieben.
Der Reaktionsaustrag des Polymerisationsreaktors wurde bei 60 °C und einer Belastung von 2,8 kg Feed / (1 * h) über Aktivkohle (Che viron Carbon; Typ CPG UF 8 x 30)geleitet, die in einem 2,5 1-Behälter als Festbett angeordnet war. Das Aktivkohle-behandelte Gemisch wurde anschließend in eine Destillationskolonne mit 32 theoretischen Trennstufen über einen seitlichen Zulauf geleitet. Bei einer Sumpftemperatur von 115 °C und einem Druck von 1100 mbar wurde über Kopf der Kolonne pro Stunde 0,08 kg eines THF/Wasser- gemischs mit einem Wassergehalt von ca. 2 Gew.-% abgetrennt. Über den Seitenabzug der Kolonne wurden pro Stunde 6,5 kg einer THF- Fraktion entnommen, die einen Wassergehalt von 40 ppm aufwies und die in Polymerisationsstufe zurückgeführt wurde. Aus dem Sumpf der Kolonne wurde pro Stunde 0,42 kg Produkt entnommen, das anschließend in einem Fallfilmverdampfer überführt wurde. Bei 140 °C und 100 mbar wurden pro Stunde 0,04 kg Rest-THF abdestilliert. Zur Abtrennung von niedermolekularem PTHF wurden pro Stunde 0,38 kg Sumpfaustrag der Vakuumdestillation in eine Kurzwegdestillati- onsapparatur gefahren, in der bei 230°C und 1 mbar Druck pro Stunde 0,04 kg niedermolekulares PTHF der Molmasse 250 destillativ abgetrennt wurde. Es wurden pro Stunde 0,34 kg PTHF eines mittleren Molekulargewichts Mn von 2050 erhalten, das eine Dispersität D von 2,0 und eine Farbzahl von 3 APHA aufwies. Die Raum-Zeit-Ausbeute betrug 11,3 g PTHF 2050/ (l*h) . Der THF-Umsatz betrug 4,9 %.
Beispiel 3
Die Reaktionsbedingungen von Beispiel 2 wurden beibehalten, die in der Polymerisation pro Stunde zugeführte Butandiol-Menge wurde jedoch von 25 g auf 21,9 g verringert. Nach Aufarbeitung des Polymerisationsaustrags wie in Beispiel 2 beschrieben wurde PTHF eines mittleren Molekulargewichts Mn 2900, einer Dispersität D von 2,3 und einer Farbzahl von 5 APHA erhalten. Die Raum-Zeit-Ausbeute betrug 18,6 g PTHF 2900/ (l*h), der THF-Umsatz betrug 7,8 %. Beispiel 4
Die Bedingungen von Beispiel 2 wurden beibehalten, die pro Stunde zurückgeführte Butandiol-Menge wurde jedoch auf 27 g erhöht. Nach Aufarbeitung des Polymerisationsaustrags wie in Beispiel 2 beschrieben wurde PTHF eines mittleren Molekulargewichts Mn 1810, einer Dispersität D von 1,9 und einer Farbzahl von 6 APHA erhalten. Die erzielte Raum-Zeit-Ausbeute betrug 10,3 g PTHF 1810/ (l*h), der THF-Umsatz 4,0 %.

Claims

Patentansprüche
1. Verfahren zur einstufigen Herstellung von Polytetrahydrofuran und/oder Tetrahydrofuran-Copolymeren eines mittleren Molekulargewichts von 650 bis 5000 Dalton durch die Polymerisation von Tetrahydrofuran an einem sauren heterogenen Katalysator in Gegenwart mindestens eines Telogens und/oder Comonomers aus der Gruppe der alpha, omeg -Diole, Wasser, Polytetra- hydrofuran eines Molekulargewichts von 200 bis 700 Dalton und/oder der cyclischen Ether, dadurch gekennzeichnet, dass
a) die im Polymerisationsaustrag enthaltenen suspendierten und/oder gelösten Katalysatoranteile und/oder Katalysa- torfolgeprodukte abgetrennt werden,
b) aus dem erhaltenen katalysatorfreien Polymerisationsaustrag in mindestens einer Destillationsstufe eine Auftrennung in einen das Polymerisationsprodukt ent- haltenden Destillationsrückstand und mindestens eine Tetrahydrofuranfraktion durchgeführt wird und die Tetrahydrofuranfraktion zumindest teilweise in die Polymerisation zurückführt wird und
c) aus dem Destillationsrückstand der Aufarbeitungsstufe b) niedermolekulares Polytetrahydrofuran und/oder Tetrahy- drofuran-Copolymere eines mittleren Molekulargewichts von 200 bis 700 Dalton abgetrennt werden und Polytetrahydrofuran und/oder Tetrahydrofuran-Copolymeren eines mittleren Molekulargewichts von 650 bis 5000 Dalton gewonnen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Aufarbeitungsstufe a) die Abtrennung durch Filtration, Adsorption an festen Adsorptionsmitteln und/oder mit Hilfe von Ionentauschem erfolgt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Aufarbeitungsstufe a) die Adsorption an Aktivkohle und/oder Metalloxide, und/oder Ionentauschem bei Temperaturen von 25 bis 75°C durchgeführt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Aufarbeitungsstufe a) an Natriumhydroxid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkondioxid, Lanthanoxid und/ oder Calciumoxid adsorbiert wird.
5. Verfahren nach Ansprüche 1, dadurch gekennzeichnet, dass die Auftrennung des Polymerisationsprodukts in Aufarbeitungsstufe b) in zwei Destillationstufen durchgeführt wird.
6. Verfahren der Anspruch 1, dadurch gekennzeichnet, dass die das Polymerisationsprodukt enthaltenden Destillationsrückstand der Aufarbeitungsstufe b) vor der Überführung in Aufarbeitungsstufe c) mit Alkanen extrahiert wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das in Aufarbeitungsstufe c) abgetrennte niedermolekulares Polytetrahydrofuran und/oder Tetrahydrofuran-Copolymere eines mittleren Molekulargewichts von 200 bis 700 Dalton zumindest teilweise in die Polymerisation zurückführt
Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es mit all seinen Stufen kontinuierlich durchgeführt wird.
PCT/EP2001/007427 2000-07-03 2001-06-29 Verbessertes verfahren zur einstufigen herstellung von polytetrahydrofuran und tetrahydrofuran-copolymeren WO2002002669A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002507918A JP2004502806A (ja) 2000-07-03 2001-06-29 ポリテトラヒドロフランおよびテトラヒドロフラン−コポリマーを1工程で製造するための改善された方法
KR10-2003-7000013A KR20030016366A (ko) 2000-07-03 2001-06-29 폴리테트라하이드로푸란 및 테트라하이드로푸란코폴리머의 일단계 제조를 위한 개선된 방법
US10/312,851 US6716937B2 (en) 2000-07-03 2001-06-29 Method for the single-step production of polytetrahydrofuran and tetrahydrofuran copolymers
EP01945325A EP1299449A1 (de) 2000-07-03 2001-06-29 Verbessertes verfahren zur einstufigen herstellung von polytetrahydrofuran und tetrahydrofuran-copolymeren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10032266.2 2000-07-03
DE10032266A DE10032266A1 (de) 2000-07-03 2000-07-03 Verbessertes Verfahren zur einstufigen Herstellung von Polytetrahydrofuran und Tetrahydrofuran-Copolymeren

Publications (1)

Publication Number Publication Date
WO2002002669A1 true WO2002002669A1 (de) 2002-01-10

Family

ID=7647596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007427 WO2002002669A1 (de) 2000-07-03 2001-06-29 Verbessertes verfahren zur einstufigen herstellung von polytetrahydrofuran und tetrahydrofuran-copolymeren

Country Status (7)

Country Link
US (1) US6716937B2 (de)
EP (1) EP1299449A1 (de)
JP (1) JP2004502806A (de)
KR (1) KR20030016366A (de)
CN (1) CN1440437A (de)
DE (1) DE10032266A1 (de)
WO (1) WO2002002669A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072666A1 (de) * 2001-03-14 2002-09-19 Basf Aktiengesellschaft Verfahren zur herstellung von polyetherolen mit definiertem cpr-wert
EP1433807A1 (de) * 2002-12-20 2004-06-30 Hodogaya Chemical Co Ltd Verfahren zur Herstellung von Polyetherpolyolen mit enger Molekulargewichtsverteilung
US7276573B2 (en) * 2002-09-12 2007-10-02 Basf Aktiengesellschaft Method for producing monoesters and diesters of polytetrahydrofuran and of tetrahydrofuran copolymers

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261484A1 (de) 2002-12-23 2004-07-01 Basf Ag Verfahren zur Polymerisation cyclischer Ether
DE10330721A1 (de) * 2003-07-08 2005-01-27 Basf Ag Verfahren zur Gewinnung von Oligomeren des Polytetrahydrofurans oder der Tetrahydrofuran-Copolymere
DE10359808A1 (de) * 2003-12-19 2005-07-21 Basf Ag Verfahren zur Herstellung von Tetrahydrofuran-Copolymeren
WO2008086919A1 (de) * 2007-01-19 2008-07-24 Basf Se Verfahren zur änderung des vorgegebenen mittleren molekulargewicht mn bei der kontinuierlichen herstellung von polytetrahydrofuranen oder thf copolymeren
KR100914059B1 (ko) * 2007-11-26 2009-08-28 주식회사 효성 테트라하이드로푸란 중합체의 제조 방법
US20100267905A1 (en) * 2009-04-15 2010-10-21 Invista North America S.A R.L. Copolyether glycol manufacturing process
KR20120017040A (ko) * 2009-04-15 2012-02-27 인비스타 테크놀러지스 에스.에이.알.엘. 코폴리에테르 글리콜 제조 방법
US8609805B2 (en) 2009-04-15 2013-12-17 Invista North America S.A R.L. Copolyether glycol manufacturing process
CN102923387A (zh) * 2011-08-10 2013-02-13 因温斯特技术公司 用于聚醚多元醇产品的颜色管理
US20150158976A1 (en) 2012-06-22 2015-06-11 Invista North America S.A.R.L. Alkanolysis process and method for separating catalyst from product mixture
CN103890068A (zh) * 2012-07-02 2014-06-25 因温斯特北美公司 四氢呋喃清洗处理方法
CN105121110B (zh) 2013-02-11 2017-05-03 因温斯特技术公司 微粒化树脂、其制造和用途
TW201529636A (zh) 2013-12-19 2015-08-01 Invista Tech Sarl 經改良的聚四亞甲基醚二醇製造方法
CN103755944B (zh) * 2014-01-10 2015-12-02 大连工业大学 复合金属氧化物修饰二氧化钛型固体酸的制备方法及其催化聚四氢呋喃醚的合成方法
CN115725066A (zh) * 2022-11-15 2023-03-03 河南省生物基材料产业研究院有限公司 一种生物基聚四氢呋喃的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500705A (en) * 1984-01-09 1985-02-19 E. I. Du Pont De Nemours And Company Method for reducing oligomeric cyclic ether content of a polymerizate
EP0305853A2 (de) * 1987-08-27 1989-03-08 BASF Aktiengesellschaft Verfahren zur Einengung der Molekulargewichtsverteilung von Polytetrahydrofuran und von Copolymerisaten aus Tetrahydrofuran und Alkylenoxiden
WO1993018083A1 (en) * 1992-03-06 1993-09-16 E.I. Du Pont De Nemours And Company Reducing molecular weight distribution of polyether glycols by short-path distillation
US5756604A (en) * 1995-08-31 1998-05-26 Hodogaya Chemical Co., Ltd. Process for producing polyether, and process for recycling and reusing herteropolyacid
US5773648A (en) * 1994-09-21 1998-06-30 Basf Aktiengesellschaft Preparation of polytetrahydrofuran
WO1999012992A1 (de) * 1997-09-05 1999-03-18 Basf Aktiengesellschaft Verbessertes verfahren zur herstellung von polytetrahydrofuran

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120903A (en) 1977-03-30 1978-10-17 E. I. Du Pont De Nemours And Company Method for preparing poly(tetramethylene ether) glycol
CA1216597A (en) 1983-05-23 1987-01-13 Atsushi Aoshima Process for producing polyetherglycol
US5149862A (en) 1991-02-26 1992-09-22 E. I. Du Pont De Nemours And Company Preparation of polytetramethylene ether glycol using an acidic zirconia catalyst
DE19649803A1 (de) 1996-12-02 1998-07-23 Basf Ag Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500705A (en) * 1984-01-09 1985-02-19 E. I. Du Pont De Nemours And Company Method for reducing oligomeric cyclic ether content of a polymerizate
EP0305853A2 (de) * 1987-08-27 1989-03-08 BASF Aktiengesellschaft Verfahren zur Einengung der Molekulargewichtsverteilung von Polytetrahydrofuran und von Copolymerisaten aus Tetrahydrofuran und Alkylenoxiden
US4933503A (en) * 1987-08-27 1990-06-12 Basf Aktiengesellschaft Narrowing the molecular weight distribution of polytetrahydrofuran and of copolymers of tetrahydrofuran and alkylene oxides
WO1993018083A1 (en) * 1992-03-06 1993-09-16 E.I. Du Pont De Nemours And Company Reducing molecular weight distribution of polyether glycols by short-path distillation
US5773648A (en) * 1994-09-21 1998-06-30 Basf Aktiengesellschaft Preparation of polytetrahydrofuran
US5756604A (en) * 1995-08-31 1998-05-26 Hodogaya Chemical Co., Ltd. Process for producing polyether, and process for recycling and reusing herteropolyacid
WO1999012992A1 (de) * 1997-09-05 1999-03-18 Basf Aktiengesellschaft Verbessertes verfahren zur herstellung von polytetrahydrofuran

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072666A1 (de) * 2001-03-14 2002-09-19 Basf Aktiengesellschaft Verfahren zur herstellung von polyetherolen mit definiertem cpr-wert
US7276573B2 (en) * 2002-09-12 2007-10-02 Basf Aktiengesellschaft Method for producing monoesters and diesters of polytetrahydrofuran and of tetrahydrofuran copolymers
EP1433807A1 (de) * 2002-12-20 2004-06-30 Hodogaya Chemical Co Ltd Verfahren zur Herstellung von Polyetherpolyolen mit enger Molekulargewichtsverteilung
US8053607B2 (en) 2002-12-20 2011-11-08 Hodogaya Chemical Co., Ltd. Method for producing polyether-polyol having narrow molecular weight distribution

Also Published As

Publication number Publication date
US20030176630A1 (en) 2003-09-18
JP2004502806A (ja) 2004-01-29
DE10032266A1 (de) 2002-01-17
KR20030016366A (ko) 2003-02-26
US6716937B2 (en) 2004-04-06
EP1299449A1 (de) 2003-04-09
CN1440437A (zh) 2003-09-03

Similar Documents

Publication Publication Date Title
WO2002002669A1 (de) Verbessertes verfahren zur einstufigen herstellung von polytetrahydrofuran und tetrahydrofuran-copolymeren
EP0782594B1 (de) Verfahren zur herstellung von polytetrahydrofuran
EP1999182B1 (de) VERFAHREN ZUR ÄNDERUNG DES VORGEGEBENEN MITTLEREN MOLEKULARGEWICHT Mn BEI DER KONTINUIERLICHEN HERSTELLUNG VON POLYTETRAHYDROFURANEN ODER THF COPOLYMEREN
WO1999009086A1 (de) Verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl
EP1047721B1 (de) Katalysator und verfahren zur herstellung von polytetrahydrofuran
EP1404741B1 (de) Katalysator und verfahren zur herstellung von polytetrahydrofuran
EP0840757B1 (de) Verfahren zur herstellung von polyoxytetramethylenglycol
EP1539854B1 (de) Verfahren zur herstellung von mono- und diestern des polytetrahydrofurans und der tetrahydrofuran-copolymere
WO2002002670A1 (de) Verbessertes verfahren zur herstellung von polytetrahydrofuran und thf-copolymeren
EP1654243B1 (de) Verfahren zur gewinnung von oligomeren des polytetrahydrofurans oder der tetrahydrofuran-copolymere
EP1417249B1 (de) Verbessertes verfahren zur herstellung von polytetrahydrofuran
EP1576030B1 (de) Verfahren zur herstellung von tetrahydrofuran-copolymeren
DE10032265A1 (de) Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran und THF-Copolymeren
EP0975686A1 (de) Verfahren zur entfärbung von polymerisaten oder copolymerisaten des tetrahydrofurans
WO2003076494A1 (de) Verfahren zur herstellung von polytetrahydrofuran mit vermindertem gehalt an oligomeren cyclischen ethern
DE19755415A1 (de) Katalysator und Verfahren zur Herstellung von Polytetrahydrofuran
WO2004058855A1 (de) Verfahren zur polymerisation cyclischer ether
WO1996011221A1 (de) Verfahren zur abtrennung von heteropolyverbindungen aus polyethern, polyestern und polyetherestern
WO2003076493A1 (de) Verfahren zur verminderung des anteils an cyclischen oligomeren ethern in polytetrahydrofuran oder copolymeren aus tetrahydrofuran
DE10032268A1 (de) Verbesserter Katalysator und Verfahren zur Herstellung von Polytetrahydrofuran

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001945325

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 507918

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10312851

Country of ref document: US

Ref document number: 1020037000013

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018122930

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037000013

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001945325

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001945325

Country of ref document: EP