WO2002000338A1 - Materiau poreux bimodal et catalyseur utilisant ce materiau - Google Patents

Materiau poreux bimodal et catalyseur utilisant ce materiau Download PDF

Info

Publication number
WO2002000338A1
WO2002000338A1 PCT/JP2001/005455 JP0105455W WO0200338A1 WO 2002000338 A1 WO2002000338 A1 WO 2002000338A1 JP 0105455 W JP0105455 W JP 0105455W WO 0200338 A1 WO0200338 A1 WO 0200338A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
pore diameter
metal
surface area
specific surface
Prior art date
Application number
PCT/JP2001/005455
Other languages
English (en)
French (fr)
Inventor
Noritatsu Tsubaki
Kaoru Fujimoto
Original Assignee
Noritatsu Tsubaki
Kaoru Fujimoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritatsu Tsubaki, Kaoru Fujimoto filed Critical Noritatsu Tsubaki
Priority to AU2001266329A priority Critical patent/AU2001266329A1/en
Publication of WO2002000338A1 publication Critical patent/WO2002000338A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal

Definitions

  • the present invention relates to a porous body used as a solid catalyst or a carrier for a solid catalyst.
  • the present invention also relates to a catalyst using the porous body, for example, a metal-supported catalyst, and more particularly to a metal-supported catalyst, particularly a metal-supported catalyst used in a Fischer-Tropsch (hereinafter abbreviated as “ F —T”) synthesis reaction. It relates to a cobalt supported catalyst.
  • the metal-supported catalyst generally has a structure in which the catalyst metal is dispersed and supported on a porous support having a high specific surface area so as to be advantageous in terms of reaction kinetics.
  • This porous support is required to have pores of several nm to several tens nm and a high specific surface area in order to increase the contact area between the catalyst metal and the reactant and thereby increase the reaction efficiency.
  • Primary particles having the first average pore diameter (about several nm to several tens of nm) are aggregated to form secondary particles.
  • a carrier has been proposed in which particles are formed, voids (pores) of about several hundred nm are provided in the secondary particles, and the diffusion efficiency is enhanced by the voids.
  • the diffusion efficiency in a large pore of about several hundred nm is surely high.
  • the specific surface area of the support composed of the secondary particles is almost equal to or smaller than that of the primary particles, and most of the portions where the metal catalyst is supported are in the pores in the primary particles. Therefore, the reaction efficiency was almost the same as before, and no significant improvement was obtained.
  • carrier particles having a relatively large pore size eg, alumina particles
  • aqua regia or the like carrier particles having a small pore size
  • the F—T synthesis reaction using a catalyst is a method having a history of nearly 80 years, and is a synthesis gas obtained from coal, natural gas or biomass, ie, carbon monoxide ( CO) and hydrogen (H 2) power et al hydrocarbons, in particular a method of synthesizing the straight chain hydrocarbons.
  • a catalyst particularly a metal-supported catalyst
  • CO carbon monoxide
  • H 2 hydrogen
  • F-T factories are in operation around the world, and even in the future where oil depletion is a concern, new operations are attracting attention and are expected.
  • the higher the temperature the higher the activity of the catalyst.
  • the generation of by-products such as methane, carbon dioxide, light hydrocarbon gas, and olefin increases at high temperatures, which is not desirable.
  • the catalytic activity decreases, which is not desirable.
  • the metal, particularly the metal cobalt is supported on the carrier in a high dispersion.
  • the metal particles to be supported are small, the interaction between the metal particles and the carrier becomes strong, and as a result, there occurs a problem that the activity of the catalyst is reduced. That is, the supported metal, particularly metallic cobalt, has a certain particle size and It is preferred that it be carried on the body in a highly dispersed manner.
  • An object of the present invention is to provide a porous body, a solid catalyst, or a carrier for a solid catalyst, which has conflicting requirements of a high specific surface area and a high diffusion efficiency.
  • Another object of the present invention is to provide a porous body, a solid catalyst, or a solid catalyst carrier having high reproducibility in addition to or in addition to the above objects.
  • Another object of the present invention is to provide a method for producing the above-mentioned porous body, solid catalyst or solid catalyst carrier by a simple process in addition to or in addition to the above-mentioned object.
  • an object of the present invention is to provide a catalyst for an FT synthesis reaction which has low cost, is highly active even at a low temperature, and has a long life.
  • Another object of the present invention is to provide an F_T synthesis reaction catalyst that suppresses the generation of by-products such as methane and carbon dioxide gas in addition to or in addition to the above objects. .
  • Another object of the present invention is to provide a method and an apparatus for synthesizing hydrocarbons in which the generation of by-products is suppressed by using the catalyst in addition to or in addition to the above objects. is there.
  • the present inventor has found that a pyromodal porous body, a pyromodal solid catalyst, or It has been found that the above problem can be solved by a solid catalyst carrier, a catalyst using the porous body, or a metal-supported catalyst. That is, the present inventor has found that the following problems can be solved by the following inventions 1> to ⁇ 63>.
  • a pimodal porous body obtained by modifying a first porous body having a first pore diameter as an average pore diameter, wherein the first pore diameter is at or near the first pore diameter.
  • the first peak pore diameter is 90 to 20 nm, preferably 70 to 30 nm, more preferably 50 to 40 nm, and the second peak pore diameter is The peak pore size should be between 10 and 1 nm.
  • the pyromodal porous body when the first porous body has a first specific surface area, the pyromodal porous body has a second specific surface area higher than the first specific surface area. Is good.
  • the second specific surface area may be in the range of 101% to 300%, preferably 130% to 200% of the first specific surface area.
  • the bimodal porous body when the first porous body has the first pore volume, the bimodal porous body has a second pore volume smaller than the first pore volume. Should have a pore volume of
  • the second pore volume may be in the range of 40% to 99%, preferably 60% to 80% of the first pore volume.
  • the pimodal porous body of any one of ⁇ 1> to ⁇ 6> is a support for a solid catalyst.
  • the pimodal porous body of any one of ⁇ 1> to ⁇ 6> is a solid catalyst.
  • a method for producing a pimodal porous body comprising the steps of: impregnating the porous body, and drying and baking the obtained porous body.
  • the first peak pore diameter is 90 to 20 nm, preferably 70 to 30 nm, more preferably 50 to 40 nm, and the second peak pore diameter is The peak pore size is preferably 10 to 1 nm.
  • the liquid material is a first group consisting of silica, alumina, zirconia, titania and magnesia, preferably silica, zirconia, titania and magnesia. Contains at least one kind of fine particles selected from the first group, or contains at least one kind of oxide-forming compound selected from the first group or the first 'group Is good.
  • the first porous body may be made of silica, alumina, zirconia, titania and magnesia, preferably silica, zirconia, titania and magnesia. It should be made of a material selected from the group consisting of:
  • the first porous body may be placed under reduced pressure before the impregnation step, during the impregnation step, and after Z or the impregnation step. It is desirable to have further steps.
  • the first component is one selected from the group consisting of silica, alumina, zirconia, titania and magnesia, preferably one selected from the group consisting of silica, zirconia, titania and magnesia. Or, it may contain two or more types.
  • the second component is a group consisting of silica, alumina, zirconia, titania and magnesia, preferably silica, zirconia. It preferably contains one or more members selected from the group consisting of conia, titania and magnesia.
  • the first component and the second component may be different.
  • the second modal porous body having a higher specific surface area than the first specific surface area It should have a specific surface area.
  • the second specific surface area may be in the range of 101% to 300%, preferably 130% to 200% of the first specific surface area. Good.
  • the pyromodal porous body when the first porous body has a first pore volume, the pyromodal porous body may be larger than the first pore volume. It may have a small second pore volume.
  • the second pore volume may be in the range of 40% to 98%, preferably 60% to 80% of the first pore volume.
  • the first average pore diameter is
  • ⁇ 24> In any one of ⁇ 14> to ⁇ 23>, when the first pore size distribution is narrow and the total pore volume of the first porous body is 100%, The pore volume ratio at the average pore diameter of the above is 70% to 99%, preferably 90% to 99%, and more preferably 95% to 99%.
  • the first average The pore volume ratio at or near the pore diameter is 30% to 90%, preferably 50% to 90%, and more preferably 60% to 90%.
  • the second average pore The pore volume ratio in the diameter is 10% to 70%, preferably 10% to 50%, and more preferably 10% to 40%.
  • a solid catalyst comprising the pimodal porous body according to any one of ⁇ 14> to ⁇ 26>.
  • a solid catalyst comprising the bimodal porous body according to any one of the above ⁇ 14> to ⁇ 26> as a carrier.
  • a solid catalyst carrier comprising the pimodal porous body according to any one of ⁇ 14> to ⁇ 26>.
  • a metal-supported catalyst comprising particles of a first metal species supported on a bimodal porous carrier, wherein the particles have a particle size of 5 nm to 50 nm, and a particle size Has a second particle having a diameter of 100 nm to 200 nm, the first group of particles has a hollow structure or a park structure, and the second group of particles has a hollow structure.
  • the metal-supported catalyst is a pimodal porous body according to any one of the above ⁇ 1> to ⁇ 6> and ⁇ 14> to ⁇ 2.6>.
  • a metal-supported catalyst in which particles of a first metal species are supported on a pyromodal porous carrier, wherein the particles have a particle size of 5 nm to 50 nm, and A second particle group having a diameter of 100 nm to 200 nm, a first particle group having a hollow structure or a parc structure, a second particle group having a hollow structure,
  • the support is obtained by modifying a first porous body having a first pore diameter as an average pore diameter, and a first peak pore diameter at or near the first pore diameter.
  • a metal-supported catalyst having a second peak pore diameter smaller than the first peak pore diameter.
  • the first peak pore diameter is 90 to 20 nm, preferably 70 to 30 nm, more preferably 50 to 40 nm, and the second peak pore diameter is 10 to It should be 1 nm.
  • the pyromodal porous carrier may have a second specific surface area larger than the first specific surface area. It should have a specific surface area.
  • the second specific surface area may be in the range of 101% to 300%, preferably 130% to 200% of the first specific surface area.
  • 3 5> In any one of the above ⁇ 3 1> to 3 4>, when the first porous body has a first pore volume, the pyromodal porous carrier is larger than the first pore volume. It should have a small second pore volume.
  • the second pore volume may be in the range of 40% to 99% of the first pore volume.
  • the first metal species may be one or more selected from the group consisting of cobalt, nickel, iron and ruthenium. Good.
  • the first metal species may be cobalt.
  • the carrier may preferably comprise silica.
  • ⁇ 40> a step of dissolving a nitrate of the first metal species in ethanol to prepare an ethanol solution of the salt, and a step of impregnating the pitamodal porous carrier with the ethanol solution, and drying the impregnated carrier
  • the body is the method.
  • ⁇ 41> dissolving a nitrate of the first metal species in ethanol to prepare an ethanol solution of the salt, and impregnating the pitamodal porous carrier with the ethanol solution, and drying the impregnated carrier,
  • the first peak pore diameter is 90 to 20 nm, preferably 70 to 30 nm, more preferably 50 to 40 nm, and It is better that the peak pore diameter is 10 to 1 nm.
  • the bimodal porous carrier has a second specific surface area larger than the first specific surface area.
  • the specific surface area should be as follows.
  • the second specific surface area is in the range of 101% to 300% of the first specific surface area.
  • the pyromodal porous carrier when the first porous body has a first pore volume, the pyromodal porous carrier is larger than the first pore volume. It should have a small second pore volume.
  • the second pore volume is preferably in the range of 40% to 99% of the first pore volume.
  • the first metal species may be one or more selected from the group consisting of cobalt, nickel, iron and ruthenium. Good.
  • the first metal species may be cobalt.
  • the method further comprises a step of drying the nitrate before the step of preparing the ethanol solution.
  • the method further comprises a step of removing water in ethanol before the step of preparing the ethanol solution.
  • the carrier preferably comprises silica.
  • the first metal species may be one or more selected from the group consisting of cobalt, nickel, iron and ruthenium.
  • the first metal species may be cobalt.
  • the carrier is a porous body and has a sily power.
  • a method for producing a metal-supported catalyst comprising: a step of preparing a liquid; a step of impregnating the carrier with the ethanol solution; and a step of drying and calcining the impregnated carrier.
  • the first metal species may be one or more selected from the group consisting of cobalt, nickel, iron and platinum.
  • the first metal species may be cobalt.
  • the method further includes a step of drying the nitrate before the step of preparing the ethanol solution.
  • the method further includes a step of removing water in ethanol before the step of preparing the ethanol solution.
  • the carrier is a porous body and has a sily power.
  • ⁇ 62> The metal-supported catalyst of any of ⁇ 30> to ⁇ 39> and ⁇ 52> to ⁇ 55> or the ⁇ 40> to ⁇ 51> and ⁇ 56> to ⁇ 6
  • a method for synthesizing hydrocarbons from a synthesis gas comprising the step of contacting a synthesis gas with a metal-supported catalyst obtained by the method according to any one of ⁇ 1> and ⁇ 2>.
  • a hydrocarbon synthesizing device having a discharging means for discharging.
  • FIG. 1 is a diagram showing the pore size distribution of the porous body of Example I-11.
  • FIG. 2 shows the evaluation results of the catalytic reaction when the cobalt-supported catalyst H-1 of Example II-1 was used.
  • FIG. 3 shows the evaluation results of the catalytic reaction in the case of using the cobalt supported catalyst H-2 of Control II-11. Embodiment of the Invention Hereinafter, the present invention will be described in detail.
  • the present invention satisfies the conflicting requirements of high specific surface area and high diffusion efficiency by using a pimodal porous body, and obtains high catalytic reaction efficiency.
  • the pyromodal porous body refers to a porous body having a binary pore structure having both mesopores or macropores having a relatively large pore size and micropores having a relatively small pore size.
  • the bimodal porous body of the present invention is composed of porous particles, each of which has mesopores or macropores and micropores.
  • the pyromodal porous body of the present invention has a first porous body composed of a first component, and a porous site composed of a second component formed on the surface of the first porous body.
  • a pimodal porous body of the present invention is a pimodal porous body obtained by modifying a first porous body composed of a first component with a second component. It is.
  • the pyromodal porous body of the present invention has a first porous body.
  • the first porous body will be described in detail.
  • the first porous body has a first component.
  • the first component may be a single component or two or more components.
  • the first component examples include various oxides, for example, one or more selected from the group consisting of silica, alumina, zirconia, titania and magnesia, preferably the group consisting of silica, zirconia, titania and magnesia be able to.
  • a solid catalyst carrier it is preferable to use one or more selected from the group consisting of silica, alumina and zirconia, preferably from the group consisting of silica and zirconia, depending on the application. preferable.
  • the first porous body may contain other components in addition to the first components.
  • the first component is the main component, and the other component itself or the amount of the component does not affect the action as a catalyst.
  • the first porous body has a first average pore size, a first pore size distribution, a first specific surface area, and a first pore volume.
  • the average pore diameter (first average pore diameter) of the first porous body is 90 nm to 20 nm, Preferably 70 nn! It is preferably from 30 nm to 30 nm, more preferably from 50 nm to 40 nm. These pores correspond to relatively large mesopores or macropores in the pyromodal porous body.
  • Most of the pore diameter of the first porous body is preferably mesopore or macropore. That is, the dispersion of the pore size distribution (the first pore size distribution) is preferably small.
  • the first pore diameter distribution is, when the total pore volume of the first porous body is 100%, the pore volume ratio at the first average pore diameter is 70% to 99%, preferably The content is preferably 90% to 99%, more preferably 95% to 99%.
  • the first porous body is commercially available or can be obtained by synthesis.
  • silica particles having a specific surface area of 70 m 2 / g and an average pore diameter of 50 nm (trade name: Q-50, manufactured by Fuji Siricia Co., Ltd.), etc. Can be.
  • a desired one-component porous material such as a porous silica material and a porous alumina material, or two or more types of components, by a conventionally known method such as a CVD method and a sol-gel method can be obtained.
  • a CVD method and a sol-gel method can be obtained.
  • strong surface acid sites can be formed.
  • a porous site is formed on the surface of the first porous body of the present invention. Hereinafter, this porous site will be described in detail.
  • the porous part of the present invention is formed on the surface of the first porous body.
  • the surface of the first porous body refers to a combination of the outer surface and the pore surface of each particle constituting the first porous body.
  • the porous site is composed of the second component.
  • the second component may be a single component or two or more components.
  • various oxides for example, one or more selected from the group consisting of silica, alumina, zirconia, titania and magnesia, preferably the group consisting of silica, zirconia, titania and magnesia be able to.
  • silica, alumina, zirconia, titania and magnesia preferably the group consisting of silica, zirconia, titania and magnesia be able to.
  • a carrier for a solid catalyst it depends on the intended use. It is preferable to use one or more members selected from the group consisting of lumina and zirconia, preferably the group consisting of silica and zirconia.
  • the first component and the second component may be the same or different.
  • a catalytic action can be brought about by a chemical factor. That is, for example, when the porous body A is manufactured using silica as the first component and silica and zirconia as the second component, a catalytically active site due to zirconia may be generated in the porous body A. Accordingly, the porous body A itself can be used as the catalyst, as well as the one in which the metal is supported on the porous body A.
  • the porous site may contain other components in addition to these second components.
  • the second component is the main component, and that the other component itself or the amount of the component does not affect the action as a catalyst.
  • the porous site has a second average pore size and a second pore size distribution.
  • the average pore diameter (second average pore diameter) of the porous portion is preferably 10 nm to 1 nm. These pores correspond to relatively small micropores in the bimodal porous body.
  • the pore size distributions of the first porous body and the obtained pyromodal porous body were measured, and the pore size distribution of the first porous body was determined from the pore size distribution of the bimodal porous body. Excluded is the second pore size distribution of the porous site. A second average pore size can be obtained from the second pore size distribution.
  • the second average pore diameter of the porous portion can be more easily known from the pore diameter distribution of the pyromodal porous body. That is, regarding the pyromodal porous body, the pore volume ratio at a certain pore diameter, that is, the pore diameter distribution is measured. In this pore size distribution, two or more peaks are observed. One is a peak of the first average pore diameter or a peak near the peak and on the smaller diameter side of the first average pore diameter (peak derived from the first porous body). Other peaks correspond to peaks derived from porous sites. From these other peaks, the average pore diameter of the porous site (ie, the second average pore diameter) can be determined.
  • the “peak of the pore diameter” or the “peak pore diameter” refers to the pore diameter having the largest number of pores having the pore diameter or the largest pore volume.
  • the second pore size distribution of the bimodal porous material of the present invention is preferably narrow, and when the total pore volume of the pyromodal porous material is 100%, the pore volume ratio at the second average pore size is Is 10% to 70%, preferably 10% to 50%, and more preferably 10% to 40%.
  • the first pore diameter distribution derived from the first porous body is preferably narrow.
  • the pore volume ratio at or near the first average pore diameter is 30% to 90%, preferably 50% to 90%. More preferably, it is from 6.0% to 90%.
  • the pimodal porous body of the present invention having the above-described first porous body and porous portion can be obtained by the following method.
  • the first porous body is prepared or prepared as described above.
  • a liquid is prepared separately from the first porous body.
  • This liquid is preferably a sol.
  • the liquid material is a raw material that becomes a porous site in the pyromodal porous body, and has a second component or a compound that forms the second component.
  • As the second component at least one kind of fine particles selected from the group consisting of the above-mentioned silica, alumina, zirconia, titania and magnesia, preferably selected from the group consisting of silica, zirconia, titania and magnesia, is mentioned. .
  • Examples of the compound forming the second component include metal alkoxides containing one or more of various metals such as silicon, aluminum, zirconium, titanium and magnesium, and water glass having a high sily component.
  • metal alkoxide of metal type A can form oxide particles of metal type A by various conventionally known methods.
  • the liquid material preferably the sol, may contain, in addition to the second component or the compound forming the second component, an acid or a base catalyst when a solvent or a metal alkoxide is used.
  • the impregnation method is Any known method can be used. For example, a method in which liquid material droplets are poured into a first porous body to be impregnated, a method in which a first porous body is immersed in a liquid material to be impregnated, and the like can be used.
  • a step of degassing the first porous body or the container containing the first porous body by depressurizing or vacuuming may be provided. Good. By providing this decompression step, the liquid material can easily enter or diffuse into the first porous body.
  • the first porous body impregnated with the liquid material is dried and fired to obtain a pimodal porous body.
  • the pyromodal porous body thus obtained has a second specific surface area higher than the first specific surface area of the first porous body.
  • the second specific surface area is in the range of 101% to 300%, preferably 130% to 200% of the first specific surface area.
  • the pyromodal porous body has a second pore volume smaller than the first pore volume of the first porous body.
  • the second pore volume is 40% to 99%, preferably 50% to 90%, more preferably 60% of the first pore volume. /. 880%, most preferably 70% -80%.
  • These pyromodal porous bodies may be used as a catalyst per se, or may be used as a metal-supported catalyst by supporting a metal with the porous body as a carrier.
  • a conventionally known method can be used other than using the bimodal porous material of the present invention as the porous material.
  • the metal-supported catalyst of the present invention is obtained by supporting metal particles comprising a first metal species on a support.
  • the metal-supported catalyst of the present invention preferably uses the above-mentioned pimodal porous body as a carrier, and preferably supports metal particles of the first metal species on the carrier.
  • the metal-supported catalyst of the present invention is preferably used for an F_T synthesis reaction.
  • the first metal species is preferably one or more selected from the group consisting of cobalt, nickel, iron and ruthenium. When two or more kinds are used, it is preferable to use an alloy. Of these, the viewpoint of suppressing undesired by-products, the temperature range used, From the viewpoint of and / or cost, the first metal species is preferably cobalt. Metal particles composed of the first metal species have a particle size of 5 nn! ⁇ 50 nm, preferably
  • the first particles thereby form a first group of particles.
  • the first particles have a hollow structure or a park structure.
  • the second particles form the second particle group similarly to the first particles.
  • the second particles have a hollow structure.
  • the parc structure means a dense structure in which so-called metal particles exist as metal.
  • the metal-supported catalyst of the present invention preferably has the first particles and the second particles having the same metal species but different particle diameters.
  • the metal particles composed of the first metal species can be obtained by using various production methods as long as the first and second particles are formed as described above. For example, such particles can be obtained using a nitrate of the first metal species. This will be described later.
  • the support used for the metal-supported catalyst of the present invention may be any of various porous bodies, preferably an oxide porous body. More specifically, a porous body of an oxide such as silica, alumina, zirconia, titer, and magnesia, or a porous body composed of a composite of these oxides is preferable.
  • the support is preferably a porous body and has silica or is preferably made only of silica.
  • metal particles composed of a noble metal such as ruthenium, platinum, and palladium may be supported on the carrier.
  • the loading amount of these noble metals is such that the ratio (weight ratio) of the noble metal (M r ) to the first metal (M, M r : is 100: 100 to 0.01: 100, preferably 50: 1 to 100: It is preferably 0.01: 1: 100, more preferably 5: 1 00 to 0.01: 1: 100.
  • the metal-supported catalyst of the present invention can be prepared as follows.
  • a carrier is prepared.
  • various silica carriers, alumina carriers and the like are commercially available. These commercially available carriers may be used or may be prepared by synthesis.
  • the bimodal porous body can be used as a carrier.
  • an ethanol solution of a salt of the first metal species is prepared separately from the carrier. As described above, even if only a nitrate is used as described above, even if another salt, for example, an acetate is used, two or more salts of a nitrate and another salt, for example, a nitrate and an acetate are used. You may.
  • each of the two or more types of salts is used as a solute.
  • An ethanol solution may be prepared.
  • the ratio of acetate and nitrate is represented by the atomic ratio of the first metal species contained in each salt, and is 10: 1 to 1: 1. : 10, preferably 2: 1 to 1: 2, for example, 1: 1.
  • the ratio of the two solutions is preferably used so that the ratio of each metal salt contained therein falls within the above range.
  • the salt used is sufficiently dried to remove hydrated salts.
  • nitrate salt C o (N 0 3) 2 -.
  • 6 H 2 0, and had us to 1 0 0 ⁇ 4 0 0 ° C ( 3 7 3 ⁇ 6 7 3 K), 0 5 ⁇ in air It is preferable to heat dry or calcine for 10 hours.
  • the ethanol used is preferably purified by removing water contained in commercially available ethanol.
  • a method for purifying ethanol including removal of water a conventionally known method can be used.
  • a complex solution of these noble metals preferably an ethanol solution of the complex is prepared, and this is mixed with the above ethanol solution of the first metal salt. It is preferably prepared.
  • H 2 P t C 1 6, H 2 P d C 1 6, P d (N 0 2) 2 (NH 3) 2, P t (N 0 2) 2 (NH 3) 2 can be mentioned.
  • the carrier is impregnated with an ethanol solution.
  • one of them may be impregnated first, and the other may be impregnated in order.
  • Impregnation based on the incipient wetness method.
  • the incipient-jetness method is a method of impregnating a solution having the same volume as the pore volume of the porous carrier. That is, when a carrier having a pore volume of A (cm 3 / g) is used as B g, the pore volume is A * B (cm 3 ). Impregnate with the same volume of solution as this A * B (cm 3 ). More specifically, the amount of the first metal species to be supported is preferably dissolved as a salt in the solution of A * B (cm 3 ).
  • the container provided with the carrier may be depressurized. This makes it possible to smoothly impregnate the carrier with the ethanol solution.
  • the carrier After impregnation, the carrier is dried and calcined.
  • the drying conditions and the firing conditions depend on the first metal species used, the amount of the salt of the metal species, the size of the carrier used, various characteristics of the carrier, and the like.
  • calcination is performed at a maximum calcination temperature of 300 to 500 ° C.
  • the mixture is placed under a reducing condition of 200 to 450 ° C under a stream of hydrogen gas or a mixed gas of hydrogen. Is good.
  • the metal-supported catalyst of the present invention can be prepared.
  • the hydrocarbon synthesizing apparatus has a reaction vessel, a supply means for supplying a gas to be reacted to the reaction vessel, and a discharge means for discharging a reaction product generated in the reaction vessel.
  • Conventionally known vessels or means can be used for these reaction vessels and supply and discharge means. Hereinafter, these will be briefly described while exemplifying these.
  • the reaction vessel has the metal-supported catalyst of the present invention inside.
  • the metal-supported catalyst may be used in various forms, for example, in a solid form, or in a semi-liquid or semi-solid form dispersed or dissolved in a solvent or the like.
  • a solvent that dissolves a by-product wax, such as n-hexadecane, or a mixture of oils produced by the F—T method is used as a solvent. It is preferable to recycle the oil. That is, the metal-supported catalyst is preferably made into a slurry using this solvent.
  • the reaction vessel is preferably provided with means capable of controlling various conditions such as pressure and temperature.
  • means capable of controlling various conditions such as pressure and temperature.
  • Stirring means for stirring the solid metal-supported catalyst, heating means for heating the reaction vessel, pressure control means for keeping the pressure constant, that is, a pressure control valve, and the like can be given.
  • reaction vessel More specifically, it is preferable to use an autoclave or a semipatch reactor equipped with the various means described above as the reaction vessel.
  • the supply means includes various means for supplying synthesis gas, that is, hydrogen gas and carbon monoxide gas, to the reaction vessel, and conventionally known means can be used.
  • gas storage means for storing gas gas supply pipe for supplying gas from the gas storage means to the reaction vessel, gas flow rate control means for controlling the flow rate when supplying gas, gas purification for removing impurities in gas Means and the like.
  • the hydrogen gas and the carbon monoxide gas were supplied so that both gases were supplied to the reaction vessel by one supply means, even if the respective supply means were arranged to supply each of them to the reaction vessel. May be arranged.
  • the discharge means differs depending on the form of the metal-supported catalyst used.
  • the discharging means differs depending on the form of the metal-supported catalyst used, such as a solid phase or a liquid phase such as a slurry.
  • a conventionally known means can be used as the discharging means.
  • various means for discharging carbon dioxide, various means for discharging water produced in the main reaction together with hydrocarbons, and means for extracting a box during the reaction can be used.
  • means for cooling the gas phase, means for storing the liquid phase obtained after cooling, and the like can be given.
  • the hydrocarbon synthesizing apparatus may have various means in addition to the above means.
  • unreacted gas recycling means arranged so that unreacted gas discharged to the discharge means, for example, carbon monoxide gas, is re-introduced into the reaction vessel; low carbon number discharged as a reaction intermediate Reaction intermediate recycling means arranged to return hydrocarbons to the reaction vessel again; and to separate unsaturated hydrocarbons generated as by-products Means:
  • a hydrogenation means for converting the separated unsaturated hydrocarbon into a saturated hydrocarbon may be further provided.
  • the method for synthesizing hydrocarbons is carried out by using the above-mentioned synthesis apparatus or the like. That is, the method for synthesizing a hydrocarbon includes a step of supplying hydrogen gas and carbon monoxide gas to a reaction vessel having a metal-supported catalyst, and bringing hydrogen gas and carbon monoxide gas into contact with the metal-supporting catalyst in the reaction vessel. And a step of obtaining a product by the catalytic reaction.
  • the contact time between the gas and the catalyst (Weight / Flow rate, hereinafter abbreviated as “W / F”) varies depending on the form of the metal-supported catalyst used. For example, when a slurry-like metal-supported catalyst is used, it is preferable to set the contact time (W / F) so as to be 1 to 10 g ⁇ h / mo 1.
  • the conditions for performing the catalytic reaction for example, the temperature and pressure, also vary depending on the form of the metal-supported catalyst used.
  • the pressure is preferably 5 to 50 pearls
  • the temperature is preferably 200 to 280 ° C.
  • the above method may further include various conventionally known steps.
  • it can have various steps for treating the product obtained.
  • a step of cooling the gas phase to obtain a liquid material when the hydrocarbon is obtained in a gas phase, a step of cooling the gas phase to obtain a liquid material, a step of forming the obtained liquid material into a desired product and an undesired product It can include a step of separating the product into products.
  • the method may include a step of supplying an unreacted gas, for example, a carbon monoxide gas to the reaction vessel again.
  • an unreacted gas for example, a carbon monoxide gas
  • a silica particle having a trade name of “Q-50” (manufactured by Fuji Silica Co., Ltd.) is passed through a mesh pore diameter of 75-500 m, and the obtained material is used in the following. It was used for the preparation of a pyromodal porous body.
  • the particles had a specific surface area of 70 m 2 / g, an average pore diameter of 50 nm, and a pore volume of 1.2 cm 3 Zg.
  • Q-50 had a narrow pore diameter distribution, and the pore volume ratio at an average pore diameter of 50 nm was 90%.
  • colloidal silica (trade name “Snowtex XSJ, manufactured by Nissan Chemical Co., Ltd.”) was prepared. 20% by weight of silica (SiO 2 ), 0.6% by weight of Na 20 , a colloid particle size of 5 nm, and a specific gravity of 1.135 g / It was cc. This sol was used as sol B-1.
  • the first porous material A-1 was placed in a vessel for impregnating 10 g, and the sol B-1 was impregnated with 12 cm 3 , and the vessel was degassed at about 0.8 atm for 1 hour.
  • the volume of the sol to be impregnated was an amount corresponding to the pore volume of the first porous body A-1.
  • the resultant was dried at 120 ° C. overnight, and then calcined at 400 ° C. for 2 hours in the air to obtain a porous body C-11.
  • Solution X-1 was prepared by dissolving 4.8 g of copartate nitrate hexahydrate and 1.2 g of ruthenium nitrate in 7 cm 3 of pure water.
  • Catalyst D-1 contained 10% by weight of cobalt and 0.5% by weight of ruthenium.
  • Catalyst D-2 was prepared by using porous material A-1 (trade name: Q_50) (manufactured by Fuji Silica) as a carrier. That is, a catalyst D-2 was prepared in the same manner as in Example I-11, except that the porous body A-1 was used instead of the porous body C-11 in Example 1-1.
  • a silica particle having a trade name of "Q-3" (manufactured by Fuji Silica) was passed through a mesh pore size of 850 m to 500 m, and the obtained one was used.
  • the particles had a specific surface area of 546 mV g, an average pore diameter of 3 nm, and a pore volume of 0.3 cm 3 Zg.
  • Q-50 had a narrow pore size distribution and a pore volume fraction of 85% at an average pore size of 3 nm.
  • a catalyst D-3 was prepared using the porous material A-2 having the trade name "Q-3" as a carrier. That is, a catalyst D-3 was prepared in the same manner as in Example I-11, except that the porous body A-2 was used in place of the porous body C-11 in Example I-1.
  • the porous body C-1 treated with the silica sol had a BET specific surface area of 90 m 2 Zg. Further, as shown in FIG. 1, the pore size distribution had peaks at both 50 11111 and 6 11111.
  • the porous bodies A-1 and A-2 not treated with the silica sol had specific surface areas of 7 Om 2 / g and 546 m 2 / g, respectively, as described above. As described above, the average pore diameters of the porous bodies A-1 and A-2 are 50 nm and 3 nm, respectively.
  • Table 1 shows the results of (1) and (2) above. Table 1. Characteristics of support and performance of F-T reaction
  • the porous body C-11 which is the carrier of Example I-11 is a pimodal porous body having pore size distribution peaks at 50 nm and 6 nm. You can see that.
  • the catalyst for the F-T reaction using the pimodal porous body of Example I-11 as a carrier has a high CO conversion. It can be seen that it has. That is, if the pyromodal porous body is used as a carrier, a highly active catalyst having both a high specific surface area and a high diffusion efficiency can be provided.
  • Example I instead of the colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Co., Ltd.) used for the sol B-1 of Example 1-1, colloidal silica (trade name “Ceramica 401G", Nippon Chemical Manufactured).
  • Product name "Ceramica 40 1 G” colloidal series Force has a ethanol as a solvent, silica ⁇ Pi Jirukonia the (S i 0 2 + Z r 0 2) has 20 wt%, colloid particle diameter is the 5 nm, and its specific gravity is 0. 94 gZ cm Was 3 .
  • Porous material C-12 was obtained in the same manner as in Example I-1, except that sol B-2 was used instead of sol B-1 of Example I-11.
  • a catalyst D-4 was obtained by using the porous body C-2 in place of the porous body C-1 of Example I-11. However, the weight% of cobalt was changed to 5% by weight instead of “10% by weight”, and ruthenium was not added.
  • Catalysts D-5 and D-6 supporting 5% by weight of cobalt were prepared in the same manner as in Example I-12, using the porous bodies A-1 and A-2 as the carriers, respectively.
  • the obtained catalyst was reduced at 400 ° C. in a hydrogen atmosphere for 10 hours, and thereafter, only the metal surface of the catalyst was oxidized at 25 ° C. in an oxygen atmosphere for about 2 hours.
  • the porous body C_2 which is the carrier of Example I-12
  • the porous body 11 of C-11 it can be understood that the porous body is a pimodal porous body having a peak of a pore size distribution at 50 ⁇ and 4 nm.
  • the catalyst for the F-T reaction using the pyromodal porous body of Example 2 as a carrier has a high CO conversion rate. . That is, when the pyromodal porous body is used as a carrier, a highly active catalyst having both a high specific surface area and a high diffusion efficiency can be provided.
  • silica gel As the carrier F-1, commercially available silica gel (ID gel, manufactured by Fuji Davison) was used. This silica gel had a specific surface area of 27 Om 2 / g, a pore volume of 1.22 cm 3 / g, and an average pore diameter of 8.7 nm.
  • the silica gel carrier F-1 was impregnated with a cobalt salt ethanol solution G-1 by an incipient wetness method. That is, a silica gel carrier F-1 was placed in a 4.5 g (pore volume 5.49 cm 3 ) desiccator, and an ethanol solution G-1 of a cobalt salt was dropped on this carrier F-1 by 5.49 cm 3 . Impregnated.
  • the gel body F-2 obtained by impregnation is dried at 120 ° C for 12 hours, then calcined at 400 ° C for 2 hours, reduced by a stream of hydrogen, and then contains 10% by weight of cobalt.
  • a supported coparte catalyst H-1 was obtained.
  • a SUS 316 electromagnetic stirring type autoclave having an internal volume of 85 ml was prepared as a reaction vessel.
  • the internal pressure of the reaction vessel was set to 10 bar, and the slurry-like substance was heated to a temperature of 240 ° C (513K) while stirring at 1200 rpm.
  • a trap tube cooled with ice or dry ice is provided downstream from the outlet to trap relatively low-boiling products and water, while the temperature from the outlet to the trap is about 150 ° C (about 423K). Heated.
  • the same silica gel carrier F_1 as in Example II-11 was used as the carrier.
  • Example II Water was used in place of ethanol used in I-11.
  • cobalt nitrate hexahydrate (C o ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 ⁇ )
  • Cobalt nitrate hexahydrate was dissolved in 5.49 cm 3 of water to obtain a cobalt salt aqueous solution G-2.
  • Example II-11 an aqueous solution G-2 of a cobalt salt is impregnated into a silica gel support F-1, dried and calcined to obtain a cobalt supported catalyst H-2 containing 10% by weight of cobalt.
  • a cobalt supported catalyst H-2 containing 10% by weight of cobalt.
  • Example I1-1 a catalytic reaction was carried out in the same manner as in Example II-1, except that H-2 was used instead of the cobalt-supported catalyst H-1 as the catalyst.
  • Example II A catalytic reaction using the cobalt supported catalyst H-1 of I-11 and the control cobalt supported catalyst H-2 was evaluated. In the evaluation, 1) the change over time of the conversion rate of the carbon monoxide gas as a raw material gas, 2) the change over time of the generation rate (selection rate) of methane gas as a by-product, and 3) the carbon dioxide as a by-product Changes with time in the gas generation rate (selectivity) were observed.
  • the change over time of the selectivity of carbon dioxide gas can be calculated as (amount of generated carbon dioxide) / [(total amount of generated hydrocarbons) + (amount of carbon dioxide gas)] * 100 (%) over time. It was determined by measurement.
  • FIGS. 2 and 3 show the results when the cobalt-supported catalyst H-1 of Example I1-1 was used.
  • FIG. 3 shows the results obtained when the copartum-supported catalyst H-2 of Control II-11 was used.
  • the pyromodal porous body of the present invention can be generally used as a solid catalyst, a solid catalyst carrier, a filter, an adsorbent, and a desiccant.
  • the pyromodal porous body of the present invention can be used for a catalyst using only the porous body, a catalyst using the porous body, for example, a metal-supported catalyst, particularly a metal-supported catalyst used for an FT synthesis reaction. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Description

明 細 書 パイモダル多孔質体及びそれを用いた触媒 技術分野
本発明は、 固体触媒又は固体触媒用担体として用いられる多孔質体に関する。 また、 本発明は、 該多孔質体を用いた触媒、 例えば金属担持触媒に関し、 特にフ イツシヤー . トロプシュ (以下、 「F— T」 と略記する) 合成反応に用いられる金 属担持触媒、 特に金属コバルト担持触媒に関する。
従来より、 化学工業において、 固体触媒、 特に金属担持触媒が広く用いられて いる。 金属担持触媒は一般に、 反応速度論的に有利となるように、 高い比表面積 を有する多孔質担体に、 触媒金属を粒子状に分散担持させる構成を有している。 この多孔質担体は、 触媒金属と反応物質との接触面積を増大させて反応効率を高 めるために、 数 n m〜数十 n mの細孔を有しかつ高い比表面積を有することが求 められる。
また、 金属担持触媒の反応効率を高めるために、 多孔質担体の比表面積を高め て、 反応物質と担持金属との接触機会を高めることが考えられる。 即ち、 多孔質 担体の比表面積を高めると、 反応物質と担持金属との接触機会が高められる。 一 方、 多孔質担体の比表面積を高めようとすると、 一般に細孔径も小径化する。 細 孔径の小径化は、反応物質が細孔内にある金属触媒へと拡散する拡散効率の低下、 及び細孔内から反応した物質が拡散する拡散効率の低下をもたらすこととなる。 このように、 多孔質担体を用いる固体触媒において、 高い比表面積及び高い拡 散効率は、 二律背反する要件であり、 この二律背反する要件を満たす多孔質担体 が求められている。
このようなニーズに応えるものとして、 例えば、 次のような担体が提案されて いる。
第 1の平均細孔径 (約数 n m〜数十 n m) を有する一次粒子を凝集して 2次粒 子を形成し、 該 2次粒子中に数百 n m程度の空隙 (孔) を設け、 該空隙により拡 散効率を高めた担体が提案されている。 この 2次粒子からなる担体において、 数 百 n m程度の大きな孔での拡散効率はたしかに高くなる。 しかしながら、 2次粒 子からなる担体の比表面積は一次粒子とほぼ同等であるか又は減少しており、 か つ金属触媒が担持されている箇所の大部分は一次粒子中の細孔内であるため、 反 応効率は従来とほぼ同程度であり、 大きな改善効果は得られなかった。
また、 比較的大きな孔径を有する担体粒子 (例えばアルミナ粒子) を王水等に より溶解し、 小さな孔径を有する担体粒子を製造する方法も提案されている。 し かしながら、 この方法では再現性に乏しく、 かつ得られた担体粒子の強度などに も問題が生じる。
また、 現在、 触媒、 特に金属担持触媒が用いられている F— T合成反応は、 8 0年近い歴史を有する方法であり、 石炭、 天然ガス又はバイオマスから得られる 合成ガス、 即ち一酸化炭素 (C O ) 及び水素 (H2) 力 ら炭化水素、 特に直鎖炭化 水素を合成する方法である。 現在、 世界各国において、 F— T工場が稼動してお り、 かつ石油枯渴が危惧される将来においても、 その新たなる稼動が注目され、 期待されている。
一般に、触媒は高温になるほど活性が高くなる。し力 し、 F— T合成反応では、 高温になると、 メタン、 炭酸ガス、 軽質炭化水素ガス、 ォレフィンなどの副生成 物の発生が増加し、 望ましくない。 一方、 低温では、 触媒活性が低下し、 望まし くない。
F— T合成反応の金属触媒に用いられる、 活性を有する金属は既に知られてお り、コバルト、エッケル、ルテニウム及ぴ鉄がこの金属にあたる。 これらのうち、 1)ルテニウムは高価であるため、 2)ニッケルは副生成物であるメタンを過剰に生 成するため、 3)鉄は 2 8 0 °C以上の高温下で用いられ且つ炭酸ガスを過剰に生成 するためなどの理由から、 好ましくはコバルトが用いられている。
また、 高い活性を得るために、 金属、 特に金属コバルトは、 担体に高分散に担 持させるのがよい。 しかしながら、 担持させる金属粒子が小さいと、 金属粒子と 担体との相互作用が強くなり、 その結果、 触媒の活性が低下するという問題が生 じる。 即ち、 担持する金属、 特に金属コバルトは、 ある程度の粒径を有して、 担 体に高分散で担持されるのがよい。
これらの問題を解決するために、コバルトを高分散に担持させた触媒に貴金属、 例えば白金などを導入する方法が提案されている。 しかしながら、 この方法は、 高価な貴金属を用いるためコストがかさむという問題を有している。 また、 貴金 属上でのアルコールなどの不所望な含酸素化合物の生成、 及び貴金属による不所 望な副生成物であるメタンの発生という問題を有している。 さらに、 貴金属を有 する触媒は、 その失活という問題も有している。 発明の開示
本発明の目的は、 高い比表面積及び高い拡散効率という二律背反する要件を有 する多孔質体、 固体触媒又は固体触媒用担体を提供することにある。
また、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 再現性に富 む多孔質体、 固体触媒又は固体触媒用担体を提供することにある。
さらに、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 高い反応 効率をもたらす固体触媒又は固体触媒用担体を提供することにある。
また、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 簡易な工程 により上述の多孔質体、 固体触媒又は固体触媒用担体を得ることができる、 それ らの製造方法を提供することにある。 '
また、 本発明の他の面として、 本発明の目的は、 コストを抑え、 低温において も高活性であり、 且つ寿命が長い F— T合成反応用触媒を提供することにある。 また、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 メタン、 炭 酸ガスなどの副生成物の発生を抑えた F _ T合成反応用触媒を提供することにあ る。
さらに、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 上記触媒 の製造方法を提供することにある。
また、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 上記触媒を 用いて、 副生成物の発生を抑えた、 炭化水素の合成方法及ぴ合成装置を提供する ことにある。
本発明者は鋭意検討の結果、 パイモダル多孔質体、 パイモダル固体触媒、 又は 固体触媒用担体、 並びに該多孔質体を用いた触媒又は金属担持触媒に より上記課題を解決できることを見出した。 即ち、 本発明者は、 以下の発明く 1 〉〜< 6 3〉により、 上記課題を解決できることを見出した。
く 1 > 第 1の細孔径を平均細孔径として有する第 1の多孔質体を修飾して得 られたパイモダル多孔質体であって、 前記第 1の細孔径又は該第 1の細孔径近傍 に第 1のピーク細孔径を有し、 かつ該第 1のピーク細孔径よりも小さな第 2のピ 一ク細孔径を有するパイモダノレ多孔質体。
く 2〉 上記く 1 >において、 第 1のピーク細孔径が 9 0〜2 0 n m、 好まし くは 7 0〜3 0 n m、 より好ましくは 5 0〜 4 0 n mであり、 前記第 2のピーク 細孔径が 1 0〜 1 n mであるのがよい。
く 3 > 上記く 1〉又は < 2 >において、 第 1の多孔質体が第 1の比表面積を 有する場合、 パイモダル多孔質体が該第 1の比表面積よりも高い第 2の比表面積 を有するのがよい。
< 4 > 上記く 3〉において、 第 2の比表面積が第 1の比表面積の 1 0 1 %〜 3 0 0 %、 好ましくは 1 3 0 %〜2 0 0 %の範囲にあるのがよい。
< 5 > 上記く 1 >〜< 4 >のいずれかにおいて、 第 1の多孔質体が第 1の細 孔容積を有する場合、 バイモダル多孔質体が該第 1の細孔容積よりも小さな第 2 の細孔容積を有するのがよい。
く 6〉 上記く 5 >において、 第 2の細孔容積が第 1の細孔容積の 4 0 %〜 9 9 %、 好ましくは 6 0 %〜8 0 %の範囲にあるのがよい。
< 7 > 上記く 1 >〜< 6 >のいずれかのパイモダル多孔質体が固体触媒用担 体であるのがよい。
< 8 > 上記く 1 >〜< 6 >のいずれかのパイモダル多孔質体が固体触媒であ るのがよい。
< 9 > 第 1の細孔径を平均細孔径として有する第 1の多孔質体を用意するェ 程、 該第 1の多孔質体とは別個に液状物を調製する工程、 該液状物を前記第 1の 多孔質体に含浸する工程、 及ぴ得られた多孔質体を乾燥し次いで焼成する工程を 有するパイモダル多孔質体の製造方法であって、 該パイモダル多孔質体が前記第
1の細孔径又は該第 1の細孔径近傍に第 1のピーク細孔径を有し、 かつ該第 1の ピーク細孔径よりも小さな第 2のピーク細孔径を有する、 上記パイモダル多孔質 体の製造方法。
< 1 0 > 上記く 9 >において、 第 1のピーク細孔径が 9 0〜 2 0 n m、 好ま しくは 7 0〜3 0 n m、 より好ましくは 5 0〜4 0 n mであり、 前記第 2のピー ク細孔径が 1 0〜 1 n mであるのがよい。
< 1 1 > 上記く 9 >又はく 1 0 >において、 液状物が、 シリカ、 アルミナ、 ジルコニァ、 チタニア及ぴマグネシアからなる第 1の群、 好ましくはシリカ、 ジ ルコユア、 チタ-ァ及ぴマグネシアからなる第 1, の群から選ばれる、 少なくと も 1種の微粒子を含有するか、 又は第 1の群もしくは第 1 ' の群から選ばれる、 少なくとも 1種の酸化物を形成する化合物を含有するのがよい。
< 1 2 > 上記く 9〉〜< 1 1〉のいずれかにおいて、 第 1の多孔質体が、 シ リカ、 アルミナ、 ジルコユア、 チタニア及びマグネシアからなる群、 好ましくは シリカ、 ジルコニァ、 チタニア及びマグネシアからなる群から選ばれる材料から なるのがよい。
< 1 3 > 上記く 9 >〜< 1 2 >のいずれかの製造方法において、 含浸工程前 に、 含浸工程の間、 及び Z又は含浸工程後に、 第 1の多孔質体を減圧下に置くェ 程をさらに有するのがよい。
< 1 4 > 第 1の成分からなる第 1の多孔質体、 及ぴ該第 1の多孔質体の表面 に形成された多孔質部位を有するパイモダル多孔質体であって、 前記多孔質部位 が第 2の成分を有してなり、 該第 2の成分が第 1の成分と同じであるか又は異な つており、前記第 1の多孔質体が第 1の平均細孔径及び第 1の細孔径分布を有し、 前記多孔質部位が第 2の平均細孔径及ぴ第 2の細孔径分布を有し、 第 2の平均細 孔径が第 1の平均細孔径ょりも小さいバイモダル多孔質体。
< 1 5 > 上記く 1 4 >において、 第 1の成分がシリカ、 アルミナ、 ジルコ二 ァ、 チタニア及ぴマグネシアからなる群、 好ましくはシリカ、 ジルコユア、 チタ ニァ及びマグネシアからなる群から選ばれる 1種又は 2種以上を含有するのがよ レ、。
< 1 6 > 上記く 1 4〉又はく 1 5 >において、 第 2の成分がシリカ、 アルミ ナ、 ジルコニァ、 チタニア及ぴマグネシアからなる群、 好ましくはシリカ、 ジル コニァ、 チタニア及びマグネシアからなる群から選ばれる 1種又は 2種以上を含 有するのがよい。
< 1 7 > 上記く 1 4 >〜< 1 6 >において、 第 1の成分と第 2の成分とは異 なっているのがよ 、。
く 1 8〉 上記 < 1 4 >〜< 1 7 >において、 第 1の多孔質体が第 1の比表面 積を有する場合、 パイモダル多孔質体が該第 1の比表面積よりも高い第 2の比表 面積を有するのがよい。
< 1 9 > 上記く 1 8 >において、 第 2の比表面積が第 1の比表面積の 1 0 1 %〜3 0 0 %、 好ましくは 1 3 0 %〜2 0 0 %の範囲にあるのがよい。
< 2 0 > 上記 < 1 4〉〜< 1 9 >のいずれかにおいて、 第 1の多孔質体が第 1の細孔容積を有する場合、 パイモダル多孔質体が該第 1の細孔容積よりも小さ な第 2の細孔容積を有するのがよい。
< 2 1 > 上記 < 2 0〉において、 第 2の細孔容積が第 1の細孔容積の 4 0 % 〜9 8 %、 好ましくは 6 0 %〜8 0 %の範囲にあるのがよい。
< 2 2 > 上記く 1 4 >〜く 2 1 >のいずれかにおいて、 第 1の平均細孔径が
9 0 η π!〜 2 0 n m、 好ましくは 7 0 n m〜 3 0 n m、 より好ましくは 5 0 n m 〜4 0 n mであるのがよい。
< 2 3 > 上記 < 1 4 >〜く 2 2 >のいずれかにおいて、 第 2の平均細孔径が
1 0 n m〜 1 n mであるのがよい。
< 2 4 > 上記く 1 4〉〜く 2 3 >のいずれかにおいて、 第 1の細孔径分布が 狭く、 第 1の多孔質体の全細孔容積を 1 0 0 %とした場合、 第 1の平均細孔径に おける細孔容積率が 7 0 %〜 9 9 %、 好ましくは 9 0 %〜 9 9 %、 より好ましく は 9 5 %〜9 9 %であるのがよい。
< 2 5 > 上記く 1 4〉〜< 2 4 >のいずれかにおいて、 第 1の細孔径分布が 狭く、 バイモダル多孔質体の全細孔容積を 1 0 0 %とした場合、 第 1の平均細孔 径又はその近傍における細孔容積率が 3 0 %〜 9 0 %、 好ましくは 5 0 %〜 9 0 %、 より好ましくは 6 0 %〜 9 0 %であるのがよい。
< 2 6 > 上記く 1 4 >〜< 2 5〉のいずれかにおいて、 第 2の細孔径分布が 狭く、 パイモダル多孔質体の全細孔容積を 1 0 0 %とした場合、 第 2の平均細孔 径における細孔容積率が 10 %〜 70 %、 好ましくは 10 %〜 50 %、 より好ま しくは 10%〜40%であるのがよい。
< 27 > 上記 < 14 >〜< 26〉のいずれかのパイモダル多孔質体を有する 固体触媒。
< 28 > 上記 < 1 4〉〜< 26 >のいずれかのバイモダル多孔質体を担体と して有する固体触媒。
< 29 > 上記 < 14 >〜く 26 >のいずれかのパイモダル多孔質体を有する 固体触媒用担体。
< 30 > バイモダル多孔質担体に第 1の金属種の粒子を担持してなる金属担 持触媒であって、 該粒子は粒径が 5 nm〜50 nmである第 1の粒子、 及ぴ粒径 が 1 00 nm〜200 n mである第 2の粒子を有し、 第 1の粒子群が中空構造又 はパルク構造を有し、 第 2の粒子群が中空構造を有し、 前記パイモダル多孔質担 体は、 上記 < 1 >〜< 6 >及ぴ上記 < 14 >〜< 2.6 >のいずれかのパイモダル 多孔質体である、 金属担持触媒。
< 3 1 > パイモダル多孔質担体に第 1の金属種の粒子を担持してなる金属担 持触媒であって、 該粒子は粒径が 5 nm〜50 nmである第 1の粒子、 及ぴ粒径 が 1 00 nm〜200 n mである第 2の粒子を有し、 第 1の粒子群が中空構造又 はパルク構造を有し、 第 2の粒子群が中空構造を有し、 前記パイモダル多孔質担 体は、第 1の細孔径を平均細孔径として有する第 1の多孔質体を修飾して得られ、 前記第 1の細孔径又は該第 1の細孔径近傍に第 1のピーク細孔径を有し、 かつ該 第 1のピーク細孔径よりも小さな第 2のピーク細孔径を有する金属担持触媒。
< 32 > 上記く 3 1〉において、 第 1のピーク細孔径が 90〜20 nm、 好 ましくは 70〜 30 n m、 より好ましくは 50〜 40 n mであり、 第 2のピーク 細孔径が 10〜 1 nmであるのがよい。
< 3 3 > 上記く 3 1 >又は < 3 2 >において、 第 1の多孔質体が第 1の比表 面積を有する場合、 パイモダル多孔質担体が該第 1の比表面積よりも大きな第 2 の比表面積を有するのがよい。
< 34 > 上記 < 3 3〉において、 第 2の比表面積が第 1の比表面積の 1 0 1%〜300%、 好ましくは 130%〜200%の範囲にあるのがよい。 く 3 5 > 上記 < 3 1 >〜く 3 4 >のいずれかにおいて、 第 1の多孔質体が第 1の細孔容積を有する場合、 パイモダル多孔質担体が該第 1の細孔容積よりも小 さな第 2の細孔容積を有するのがよい。
< 3 6 > 上記 < 3 5〉において、 第 2の細孔容積が第 1の細孔容積の 4 0 % 〜9 9 %の範囲にあるのがよい。
く 3 7〉 上記 < 3 1〉〜く 3 6 >のいずれかにおいて、 第 1の金属種がコパ ルト、 ニッケル、 鉄及ぴルテニウムからなる群から選ばれる 1種又は 2種以上で あるのがよい。
< 3 8 > 上記 < 3 1 >〜く 3 6 >のいずれかにおいて、 第 1の金属種がコバ ルトであるがよい。
< 3 9 > 上記く 3 1〉〜く 3 8〉のいずれかにおいて、 担体がシリカを有し てなるのがよい。
< 4 0 > 第 1の金属種の硝酸塩をエタノールに溶解して該塩のエタノール溶 液を調製する工程、 及び該ェタノール溶液をパイモダル多孔質担体に含浸させる 工程、 及ぴ含浸させた担体を乾燥、 焼成する工程を有する金属担持触媒の製造方 法であって、 前記パイモダル多孔質担体は、 上記 < 1 >〜< 6 >及ぴ上記く 1 4 〉〜< 2 6〉のいずれかのパイモダル多孔質体である、 方法。
< 4 1 > 第 1の金属種の硝酸塩をエタノールに溶解して該塩のエタノール溶 液を調製する工程、 及び該ェタノール溶液をパイモダル多孔質担体に含浸させる 工程、 及び含浸させた担体を乾燥、 焼成する工程を有する金属担持触媒の製造方 法であって、 前記パイモダル多孔質担体は、 第 1の細孔径を平均細孔径として有 する第 1の多孔質体を修飾して得られ、 前記第 1の細孔径又は該第 1の細孔径近 傍に第 1のピーク細孔径を有し、 かつ該第 1のピーク細孔径ょりも小さな第 2の ピーク細孔径を有する方法。
< 4 2 > 上記く 4 1 >において、 第 1のピーク細孔径が 9 0〜2 0 n m、 好 ましくは 7 0〜 3 0 n m、 より好ましくは 5 0〜 4 0 n mであり、 第 2のピーク 細孔径が 1 0〜1 n mであるのがよレヽ。
< 4 3 > 上記く 4 1 >又はく 4 2〉において、 第 1の多孔質体が第 1の比表 面積を有する場合、 バイモダル多孔質担体が該第 1の比表面積よりも大きな第 2 の比表面積を有するのがよい。
< 4 4 > 上記く 4 3〉において、 第 2の比表面積が第 1の比表面積の 1 0 1 %〜3 0 0 %の範囲にあるのがよレヽ。
< 4 5 > 上記く 4 1 >〜< 4 4〉のいずれかにおいて、 第 1の多孔質体が第 1の細孔容積を有する場合、 パイモダル多孔質担体が該第 1の細孔容積よりも小 さな第 2の細孔容積を有するのがよい。
< 4 6 > 上記く 4 5〉において、 第 2の細孔容積が第 1の細孔容積の 4 0 % 〜9 9 %の範囲にあるのがよい。
< 4 7 > 上記く 4 1〉〜< 4 6 >のいずれかにおいて、 第 1の金属種がコパ ルト、 ニッケル、 鉄及ぴルテニウムからなる群から選ばれる 1種又は 2種以上で あるのがよい。
< 4 8 > 上記 < 4 1〉〜< 4 6〉のいずれかにおいて、 第 1の金属種がコバ ルトであるのがよい。
< 4 9 > 上記く 4 1〉〜< 4 8〉のいずれかにおいて、 エタノール溶液の調 製工程前に、 前記硝酸塩を乾燥する工程をさらに有するのがよい。
< 5 0 > 上記く 4 1 >〜< 4 9 >のいずれかにおいて、 エタノール溶液の調 製工程前に、 エタノール中の水分を除く工程をさらに有するのがよい。
< 5 1 > 上記く 4 1 >〜< 5 0 >のいずれかにおいて、 担体がシリカを有し てなるのがよい。
< 5 2 > 担体に第 1の金属種の粒子を担持してなる金属担持触媒であって、 該粒子は粒径が 5 n m〜 5 0 n mである第 1の粒子、 及び粒径が 1 0 0 n m〜 2 0 0 n mである第 2の粒子を有し、 第 1の粒子群が中空構造又はパルク構造を有 し、 第 2の粒子群が中空構造を有する金属担持触媒。
< 5 3 > 上記く 5 2〉において、 第 1の金属種がコバルト、 ニッケル、 鉄及 ぴルテニウムからなる群から選ばれる 1種又は 2種以上であるのがよい。
< 5 4 > 上記く 5 2〉において、 第 1の金属種がコバルトであるのがよい。
< 5 5 > 上記く 5 2〉〜く 5 4〉において、 担体が多孔質体でありかつシリ 力を有してなるのがよい。
< 5 6 > 第 1の金属種の硝酸塩をエタノールに溶解して該塩のエタノール溶 液を調製する工程、 及ぴ該エタノール溶液を担体に含浸させる工程、 及び含浸さ せた担体を乾燥、 焼成する工程を有する金属担持触媒の製造方法。
< 5 7 > 上記 < 5 6 >において、 第 1の金属種がコバルト、 ニッケル、 鉄及 ぴルテニゥムからなる群から選ばれる 1種又は 2種以上であるのがよい。
< 5 8 > 上記く 5 6 >において、 第 1の金属種がコバルトであるのがよい。
< 5 9 > 上記く 5 6〉〜< 5 8 >において、エタノール溶液の調製工程前に、 硝酸塩を乾燥する工程をさらに有するのがよい。
< 6 0 > 上記く 5 6 >〜< 5 9 >において、エタノール溶液の調製工程前に、 エタノール中の水分を除く工程をさらに有するのがよい。
< 6 1 > 上記 < 5 6 >〜< 6 0 >において、 担体が多孔質体でありかつシリ 力を有してなるのがよい。
< 6 2 > 上記く 3 0 >〜く 3 9 >及びく 5 2 >〜< 5 5 >のいずれかの金属 担持触媒又は上記 < 4 0 >〜< 5 1〉及ぴ< 5 6 >〜< 6 1 >のいずれかの方法 により得られた金属担持触媒に合成ガスを接触させる工程を有する、 合成ガスか らの炭化水素の合成方法。
< 6 3 > 上記 < 3 0 >〜< 3 9〉及びく 5 2 >〜く 5 5 >のいずれかの金属 担持触媒又は上記 < 4 0〉〜< 5 1 >及ぴ< 5 6 >〜< 6 1 >のいずれかの方法 により得られた金属担持触媒を有する反応容器、 該反応容器に水素ガス及び一酸 化炭素ガスを供給する供給手段、 及び反応容器から炭化水素を含む反応生成物を 排出させる排出手段を有する炭化水素の合成装置。 図面の簡単な説明 .
図 1は、 実施例 I一 1の多孔質体の細孔径分布を示す図である。
図 2は、 実施例 I I—1のコバルト担持触媒 H— 1を用いた場合の触媒反応の 評価結果を示す。
図 3は、 コントロール I I一 1のコバルト担持触媒 H— 2を用いた場合の触媒 反応の評価結果を示す。 発明の実施の形態 以下、 本発明を詳細に説明する。
本発明は、 パイモダル多孔質体により、 高い比表面積及ぴ高い拡散効率という 二律背反する要件を満たし、 高い触媒反応効率を得るものである。
ここで、 パイモダル多孔質体とは、 孔径が相対的に大きなメソポア又はマクロ ポアと相対的に小さなマイクロポアとを併せて有する二元細孔構造を有する多孔 質体のことである。
本発明のバイモダル多孔質体は、 多孔質粒子からなり、 該多孔質粒子が各々メ ソポア又はマクロポアとマイクロポアとを有する。
本発明のパイモダル多孔質体は、 第 1の成分からなる第 1の多孔質体、 及ぴ該 第 1の多孔質体の表面に形成された第 2の成分からなる多孔質部位を有する。 また、 本発明の他の面によれば、 本発明のパイモダル多孔質体は、 第 1の成分 からなる第 1の多孔質体を、 第 2の成分により修飾して得られたパイモダル多孔 質体である。
本発明のパイモダル多孔質体は、 第 1の多孔質体を有する。 この第 1の多孔質 体について詳細に説明する。
第 1の多孔質体は、 第 1の成分を有してなる。 第 1の成分は 1種の成分であつ ても 2種以上の成分であってもよい。
第 1の成分として、 種々の酸化物、 例えばシリカ、 アルミナ、 ジルコニァ、 チ タニア及びマグネシァからなる群、 好ましくはシリカ、 ジルコニァ、 チタニア及 びマグネシァからなる群から選ばれる 1種又は 2種以上を挙げることができる。 これらのうち、 固体触媒用担体として用いる場合、 用途にも依るが、 シリカ、 ァ ルミナ及びジルコユアからなる群、 好ましくはシリカ及ぴジルコユアからなる群 から選ばれる 1種又は 2種以上を用いるのが好ましい。
第 1の多孔質体は、 これらの第 1の成分に加えて他の成分を含有してもよい。 伹し、 第 1の成分が主成分であり、 他の成分は、 その成分自体又はその成分量が 触媒としての作用に影響を与えないのがよい。
第 1の多孔質体は、第 1の平均細孔径及ぴ第 1の細孔径分布、第 1の比表面積、 第 1の細孔容積を有する。
第 1の多孔質体の平均細孔径 (第 1の平均細孔径) は、 9 0 n m〜 2 0 n m、 好ましくは 7 0 n n!〜 3 0 n m、 より好ましくは 5 0 n m〜4 0 n mであるのが よい。 この細孔が、 パイモダル多孔質体において、 相対的に大きなメソポア又は マクロポアに相当する。
第 1の多孔質体の細孔径は、 そのほとんどがメソポア又はマクロポアであるの が好ましい。 即ち、 細孔径分布 (第 1の細孔径分布) の分散が少ないのが好まし レ、。 第 1の細孔径分布は、 第 1の多孔質体の全細孔容積を 1 0 0 %とした場合、 第 1の平均細孔径における細孔容積率が 7 0 %〜 9 9 %、 好ましくは 9 0 %〜 9 9 %、 より好ましくは 9 5 %〜9 9 %であるのがよい。
ここで、 ある径における細孔容積率 A%は、 以下の式のように表すことができ る。 即ち、 A= (ある径における細孔容積) Z (全細孔容積) X I 0 0である。 第 1の多孔質体は、 市販入手可能であるか又は合成により入手可能である。 市販入手可能な第 1の多孔質体として、比表面積 7 0 m2/ g、平均細孔径 5 0 n mであるシリカ粒子 (商品名 : Q— 5 0、 富士シリシァ社製) などを挙げるこ とができる。
また、 合成する場合、 従来より公知の方法、 例えば C V D法及びゾル—ゲル法 などにより、所望のシリカ多孔質体及びアルミナ多孔質体などの 1成分多孔質体、 ならぴに 2種以上の成分を有してなる多成分多孔質体を得ることができる。 多成 分多孔質体の場合、 強い表面酸点を形成することができる。
本発明の第 1の多孔質体の表面に、 多孔質部位を形成する。 以下に、 この多孔 質部位について詳述する。
本発明の多孔質部位は、 第 1の多孔質体の表面に形成される。 第 1の多孔質体 の表面とは、 該第 1の多孔質体を構成する個々の粒子の外表面と細孔表面とを併 せたものをいう。
多孔質部位は、 第 2の成分からなる。 第 2の成分は、 1種の成分であっても 2 種以上の成分であってもよい。
第 2の成分として、 種々の酸化物、 例えばシリカ、 アルミナ、 ジルコユア、 チ タニア及びマグネシアからなる群、 好ましくはシリカ、 ジルコニァ、 チタユア及 ぴマグネシアからなる群から選ばれる 1種又は 2種以上を挙げることができる。 これらのうち、 固体触媒用担体として用いる場合、 用途にも依るが、 シリカ、 ァ ルミナ及ぴジルコユアからなる群、 好ましくはシリカ及ぴジルコニァからなる群 から選ばれる 1種又は 2種以上を用いるのが好ましい。
第 1の成分と第 2の成分とは同じであっても異なっていてもよい。 両者が異な る成分である場合、 触媒反応における物理的要因である上述の拡散効率の他に、 化学的要因による触媒作用をもたらすことができる。 即ち、 例えば、 第 1の成分 としてシリカを用い、 第 2の成分としてシリカ及ぴジルコニァを用いて多孔質体 Aを作製した場合、 多孔質体 Aにジルコニァによる触媒活性サイトが生じ得る。 したがって、 多孔質体 Aに金属を担持したものを触媒として用いることは勿論、 多孔質体 A自体を触媒として用いることができる。
多孔質部位は、これらの第 2の成分に加えて他の成分を含有してもよい。但し、 第 2の成分が主成分であり、 他の成分は、 その成分自体又はその成分量が触媒と しての作用に影響を与えないのがよい。
多孔質部位は、 第 2の平均細孔径及ぴ第 2の細孔径分布を有する。
多孔質部位の平均細孔径 (第 2の平均細孔径) は、 1 0 n m〜l n mであるの がよい。 この細孔が、 バイモダル多孔質体において、 相対的に小さなマイクロポ ァに相当する。
多孔質部位の第 2の平均細孔径のみを測定するのは、 実際には困難である。 現 実には、 第 1の多孔質体と得られたパイモダル多孔質体との細孔径分布をそれぞ れ測定し、 バイモダル多孔質体の細孔径分布から第 1の多孔質体の細孔径分布を 除いたものが、 多孔質部位の第 2の細孔径分布となる。 この第 2の細孔径分布か ら第 2の平均細孔径を得ることができる。
また、 パイモダル多孔質体の細孔径分布から、 より簡便的に多孔質部位の第 2 の平均細孔径を知ることができる。 即ち、 パイモダル多孔質体に関して、 ある細 孔径における細孔容積率、即ち細孔径分布を測定する。この細孔径分布において、 2つ以上のピークが観測される。 1つは、 第 1の平均細孔径のピーク又は該ピー クの近傍にあって第 1の平均細孔径ょりも小さい径側にあるピーク (第 1の多孔 質体由来のピーク)である。他のピークは、多孔質部位由来のピークに相当する。 これらの他のピークから多孔質部位の平均細孔径 (即ち、 第 2の平均細孔径) を 求めることができる。 なお、 この簡便な方法は、 特に、 第 1の多孔質体として細孔径分布の分散が小 さいものを用いた場合に採用することができる。 また、本明細書において、 「細孔 径のピーク」 又は 「ピーク細孔径」 とは、 この細孔径を有する孔の数又は孔の容 積が最も多い細孔径のことをいう。
本発明のバイモダル多孔質体の第 2の細孔径分布は狭いのが好ましく、 パイモ ダル多孔質体の全細孔容積を 1 0 0 %とした場合、 第 2の平均細孔径における細 孔容積率が 1 0 %~ 7 0 %、 好ましくは 1 0 %〜 5 0 %、 より好ましくは 1 0 % 〜4 0 %であるのがよい。
また、 本発明のバイモダル多孔質体において、 第 1の多孔質体由来の第 1の細 孔径分布は狭いのが好ましい。 パイモダル多孔質体の全細孔容積を 1 0 0 %とし た場合、 第 1の平均細孔径又はその近傍における細孔容積率が 3 0 %〜 9 0 %、 好ましくは 5 0 %〜 9 0 %、 より好ましくは 6, 0 %〜 9 0 %であるのがよい。 以上のような第 1の多孔質体及ぴ多孔質部位を有する本発明のパイモダル多孔 質体は、 以下のような方法により得ることができる。
即ち、 上述したように第 1の多孔質体を調製するか又は用意する。 この第 1の 多孔質体とは別個に液状物を調製する。 この液状物はゾルであるのが好ましい。 液状物は、 パイモダル多孔質体において多孔質部位となる原料であり、 第 2の 成分又は第 2の成分を形成する化合物を有する。 第 2の成分として、 上述のシリ 力、 アルミナ、 ジルコニァ、 チタニア及ぴマグネシアからなる群、 好ましくはシ リカ、 ジルコユア、 チタニア及びマグネシアからなる群から選ばれる、 少なくと も 1種の微粒子が挙げられる。 第 2の成分を形成する化合物として、 シリコン、 アルミニウム、 ジルコニウム、 チタン及びマグネシウムなどの種々の金属を 1種 又は 2種以上含む金属アルコキシド、 シリ力成分が高い水ガラスなどを挙げるこ とができる。 例えば、 金属種 Aの金属アルコキシドは、 従来より公知の種々の方 法により、 金属種 Aの酸化物粒子を形成することができる。
また、 液状物、 好ましくはゾルは、 第 2の成分又は第 2の成分を形成する化合 物以外に、 溶媒、 金属アルコキシドを用いたときには酸又は塩基触媒などを含有 することができる。
次いで、 得られた液状物を第 1の多孔質体に含浸する。 含浸の方法は、 従来よ り公知のいずれの方法も用いることができる。 例えば、 液状物の液滴を第 1の多 孔質体に注いで含浸させる方法、 液状物中に第 1の多孔質体を浸漬して含浸させ る方法などを挙げることができる。
また、 含浸工程前に、 含浸工程の間、 及びノ又は含浸工程後に、 第 1の多孔質 体又は第 1の多孔質体を入れた容器を減圧又は真空にして脱気する工程を設けて もよい。 この減圧工程を設けることにより、 第 1の多孔質体に液状物を容易に浸 入又は拡散させることができる。
その後、 液状物が含浸された第 1の多孔質体を乾燥、 焼成してパイモダル多孔 質体が得られる。
このようにして得られたパイモダル多孔質体は、 第 1の多孔質体の第 1の比表 面積よりも高い第 2の比表面積を有する。 第 2の比表面積は、 第 1の比表面積の 1 0 1 %〜3 0 0 %、 好ましくは 1 3 0 %〜2 0 0 %の範囲にあるのがよい。 また、 パイモダル多孔質体は、 第 1の多孔質体の第 1の細孔容積よりも小さな 第 2の細孔容積を有する。第 2の細孔容積は、第 1の細孔容積の 4 0 %〜 9 9 %、 好ましくは 5 0 %〜 9 0 %、 より好ましくは 6 0。/。〜 8 0 %、 最も好ましくは 7 0 %〜8 0 %の範囲にあるのがよい。
これらのパイモダル多孔質体は、 それ自体を触媒として用いても、 多孔質体を 担体として金属を担持し金属担持触媒として用いてもよい。
このような金属担持触媒の製造方法は、 多孔質体として本発明のバイモダル多 孔質体を用いること以外、 従来より公知の方法を用いることができる。
以下、 本発明の他の面を詳細に説明する。
本発明の金属担持触媒は、 担体に第 1の金属種からなる金属粒子を担持してな る。 特に、 本発明の金属担持触媒は、 担体として、 上記パイモダル多孔質体を用 いるものが好ましく、 該担体に第 1の金属種からなる金属粒子を担持してなるの が好ましい。 本発明の金属担持触媒は、 F _ T合成反応に用いられるのが好まし レ、。
第 1の金属種は、 コバルト、 ニッケル、 鉄及びルテニウムからなる群から選ば れる 1種又は 2種以上であるのがよい。 なお、 2種以上用いる場合、 合金'である のがよい。これらのうち、不所望な副生成物を抑える観点、用いられる温度範囲、 及び/又はコストの観点から、 第 1の金属種はコバルトであるのが好ましい。 第 1の金属種からなる金属粒子は、 その粒径が 5 nn!〜 50 nm、 好ましくは
20 nm〜30 rimである第 1の粒子、 及ぴ粒径が 100 ηπ!〜 200 nm、 好 ましくは 100 nm〜 1 70 n mである第 2の粒子を有する。
第 1の粒子は、 それにより第 1の粒子群を形成する。 該第 1の粒子は中空構造 又はパルク構造を有する。 また、 第 2の粒子も第 1の粒子と同様に第 2の粒子群 を形成する。 該第 2の粒子は中空構造を有する。
なお、 パルク構造とは、 いわゆる金属粒子が金属として存在する緻密構造のこ とをいう。
このように、 本発明の金属担持触媒は、 同じ金属種からなる粒子であるが、 そ の粒径が異なる第 1の粒子及ぴ第 2の粒子を有するのがよい。
本発明の金属担持触媒において、 金属粒子の担持量は、 触媒 1 00重量%中、 5〜40重量0 /0、 好ましくは 10〜20重量0 /0であるのがよい。
第 1の金属種からなる金属粒子は、 上記のように第 1及び第 2の粒子を形成す るのであれば、 種々の製法を用いて得ることができる。 例えば、 このような粒子 は、第 1の金属種の硝酸塩を用いて得ることができる。これについては後述する。 本発明の金属担持触媒に用いられる担体は、 種々の多孔質体、 好ましくは酸化 物多孔質体であるのがよい。 より具体的には、 シリカ、 アルミナ、 ジルコユア、 チタ-ァ、 マグネシアなどの酸化物の多孔質体、 又はこれら酸化物の複合体から なる多孔質体であるのがよい。
第 1の金属種としてコバルトの硝酸塩を用いる場合、 担体は多孔質体であり、 シリカを有してなるか又はシリカのみからなるのが好ましい。
本発明の金属担持触媒は、 担体及び該担体上に担持された第 1の金属種の粒子 の他に、 担体上にルテニウム、 白金、 パラジウムなどの貴金属からなる金属粒子 が担持されていてもよい。
これらの貴金属の担持量は、 貴金属 (Mr) と第 1の金属 (M との比率 (重 量比)、 Mr : が 100 : 100〜0. 01 : 100、 好ましくは 50 : 1 00 〜0. 01 : 100、 より好ましくは 5 : 1 00〜0. 0 1 : 1 00であるのが よい。 本発明の金属担持触媒は、 次のように調製することができる。
まず、 担体を調製する。 担体として、 種々のシリカ担体、 アルミナ担体などが 市販入手可能である。 これら市販入手可能な担体を用いても、 合成により調製し てもよい。 勿論、 上記バイモダル多孔質体を担体として用いることもできる。 次に、 担体とは別個に第 1の金属種の塩のエタノール溶液を調製する。 塩とし て、 上述のように硝酸塩のみを用いても、 それ以外の塩、 例えば酢酸塩を用いて も、 硝酸塩とそれ以外の塩との 2種以上の塩、 例えば硝酸塩と酢酸塩とを用いて もよい。 なお、 2種以上の塩を用いる場合、 2種以上の塩をすベて溶媒であるェ タノールに入れて溶液を調製しても、 2種以上の塩をそれぞれ溶質とした、 それ ぞれのエタノール溶液を調製してもよい。 例えば、 2種以上の塩として酢酸塩及 ぴ硝酸塩を用いる場合、 酢酸塩及び硝酸塩の比率は、 各々の塩に含まれる第 1の 金属種の原子比で表した場合、 1 0 : 1〜1 : 1 0、 好ましくは 2 : 1〜 1 : 2 であるのがよく、 例えば 1 : 1とするのがよい。 また、 2つの溶液を調製して用 いる場合、 2つの溶液の比率は、 それに含まれる各々の金属塩の比率が上記範囲 となるように、 用いるのがよい。
用いる塩は、 十分に乾燥して、 含水塩を除去するのが好ましい。 例えば、 硝酸 塩 C o (N 03) 2 - 6 H20の場合、 1 0 0〜4 0 0 °C ( 3 7 3〜 6 7 3 K) にお いて、 空気中で 0 . 5〜1 0時間、 加熱乾燥又は仮焼するのがよい。
また、 用いるエタノールは、 市販のエタノールに含まれる水を除去し、 精製す るのが好ましい。 水の除去などを含むエタノールの精製法として、 従来より公知 の方法を用いることができる。
なお、第 1の金属種の他に、貴金属を用いる場合、これらの貴金属の錯体溶液、 好ましくは錯体のエタノール溶液を調製し、 これを上記の第 1の金属の塩のエタ ノール溶液と混合、 調製するのが好ましい。
貴金属の錯体として、 例えば H2 P t C 1 6、 H2 P d C 1 6、 P d (N 02) 2 (N H3) 2、 P t (N 02) 2 (N H3) 2を挙げることができる。
次いで、 担体にエタノール溶液を含浸させる。 2種以上の溶液を用いる場合に は、 いずれか 1種を先に含浸させ、 残りを順に含浸させてもよい。
含浸の方法は、 公知の種々の方法を用いることができる。 一般に、 インサイピ ェント一ゥエツトネス (incipient- wetness)法に基づいて含浸する。インサイピ ェントーゥエツトネス法とは、 多孔質担体の細孔容積と同容量の溶液を含浸させ る方法である。即ち、 A ( c m3/ g )の細孔容積を有する担体を B g用いた場合、 細孔容積は A * B ( c m3) となる。 この A * B ( c m3) と同容量の溶液を含浸 させる。 より具体的には、 この A * B ( c m3) の溶液中に、 第 1の金属種の担持 させるべき量を、 塩として溶解するのがよい。
エタノール溶液を含浸させる前、 含浸させる間、 及ぴ /又は含浸させた後、 担 体を備える容器を減圧してもよい。 これにより、 担体内にエタノール溶液をスム 一ズに含浸させることができる。
含浸させた後、 担体を乾燥、 焼成する。 乾燥条件及ぴ焼成条件は、 用いる第 1 の金属種、 該金属種の塩の量、 用いる担体の大きさ、 担体の諸特性などに依存す る。 一般に、 焼成は、 最高焼成温度が 3 0 0〜 5 0 0 °Cであり、 焼成後に水素ガ ス又は水素混合ガス気流下で、 2 0 0〜4 5 0 °Cの還元条件下に置くのがよい。 このようにして、 本発明の金属担持触媒を調製することができる。
次に、 この金属担持触媒を用いる、 炭化水素の合成方法及ぴ合成装置について 説明する。
炭化水素の合成装置は、 反応容器、 該反応容器に反応させるガスを供給する供 給手段、 及び反応容器で発生する反応生成物を排出する排出手段を有する。 これ らの反応容器、 並びに供給及び排出手段は、 従来より公知の容器又は手段を用い ることができる。 以下、 これらについて例示しながら簡単に説明する。
反応容器は、その内部に本発明の金属担持触媒を有する。この金属担持触媒は、 種々の形態、 例えば固体状のものを用いても、 溶媒などに分散又は溶解させた半 液体状又は半固体状のものを用いてもよい。金属担持触媒が半液体状である場合、 溶媒として、 副生成物であるワックスを溶解する溶媒、 例えば n—へキサデカン を用いるか又は F— T法での生成油の混合体である F— T油をリサイクルして用 いるのが好ましい。 即ち、 この溶媒を用いて金属担持触媒をスラリー状にするの が好ましい。
反応容器は、 圧力及び温度などの諸条件を制御できる手段を備えるのがよい。 例えば、 スラリ一状金属担持触媒と合成ガスとの接触を増加させるためにスラリ 一状金属担持触媒を攪拌する攪拌手段、 反応容器を加熱する加熱手段、 圧力を一 定に保つ圧力制御手段即ち圧力制御弁などを挙げることができる。
より具体的には、 反応容器は、 上記の種々の手段を備えたオートクレープ又は セミパッチリアクターを用いるのが好ましい。
供給手段は、 上記反応容器に合成ガス、 即ち水素ガス及ぴ一酸化炭素ガスを供 給するための種々の手段を含み、 従来より公知の手段を用いることができる。 例 えばガスを貯留するガス貯留手段、 該ガス貯留手段から反応容器にガスを供給す るガス供給管、 ガスを供給するときの流量を制御するガス流量制御手段、 ガス中 の不純物を取り除くガス浄化手段などが挙げられる。
なお、 水素ガス及び一酸化炭素ガスは、 その各々を反応容器に供給するように 各々の供給手段が配置されていても、 一つの供給手段で双方のガスを反応容器に 供給するように供給手段が配置されていてもよい。
排出手段は、 用いる金属担持触媒の形態に依存して異なる。 例えば、 用いる金 属担持触媒が固相又はスラリ一状などの液相などの形態により、 排出手段は異な つてくる。 しかしながら、 排出手段も、 従来より公知の手段を用いることができ る。 例えば、 上記反応容器から所望の生成物である炭化水素、 特に直鎖炭化水素 を排出するための種々の手段、 不所望の副生成物であるメタンなどの炭素数 1個 〜 4個の炭化水素及び二酸化炭素を排出するための種々の手段、 炭化水素と共に 主反応で生成する水を排出するための種々の手段、 反応中においてヮックスを抽 出する手段などを挙げることができる。
排出手段として、 より具体的には、 例えば、 所望である反応生成物を排出する 排出管及ぴ不所望の副生成物を排出する排出管、 反応生成物及び副生成物を気相 として得た場合、 該気相を冷却する手段、 冷却後に得られた液相を貯蔵する手段 などを挙げることができる。
炭化水素の合成装置は、 上記手段の他に、 種々の手段を有することができる。 例えば、 お出手段に排出された、 未反応のガス、 例えば一酸化炭素ガスを再度反 応容器に組み込むように配置される未反応ガスリサイクル手段;反応中間体とし て排出された炭素数の少ない炭化水素を再度反応容器に戻すように配置される反 応中間体リサイク レ手段;及ぴ副生成物として生じる不飽和炭化水素を分離する 手段;分離した不飽和炭化水素を飽和炭化水素にする水素化手段などをさらに有 していてもよい。
炭化水素の合成方法は、上記合成装置などを用いることにより行われる。即ち、 炭化水素の合成方法は、 金属担持触媒を有する反応容器に水素ガス及ぴ一酸化炭 素ガスを供給する工程、 反応容器内で水素ガス及び一酸化炭素ガスを金属担持触 媒と接触させて触媒反応を行う工程、 触媒反応によつて生成物を得る工程を有す る。
ガスの供給工程は、 H2: C Oが 1 : 2〜4 : 1となるように、 行われるのがよ い。
また、 ガスと触媒との接触時間 (Weight/Flow rate、 以下 「W/F」 と略記する) は、 用いる金属担持触媒の形態に依存して変化する。 例えば、 スラリー状の金属 担持触媒を用いる場合、接触時間 (W/F) が 1〜 1 0 g · h /m o 1 となるように 設定するのがよい。
さらに、 触媒反応を行う条件、 例えば温度及ぴ圧力も、 用いる金属担持触媒の 形態に依存して変化する。 例えば、 スラリー状の金属担持触媒を用いる場合、 以 下のような条件下で行うのがよい。 即ち、 圧力を 5〜 5 0パール、 温度を 2 0 0 〜2 8 0 °Cで行うのがよい。
さらに、 上記方法は、 従来より公知の種々の工程をさらに有していてもよい。 特に、 得られた生成物を処理するための種々の工程を有することができる。 例え ば、 用いる金属担持触媒の形態にも依るが、 炭化水素を気相により得る場合、 該 気相を冷却して液状物を得る工程、 得られた液状物を所望の生成物と不所望の生 成物とに分別する工程などを挙げることができる。
また、 未反応ガス、 例えば一酸化炭素ガスを反応容器に再度供給する工程など を有してもよい。 実施例
以下、 実施例を用いて本発明をより具体的に説明するが、 実施例は単なる例示 であって、 本発明を限定するものとして解釈してはならない。
(実施例 I一 1 ) [第 1の多孔質体]
第 1の多孔質体 A— 1として、 商品名 「Q— 5 0」 (富士シリシァ社製) のシリ 力粒子を、 メッシュ孔径 7 5— 5 0 0 mに通し、 得られたものを以降のパイモ ダル多孔質体の調製に用いた。
この粒子は、 比表面積が 70 m2/ gであり、 平均細孔径が 5 0 n mであり、 細 孔容積が 1. 2 cm3Zgであった。 また、 「Q— 5 0」 は、細孔径の分布が狭く、 平均細孔径 50 n mでの細孔容積率が 9 0 %であった。
[ゾノレ B— 1の調製]
第 1の多孔質体 A— 1の準備とは別個に、 コロイダルシリカ (商品名 「スノー テックス XSJ、 日産化学社製) を準備した。 商品名 「スノーテックス X S」 のコ ロイダルシリカは、 溶媒として水を有し、 シリカ (S i O2) を 2 0重量%、 N a 20を 0. 6重量%有し、 コロイド粒径が 5 nmであり、 且つその比重が 1. 1 3 5 g/c cであった。 このゾルをゾル B— 1として用いた。
[多孔質体 C一 1の調製]
第 1の多孔体 A— 1を 1 0 g含浸用容器に置き、ゾル B— 1を 1 2 c m3含浸さ せ、 容器を約 0. 8気圧で 1時間脱気した。 なお、 含浸するゾルの容量は、 第 1 の多孔体 A— 1の細孔容積に相当する量であった。
含浸後、 1 2 0°Cで一晩乾燥し、 その後、 大気中で、 4 0 0°C、 2時間焼成し て、 多孔質体 C一 1を得た。
[担体として多孔質体 C— 1を用いた触媒 D— 1の調製]
硝酸コパルト 6水和物 4. 8 g及ぴ硝酸ルテニゥム 1. 2 gを純水 7 cm3に溶 解して溶液 X— 1を調製した。
担体として多孔質体 C_ 1を 8. 7 2 g用いて、 含浸用容器に置いた。 この多 孔質体 C一 1に溶液 X— 1を 7 c m3含浸させた後、約 0. 8気圧で 1時間脱気し た。
得られた含浸体を 1 2 0°Cで一晩乾燥し、 その後、 大気中で、 400°C、 2時 間焼成した。 さらに、 水素ガス気流下で、 2時間、 4 0 0°Cで焼成した後、 得ら れた焼成体をさらに約 2時間、 酸素で表面のみを酸化させ、 その後、 室温に戻し て、 触媒 D— 1を得た。 触媒 D— 1は、コバルトを 10重量%及びルテニウムを 0.5重量%含有した。 (比較例 1 - 1)
[担体として多孔質体 A— 1を用いた触媒 D— 2の調製]
商品名 「Q_50」 (富士シリシァ社製) である多孔質体 A— 1をそのまま担体 として用いて触媒 D— 2を調製した。 即ち、 実施例 1— 1の多孔質体 C一 1の代 わりに、 多孔質体 A— 1を用いた以外、 実施例 I一 1と同様の方法により、 触媒 D— 2を調製した。
(比較例 I一 2)
[担体として多孔質体 A— 2を用いた触媒 D— 3の調製]
多孔質体 A— 2として、商品名「Q— 3」(富士シリシァ社製)のシリカ粒子を、 メッシュ孔径 850 m〜 500 mに通し、 得られたものを用いた。
この粒子は、 比表面積が 546 mV gであり、 平均細孔径が 3 n mであり、 細 孔容積が 0. 3 cm3Zgであった。 また、 「Q— 50」 は、 細孔径分布が狭く、 平均細孔径 3 nmでの細孔容積率が 85 %であった。
この商品名 「Q— 3」 である多孔質体 A— 2をそのまま担体として用いて触媒 D— 3を調製した。 即ち、 実施例 I— 1の多孔質体 C一 1の代わりに、 多孔質体 A— 2を用いた以外、実施例 I一 1と同様の方法により、触媒 D— 3を調製した。
[多孔質体及び触媒の評価]
多孔質体 C_ 1、 A— 1及ぴ A— 2の B ET比表面積、細孔径分布を評価した。 また、 これらの多孔質体を担体として用いた触媒 D— 1〜D— 3のフィッシャ 一 · トロプシュ (F— T) 反応用触媒としての性能を評価した。
(1) 多孔質体の BET比表面積及び細孔径分布の評価
シリカゾルによる処理を行った多孔質体 C— 1は、 その BET比表面積が 90 m2Zgであった。 また、 細孔径分布は、 図 1に示すように、 5 0 11111及ぴ6 11111 の双方にピークを有していた。
—方、 シリカゾルによる処理を行っていない多孔質体 A— 1及び A— 2は、 上 述のように、その比表面積が各々 7 Om2/g及び 546m2/gであった。また、 多孔質体 A— 1及ぴ A— 2の平均細孔径も、 上述のように、 各々 50 n m及び 3 nmであつ 7こ。 ( 2 ) 触媒 D— 1〜D— 3の F— T反応用触媒としての性能評価 触媒 D— 1〜D— 3の F— Τ反応用触媒としての性能を評価した。 評価にあた り、 各々の触媒 1 gを粉枠し用いた。
また、 F— T条件として、 温度 240°C、圧力 10 a t m、 H2ガス/ COガス = 2を用いた。 さらに、 接触時間 (weight/flow rate、 以下 W/Fと略記する) は、 5 g · h/mo 1及ぴ 10 g · h/mo 1の双方について行った。
上記 (1) 及ぴ (2) の結果を表 1に示す。 表 1. 担体の特性及び F— T反応の性能
Figure imgf000025_0001
表 1及ぴ図 1から明らかなように、 実施例 I一 1の担体である多孔質体 C一 1 は、 50 nm及ぴ 6 n mに細孔径分布のピークを有するパイモダル多孔質体であ ることがわかる。 また、 比較例 I一 1及ぴ I一 2と比較すれば明らかなように、 実施例 I一 1のパイモダル多孔質体を担体として用いた F— T反応用触媒は、 高 い CO転化率を有することがわかる。 即ち、 パイモダル多孔質体を担体として用 いれば、 高い比表面積及び高い拡散効率を併せ持ち、 高活性の触媒を提供するこ とができる。
(実施例 I一 2)
実施例 I一 1のゾル B— 1に用いたコロイダルシリカ (商品名 「スノーテック ス XS」、 日産化学社製) の代わりに、 コロイダルシリカ (商品名 「セラミカ 40 1 G」、 日板化学社製) を用いた。 商品名 「セラミカ 40 1 G」 のコロイダルシリ 力は、 溶媒としてエタノールを有し、 シリカ及ぴジルコニァ (S i 02+Z r 02) を 20重量%有し、 コロイド粒径が 5 nmであり、 且つその比重が 0. 94 gZ c m3であった。
この商品名 「セラミカ 40 1 G」 をゾル B— 2として用いた。
実施例 I一 1のゾル B— 1の代わりに、 ゾル B— 2を用いて、 実施例 I— 1と 同様の方法により、 多孔質体 C一 2を得た。
また、 この多孔質体 C— 2を、 実施例 I一 1の多孔質体 C— 1の代わりに用い て、 触媒 D— 4を得た。 但し、 コバルトの重量%を 「1 0重量%」 の代わりに 5 重量%とし、 且つルテニウムは添加しなかった。
(比較例 I一 3及ぴ比較例 I一 4 )
担体として、 多孔質体 A— 1及び A— 2をそれぞれ用いて、 実施例 I一 2と同 様に、 コバルト 5重量%を担持した触媒 D— 5及び D— 6をそれぞれ調製した。 得られた触媒を、 400°C、 水素雰囲気下で 1 0時間還元し、 その後 25°C、 酸素雰囲気下で約 2時間、 該触媒の金属表面のみの酸化を行つた。
これらの多孔質体及び触媒 D_ 4〜D— 6を、 実施例 I― 1並びに比較例 I一 1及び I— 2と同様に、 評価した。
但し、 触媒の評価において、 接触時間 (WZF) を 1 0 g · h/mo 1につい てのみ行った。
これらの評価結果を以下の表 2に示す。 表 2. 担体の特性及ぴ F— T反応の性能
Figure imgf000026_0001
表 2からわかるように、 実施例 I一 2の担体である多孔質体 C_ 2は、 実施例 I一 1の多孔質体 C一 1と同様に、 50 ηπι及び 4 nmに細孔径分布のピークを 有するパイモダル多孔質体であることがわかる。 また、 比較例 1— 3及び I一 4 と比較すれば明らかなように、 実施例 2のパイモダル多孔質体を担体として用い た F— T反応用触媒は、 高い CO転化率を有することがわかる。 即ち、 パイモダ ル多孔質体を担体として用いれば、 高い比表面積及ぴ高い拡散効率を併せ持ち、 高活性の触媒を提供することができる。
(実施例 I I一 1 )
[コバルト担持触媒 H— 1の調製]
担体 F— 1として、市販入手可能なシリカゲル(富士 Davison社製、 I Dゲル) を用いた。 このシリカゲルは、 比表面積が 27 Om2/g、 細孔容積が 1. 22 c m3/ g、 平均細孔径が 8. 7 n mであった。
硝酸コバルト 6水和物 (C o (N03) 2 · 6 H20) を、 100°C (3 73 K) で 3時間、 空気中で加熱乾燥した。
さらに、市販入手可能なエタノールを、該エタノールに含まれる水を除くため、 ゼォライトを添加することにより、 十分に精製した。
この精製したエタノール 5.49 cm3に、乾燥した硝酸コバルト 1.86 g (8· 5 X 1 0— 3mo l ) を入れ、 攪拌して硝酸コバルトのエタノール溶液 G— 1を得 た。
インサイピエントウエツトネス法により、 コバルト塩のエタノール溶液 G— 1 をシリカゲル担体 F— 1に含浸させた。 即ち、 シリカゲル担体 F— 1を 4. 5 g (細孔容積 5. 4 9 cm3) デシケータ内に置き、 この担体 F— 1にコバルト塩の エタノール溶液 G— 1を 5. 49 c m3滴下、 含浸させた。
含浸して得られたゲル体 F— 2を 120°Cで 1 2時間乾燥し、その後、 400°C で 2時間仮焼し、 水素気流によって還元してから、 コバルトが 1 0重量%含有す るコパルト担持触媒 H— 1を得た。
このコバルト担持触媒 H— 1を電子顕微鏡で観察したところ、 粒径が 1 O nm 〜40 nmのコバノレト金属粒子と粒径が 1 00 nm〜 1 70 nmのコパルト金属 粒子とを有することがわかった。 また、 粒径が 100 nm〜l 70 nmのコパル ト金属粒子は、 中空構造を有していることがわかった。
[触媒 H— 1を用いた触媒反応]
反応容器として、 内容積 85m lの SUS 316製電磁攪拌型オートクレープ を用意した。
また、 この反応容器に、 水素ガス及び一酸化炭素ガス供給口、 並びに生成物排 出口を設けた。
オートクレープに触媒 H— 1を 1 g入れ、溶媒 η—へキサデカン 20 c m3をさ らに加えて攪拌してスラリー状とした。
この反応容器の内圧を 10バールとし、 スラリ一状物質を 1200 r pmで攪 拌しながら、 温度 240°C (513K) となるように加熱した。
また、 H2ZCO=2 (モル比)、 及ぴ流速 0. 2mo l_/h (接触時間 (W/F) が 5 g · hZmo 1) となるように、 水素ガス及び一酸化炭素ガスを反応容器に 供給した。
排出口より下流には、 比較的低沸点の生成物及び水をトラップするために、 氷 又はドライアイスで冷却したトラップ管を設ける一方、 排出口からトラップまで を約 150°C (約 423K) に加熱した。
このようにして、例えば 100時間、 F— T触媒反応を行ったところ、 C 5 (ぺ ンタン) 以上の液状炭化水素を 50 g得た。
(コント口ール I I— 1 )
[コバルト担持触媒 H— 2の調製] ,
担体として、 実施例 I I一 1と同じシリカゲル担体 F_ 1を用いた。
実施例 I I一 1で用いたエタノールの代わりに、 水を用いた。
また、 コバルトの塩として、 硝酸コバルト 6水和物 (C o (Ν03) 2· 6Η2θ)
2. 47 g (8. 5 X 10 -3m ο 1 ) を、 乾燥せずに用いた。
硝酸コバルト 6水和物を水 5.49 cm3に溶解してコバルト塩の水溶液 G— 2 を得た。
さらに、 実施例 I I一 1と同様に、 コバルト塩の水溶液 G— 2をシリカゲル担 体 F— 1に含浸し、 その後乾燥、 焼成して、 コバルトが 10重量%含有するコパ ルト担持触媒 H— 2を得た。 このコパルト担持触媒 H_ 2を電子顕微鏡で観察したところ、 粒径が 100 n m〜 1 70 nmのコバルト金属粒子を有することがわかった。 なお、 どの粒子も 中空構造を有していなかった。
[触媒 H— 2を用いた触媒反応]
実施例 I 1— 1において、 触媒としてコバルト担持触媒 H— 1の代わりに H— 2を用いた以外、 実施例 I I一 1と同様に、 触媒反応を行った。
[触媒反応の評価]
実施例 I I一 1のコバルト担持触媒 H— 1、 及びコントロールのコバルト担持 触媒 H— 2を用いた触媒反応を評価した。 評価において、 1) 原料ガスである一 酸化炭素ガスの転化率の経時変化、 2) 副生成物であるメタンガスの発生率 (選 択率) の経時変化、 及び 3) 副生成物である二酸化炭素ガスの発生率 (選択率) の経時変化を観察した。
.なお、 1) 一酸化炭素ガスの転化率の経時変化は、 原料ガスに含まれるァルゴ ンガス (3%) を内部標準として用いて、 [(導入した COガス量) 一 (排出され た (未反応) COガス量)] / (導入した COガス量) * 100 (%) を経時的に 測定することにより求めた。
また、 2) メタンガスの選択率の経時変化は、 (生じたメタンガス量) / [(生 成した全炭化水素量) + (二酸化炭素ガス量)] * 1 00 (%) を経時的に測定す ることにより求めた。
さらに、 3)二酸化炭素ガスの選択率の経時変化は、(生じた二酸化炭素ガス量) / [(生成した全炭化水素量) + (二酸化炭素ガス量)] * 100 (%) を経時的 に測定することにより求めた。
観察結果を図 2及び図 3に図示する。 図 2は、 実施例 I 1— 1のコバルト担持 触媒 H— 1を用いた場合の結果である。 また、 図 3は、 コントロール I I一 1の コパルト担持触媒 H— 2を用いた場合の結果である。
図 2及ぴ図 3を見れば明らかなように、 実施例 I I一 1のコパルト担持触媒 H 一 1を用いた場合(図 2)、一酸化炭素ガスの転化率が初期段階から 70%と高く、 且つ 1 00時間経過後もその転化率が維持されていることがわかる。 一方、 コン トロール I I— 1のコバルト担持触媒 H— 2を用いた場合(図 3)、一酸化炭素ガ スの転化率は、 初期段階が 6 0 %と比較的高いものの、 徐々に減衰し、 転化率が 悪化していくことがわかる。
また、 副生成物 (メタンガス及ぴ二酸化炭素) の発生に関しても、 実施例 I I 一 1のコパルト担持触媒 H— 1の場合(図 2 )、メタンガス約 5 %及び二酸化炭素 1 %未満と、 低く抑えられていることがわかる。 一方、 コントロール I I一 1の コパルト担持触媒 H— 2の場合(図 3 )、メタンガス約 7〜 9 %及び二酸化炭素約 1 %と、 不所望な副生成物が発生していることがわかる。
これらのことから、 実施例 I I一 1のコバルト担持触媒 H— 1を用いた場合、 高活性であり且つ寿命が長い触媒を提供でき、 且つ副生成物の発生を抑えた触媒 を提供することができる。 産業上の利用可能性 '
本発明のパイモダル多孔質体は一般に、固体触媒、固体触媒用担体、フィルタ、 吸着剤、 乾燥剤として利用することができる。 特に本発明のパイモダル多孔質体 は、 該多孔質体のみを用いた触媒、 該多孔質体を用いる触媒、 例えば金属担持触 媒、 特に F— T合成反応に用いられる金属担持触媒に用いることができる。

Claims

請 求 の 範 囲 第 1の細孔径を平均細孔径として有する第 1の多孔質体を修飾して得られ たバイモダル多孔質体であって、 前記第 1の細孔径又は該第 1の細孔径近 傍に第 1のピーク細孔径を有し、 かつ該第 1のピーク細孔径ょりも小さな 第 2のピーク細孔径を有するパイモダル多孔質体。
前記第 1のピーク細孔径が 9 0〜2 0 n mであり、 前記第 2のピーク細孔 径が 1 0〜 1 n mである請求項 1記載のバイモダル多孔質体。
第 1の多孔質体が第 1の比表面積を有する場合、 バイモダル多孔質体が該 第 1の比表面積よりも大きな第 2の比表面積を有する請求項 1又は請求項 2記載のバイモダル多孔質体。
第 2の比表面積が第 1の比表面積の 1 0 1 %〜3 0 0 %の範囲にある請求 項 3記載のパイモダル多孔質体。
第 1の多孔質体が第 1の細孔容積を有する場合、 パイモダル多孔質体が該 第 1の細孔容積よりも小さな第 2の細孔容積を有する請求項 1〜請求項 4 のいずれか 1項記載のパイモダル多孔質体。
第 2の細孔容積が第 1の細孔容積の 4 0 %〜 9 9 %の範囲にある請求項 5 記載のバイモダル多孔質体。
第 1の細孔径を平均細孔径として有する第 1の多孔質体を用意する工程、 該第 1の多孔質体とは別個に液状物を調製する工程、 該液状物を前記第 1 の多孔質体に含浸する工程、 及び得られた多孔質体を乾燥、 焼成する工程 を有するバイモダル多孔質体の製造方法であって、 該パイモダル多孔質体 が前記第 1の細孔径又は該第 1の細孔径近傍に第 1のピーク細孔径を有し、 かつ該第 1のピーク細孔径ょりも小さな第 2のピーク細孔径を有する、 上 記パイモダル多孔質体の製造方法。
前記第 1のピーク細孔径が 9 0〜2 0 n mであり、 前記第 2のピーク細孔 径が 1 0〜1 n mである請求項 7記載の方法。
前記液状物が、 シリカ、 アルミナ、 ジルコニァ、 チタニア及ぴマグネシア からなる第 1の群から選ばれる、 少なくとも 1種の酸化物微粒子を含有す る力 又は第 1の群から選ばれる、 少なくとも 1種の酸化物を形成する化 合物を含有する請求項 7又は請求項 8記載の方法。
10. 前記第 1の多孔質体が、 シリカ、 アルミナ、 ジルコニァ、 チタニア及びマ グネシァからなる群から選ばれる材料からなる請求項 7〜請求項 9のいず れか 1項記載の方法。
1 1. 含浸工程前に、 含浸工程の間、及び Z又は含浸工程後に、 前記第 1の多孔 質体を減圧下に置く工程をさらに有する請求項 7〜請求項 1 0のいずれか 1項記載の方法。
1 2. パイモダル多孔質担体に第 1の金属種の粒子を担持してなる金属担持触 媒であって、 該粒子は粒径が 5 ηπ!〜 50 nmである第 1の粒子、 及ぴ粒 径が 1 00 ηπ!〜 200 nmである第 2の粒子を有し、 第 1の粒子群が中 空構造又はパルク構造を有し、 第 2の粒子群が中空構造を有し、 前記パイ モダル多孔質担体は、 第 1の細孔径を平均細孔径として有する第 1の多孔 質体を修飾して得られ、 前記第 1の細孔径又は該第 1の細孔径近傍に第 1 のピーク細孔径を有し、 かつ該第 1のピーク細孔径ょりも小さな第 2のピ 一ク細孔径を有する金属担持触媒。
1 3. 前記第 1のピーク細孔径が 90〜20 nmであり、前記第 2のピーク細孔 径が 10〜 1 n mである請求項 1記載の金属担持触媒。
14. 第 1の多孔質体が第 1の比表面積を有する場合、パイモダル多孔質担体が 該第 1の比表面積よりも大きな第 2の比表面積を有する請求項 1 2又は請 求項 1 3記載の金属担持触媒。
1 5. 第 2の比表面積が第 1の比表面積の 1 0 1 %〜 300%の範囲にある請 求項 14記載の金属担持触媒。
1 6. 第 1の多孔質体が第 1の細孔容積を有する場合、バイモダル多孔質担体が 該第 1の細孔容積よりも小さな第 2の細孔容積を有する請求項 1 2〜請求 項 1 5のいずれか 1項記載の金属担持触媒。
1 7. 第 2の細孔容積が第 1の細孔容積の 40%〜9 9%の範囲にある請求項 16記載の金属担持触媒。
18. 第 1の金属種がコバルト、ニッケル、鉄及ぴルテニウムからなる群から選 ばれる 1種又は 2種以上である請求項 1 2〜1 7記載の金属担持触媒。 第 1の金属種がコバルトである請求項 1 2〜1 7記載の金属担持触媒。 担体がシリカを有してなる請求項 1 2〜請求項 1 9のいずれか: の金属担持触媒。
第 1の金属種の硝酸塩をェタノールに溶解して該塩のエタノール溶液を 調製する工程、 及び該ェタノール溶液をパイモダル多孔質担体に含浸させ る工程、 及び含浸させた担体を乾燥、 焼成する工程を有する金属担持触媒 の製造方法であって、 前記パイモダル多孔質担体は、 第 1の細孔径を平均 細孔径として有する第 1の多孔質体を修飾して得られ、 前記第 1の細孔径 又は該第 1の細孔径近傍に第 1のピーク細孔径を有し、 かつ該第 1のピー ク細孔径ょりも小さな第 2のピーク細孔径を有する方法。
前記第 1のピーク細孔径が 9 0〜2 0 n mであり、前記第 2のピーク細孔 径が 1 0〜 1 n mである請求項 2 1記載の方法。
第 1の多孔質体が第 1の比表面積を有する場合、パイモダル多孔質担体が 該第 1の比表面積よりも大きな第 2の比表面積を有する請求項 2 1又は請 求項 2 2記載の方法。
第 2の比表面積が第 1の比表面積の 1 0 1 %〜3 0 0 %の範囲にある請 求項 2 3記載の方法。
第 1の多孔質体が第 1の細孔容積を有する場合、パイモダル多孔質担体が 該第 1の細孔容積よりも小さな第 2の細孔容積を有する請求項 2 1〜請求 項 2 4のいずれか 1項記載の方法。
第 2の細孔容積が第 1の細孔容積の 4 0 %〜9 9 %の範囲にある請求項 2 5記載の方法。
第 1の金属種がコバルト、 ニッケル、鉄及びルテニウムからなる群から選 ばれる 1種又は 2種以上である請求項 2 1〜請求項 2 6のいずれか 1項記 載の方法。
第 1の金属種がコバルトである請求項項 2 1〜請求項 2 6のいずれか 1 項記載の方法。
前記エタノール溶液の調製工程前に、前記硝酸塩を乾燥する工程をさらに 有する請求項 2 1〜請求項 2 8のいずれか 1項記載の方法。
前記エタノール溶液の調製工程前に、ェタノール中の水分を除く工程をさ らに有する請求項 2 1〜請求項 2 9のいずれか 1項記載の方法。
担体がシリカを有してなる請求項 2 1〜請求項 3 0のいずれか 1項記載 の方法。
PCT/JP2001/005455 2000-06-28 2001-06-26 Materiau poreux bimodal et catalyseur utilisant ce materiau WO2002000338A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001266329A AU2001266329A1 (en) 2000-06-28 2001-06-26 Bimodal porous material and catalyst using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000193802 2000-06-28
JP2000-193802 2000-06-28
JP2000198853 2000-06-30
JP2000-198853 2000-06-30

Publications (1)

Publication Number Publication Date
WO2002000338A1 true WO2002000338A1 (fr) 2002-01-03

Family

ID=26594824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005455 WO2002000338A1 (fr) 2000-06-28 2001-06-26 Materiau poreux bimodal et catalyseur utilisant ce materiau

Country Status (2)

Country Link
AU (1) AU2001266329A1 (ja)
WO (1) WO2002000338A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205019A (ja) * 2005-01-27 2006-08-10 Ishikawajima Harima Heavy Ind Co Ltd フィッシャー・トロプシュ合成触媒とその製造方法
CN102059118A (zh) * 2010-11-11 2011-05-18 中国科学院山西煤炭化学研究所 双介孔钴基催化剂及制备方法和应用
CN102059119A (zh) * 2010-11-11 2011-05-18 中国科学院山西煤炭化学研究所 介孔-大孔钴基催化剂及制备方法及应用
CN102500425A (zh) * 2011-12-02 2012-06-20 中国科学院山西煤炭化学研究所 硅基多级孔钴基催化剂的制备方法和应用
CN102580771A (zh) * 2011-12-14 2012-07-18 中国科学院山西煤炭化学研究所 一种三元多级孔钴基催化剂及制备和应用
KR101466125B1 (ko) 2012-05-10 2014-11-27 한국과학기술연구원 메조-마크로 기공을 갖는 산화마그네슘 구조체의 제조방법
US9180437B2 (en) 2012-05-10 2015-11-10 Korea Institute Of Science And Technology Method of preparing magnesium oxide structure with meso-macro pores
JP2017186319A (ja) * 2016-04-04 2017-10-12 花王株式会社 アルコールの製造方法
EP3456411A4 (en) * 2016-05-12 2019-12-18 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences CATALYST, ITS PREPARATION METHOD AND ITS APPLICATION IN THE PREPARATION OF SYNTHESIS GAS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070283A (en) * 1976-12-08 1978-01-24 E. I. Du Pont De Nemours And Company Controlled surface porosity particles and a method for their production
EP0243894A2 (en) * 1986-05-02 1987-11-04 W.R. Grace & Co.-Conn. Hydroprocessing catalyst and support having bidisperse pore structure
EP0532118A1 (en) * 1991-09-12 1993-03-17 Shell Internationale Researchmaatschappij B.V. Process for the preparation of naphtha

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070283A (en) * 1976-12-08 1978-01-24 E. I. Du Pont De Nemours And Company Controlled surface porosity particles and a method for their production
EP0243894A2 (en) * 1986-05-02 1987-11-04 W.R. Grace & Co.-Conn. Hydroprocessing catalyst and support having bidisperse pore structure
EP0532118A1 (en) * 1991-09-12 1993-03-17 Shell Internationale Researchmaatschappij B.V. Process for the preparation of naphtha

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205019A (ja) * 2005-01-27 2006-08-10 Ishikawajima Harima Heavy Ind Co Ltd フィッシャー・トロプシュ合成触媒とその製造方法
CN102059118A (zh) * 2010-11-11 2011-05-18 中国科学院山西煤炭化学研究所 双介孔钴基催化剂及制备方法和应用
CN102059119A (zh) * 2010-11-11 2011-05-18 中国科学院山西煤炭化学研究所 介孔-大孔钴基催化剂及制备方法及应用
CN102059119B (zh) * 2010-11-11 2012-11-14 中国科学院山西煤炭化学研究所 介孔-大孔钴基催化剂及制备方法及应用
CN102059118B (zh) * 2010-11-11 2012-11-14 中国科学院山西煤炭化学研究所 双介孔钴基催化剂及制备方法和应用
CN102500425A (zh) * 2011-12-02 2012-06-20 中国科学院山西煤炭化学研究所 硅基多级孔钴基催化剂的制备方法和应用
CN102580771A (zh) * 2011-12-14 2012-07-18 中国科学院山西煤炭化学研究所 一种三元多级孔钴基催化剂及制备和应用
US9180437B2 (en) 2012-05-10 2015-11-10 Korea Institute Of Science And Technology Method of preparing magnesium oxide structure with meso-macro pores
KR101466125B1 (ko) 2012-05-10 2014-11-27 한국과학기술연구원 메조-마크로 기공을 갖는 산화마그네슘 구조체의 제조방법
JP2017186319A (ja) * 2016-04-04 2017-10-12 花王株式会社 アルコールの製造方法
WO2017175638A1 (ja) * 2016-04-04 2017-10-12 花王株式会社 アルコールの製造方法
CN108884007A (zh) * 2016-04-04 2018-11-23 花王株式会社 醇的制造方法
US20190054452A1 (en) * 2016-04-04 2019-02-21 Kao Corporation Method for producing alcohol
EP3441380A4 (en) * 2016-04-04 2020-02-26 Kao Corporation PROCESS FOR THE MANUFACTURE OF ALCOHOL
US10625245B2 (en) 2016-04-04 2020-04-21 Kao Corporation Method for producing alcohol
EP3456411A4 (en) * 2016-05-12 2019-12-18 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences CATALYST, ITS PREPARATION METHOD AND ITS APPLICATION IN THE PREPARATION OF SYNTHESIS GAS
US11104575B2 (en) 2016-05-12 2021-08-31 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Science Nanocatalysts, preparation methods and applications for reforming carbon dioxide and methane to syngas

Also Published As

Publication number Publication date
AU2001266329A1 (en) 2002-01-08

Similar Documents

Publication Publication Date Title
RU2292238C2 (ru) Катализатор для процесса фишера-тропша (варианты) и способ его получения
RU2389548C2 (ru) Промотированный катализатор синтеза фишера-тропша, способ его получения и способ синтеза углеводородов фишера-тропша
RU2340394C2 (ru) Способ получения носителя для катализатора с повышенной гидротермальной стабильностью (варианты), катализатор для синтеза углеводородов и способ синтеза углеводородов из синтез-газа
AU777852B2 (en) Reducing Fischer-Tropsch catalyst attrition losses in high agitation reaction systems
WO2015106634A1 (zh) 一种金属相载体负载型催化剂及其制备方法和用途
AU2003301247A1 (en) Fischer-tropsch processes and catalysts made from a material comprising boehmite
US20050176580A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP2003507161A (ja) フィッシャー・トロプシュ合成の触媒構造及び方法
ZA200503464B (en) Improved supports for high surface area catalysts
WO2010049715A1 (en) Cobalt catalyst precursor
JP2003512991A (ja) 微粒子触媒を用いる接触部分酸化方法
CN101098752B (zh) 用于费托合成的钴基催化剂
JPWO2011108347A1 (ja) フィッシャー・トロプシュ合成触媒及びその製造方法、並びに炭化水素の製造方法
WO2013054091A1 (en) Fischer-tropsch catalyst comprising cobalt, magnesium and precious metal
AU689996B2 (en) Process for preparation of supports
WO2002000338A1 (fr) Materiau poreux bimodal et catalyseur utilisant ce materiau
US7393877B2 (en) Process for the conversion of a synthesis gas to hydrocarbons in the presence of beta-SiC and effluent from this process
EA027378B1 (ru) Активированный катализатор реакции синтеза фишера-тропша и способ производства углеводородов
JP5126762B2 (ja) 一酸化炭素メタネーション用ハニカム触媒および該触媒の製造方法、該触媒を用いた一酸化炭素のメタネーション方法
JP2006297286A (ja) ヘテロなバイモダル構造を有する触媒
JP2018508351A (ja) 分散した金およびパラジウムを含む触媒、および選択的水素化におけるそれの使用
WO2003024905A1 (en) Improved surface area of cobalt catalyst supported by silica carrier material
US7056955B2 (en) Attrition resistant bulk metal catalysts and methods of making and using same
WO2010055808A1 (ja) 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法
JPH06134305A (ja) 耐熱性触媒およびその使用方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase