WO2001081936A1 - Procede et dispositif de testage d'un circuit - Google Patents
Procede et dispositif de testage d'un circuit Download PDFInfo
- Publication number
- WO2001081936A1 WO2001081936A1 PCT/JP2001/003395 JP0103395W WO0181936A1 WO 2001081936 A1 WO2001081936 A1 WO 2001081936A1 JP 0103395 W JP0103395 W JP 0103395W WO 0181936 A1 WO0181936 A1 WO 0181936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- test
- pulse width
- failure
- signal
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/308—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
- G01R31/311—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/308—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
Definitions
- the present invention relates to a circuit test device and a circuit test method.
- This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application are incorporated into this application by reference and are incorporated in the description of this application.
- a circuit test apparatus performs a test called a function test on a semiconductor device, and determines the quality of the test.
- a function test a test pattern is supplied to a semiconductor device, and the quality of the test pattern is determined based on an output result output from the semiconductor device.
- test patterns in function tests have become more complicated and difficult to generate. Also, if all elements are to be completely tested for all possible faults by means of function tests, the test patterns are so large that the test time is too long, making such function tests virtually impossible. It has become.
- a test method developed to perform the test efficiently is a method called a quiescent power supply current test for measuring the quiescent power supply current of a semiconductor device.
- a normal transistor draws almost no current in a quiescent state
- the semiconductor device is characterized by detecting an abnormal current in a stationary state by utilizing the fact that the semiconductor device is good.
- the design rules become finer, especially when the design rule reaches the order of 0.1 ⁇ m or less, the leakage current increases, and the current difference between the normal device and the defective device decreases. Therefore, it is considered difficult to test a circuit having such a fine pattern using the conventional static power supply current test method.
- the test rate In the conventional static power supply current test, the test rate must be lower than the clock rate in actual operation in order to observe the current waveform. For example, even when testing a semiconductor device with a clock rate of several hundred MHz in actual operation, the test rate must be reduced from several kHz to several tens of kHz in a quiescent power supply current test. For example, it has been difficult to observe the current waveform with sufficiently high accuracy. Therefore, the conventional static power supply current test has a problem that it takes time.
- an object of the present invention is to provide a circuit test apparatus and a circuit test method that can solve the above problems. This object is achieved by a combination of features described in the independent claims.
- the dependent claims define further advantageous embodiments of the present invention. Disclosure of the invention
- a first embodiment of the present invention is a circuit test apparatus for testing a circuit, wherein a signal supply unit that supplies an input signal to the circuit, and an input signal is supplied to the circuit.
- a photodetector that detects the emission of hot electrons generated by the conversion and converts it into an electrical signal, and a determination unit that determines whether there is a circuit failure based on the pulse width of the converted electrical signal.
- a circuit test apparatus characterized by the following.
- the determination unit includes a pulse width measurement unit that measures whether the pulse width of the electric signal exceeds a predetermined pulse width. Further, it is preferable that the determination unit includes a detection unit that detects the presence or absence of a circuit failure based on the output of the pulse width measurement unit. It is preferable that the apparatus further includes a test control unit that controls the signal supply unit based on the presence or absence of a failure in the circuit detected by the detection unit. In this case, it is preferable that the test control unit restricts the supply of the input signal to the circuit of the signal supply unit based on the presence or absence of the failure of the circuit detected by the detection unit.
- the signal supply unit supplies the input signal to the circuit at substantially the same rate as the rate in the actual operation state of the circuit.
- the photodetector blocks the emission of hot electrons that occurs at certain elements in the circuit.
- a second embodiment of the present invention is a circuit test method for testing a circuit, the method comprising the steps of: supplying an input signal to the circuit; and emitting light of a hot electron generated by supplying the input signal to the circuit.
- a circuit test method comprising: detecting and converting to an electric signal; and determining whether or not a circuit has a failure based on a pulse width of the converted electric signal.
- a third embodiment of the present invention is a circuit test method for testing a circuit, comprising: a signal supply step of supplying an input signal to the circuit; And a determination step of determining the presence or absence of a circuit failure based on a pulse width in a power supply current waveform.
- the observing step may observe a power supply current waveform of a predetermined element included in the circuit. It is preferable that the observation step includes a step of detecting the emission of hot electrons generated by the flow of current in the element and converting the emission into an electric signal.
- FIG. 1 shows a circuit test apparatus 10 for testing a circuit 12 according to an embodiment of the present invention.
- FIG. 2 is an explanatory diagram for explaining the principle of the circuit test method according to the present invention.
- FIG. 3 shows an embodiment of the pulse width measuring section 50.
- FIG. 4 shows a signal timing in the pulse width measuring section 50 shown in FIG. 3.
- FIG. 5 shows an example of a configuration of the photodetector 30.
- FIG. 6 shows an embodiment of the configuration of the photodetector 30 having a function of detecting the light emission position from the circuit 12 two-dimensionally.
- FIG. 7 shows another embodiment of the circuit test apparatus 10. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 shows a circuit test apparatus 10 for testing a circuit 12 according to an embodiment of the present invention.
- the circuit 12 is, for example, a semiconductor chip formed including a CMOS circuit and the like.
- the circuit test apparatus 10 according to the present embodiment includes a signal supply unit 20, a photodetector 30, and a determination unit 40.
- the signal supply unit 20 supplies the circuit 12 with an input signal that is a test pattern.
- the signal supply unit 20 can supply the input signal to the circuit 12 at substantially the same rate as the rate in the actual operation state of the circuit 12.
- the circuit test apparatus 10 determines pass / fail of the circuit 12 by detecting light emission.
- the circuit test apparatus 10 according to the present embodiment can perform a test at a real rate by utilizing light emission, and can provide a long test time by supplying an input signal at a slow test rate in a conventional static power supply current test. Then, the problem can be solved.
- CMOS circuit region included in the circuit 12 carriers (hot electrons) in the semiconductor are accelerated by the applied electric field and the obtained energy.
- FET field effect transistor
- the voltage applied between the source and drain The electric field is very large, about 106 VZ c ni. Under such a large electric field, the carrier can acquire enough energy to generate a measurable amount of light in the visible and infrared regions of the spectrum. High-energy carrier emission occurs when the FET switches states.
- the circuit 12 when the circuit 12 is supplied with the input signal, the circuit 12 emits light from the portion where the current flows.
- the photodetector 30 detects the emission of hot electrons generated by the supply of the input signal in the circuit 12, and converts the light into an electric signal.
- the determination unit 40 determines whether the circuit 12 has a failure based on the pulse width of the converted electric signal.
- the determination section 40 has a pulse width measurement section 50 and a detection section 60.
- the pulse width measuring unit 50 measures the pulse width of the electric signal supplied from the photodetector 30. In the present embodiment, the pulse width measuring section 50 measures whether or not the pulse width of the electric signal exceeds a predetermined pulse width, and outputs the measurement result.
- the detecting section 60 detects the presence or absence of a failure in the circuit 12 based on the output of the pulse width measuring section 50.
- FIG. 2 is an explanatory diagram for explaining the principle of the circuit test method according to the present invention.
- FIG. 2A shows an inverter circuit including a p-channel transistor and an n-channel transistor.
- the circuit test apparatus 10 shown in FIG. 1 and the waveform of the power supply current 24 flowing through the p-channel transistor are observed by observing the waveform of the circuit. A method for determining the presence or absence of a failure will be described.
- Figure 2 (b) shows the relationship between the power supply current waveform and the light emission caused by the flowing current when the circuit is normal and when the circuit is abnormal.
- a transient current flows at the moment when the state of each transistor changes, and light emission occurs.
- the photodetector 30 converts light emission generated by the transient current into an electric signal having a pulse width w1.
- FIG. 2 (b) shows an example in which the p-channel transistor of the inverter circuit is short-circuited, and the photodetector 30 detects light emission from the defective p-channel transistor and converts it into an electric signal. ing. At this time, the photodetector 30 outputs a pulse having a pulse width w2 wider than the pulse width w1 due to the transient current.
- the circuit test apparatus 10 in the present embodiment may observe the current waveform 24 itself and determine the presence or absence of a circuit failure based on the pulse width of the current waveform 24. At this time, it is preferable that the circuit test apparatus 10 includes a pulse width measurement unit that measures the pulse width of the current waveform 24.
- the current waveform 24 is actually different from the illustrated waveform, and has a blunt waveform due to the capacitance existing in the circuit. Therefore, the pulse width measurement unit is required to have the ability to measure the pulse width of the current waveform with high accuracy.
- FIG. 3 shows an embodiment of the pulse width measuring section 50.
- the pulse measuring section 50 has flip-flops 54 and 56.
- An electric signal output from the photodetector 30 is input to a D input of the flip-flop 54, and an electric signal obtained by delaying the electric signal by ⁇ t is input to a CK input.
- the Q output of flip-flop 54 is connected to the CK input of flip-flop 56.
- the D input of the flip-flop 56 receives a high (logical 1) signal.
- FIG. 4 shows signal timings in the pulse width measuring section 50 shown in FIG. Referring to Figure 3, before starting the pulse width measurement, a reset signal is applied to the R inputs of flip-flops 54 and 56. Then, the electric signal 62 output from the photodetector 30 is input to the D input of the flip-flop 54. An electric signal delayed by ⁇ t is input to the CK input. The amount of delay ⁇ t is It is preferable that the period be set shorter than the period of the pulse waveform due to the passing current.
- the Q output of the flip-flop 54 goes high.
- the flip-flop 56 receives a high signal on the CK input, it outputs the high signal supplied to the D input as an output signal 68 from the Q output.
- the pulse width measuring section 50 detects a pulse exceeding the predetermined pulse width, and outputs the detection result as an output signal 68 to the detecting section 60.
- the detector 60 receives the output signal 68 and determines that the circuit to be tested is defective by detecting the high value of the output signal 68.
- the pulse width measuring section 50 can detect a force S and a pulse having a predetermined pulse width or more.
- the pulse width measuring unit 50 may be a time interval measuring device that measures a pulse width using a counter. At this time, the detection unit 60 compares the time length of the pulse width measured by the pulse width measurement unit 50 with a predetermined comparison time, and when the measurement time exceeds the predetermined comparison time, It may be determined that the circuit 12 is defective.
- FIG. 5 shows an example of the configuration of the photodetector 30.
- FIG. 5A shows a function block of the photodetector 30.
- the photodetector 30 includes a photocathode 32, a multi-channel plate 34, and a current detection unit 36.
- the multi-channel plate 34 is a photomultiplier for multiplying electrons emitted from the photocathode 32.
- FIG. 5B is a perspective cross-sectional view of the multi-channel plate 34 with a part thereof cut away. As shown, the multi-channel plate 34 has a plurality of channels that multiply the electrons obtained at the photocathode 32.
- the circuit test method of the present invention determines the failure of the circuit 12 by observing an abnormal current existing between the transient currents. be able to.
- the circuit 12 includes an element other than the CMOS circuit, such as a diode or an analog element, which constantly emits light while a signal is being input. In these analog elements, current flows even during the period between light emission timings due to transient current in the CMOS circuit, and May shine.
- the photodetector 30 has a function of blocking the emission of hot electrons generated in a predetermined element in the circuit 12 and not detecting it.
- the multi-channel plate 34 shown in FIG. 5 (b) is provided with, for example, an acceleration voltage of a channel corresponding to a position where the element exists in the circuit 12 in order to realize a function of not detecting light emission from a predetermined element.
- the channel may be electrically closed without applying a voltage. If the position resolution of the photodetector 30 itself is insufficient, a lens is interposed between the photodetector 30 and the circuit under test 12 to enlarge the area on the circuit 12 and The detector 30 may have sufficient position resolution. At this time, it is preferable that the photodetector 30 can detect light emission from a CMOS circuit or the like by masking light emission from a predetermined element such as an analog element.
- FIG. 6 shows an embodiment of the configuration of the photodetector 30 having a function of detecting the light emission position from the circuit 12 two-dimensionally.
- the photodetector 30 in this embodiment can detect the light emission position in the circuit 12 using the current ratio of the photocurrent generated by the incident light from the circuit 12.
- the photodetector 30 can detect the light emission position from the circuit 12 one-dimensionally based on the ratio of the current output from the electrodes provided on the left and right on the surface. it can.
- the light detector 30 preferably has electrodes dispersed at a plurality of positions on the surface. When the light detector 30 determines the light emission position after determining the light emission position, it ignores the light emission at the position and detects only light emission from the defective element, and It is desirable to convert to a signal.
- FIG. 7 shows another embodiment of the circuit test apparatus 10.
- the circuit test apparatus 10 according to the present embodiment further includes a test control unit 70 that controls the signal supply unit 20.
- the test control unit 70 controls the signal supply unit 20 based on the presence or absence of a failure in the circuit 12 detected by the detection unit 60. Specifically, a predetermined test pattern is supplied to circuit 12
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Tests Of Electronic Circuits (AREA)
Description
明 細 書 回路試験装置およぴ回路試験方法 技術分野
本発明は、 回路試験装置および回路試験方法に関する。 また本出願は、 下記の 日本特許出願に関連する。文献の参照による組み込みが認められる指定国につい ては、下記の出願に記載された内容を参照により本出願に組み込み、本出願の記 載の一部とする。
特願 2 0 0 0— 1 2 0 7 1 0 出願日 平成 1 2年 4月 2 1日 背景技術
現在、非常に多くの半導体デバイスが製造されている。製造された半導体デバ イスは、市場に出荷される前に、回路試験装置によって故障の有無を診断される 必要がある。回路試験装置は、半導体デバイスに対してファンクションテストと 呼ばれる試験を行ない、 その良否を判定する。 ファンクションテストにおいて、 テストパターンが半導体デバイスに供給され、半導体デバイスから出力される出 力結果に基づいて、 その良否が判定される。
近年、半導体デバイスを高集積化する研究が盛んに進められている。半導体デ バイスの高集積化に伴って、ファンクションテストにおけるテストパターンが複 雑ィ匕し、 生成が困難となってきた。 また、全ての素子を全ての故障可能性につい てファンクションテストによって完璧に試験しようとすると、テストパターンの 量が膨大であるため、試験時間がかかりすぎ、そのようなファンクションテスト が実質的に不可能となっている。
ファンクションテストとは別に、試験を効率的に行なうべく開発された試験法 として、半導体デバイスの静止電源電流を測定する静止電源電流試験と呼ばれる 方法がある。 この方法は、正常なトランジスタが静止状態で殆ど電流を流さない
ことを利用し、静止状態における異常電流を検出することによって、半導体デバ イスの良否を判定することを特徴とする。 し力 し、設計ルールが微細になり、 特 に 0 . 1 μ m以下のオーダに到達すると、 リーク電流が多くなり、正常デバイス と不良デバイスとの電流差が小さくなる。 そのため、従来の静止電源電流試験方 法を利用して、このような微細なパターンを有する回路を試験することは困難で あると考えられる。
また、 従来の静止電源電流試験においては、 電流波形を観測するために、試験 レートを、実動作時のクロックレートより下げる必要がある。 例えば、 実動作時 におけるクロックレートが数百 MH zの半導体デバイスを試験する場合であつ ても、静止電源電流試験時においては、試験レートを数 k H z〜数十 k H zと下 げなければ、十分に高精度に電流波形を観測することが困難であった。 そのため 、 従来の静止電源電流試験には、 時間がかかるという課題があった。
そこで本発明は、上記課題を解決することのできる回路試験装置および回路試 験方法を提供することを目的とする。この目的は請求の範囲における独立項に記 載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具 体例を規定する。 発明の開示
上記課題を解決するために、本発明の第 1の形態は、回路を試験する回路試験 装置であって、 回路に、入力信号を供給する信号供給部と、 回路において入力信 号を供給されたことにより生じるホットエレクトロンの発光を検出して、電気信 号に変換する光検出器と、変換された電気信号のパルス幅に基づいて、回路の故 障の有無を判定する判定部とを備えることを特徴とする回路試験装置を提供す る。
判定部は、電気信号のパルス幅が所定のパルス幅を越えたか否かを測定するパ ルス幅測定部を有することが好ましい。 また、判定部は、 パルス幅測定部の出力 に基づいて回路の故障の有無を検出する検出部を有することが好ましい。
また、検出部が検出した前記回路の故障の有無に基づいて、前記信号供給部を 制御する試験制御部を更に備えることが好ましい。 この場合、試験制御部は、検 出部が検出した回路の故障の有無に基づいて、信号供給部の回路への入力信号の 供給を制限するのが望ましい。
信号供給部は、回路の実動作状態におけるレートと実質的に同一のレートで入 力信号を回路に供給することが好ましい。光検出器は、回路における所定の素子 において生じるホットエレクトロンの発光を遮蔽することが好ましい。
また、本発明の第 2の形態は、回路を試験する回路試験方法であって、回路に、 入力信号を供給するステップと、回路において入力信号を供給されたことにより 生じるホットエレク トロンの発光を検出して、 電気信号に変換するステップと、 変換された電気信号のパルス幅に基づいて、回路の故障の有無を判定するステツ プとを備えることを特徴とする回路試験方法を提供する。
さらに、本発明の第 3の形態は、 回路を試験する回路試験方法であって、 回路 に、入力信号を供給する信号供給ステップと、入力信号を供給された回路の電源 電流波形を観測する観測ステップと、電源電流波形におけるパルス幅に基づいて、 回路の故障の有無を判定する判定ステップとを備えることを特徴とする回路試 験方法を提供する。
観測ステップは、回路に含まれる所定の素子についての電源電流波形を観測し てもよい。 また、 観測ステップは、 素子において電流が流れたことにより生じる ホットエレクトロンの発光を検出して、電気信号に変換するステップを含むこと が望ましい。
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、 これらの特徴群のサブコンビネーションも又発明となりうる。 図面の簡単な説明
図 1は、本発明の一実施形態である、回路 1 2を試験する回路試験装置 1 0 を示す。
図 2は、 本発明による回路試験方法の原理を説明するための説明図である。 図 3は、 パルス幅測定部 5 0の一実施例を示す。
図 4は、図 3に示されたパルス幅測定部 5 0における信号タイミングを示す 図 5は、 光検出器 3 0の構成の一例を示す。
図 6は、回路 1 2からの発光位置を二次元的に検出する機能を有する光検出 器 3 0の構成の一実施例を示す。
図 7は、 回路試験装置 1 0の他の実施例を示す。 発明を実施するための最良の形態
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求 の範囲にかかる発明を限定するものではなく、又実施形態の中で説明されている 特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図 1は、本発明の一実施形態である、回路 1 2を試験する回路試験装置 1 0を 示す。 回路 1 2は、例えば、 CMO S回路などを含んで形成された半導体チップ である。 本実施形態における回路試験装置 1 0は、信号供給部 2 0、光検出器 3 0およぴ判定部 4 0を備える。
信号供給部 2 0は、 回路 1 2に、試験パターンである入力信号を供給する。 信 号供給部 2 0は、回路 1 2の実動作状態におけるレートと実質的に同一のレート で入力信号を回路 1 2に供給することができる。後述するが、回路試験装置 1 0 は、発光を検出することにより回路 1 2の良否を判定する。本実埯形態における 回路試験装置 1 0は、発光を利用することによりリアルレートで試験を行うこと ができ、従来の静止電源電流試験において遅い試験レートで入力信号を供給する ことにより試験時間が長くなるとレ、う問題を解決することが可能となる。
回路 1 2に含まれる C MO S回路領域において、半導体内のキャリア (ホット エレクトロン) は、 印加された電界と取得エネルギとにより加速される。 例えば 、 電界効果型トランジスタ (F E T) において、 ソースとドレイン間に印加され
る電界は、 ほぼ 1 0 6 VZ c niと非常に大きい。 このような大きな電界の下で、 キャリアは、スぺク トラムの可視領域と赤外領域で測定可能な光量を生成するの に十分なエネルギを取得することができる。高いエネルギを有するキヤリァの発 光は、 F E Tが状態を切り替えたときに発生する。
このように、 回路 1 2は、入力信号を供給されると、 電流が流れた部分から光 を発生する。光検出器 3 0は、回路 1 2において入力信号を供給されたことによ り生じるホットエレクトロンの発光を検出して、電気信号に変換する。判定部 4 0は、変換された電気信号のパルス幅に基づいて、回路 1 2の故障の有無を判定 する。
判定部 4 0は、パルス幅測定部 5 0および検出部 6 0を有する。パルス幅測定 部 5 0は、光検出器 3 0から供給される電気信号のパルス幅を測定する。本実施 形態においては、パルス幅測定部 5 0は、電気信号のパルス幅が所定のパルス幅 を越えたか否かを測定し、 その測定結果を出力する。 検出部 6 0は、パルス幅測 定部 5 0の出力に基づいて、 回路 1 2の故障の有無を検出する。
図 2は、本発明による回路試験方法の原理を説明するための説明図である。 図 2 ( a ) は、 pチャネルトランジスタと nチヤネノレトランジスタとからなるイン バータ回路を示す。例えば、本ィンパータ回路の pチャネルトランジスタが不良 であったとき、図 1に示された回路試験装置 1 0力 S、該 pチャネルトランジスタ を流れる電源電流 2 4の波形を観測することにより、回路の故障の有無を判定す る方法について説明する。
図 2 ( b ) は、 回路が正常な場合と、 回路に異常がある場合における電源電流 波形と、 流れる電流により生じる発光の関係を示す。 回路が正常な場合、 インバ ータ回路に入力信号 2 2が入力されると、各トランジスタの状態が変化する瞬間 に、 過渡電流が流れ、 発光が生じる。 光検出器 3 0は、 過渡電流により生じる発 光を、 パルス幅 w 1を有する電気信号に変換する。
回路に不良素子が存在する場合、 過渡電流が流れるタイミング間においても、 当該素子に異常電流が流れる。 このとき、 光検出器 3 0は、過渡電流のみならず
、 異常電流による発光も検出する。 図 2 ( b ) においては、 インバータ回路の p チャネルトランジスタが短絡しており、光検出器 3 0が、該不良 pチャネルトラ ンジスタからの発光を検出して、電気信号に変換した例が示されている。 このと き、光検出器 3 0は、過渡電流によるパルス幅 w 1よりも広いパルス幅 w 2を有 するパルスを出力する。
本実施形態における回路試験装置 1 0は、 電流波形 2 4そのものを観測して、 電流波形 2 4におけるパルス幅に基づいて、回路の故障の有無を判定しても良い 。 このとき、 回路試験装置 1 0は、電流波形 2 4のパルス幅を測定するパルス幅 測定部を有するのが好ましい。電流波形 2 4は、実際には図示される波形とは異 なり、 回路中に存在する容量のために、 なまった波形を有している。 そのため、 パルス幅測定部は、高精度に電流波形のパルス幅を測定することができる能力が 要求される。
本発明の一実施形態である図 1に示される光検出器 3 0は、回路中の容量の影 響を受けることなく、 回路から生じた発光を、立ち上がり波形および立ち下がり 波形の急峻な電気信号に変換することができる。 そのため、パルス幅測定部 5 0 は、 該電気信号のパルス幅を容易に測定することが可能となる。
図 3は、 パルス幅測定部 5 0の一実施例を示す。 本実施例において、 パルス 測定部 5 0は、 フリップフロップ 5 4および 5 6を有する。 フリップフロップ 5 4の D入力には、光検出器 3 0から出力された電気信号が入力され、 C K入力に は、電気信号を Δ tだけ遅延した電気信号が入力される。 フリップフロップ 5 4 の Q出力は、 フリップフロップ 5 6の C K入力に接続される。 フリップフロップ 5 6の D入力は、 ハイ (論理値 1 ) 信号を入力される。
図 4は、 図 3に示されたパルス幅測定部 5 0における信号タイミングを示す。 図 3を参照して、 パルス幅の測定を開始する前に、 リセット信号が、 フリップフ ロップ 5 4および 5 6の R入力に入力される。それから、光検出器 3 0から出力 される電気信号 6 2力 S、 フリップフロップ 5 4の D入力に入力される。 C K入力 には、 Δ t遅延した電気信号が入力される。 遅延量 Δ tは、 電気信号に現れる過
渡電流によるパルス波形の周期よりも短く定められるのが好ましい。
電気信号 6 2において、 Δ tよりも長いパルス幅が存在する場合、 フリップフ 口ップ 5 4の Q出力がハイとなる。 フリップフ口ップ 5 6は、 C K入力にハイの 信号を受けると、 D入力に供給されているハイ信号を Q出力から出力信号 6 8と して出力する。 このように、 パルス幅測定部 5 0は、 所定のパルス幅を越えたパ ルスを検出し、 検出結果を出力信号 6 8として、 検出部 6 0に出力する。 検出部 6 0は、 出力信号 6 8を受け取り、 出力信号 6 8のハイ値を検出することによつ て、 試験される回路が不良であることを判定する。
図 3および 4に示される例においては、パルス幅測定部 5 0力 S、所定のパルス 幅以上のパルスを検出することができる。別の実施例においては、パルス幅測定 部 5 0は、カウンタを用いてパルス幅を測定する時間間隔測定器であってもよい 。 このとき、検出部 6 0は、 パルス幅測定部 5 0において測定されたパルス幅の 時間長を、所定の比較用時間と比較し、測定時間が所定の比較用時間を越えてい た場合に、 回路 1 2が不良であることを判定しても良い。
図 5は、 光検出器 3 0の構成の一例を示す。 図 5 ( a ) は、 光検出器 3 0の機 能プロックを示す。 光検出器 3 0は、光電面 3 2、 マルチチャネルプレート 3 4 および電流検出部 3 6を有する。マルチチャネルプレート 3 4は、光電面 3 2よ り放出される電子を増倍する光電子増倍装置である。
図 5 ( b ) は、 マルチチャネルプレート 3 4の一部を切り欠いた斜視断面図で ある。 図示されるように、 マルチチャネルプレート 3 4は、 光電面 3 2において 得られる電子を増倍する複数のチャネルを有している。
試験される回路 1 2が C MO S回路のみを有している場合、本発明の回路試験 方法は、過渡電流間に存在する異常電流を観測することによって、 当該回路 1 2 の不良を判定することができる。 回路 1 2が、 CMO S回路以外にも、 例えばダ ィオードやアナログ素子のように、信号が入力されている期間、定常的に発光す る素子を有する場合がある。 これらのアナログ素子においては、 C MO S回路に おいて過渡電流による発光タイミングの間の期間であっても、電流が流れて、発
光することがある。 本試験方法を実現するためには、 光検出器 3 0が、 回路 1 2 における所定の素子において生じるホットエレクトロンの発光を遮蔽して、検出 しない機能を有することが望ましい。
図 5 ( b ) に示されるマルチチャネルプレート 3 4は、所定の素子からの発光 を検出しない機能を実現するために、例えば、回路 1 2において当該素子が存在 する位置に対応するチャネルの加速電圧を印加せずに、チャネルを電気的に閉じ てもよい。光検出器 3 0自身の位置分解能が不十分な場合には、光検出器 3 0と 被試験回路 1 2との間にレンズを介在させることにより、回路 1 2上の領域を拡 大して、 光検出器 3 0が、 十分な位置分解能を有するようにしてもよい。 このと き、 光検出器 3 0は、 アナログ素子などの所定の素子からの発光をマスクして、 C MO S回路などからの発光を検出できるのが好ましい。
図 6は、回路 1 2からの発光位置を二次元的に検出する機能を有する光検出器 3 0の構成の一実施例を示す。本実施例における光検出器 3 0は、回路 1 2から の入射光により生じる光電流の電流比を用いて、回路 1 2における発光位置を検 出することができる。 図示される例においては、 光検出器 3 0が、表面上で左右 に設けられた電極から出力される電流の比に基づいて、回路 1 2からの発光位置 を一次元的に検出することができる。発光位置を二次元的に検出するために、光 検出器 3 0は、表面上の複数位置に分散した電極を有するのが好ましい。光検出 器 3 0は、発光位置を特定した後、その発光がアナログ素子などによる発光であ ることを判定すると、 当該位置における発光を無視し、不良素子からの発光のみ を検出して、 電気信号に変換することが望ましい。
図 7は、 回路試験装置 1 0の他の実施例を示す。 図 7において、 図 1と同じ符 号を付した構成は、 図 1における構成と同一又は同様の機能を有する。本実施例 における回路試験装置 1 0は、信号供給部 2 0を制御する試験制御部 7 0を更に 備える。
試験制御部 7 0は、 検出部 6 0が検出した回路 1 2の故障の有無に基づいて、 信号供給部 2 0を制御する。具体的には、所定の試験パターンを回路 1 2に供給
Claims
1 . 回路を試験する回路試験装置であって、
前記回路に、 入力信号を供給する信号供給部と、
前記回路において前記入力信号を供給されたことにより生じるホットエレク トロンの発光を検出して、 電気信号に変換する光検出器と、
変換された前記電気信号のパルス幅に基づいて、前記回路の故障の有無を判定 する判定部と
を備えることを特徴とする回路試験装置。
2 . 前記判定部は、前記電気信号のパルス幅が所定のパルス幅を越えたか否か を測定するパルス幅測定部を有することを特徴とする請求項 1に記载の回路試
3 . 前記判定部は、前記パルス幅測定部の出力に基づいて前記回路の故障の有 無を検出する検出部を有することを特徴とする請求項 2に記載の回路試験装置。
4 . 前記検出部が検出した前記回路の故障の有無に基づいて、前記信号供給部 を制御する試験制御部を更に備えることを特徴とする請求項 3に記載の回路試
5 . 前記信号供給部は、前記回路の実動作状態におけるレートと実質的に同一 のレートで前記入力信号を前記回路に供給することを特徴とする請求項 1から 4.のいずれかに記載の回路試験装置。
6 . 前記光検出器は、前記回路における所定の素子において生じるホットエレ タ トロンの発光を遮蔽することを特徴とする請求項 1から 5のいずれかに記載 の回路試験装置。
7 . 回路を試験する回路試験方法であって、
前記回路に、 入力信号を供給するステップと、
前記回路において前記入力信号を供給されたことにより生じるホットエレク トロンの発光を検出して、 電気信号に変換するステップと、
変換された前記電気信号のパルス幅に基づいて、前記回路の故障の有無を判定 するステップと
を備えることを特徴とする回路試験方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10196101T DE10196101T1 (de) | 2000-04-21 | 2001-04-20 | Verfahren und Vorrichtung zum Prüfen von Schaltungen |
JP2001578975A JP4792191B2 (ja) | 2000-04-21 | 2001-04-20 | 回路試験装置および回路試験方法 |
US10/274,687 US6894301B2 (en) | 2000-04-21 | 2002-10-21 | Method and apparatus for testing circuit using light emission |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-120710 | 2000-04-21 | ||
JP2000120710 | 2000-04-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/274,687 Continuation US6894301B2 (en) | 2000-04-21 | 2002-10-21 | Method and apparatus for testing circuit using light emission |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001081936A1 true WO2001081936A1 (fr) | 2001-11-01 |
Family
ID=18631472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/003395 WO2001081936A1 (fr) | 2000-04-21 | 2001-04-20 | Procede et dispositif de testage d'un circuit |
Country Status (4)
Country | Link |
---|---|
US (1) | US6894301B2 (ja) |
JP (1) | JP4792191B2 (ja) |
DE (1) | DE10196101T1 (ja) |
WO (1) | WO2001081936A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8065102B2 (en) * | 2008-08-28 | 2011-11-22 | Advantest Corporation | Pulse width measurement circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0231175A (ja) * | 1988-07-20 | 1990-02-01 | Hamamatsu Photonics Kk | 発光によるデバイスおよびその材料の評価装置 |
JPH1116974A (ja) * | 1997-06-26 | 1999-01-22 | Nec Corp | Lsiの異常発光箇所特定方法およびその装置 |
EP0937989A2 (en) * | 1998-02-19 | 1999-08-25 | International Business Machines Corporation | Using time resolved light emission from VLSI circuit devices for navigation on complex systems |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6488381A (en) * | 1987-09-30 | 1989-04-03 | Fujitsu Ltd | Device for counting delay time of circuit |
JP3004830B2 (ja) * | 1991-12-09 | 2000-01-31 | 松下電器産業株式会社 | 半導体集積回路の評価装置及び評価方法 |
JP2705021B2 (ja) * | 1993-02-25 | 1998-01-26 | 日本電信電話株式会社 | キャリア伝導時間測定方法および装置 |
US5981967A (en) * | 1996-12-17 | 1999-11-09 | Texas Instruments Incorporated | Method and apparatus for isolating defects in an integrated circuit near field scanning photon emission microscopy |
-
2001
- 2001-04-20 WO PCT/JP2001/003395 patent/WO2001081936A1/ja active Application Filing
- 2001-04-20 JP JP2001578975A patent/JP4792191B2/ja not_active Expired - Fee Related
- 2001-04-20 DE DE10196101T patent/DE10196101T1/de not_active Withdrawn
-
2002
- 2002-10-21 US US10/274,687 patent/US6894301B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0231175A (ja) * | 1988-07-20 | 1990-02-01 | Hamamatsu Photonics Kk | 発光によるデバイスおよびその材料の評価装置 |
JPH1116974A (ja) * | 1997-06-26 | 1999-01-22 | Nec Corp | Lsiの異常発光箇所特定方法およびその装置 |
EP0937989A2 (en) * | 1998-02-19 | 1999-08-25 | International Business Machines Corporation | Using time resolved light emission from VLSI circuit devices for navigation on complex systems |
Also Published As
Publication number | Publication date |
---|---|
US6894301B2 (en) | 2005-05-17 |
JP4792191B2 (ja) | 2011-10-12 |
US20030038646A1 (en) | 2003-02-27 |
DE10196101T1 (de) | 2003-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5105720B2 (ja) | 集積回路の信号観測装置、及びその方法 | |
US5940545A (en) | Noninvasive optical method for measuring internal switching and other dynamic parameters of CMOS circuits | |
KR100249252B1 (ko) | Cmos 집적회로의 고장 검출 시스템 | |
US6943578B1 (en) | Method and application of PICA (picosecond imaging circuit analysis) for high current pulsed phenomena | |
TWI676806B (zh) | 用於偵測來自多單元電池組之複數個輸入端中之至少一者上之開路連接的開路連接偵測設備、電路、方法和系統 | |
CN101796424A (zh) | 具有减小的电流泄漏的半导体器件测试系统 | |
JP7090757B2 (ja) | 半導体素子の信頼性評価装置および半導体素子の信頼性評価方法 | |
US7478345B2 (en) | Apparatus and method for measuring characteristics of dynamic electrical signals in integrated circuits | |
US7057409B2 (en) | Method and apparatus for non-invasively testing integrated circuits | |
EP3699607B1 (en) | Integrated laser voltage probe pad for measuring dc or low frequency ac electrical parameters with laser based optical probing techniques | |
WO2001081936A1 (fr) | Procede et dispositif de testage d'un circuit | |
Kash et al. | Non-invasive backside failure analysis of integrated circuits by time-dependent light emission: Picosecond imaging circuit analysis | |
US6774647B2 (en) | Noninvasive optical method and system for inspecting or testing CMOS circuits | |
Bodoh et al. | Defect localization using time-resolved photon emission on SOI devices that fail scan tests | |
KR20060022287A (ko) | 아날로그 또는 무선 주파수 회로 테스트 방법, 장치 및기록매체 | |
US20050174248A1 (en) | Apparatus and method for determining voltage using optical observation | |
US6956365B2 (en) | System and method for calibration of testing equipment using device photoemission | |
KR20030048695A (ko) | 정지상태 전류값 검사를 위한 내장형 전류감지회로 | |
US7550976B2 (en) | Apparatus/method for measuring the switching time of output signals of a DUT | |
US6507182B2 (en) | Voltage modulator circuit to control light emission for non-invasive timing measurements | |
Jones et al. | Excess noise as an indicator of digital integrated circuit reliability | |
JP2006313770A (ja) | 半導体素子のサイリスタ特性検査装置及び方法 | |
JPH02194541A (ja) | 光プローバ | |
Polonsky et al. | CMOS IC diagnostics using the luminescence of OFF-state leakage currents | |
RU2307367C1 (ru) | Вспомогательный блок для индикации контакта измерительного прибора с проверяемым объектом |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE GB JP US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 578975 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10274687 Country of ref document: US |