WO2001092604A2 - Cellule d'electrolyse permettant de retablir la concentration en ions metal dans des processus de deposition electrolytique - Google Patents

Cellule d'electrolyse permettant de retablir la concentration en ions metal dans des processus de deposition electrolytique Download PDF

Info

Publication number
WO2001092604A2
WO2001092604A2 PCT/EP2001/006161 EP0106161W WO0192604A2 WO 2001092604 A2 WO2001092604 A2 WO 2001092604A2 EP 0106161 W EP0106161 W EP 0106161W WO 0192604 A2 WO0192604 A2 WO 0192604A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
metal
compartment
electroplating
anodic
Prior art date
Application number
PCT/EP2001/006161
Other languages
English (en)
Other versions
WO2001092604A3 (fr
Inventor
Ulderico Nevosi
Gian Nicola Martelli
Original Assignee
De Nora Elettrodi S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Nora Elettrodi S.P.A. filed Critical De Nora Elettrodi S.P.A.
Priority to AU2001262326A priority Critical patent/AU2001262326A1/en
Publication of WO2001092604A2 publication Critical patent/WO2001092604A2/fr
Publication of WO2001092604A3 publication Critical patent/WO2001092604A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components

Definitions

  • anodes are constituted of valve metals coated with an electrocatalytic layer (for instance noble metal oxide coated titanium), as is the case of the DSA ® commercialised by De Nora Elettrodi S.p.A.
  • an electrocatalytic layer for instance noble metal oxide coated titanium
  • DSA ® commercialised by De Nora Elettrodi S.p.A.
  • the product has a too small added value to allow the use of oxides or salts of adequate purity, and economic considerations demand to directly dissolve the metal to be deposited in an acidic solution.
  • the direct chemical dissolution of a metal is not always a feasible or easy operation: in some cases of industrial relevance, for instance in the case of copper, simple thermodynamic considerations indicate that direct dissolution in an acid with concurrent evolution of hydrogen is not possible, as the reversible potential of the couple Cu(0)/Cu(ll) is more noble (+ 0.153 V) than the one of the couple H 2 /H + ; for this reason, the copper plating baths are often prepared by dissolution of copper oxide, that nevertheless has a prohibitive cost for the majority of the applications of industrial relevance.
  • a kinetic type obstacle is responsible of rendering the direct chemical dissolution problematic; in the case of zinc, for example, even if the reversible potential of the couple Zn(0)/Zn(ll) (-0.76 V) is significantly lower than the one of the couple H 2 /H + , the kinetic penalty of the hydrogen evolution reaction on the metal surface (hydrogen overpotential) is high enough to inhibit its dissolution, or in any case to make it proceed at unacceptable velocity for applications of industrial relevance. A similar consideration holds true also for tin and lead.
  • This kind of problem may be dodged acting externally on the electric potential of the metal to be dissolved, namely carrying out the dissolution in a separate electrolytic cell (dissolution or enrichment cell) wherein said metal is polarised anodically thus being released in the solution in ionic form, with concurrent evolution of hydrogen at the cathode.
  • a separate electrolytic cell dissolution or enrichment cell
  • the compartment of such cell must be evidently divided by a suitable separator, to avoid that the cations released by the metal migrate towards the cathode depositing again on its surface under the effect of the electric field.
  • the claimed cation-exchange membrane is of the perfluorinated type, equivalent to the product commercialised as Nafion ® by DuPont de Nemours (U.S.A.), or as Aciplex ® by Asahi Chemicals (Japan); this choice is imposed by the need of having a high selectivity (cupric anionic complex rejection) guaranteed only by this kind of rather expensive membranes. Moreover, the copper released into the solution in the enrichment cell is only partially engaged in the pyrophosphate complex, and thus in anionic form.
  • the present invention is aimed at providing an integrated system of galvanic electroplating cell of the insoluble anode type in hydraulic connection with a dissolution or enrichment cell, overcoming the drawbacks of the prior art.
  • the present invention is directed to an integrated system of galvanic electroplating cell of the insoluble anode type hydraulically connected to an enrichment cell, which may be operated both with acidic and alkaline electrolytes, characterised in that the balance of all the chemical species is self-regulating, and that no auxiliary supply of material is required except the possible addition of water.
  • the present invention is directed to an enrichment cell for a galvanic electroplating system of the insoluble anode type comprising a separator insensitive to the pollution from cations, and in particular from metallic cations.
  • the invention consists in a system of electroplating cell of the insoluble anode type integrated with an enrichment cell comprising an anodic compartment, wherein the anodic dissolution of the metal to be deposited in the electroplating cell is carried out, a cathodic compartment, comprising a hydrogen evolving cathode and a support catholyte, and a separator, dividing the anodic compartment form the cathodic compartment, comprising at least one anion-exchange membrane.
  • the anion-exchange membranes are separators of limited cost; polystyrene-based anionic membranes are available on the market, such as those commercialised by Asahi Glass Corporation (Japan) as Selemion ® , or by Tokuyama Soda (Japan) as Neosepta ® , but there are also polyphenilsulphide-based ones, such as Ryton ® , commercialised by TBA (United Kingdom).
  • the polymeric backbone is functionalised with positively charged quaternary ammonium groups, able to form bonds with the anions transporting the same throughout the membrane thickness provided their steric size is compatible, but above all to constitute an effective barrier to the cation transport.
  • FIG. 1 shows the general scheme of the relevant process; referring to figure 1 , the continuous electroplating cell of the insoluble anode type is indicated as (1 ), and the enrichment cell in hydraulic connection therewith is indicated as (2).
  • the electroplating treatment is illustrated for a conductive matrix (3) suited to be coated by continuous metal plating, for instance a tape or wire; nevertheless, as it will be apparent from the description, the same considerations apply for the operation on pieces to be treated in batch.
  • the matrix (3) is in electric contact with a cathode (4) having negative polarity.
  • the counter-electrode is an insoluble anode (5) having positive polarity.
  • the anode (5) may be made, for instance, of a platinum group metal oxide coated titanium matrix, or more generally by a conductive matrix non corrodible by the electrolytic bath in the process conditions, coated with a material exhibiting electrocatalytic activity for the oxygen evolution half-reaction.
  • the enrichment cell (2) having the function of supplying the metal ions consumed in the electroplating cell (1 ), is divided by an anion-exchange membrane (6) into a cathodic compartment (9) provided with a cathode (7) made of a material which is not corrodible in the process conditions adopted, for instance stainless steel or nickel, and an anodic compartment (10), provided with a soluble anode (8) made of the metal which has to be deposited on the matrix to be coated (3).
  • the anode (8) can be a planar sheet or another continuous element, but more commonly it can be made of an assembly of shavings, spheroids or other small pieces, in electric contact with a permeable conductive confining wall having positive polarity, for instance a web of non-corrodible material.
  • the anodic compartment (10) is fed with the solution to be enriched coming from the electroplating cell (1) through the inlet duct (11); the enriched solution is in its turn recirculated from the anodic compartment (10) of the enrichment cell (2) to the electroplating cell (1) through the outlet duct (12).
  • the process occurs according to the following scheme:
  • Such migration of hydroxyl ions is made possible by the fact that the separator (6) selected to divide the compartments (9) and (10) is an anionic membrane; its driving force is the electric field, with the additional contributions of osmotic pressure and diffusion.
  • the separator (6) selected to divide the compartments (9) and (10) is an anionic membrane; its driving force is the electric field, with the additional contributions of osmotic pressure and diffusion.
  • a simple setting of the ratio between the current density in the enrichment cell (2) and in the electroplating cell (1 ) allows the passage of one mole of hydroxyl ions through the anionic membrane (6) per mole of H + ions generated at the anode (5) to take place, thereby achieving a perfect balance of the acidity of the system; in this way, the concentration of M z ⁇ is automatically restored as the balance of reaction shows, because the passage of z moles of electrons corresponds to the release of one mole of M z+ in the anodic compartment (10) together with the deposition of one mole
  • the double regulation may be possibly facilitated by complexing the metal ion to be deposited with a suitable ligand, stable in the reaction environment, contributing to the buffering of acidity and M z+ ion concentration in the circulating electrolytic bath.
  • the cathodic compartment of the enrichment cell (2) which contains an alkaline electrolyte, is interested to the hydrogen discharge reaction on the surface of the cathode (7), according to z H 2 0 + z e ' ⁇ z/2 H 2 + z OH "
  • this water topping-up does not involve any further complication of the process, as it would be normal, in any electroplating process whether of the consumable or of the insoluble anode type, that extensive phenomena of evaporation lead by themselves to the need of keeping the water level under control by continuous replenishments.
  • the disclosed general scheme can be further implemented with other expedients known to the experts of the field, for instance by delivering the oxygen which evolves at the anode (5) in the cathodic compartment (10) of the enrichment cell (2), to keep in the oxidised state the possible M z+ cations diffusing, in spite of the barrier opposed by the positively charged functional groups, through the anionic membrane (6) and avoiding their deposition on the cathode (7) as metals.
  • a largely similar process can be realised, according to the present invention, for the enrichment of alkaline electrolytic baths. In this case the conductive matrix (3) is still the site of the electroplating half-reaction
  • the double regulation may be possibly facilitated by complexing the metal ion to be deposited with a suitable ligand, stable in the reaction environment, which contributes to buffer the alkalinity and stabilise the M z+ concentration in the recirculated electrolytic bath.
  • the cathodic compartment of the enrichment cell (2) containing an alkaline electrolyte, is interested to the hydrogen discharge reaction on the surface of the cathode (7), according to
  • the disclosed general scheme may be implemented with further expedients known to experts of the field. For instance, in case copper is deposited from alkaline electrolytes, it is convenient to introduce in the catholyte of the enrichment cell (2), a certain amount of ammonia, which is capable of complexing and hence of maintaining in solution the small amount of cupric ions diffusing through the anionic membrane (6).
  • a steel wire has been submitted to a copper plating process in an electroplating cell containing a bath of sulphuric acid (150 g/l) and cupric sulphate (50 g/l) added of corrosion inhibitors according to the prior art, employing as the anode a titanium sheet having positive polarity, coated with iridium and tantalum oxides, deputed to the oxygen evolution half-reaction.
  • An enrichment cell fed at the anodic compartment with the exhaust electrolytic bath coming from the electroplating cell, has been equipped with an AISI 316 stainless steel cathode and a consumable anode of copper shavings, confined by means of a titanium mesh having positive polarity.
  • the catholyte a potassium hydroxide solution (0.5% by weight), in which the oxygen produced at the electroplating cell anode was bubbled, has been employed.
  • the catholyte and the anolyte of the enrichment cell have been divided by means of a Neosepta ® anionic membrane, produced by Tokuyama Soda.
  • a continuous copper plating of the steel wire could be carried out for an overall duration of 29 hours, with a copper dissolution efficiency in the enrichment cell greater than 99.99%, without any intervention besides the progressive water replenishment in the electroplating cell, monitored through a level control.
  • the test of the previous example has been repeated employing an alkaline bath containing cupric pyrophosphate at pH 8, with a pyrophosphate concentration of 180 g/l; a Selemion ® anionic membrane produced by Asahi Glass as the separator in the enrichment cell, and a solution containing 1 mol/l of sodium hydroxide, 1 mol/l of NH 3 and 0.1 mol/l of sodium sulphate as the catholyte have been employed.
  • the continuous copper plating of the steel wire has thus been carried out for 23 hours at a current density of 1 kA m 2 in the enrichment cell, during which an efficiency of dissolution of the copper anode higher than 99.99% was observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

L'invention concerne une cellule d'électrolyse pour la dissolution anodique de métaux, en particulier de métaux à potentiel d'oxydation relativement élevé, tels que le cuivre, ou de métaux à surpotentiel en hydrogène élevé, en vue de rétablir la concentration en ions métal dans des bains galvaniques dans des processus de déposition électrolytique à anode insoluble. La cellule selon l'invention comprend un compartiment anodique, dans lequel le métal qui se dissout agit comme électrode consommable, et un compartiment cathodique, contenant une cathode pour le dégagement d'hydrogène, séparée par une membrane échangeuse d'anions. Le couplage de la cellule selon l'invention avec une cellule d'électrodéposition permet une simplification importante de l'ensemble du processus et une réduction sensible du coût de ce processus.
PCT/EP2001/006161 2000-05-31 2001-05-30 Cellule d'electrolyse permettant de retablir la concentration en ions metal dans des processus de deposition electrolytique WO2001092604A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001262326A AU2001262326A1 (en) 2000-05-31 2001-05-30 Electrolysis cell for restoring the concentration of metal ions in processes of electroplating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2000A001207 2000-05-31
IT2000MI001207A IT1318545B1 (it) 2000-05-31 2000-05-31 Cella di elettrolisi per il ripristino della concentrazione di ionimetallici in processi di elettrodeposizione.

Publications (2)

Publication Number Publication Date
WO2001092604A2 true WO2001092604A2 (fr) 2001-12-06
WO2001092604A3 WO2001092604A3 (fr) 2002-04-25

Family

ID=11445158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/006161 WO2001092604A2 (fr) 2000-05-31 2001-05-30 Cellule d'electrolyse permettant de retablir la concentration en ions metal dans des processus de deposition electrolytique

Country Status (3)

Country Link
AU (1) AU2001262326A1 (fr)
IT (1) IT1318545B1 (fr)
WO (1) WO2001092604A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002784A2 (fr) * 2001-06-29 2003-01-09 De Nora Elettrodi S.P.A. Cellule d'electrolyse pour restaurer la concentration d'ions metalliques dans des procedes de galvanoplastie
DE102010044551A1 (de) * 2010-09-07 2012-03-08 Coventya Gmbh Anode sowie deren Verwendung in einem alkalischen Galvanikbad
CN104894633A (zh) * 2015-05-22 2015-09-09 北京中冶设备研究设计总院有限公司 一种连续电镀镍溶液供给装置
CN104947173A (zh) * 2015-05-22 2015-09-30 北京中冶设备研究设计总院有限公司 一种提高连续电镀镍镀液pH值的装置与方法
CN106929900A (zh) * 2015-11-18 2017-07-07 应用材料公司 具有阴离子隔膜的惰性阳极电镀处理器和补充器
CN112714803A (zh) * 2018-08-27 2021-04-27 叶涛 不溶性阳极酸性电镀铜的镀液生产和再生工艺及装置
CN113463156A (zh) * 2021-07-23 2021-10-01 中国科学院青海盐湖研究所 一种氢氧化镁膜层及其制备方法与系统
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes
WO2024078627A1 (fr) * 2022-10-14 2024-04-18 叶涛 Procédé et appareil d'optimisation de processus de placage de cuivre anodique insoluble intégré à la dissolution de cuivre électrolytique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2479856A1 (fr) * 1980-04-04 1981-10-09 Electricite De France Installation de traitement de surface par depot metallique et procede de regeneration des bains de depot metallique par voie electrolytique
EP0494434A2 (fr) * 1991-01-09 1992-07-15 Eltech Systems Corporation Procédé de régénération des métaux dans les solutions aqueuses d'électrolyte
EP0508212A1 (fr) * 1991-04-08 1992-10-14 The Goodyear Tire & Rubber Company Procédé pour appliquer une couche de cuivre sur un fil d'acier
WO2000014308A1 (fr) * 1998-09-08 2000-03-16 Ebara Corporation Dispositif de plaquage de substrats

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671013B2 (ja) * 1988-06-16 1997-10-29 ディップソール株式会社 アルカリ型のニッケル又はニッケル合金メッキにおけるニッケルイオンの供給方法
JPH0270087A (ja) * 1988-09-01 1990-03-08 Nippon Kinzoku Co Ltd 錫めっき方法および装置
JPH0826480B2 (ja) * 1989-03-28 1996-03-13 日本エレクトロプレイテイング・エンジニヤース株式会社 メッキ装置及びメッキ金属の補給方法
JPH04362199A (ja) * 1991-06-06 1992-12-15 Nec Corp 電気めっき装置
JPH05302199A (ja) * 1992-04-24 1993-11-16 Bridgestone Bekaert Steel Code Kk 不溶性陽極を用いた銅めっき法における銅めっき浴の組成制御方法
JPH06158397A (ja) * 1992-11-18 1994-06-07 Asahi Glass Co Ltd 金属の電気メッキ方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2479856A1 (fr) * 1980-04-04 1981-10-09 Electricite De France Installation de traitement de surface par depot metallique et procede de regeneration des bains de depot metallique par voie electrolytique
EP0494434A2 (fr) * 1991-01-09 1992-07-15 Eltech Systems Corporation Procédé de régénération des métaux dans les solutions aqueuses d'électrolyte
EP0508212A1 (fr) * 1991-04-08 1992-10-14 The Goodyear Tire & Rubber Company Procédé pour appliquer une couche de cuivre sur un fil d'acier
WO2000014308A1 (fr) * 1998-09-08 2000-03-16 Ebara Corporation Dispositif de plaquage de substrats

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 115 (C-0696), 5 March 1990 (1990-03-05) & JP 01 316499 A (DEITSUPUSOOLE KK), 21 December 1989 (1989-12-21) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 254 (C-0724), 31 May 1990 (1990-05-31) & JP 02 070087 A (NIPPON KINZOKU CO LTD), 8 March 1990 (1990-03-08) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 582 (C-0792), 26 December 1990 (1990-12-26) & JP 02 254200 A (ELECTROPLATING ENG OF JAPAN CO), 12 October 1990 (1990-10-12) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 232 (C-1056), 12 May 1993 (1993-05-12) & JP 04 362199 A (NEC CORP), 15 December 1992 (1992-12-15) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 107 (C-1169), 22 February 1994 (1994-02-22) & JP 05 302199 A (BRIDGESTONE BEKAERT STEEL CODE KK), 16 November 1993 (1993-11-16) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 490 (C-1249), 13 September 1994 (1994-09-13) & JP 06 158397 A (ASAHI GLASS CO LTD), 7 June 1994 (1994-06-07) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002784A2 (fr) * 2001-06-29 2003-01-09 De Nora Elettrodi S.P.A. Cellule d'electrolyse pour restaurer la concentration d'ions metalliques dans des procedes de galvanoplastie
WO2003002784A3 (fr) * 2001-06-29 2004-07-01 De Nora Elettrodi Spa Cellule d'electrolyse pour restaurer la concentration d'ions metalliques dans des procedes de galvanoplastie
DE102010044551A1 (de) * 2010-09-07 2012-03-08 Coventya Gmbh Anode sowie deren Verwendung in einem alkalischen Galvanikbad
CN104894633A (zh) * 2015-05-22 2015-09-09 北京中冶设备研究设计总院有限公司 一种连续电镀镍溶液供给装置
CN104947173A (zh) * 2015-05-22 2015-09-30 北京中冶设备研究设计总院有限公司 一种提高连续电镀镍镀液pH值的装置与方法
US9920448B2 (en) * 2015-11-18 2018-03-20 Applied Materials, Inc. Inert anode electroplating processor and replenisher with anionic membranes
CN106929900A (zh) * 2015-11-18 2017-07-07 应用材料公司 具有阴离子隔膜的惰性阳极电镀处理器和补充器
KR20180073657A (ko) * 2015-11-18 2018-07-02 어플라이드 머티어리얼스, 인코포레이티드 음이온성 막들을 갖는 비활성 애노드 전기도금 프로세서 및 보충기
TWI695911B (zh) 2015-11-18 2020-06-11 美商應用材料股份有限公司 具有陰離子薄膜的惰性陽極電鍍處理器和補充器
CN106929900B (zh) * 2015-11-18 2020-08-07 应用材料公司 具有阴离子隔膜的惰性阳极电镀处理器和补充器
KR102179205B1 (ko) * 2015-11-18 2020-11-16 어플라이드 머티어리얼스, 인코포레이티드 음이온성 막들을 갖는 비활성 애노드 전기도금 프로세서 및 보충기
CN112714803A (zh) * 2018-08-27 2021-04-27 叶涛 不溶性阳极酸性电镀铜的镀液生产和再生工艺及装置
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes
CN113463156A (zh) * 2021-07-23 2021-10-01 中国科学院青海盐湖研究所 一种氢氧化镁膜层及其制备方法与系统
WO2024078627A1 (fr) * 2022-10-14 2024-04-18 叶涛 Procédé et appareil d'optimisation de processus de placage de cuivre anodique insoluble intégré à la dissolution de cuivre électrolytique

Also Published As

Publication number Publication date
ITMI20001207A1 (it) 2001-12-01
AU2001262326A1 (en) 2001-12-11
IT1318545B1 (it) 2003-08-27
ITMI20001207A0 (it) 2000-05-31
WO2001092604A3 (fr) 2002-04-25

Similar Documents

Publication Publication Date Title
EP1458905B1 (fr) Cellule d'electrolyse pour restaurer la concentration d'ions metalliques dans des procedes de galvanoplastie
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
US5162079A (en) Process and apparatus for control of electroplating bath composition
US6120673A (en) Method and device for regenerating tin-plating solutions
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
US9556534B2 (en) Anode for electroplating and method for electroplating using anode
CN112714803A (zh) 不溶性阳极酸性电镀铜的镀液生产和再生工艺及装置
US5194141A (en) Method for electrolytic tin plating of steel plate
JP2003527490A (ja) 電解質流体中の金属イオン濃度を調整するための方法と装置並びに上記方法の使用法及び上記装置の利用法
WO2001092604A2 (fr) Cellule d'electrolyse permettant de retablir la concentration en ions metal dans des processus de deposition electrolytique
CN101960046A (zh) 以电解的方式将镍溶解在化学镀镍液中的方法
WO1990015171A1 (fr) Procede d'electrodeposition de metaux
USRE34191E (en) Process for electroplating metals
US5716512A (en) Method for manufacturing salts of metals
US4507183A (en) Ruthenium coated electrodes
CN117396638A (zh) 用铬层涂覆部件或半成品的装置和方法
US6576111B1 (en) Process for the copper plating of substrates
Adaikkalam et al. The electrochemical recycling of printed-wiring-board etchants
EP0550002B1 (fr) Procédé d'étamage électrolytique
JPH06158397A (ja) 金属の電気メッキ方法
JP3104704B1 (ja) Ni−W合金の連続めっき方法
JP4615159B2 (ja) 合金めっき方法
JP2689076B2 (ja) エッチング液の能力回復維持方法
JPH06146020A (ja) エッチング液の能力維持方法及び再生方法並びに能力維持、再生方法
EP1085111A1 (fr) Procédé de régénération des bains d'électrodéposition métallique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP