WO2001077009A1 - Mikromechanisches bauelement und entsprechendes herstellungsverfahren - Google Patents

Mikromechanisches bauelement und entsprechendes herstellungsverfahren Download PDF

Info

Publication number
WO2001077009A1
WO2001077009A1 PCT/DE2001/000921 DE0100921W WO0177009A1 WO 2001077009 A1 WO2001077009 A1 WO 2001077009A1 DE 0100921 W DE0100921 W DE 0100921W WO 0177009 A1 WO0177009 A1 WO 0177009A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
micromechanical
functional layer
micromechanical functional
passages
Prior art date
Application number
PCT/DE2001/000921
Other languages
English (en)
French (fr)
Inventor
Markus Lutz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE50103327T priority Critical patent/DE50103327D1/de
Priority to US10/240,339 priority patent/US7041225B2/en
Priority to EP01919184A priority patent/EP1274648B1/de
Priority to JP2001575492A priority patent/JP5090603B2/ja
Publication of WO2001077009A1 publication Critical patent/WO2001077009A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00333Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0136Growing or depositing of a covering layer

Definitions

  • the present invention relates to a micromechanical component with a substrate and a movable sensor structure in a first micromechanical functional layer on the sacrificial layer.
  • the invention also relates to a corresponding manufacturing method.
  • Structures in particular sensors and actuators, can be used, the present invention and the underlying problem with regard to a micromechanical component that can be produced in the technology of silicon surfaces ikromechanics, e.g. an acceleration sensor explained.
  • the OMM process is simplified because, owing to the second micromechanical functional layer, which performs at least one covering function, the cap wafer is omitted and the structures can be contacted from above.
  • the process gains functionality, i.e. the designer has other mechanical and / or electrical components available to implement the component.
  • the following functional elements can be created:
  • a pressure sensor membrane in the second micromechanical functional layer a conductor track structure in the second micromechanical functional layer, which can cross over with a further conductor track structure provided above the second sealing layer;
  • a sacrificial layer is provided on the substrate and the sacrificial layer is etched to make the sensor structure movable.
  • the substrate with a sacrificial layer and the first micromechanical functional layer can be provided as an SOI (Silicon on Insulator) structure.
  • the first micromechanical functional layer is structured in such a way that it has first passages reaching as far as the opera layer.
  • the second micromechanical functional layer is structured in such a way that it has second passages which extend as far as the first closure layer and which are connected to the first passages by connecting regions of the first closure layer. The first closure layer is then etched to remove the connection regions using the second passages as etching channels.
  • the sacrificial layer is etched using the first and second passages which are connected to one another by removing the connection regions, as etching channels. This minimizes the effort for the etching processes, since the sacrificial layer and the first sealing layer can be etched in one process.
  • running etching channels are thus generated by the first and second micromechanical functional layer and the first sealing layer lying between them.
  • the thickness of the second micromechanical functional layer can be increased and its strength or rigidity can be improved.
  • larger areas can be spanned and the components exposed to higher stress.
  • a buried polysilicon layer is provided below the first or second micromechanical functional layer. Eliminating the buried polysilicon and an insulation layer underneath is also possible, since further wiring levels are available above the sensor structure.
  • first and second closure layers are made significantly thinner than the first and second micromechanical functional layers.
  • the first and / or second sealing layer is provided by a non-conformal deposition such that the first and second passages are only grafted in the upper area. This reduces the etch time when removing the sacrificial layer since only a part of the passages are clogged.
  • first and / or second passages are designed as trenches or holes which narrow upwards.
  • the first and / or second micromechanical functional layer are produced from a conductive material, preferably polysilicon.
  • the first and / or second sealing layer are produced from a dielectric material, preferably silicon dioxide.
  • one or more interconnect layers are provided on the second sealing layer.
  • a conductor track structure is integrated in the second micromechanical functional layer.
  • FIG. 1 shows a schematic cross-sectional view of a micromechanical component according to a first embodiment of the present invention in a first process stage
  • FIG. 2 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment. form of the present invention in a second process stage;
  • FIG. 3 shows a schematic cross-sectional view of the micro-mechanical component according to the first embodiment of the present invention in a third process stage
  • FIG. 4 shows a schematic cross-sectional view of the micro-mechanical component according to the first embodiment of the present invention in a fourth process stage
  • FIG. 5 shows an enlarged detail of the schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention according to FIG. 4.
  • FIG. 1 shows a schematic cross-sectional view of a micromechanical component according to a first embodiment of the present invention in a first process stage.
  • 1 denotes a silicon substrate wafer, 2 a lower oxide, 3 a buried polysilicon layer, 4 a sacrificial oxide, 20 a contact hole in the lower oxide 2 and 21 contact holes in the sacrificial oxide 4.
  • the entire surface of the lower oxide 2 is first deposited on the silicon substrate wafer 1.
  • polysilicon is deposited and structured in order to produce conductor tracks in the buried polysilicon layer 3.
  • the sacrificial oxide 4 is applied to the entire structure over the entire surface, for example by an LTO (low temperature oxide) process or by a TEOS (tetraethyl orthosilicate) process.
  • the contact holes 20 and 21 are created at the locations provided for this purpose using conventional photo techniques and etching techniques.
  • FIG. 2 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention in a second process stage.
  • FIG. 2 in addition to the reference symbols 5 already introduced, denote a first micromechanical functional layer in the form of an epitaxial polysilicon layer, 6 a sensor structure (comb structure) to be made movable later, 7 trenches in the first micromechanical functional layer 5, 8 a first sealing oxide ( LTO, TEOS or the like), 9 stoppers in the trenches 7 consisting of the sealing oxide 8, 16 oxide connection areas for later sacrificial oxide etching and 22 contact holes in the sealing oxide 8.
  • LTO low-TEOS
  • 9 stoppers in the trenches 7 consisting of the sealing oxide 8
  • 16 oxide connection areas for later sacrificial oxide etching 16 oxide connection areas for later sacrificial oxide etching and 22 contact holes in the sealing oxide 8.
  • epitaxial polysilicon is first deposited in a known manner to form the first micromechanical functional layer 5, the micromechanical functional layer 5 is structured to form the movable sensor structure ⁇ and the trenches 7.
  • the refill is not complete, but only covers the structure below 100% upwards and also provides a seal. This is shown in more detail in Figure 5.
  • contact holes 22 serve to anchor the second micromechanical functional layer 10 to be applied later (see FIG. 3) and to delimit the oxide connection areas 16 for later sacrificial oxide etching.
  • 3 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention in a third process stage.
  • FIG. 3 in addition to the reference numerals 10 already introduced, denote a second micromechanical functional layer in the form of an epitaxial polysilicon layer and 11 trenches in the second micromechanical functional layer 10.
  • the second micromechanical functional layer 10 is deposited analogously to the first micromechanical functional layer 5 as a stable closure layer for the underlying sensor structure 6.
  • the second micromechanical functional layer 10 can of course also be used for contacting, as a lead, as an upper electrode, etc. for the component. This is followed by a structuring of this layer 10 for producing the trenches 11, which will later be required together with the trenches 9 for the sacrificial oxide etching.
  • FIG. 4 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention in a fourth process stage.
  • FIG. 4 in addition to the reference symbols 13 already introduced, denote a second sealing oxide (LTO, TEOS aa), 14 a contact hole in the sealing oxide 13, 15 a conductor track level made of aluminum, which is connected via the contact holes 14 to the second micromechanical functional layer 10.
  • LTO second sealing oxide
  • TEOS aa TEOS aa
  • the sealing oxide 8 is etched to remove the oxide connection regions 16 using the second trenches 11 as etching channels.
  • the sacrificial layer 4 is then etched using the first and second trenches 7, 11, which are connected to one another by the removal of the connection regions 16, as etching channels.
  • a long sacrificial oxide etching is possible because there is no aluminum on the surface.
  • a second refill process takes place to form the second sealing oxide 13, this deposition likewise not being a conformal deposition, but rather grafting the trenches 11 only on their surface. This is illustrated in more detail in FIG. 5.
  • the internal pressure or the internal atmosphere enclosed in the sensor structure 6 are dependent on the process conditions in the refill process. These parameters determine e.g. the damping of the sensor structure.
  • the second sealing oxide 13 is then structured to form the contact holes 14 and one Deposition and structuring of the interconnect layer 15 made of aluminum.
  • any micromechanical basic materials such as Germanium, and not just the exemplary silicon substrate.
  • Any sensor structures can also be formed, and not just the illustrated acceleration sensor.
  • the trenches 7 and 11 can be narrowed upwards in order to promote the non-conformal deposition of the first and second sealing layers 8, 13.
  • a variation in the layer thicknesses of the first and second micromechanical functional layers 5, 10 can be carried out in a simple manner by the epitaxial and planarization process, since the sacrificial layer etching does not depend on the permeability of the second micromechanical functional layer.
  • micromechanical functional layer / sealing layer can be repeated and one can also provide a buried guideway under a respective micromechanical functional layer above the underlying micromechanical functional layer.
  • the optional planarization of the individual levels can also be carried out only in a single polishing step, preferably only for the second sealing layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)

Abstract

Die Erfindung schafft ein Verfahren zur Herstellung eines mikromechanischen Bauelementes mit den Schritten: Bereitstellen eines Substrats (1); Vorsehen einer ersten mikromechanischen Funktionsschicht (5) auf der Opferschicht (4); Strukturieren der ersten mikromechanischen Funktionsschicht (5) derart, daß sie eine beweglich zu machende Sensorstruktur (6) aufweist; Vorsehen und Strukturieren einer ersten Verschlußschicht (8) auf der strukturierten ersten mikromechanischen Funktionsschicht (5); Vorsehen und Strukturieren einer zweiten mikromechanischen Funktionsschicht (10) auf der ersten Verschlußschicht (8), welche zumindest eine Abdeckfunktion aufweist und zumindest teilweise in der ersten mikromechanischen Funktionsschicht (5) verankert wird; Beweglichmachen der Sensorstruktur (6); und Vorsehen einer zweiten Verschlußschicht (8) auf der zweiten mikromechanischen Funktionsschicht (10). Die Erfindung schafft ebenfalls ein entsprechendes mikromechanisches Bauelement.

Description

Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
STAND DER TECHNIK
Die vorliegende Erfindung betrifft ein mikromechanisches Bauelement mit einem Substrat und einer beweglichen Sensorstruktur in einer ersten mikromechanischen Funktionsschicht auf der Opferschicht. Die Erfindung betrifft ebenfalls ein entsprechendes Herstellungsverfahren.
Obwohl auf beliebige mikromechanische Bauelemente und
Strukturen, insbesondere Sensoren und Aktuatoren, anwendbar, werden die vorliegende Erfindung sowie die ihr zugrundeliegende Problematik in bezug auf ein in der Technologie der Silizium-Oberflächen ikromechanik herstellbares mikro- mechanisches Bauelement, z.B. einen Beschleunigungssensor, erläutert .
Allgemein bekannt sind monolithisch integrierte inertiale Sensoren in Oberflächenmikromechanik (OMM) , bei denen die empfindlichen beweglichen Strukturen ungeschützt auf dem Chip aufgebracht sind (Analog Devices) . Dadurch entsteht ein erhöhter Aufwand beim Handling und bei der Verpackung. Umgehen kann man dieses Problem durch einen Sensor, wobei die OMM-Strukturen mittels einem zweiten Kappenwafer abgedeckt sind. Diese Art der Verpackung verursacht einen hohen Anteil (ca. 75%) der Kosten eines OMM-Beschleunigungssen- sors. Diese Kosten entstehen durch den hohen Flächenbedarf der Dichtfläche zwischen Kappenwafer und Sensorwafer und aufgrund der aufwendigen Strukturierung (2-3 Masken, Bulk- ikromechanik) des Kappenwafers .
In der DE 195 37 814 AI werden der Aufbau eines funktionalen Schichtsystems und ein Verfahren zur hermetischen Verkappung von Sensoren in Oberflächenmikromechanik beschrieben. Hierbei wird die Herstellung der Sensorstruktur mit bekannten technologischen Verfahren erläutert. Die besagte hermetische Verkappung erfolgt mit einem separaten Kappenwafer aus Silizium, der mit aufwendigen Strukturierungspro- zessen, wie beispielsweise KOH-Ätzen, strukturiert wird. Der Kappen-Wafer wird mit einem Glas-Lot (Seal-Glas) auf dem Substrat mit dem Sensor (Sensor-Wafer) aufgebracht. Hierfür ist um jeden Sensorchip ein breiter Bond-Rahmen notwendig, um eine ausreichende Haftung und Dichtheit der Kappe zu gewährleisten. Dies begrenzt die Anzahl der Sensor-Chips pro Sensor-Wafer erheblich. Auf Grund des großen Platzbedarfs und der aufwendigen Herstellung des Kappen- Wafers entfallen erhebliche Kosten auf die Sensor- Verkappung. VORTEILE DER ERFINDUNG
Das erfindungsgemäße Herstellungsverfahren mit den Merkmalen des Anspruchs 1 bzw. das mikromechanische Bauelement nach Anspruch 12 weisen folgende Vorteile auf.
Es baut auf einen bekannten OMM-Prozeß auf, der Epitaxie- Polysilizium mit mindestens 10 μm Dicke zur Bildung einer mikromechanischen Funktionsschicht schafft. Es wird keine neue permeable Schicht benötigt, sondern man verwendet an sich bekannte Prozesse. Neu ist lediglich der Schritt zur Erzeugung der Verschlußschichten, welche eine Abdicht- und Einebenungsfunktion haben.
Es ergibt sich eine Vereinfachung des OMM-Prozesses, da aufgrund der zweiten mikromechanischen Funktionsschicht, die zumindest eine Abdeckfunktion übernimmt, der Kappenwafer entfällt und die Strukturen von oben kontaktiert werden können.
Weiterhin gewinnt der Prozeß an Funktionalität, d.h. dem Designer stehen weitere mechanische und/oder elektrische Bauelemente zur Realisierung des Bauelementes Verfügung. Insbesondere können folgende Funktionselemente erstellt werden:
eine Drucksensormembran in der zweiten mikromechanischen Funktionsschicht; eine Leiterbahnstruktur in der zweiten mikromechanischen Funktionsschicht, welche sich mit einer oberhalb der zweiten Verschlußschicht vorgesehenen weiteren Leiterbahnstruktur überkreuzen kann;
sehr niederohmige Zuleitungen aus Aluminium in der o- berhalb der zweiten Verschlußschicht vorgesehenen weiteren Leiterbahnstruktur;
- ein vertikaler Differentialkondensator;
weitere Verankerungen der Strukturen der ersten mikromechanischen Funktionsschicht in der zweiten mikromechanischen Funktionsschicht.
Auch können übliche IC-Verpackungen, wie Hybrid, Kunststoff, Flip-Chip etc., verwendet werden.
In den Unteransprüchen finden sich vorteilhafte Weiterbil- düngen und Verbesserungen des jeweiligen Gegenstandes der Erfindung.
Gemäß einer bevorzugten Weiterbildung wird eine Opferschicht auf dem Substrat vorgesehen und die Opferschicht zum Beweglichmachen der Sensorstruktur geätzt. Bei einer vereinf chten Version kann das Substrat mit einer Opferschicht und der ersten mikromechanischen Funktionsschicht als SOI (Silicon on Insulator) -Struktur vorgesehen werden. Gemäß einer weiteren bevorzugten Weiterbildung erfolgt ein Strukturieren der ersten mikromechanischen Funktionsschicht derart, daß sie bis zur Operschicht reichende erste Durchgänge aufweist. Weiterhin erfolgt ein Strukturieren der zweiten mikromechanischen Funktionsschicht derart, daß sie bis zur ersten Verschlußschicht reichende zweite Durchgänge aufweist, welche durch Verbindungsbereiche der ersten Verschlußschicht mit den ersten Durchgängen verbunden sind. Danach erfolgt ein Ätzen der ersten Verschlußschicht zum Entfernen der Verbindungsbereiche unter Verwendung der zweiten Durchgänge als Ätzkanäle. Schließlich erfolgt ein Ätzen der Opferschicht unter Verwendung der durch das Entfernen der Verbindungsbereiche miteinander verbundenen ersten und zweiten Durchgänge als Ätzkanäle. Dies minimiert den Aufwand für die Ätzprozesse, da die Opferschicht und die erste Verschlußschicht in einem Prozeß geätzt werden können.
Für das Entfernen der optionellerweise vorgesehenen Opfer- schicht werden also durch die erste und zweite mikromechanische Funktionsschicht und die dazwischenliegende erste Verschlußschicht laufende Ätzkanäle erzeugt. Dadurch kann die Dicke der zweiten mikromechanischen Funktionsschicht erhöht sein und deren Festigkeit bzw. Steifigkeit verbes- sert sein. Demzufolge können größere Flächen überspannt werden und die Bauelemente höherem Streß ausgesetzt werden. Beim Entfernen der Opferschicht muß man keine Rücksicht auf Leiterbahn-Aluminium o.a. nehmen, da es erst zu einem späteren Zeitpunkt aufgebracht wird. Gemäß einer weiteren bevorzugten Weiterbildung wird eine vergrabene Polysiliziumschicht unterhalb der ersten oder zweiten mikromechanischen Funktionsschicht vorgesehen. Ein Entfallen des vergrabenen Polysiliziums und einer darunterliegenden Isolationsschicht ist ebenfalls möglich, da weitere Verdrahtungsebenen oberhalb der Sensorstruktur verfügbar sind.
Gemäß einer weiteren bevorzugten Weiterbildung werden die erste und zweite Verschlußschicht wesentlich dünner als die erste und zweite mikromechanische Funktionsschicht gestaltet.
Gemäß einer weiteren bevorzugten Weiterbildung werden die erste und/oder zweite Verschlußschicht durch eine nichtkonforme Abscheidung derart vorgesehen, daß die ersten bzw. zweiten Durchgänge nur im oberen Bereich verpropft werden. Dies reduziert die Ätzzeit beim Opferschichtentfernen, da nur ein Teil der Durchgänge verstopft ist.
Gemäß einer weiteren bevorzugten Weiterbildung werden die ersten und/oder zweiten Durchgänge als Gräben oder Löcher gestaltet, die sich nach oben hin verengen.
Gemäß einer weiteren bevorzugten Weiterbildung werden die erste und/oder zweite mikromechanische Funktionsschicht aus einem leitenden Material, vorzugsweise Polysilizium, hergestellt. Gemäß einer weiteren bevorzugten Weiterbildung werden die erste und/oder zweite Verschlußschicht aus einem dielektrischen Material, vorzugsweise Siliziumdioxid, hergestellt.
Gemäß einer weiteren bevorzugten Weiterbildung werden auf der zweiten Verschlußschicht eine oder mehrere Leiterbahnschichten, vorzugsweise aus Aluminium, vorgesehen.
Gemäß einer weiteren bevorzugten Weiterbildung wird in die zweite mikromechanische Funktionsschicht eine Leiter- bahnstrukur integriert.
ZEICHNUNGEN
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Fig. 1 eine schematische Querschnittsansicht eines mikromechanischen Bauelements gemäß einer ersten Ausführungsform der vorliegenden Erfindung in ei- nem ersten Prozeßstadium;
Fig. 2 eine schematische Querschnittsansicht des mikromechanischen Bauelements gemäß der ersten Ausfüh- rungsform der vorliegenden Erfindung in einem zweiten Prozeßstadium;
Fig. 3 eine schematische Querschnittsansicht des mikro- mechanischen Bauelements gemäß der ersten Ausführungsform der vorliegenden Erfindung in einem dritten Prozeßstadium;
Fig. 4 eine schematische Querschnittsansicht des mikro- mechanischen Bauelements gemäß der ersten Ausführungsform der vorliegenden Erfindung in einem vierten Prozeßstadium; und
Fig. 5 einen vergrößerten Ausschnitt der schematischen Querschnittsansicht des mikromechanischen Bauelements gemäß der ersten Ausführungsform der vorliegenden Erfindung nach Fig. 4.
BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten.
Fig. 1 zeigt eine schematische Querschnittsansicht eines mikromechanischen Bauelements gemäß einer ersten Ausführungsform der vorliegenden Erfindung in einem ersten Prozeßstadium. In Figur 1 bezeichnet 1 einen Silizium-Substratwafer, 2 ein unteres Oxid, 3 eine vergrabene Polysiliziumschicht, 4 ein Opferoxid, 20 ein Kontaktloch im unteren Oxid 2 und 21 Kontaktlöcher im Opferoxid 4.
Zur Herstellung der in Figur 1 gezeigten Struktur erfolgt zunächst eine ganzflächige Abscheidung des unteren Oxids 2 auf dem Silizium-Substratwafer 1. In einem folgenden Schritt wird Polysilizium abgeschieden und strukturiert, um Leiterbahnen in der vergrabenen Polysiliziumschicht 3 zu erzeugen.
Darauffolgend wird das Opferoxid 4 auf die gesamte Struktur ganzflächig aufgebracht, zum Beispiel durch ein LTO (Low Temperature Oxid) -Verfahren oder durch ein TEOS (Tetra- ethyl-Orthosilikat) -Verfahren. Anschließend werden die Kontaktlöcher 20 und 21 an den dafür vorgesehenen Stellen mittels üblicher Phototechniken und Ätztechniken geschaffen.
Fig. 2 zeigt eine schematische Querschnittsansicht des mikromechanischen Bauelements gemäß der ersten Ausführungsform der vorliegenden Erfindung in einem zweiten Prozeßstadium.
In Figur 2 bezeichnen zusätzlich zu den bereits eingeführ- ten Bezugzeichen 5 eine erste mikromechanische Funktionsschicht in Form einer Epitaxie-Polysiliziu schicht, 6 eine später beweglich zu machende Sensorstruktur (Kammstruktur) , 7 Gräben in der ersten mikromechanischen Funktionsschicht 5, 8 ein erstes Verschlußoxid (LTO, TEOS o.a.), 9 Pfropfen in den Gräben 7 bestehend aus dem Verschlußoxid 8, 16 Oxidverbindungsbereiche zum späteren Opferoxidätzen und 22 Kontaktlöcher im Verschlußoxid 8.
Zur Herstellung der in Figur 2 gezeigten Struktur erfolgt zunächst in bekannter Weise eine Abscheidung von Epitaxie- Polysilizium zur Bildung der ersten mikromechanischen Funktionsschicht 5, eine Strukturierung der mikromechanischen Funktionsschicht 5 zur Bildung der beweglich zu machenden Sensorstruktur β und der Gräben 7.
Hierauf erfolgt ein Refill-Prozess zum Verschließen der Gräben 7 mit dem Verschlußoxid 8 und anschließend optionel- lerweise eine Planarisierung. Obwohl nachstehend nicht ex- plizit erwähnt, kann solch eine Planarisierung prinzipiell nach jeder ganzflächigen Schichtabscheidung vorgenommen werden.
Beim gezeigten Beispiel ist der Refill nicht vollständig, sondern deckt die darunter liegende Struktur nur nach oben hin zu 100 % ab und sorgt ebenfalls für eine Abdichtung. Dies ist in Figur 5 detaillierter gezeigt.
Es folgt ein Prozess zur Bildung der Kontaktlöcher 22 durch übliche Phototechniken und Ätztechniken. Diese Kontaktlöcher 22 dienen zur Verankerung der später aufzubringenden zweiten mikromechanischen Funktionsschicht 10 (vergleiche Figur 3) und zur Eingrenzung von den Oxidverbindungsberei- chen 16 zum späteren Opferoxidätzen. Fig. 3 zeigt eine schematische Querschnittsansicht des mikromechanischen Bauelements gemäß der ersten Ausführungsform der vorliegenden Erfindung in einem dritten Prozeßstadium.
In Figur 3 bezeichnen zusätzlich zu den bereits eingeführten Bezugszeichen 10 eine zweite mikromechanische Funktionsschicht in Form einer Epitaxie-Polysiliziumschicht und 11 Gräben in der zweiten mikromechanischen Funktionsschicht 10.
Zum Aufbau der in Figur 3 gezeigten Struktur wird die zweite mikromechanische Funktionsschicht 10 analog zur ersten mikromechanischen Funktionsschicht 5 als stabile Verschluß- schicht für die darunterliegende Sensorstruktur 6 abgeschieden. Neben dieser Verschlußfunktion kann die zweite mikromechanische Funktionsschicht 10 natürlich auch zur Kontaktierung, als Zuleitung, als obere Elektrode usw. für das Bauelement dienen. Es folgen eine Strukturierung dieser Schicht 10 zur Herstellung der Gräben 11, welche später zusammen mit den Gräben 9 für das Opferoxidätzen benötigt werden.
Fig. 4 zeigt eine schematische Querschnittsansicht des ik- romechanischen Bauelements gemäß der ersten Ausführungsform der vorliegenden Erfindung in einem vierten Prozeßstadium.
In Figur 4 bezeichnen zusätzlich zu den bereits eingeführten Bezugszeichen 13 ein zweites Verschlußoxid (LTO, TEOS o.a.), 14 ein Kontaktloch in dem Verschlußoxid 13, 15 eine Leiterbahnebene aus Aluminium, welche über die Kontaktlöcher 14 mit der zweiten mikromechanischen Funktionsschicht 10 verbunden ist.
Ausgehend von dem in Figur 3 gezeigten Prozeßstadium werden zum Erreichen des Prozeßstadiums nach Figur 4 folgende Schritte durchgeführt. Zunächst erfolgt ein Ätzen des Verschlußoxids 8 zum Entfernen der Oxidverbindungsbereiche 16 unter Verwendung der zweiten Gräben 11 als Ätzkanäle. Darauf erfolgt ein Ätzen der Opferschicht 4 unter Verwendung der durch das Entfernen der Verbindungsbereiche 16 miteinander verbundenen ersten und zweiten Gräben 7, 11 als Ätzkanäle. Ein langes Opferoxidätzen ist möglich, da noch kein Aluminium auf der Oberfläche vorhanden ist.
In einem darauffolgenden Prozeßschritt erfolgt ein zweiter Refill-Prozeß zur Bildung des zweiten Verschlußoxids 13, wobei diese Abscheidung ebenfalls keine konforme Abschei- düng ist, sondern die Gräben 11 nur an ihrer Oberfläche verpfropft. Dies ist in Figur 5 näher illustriert. Der in der Sensorstruktur 6 eingeschlossene Innendruck bzw. die Innenatmosphäre sind abhängig von den Prozeßbedingungen beim Refill-Prozeß. Diese Parameter bestimmen z.B. die Dämpfung der Sensorstruktur.
Anschließend erfolgen eine Strukturierung des zweiten Verschlußoxids 13 zur Bildung der Kontaktlöcher 14 und eine Abscheidung und Strukturierung der Leiterbahnschicht 15 aus Aluminium.
Obwohl die vorliegende Erfindung vorstehend anhand eines bevorzugten Ausführungsbeispiels beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.
Es können insbesondere beliebige mikromechanische Grundma- terialien, wie z.B. Germanium, verwendet werden, und nicht nur das exemplarisch angeführte Siliziumsubstrat.
Auch können beliebige Sensorstrukturen gebildet werden, und nicht nur der illustrierte Beschleunigungssensor.
Obwohl in den Figuren nicht dargestellt, können die Gräben 7 bzw. 11 nach oben verengt gestaltet sein, um die nichtkonforme Abscheidung der ersten bzw. zweiten Verschlußschicht 8, 13 zu fördern.
Es kann eine Variation der Schichtdicken der ersten und zweiten mikromechanischen Funktionsschicht 5, 10 durch den Epitaxie- und Planarisierungsprozeß in einfacher Weise vollzogen werden, da das Opferschichtätzen nicht von der Permeabilität der zweiten mikromechanischen Funktionsschicht abhängt.
Natürlich kann die Abfolge mikromechanische Funktionsschicht/Verschlußschicht mehrfach erfolgen, und man kann auch eine vergrabene Leitebahn jeweils unter einer jeweiligen mikromechanischen Funktionsschicht oberhalb der darunter liegenden mikromechanischen Funktionsschicht vorsehen.
Schließlich können auch weitere Verdrahtungsebenen in Aluminium oder sonstigen geeigneten Metallen mit dazwischen liegendem dielektrischen aufgebracht werden.
Die optionelle Planarisierung der einzelnen Ebenen, zum Beispiel mittels chemisch-mechanischem Polieren, kann auch nur in einem einzigen Polierschritt erfolgen, vorzugsweise nur für die zweite Verschlußschicht.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Herstellung eines mikromechanischen Bau- elementes mit den Schritten:
Bereitstellen eines Substrats (1) ;
Vorsehen einer ersten mikromechanischen Funktionsschicht (5) auf der Opferschicht (4);
Strukturieren der ersten mikromechanischen Funktionsschicht (5) derart, daß sie eine beweglich zu machende Sensorstruktur (β) aufweist;
Vorsehen und Strukturieren einer ersten Verschlußschicht (8) auf der strukturierten ersten mikromechanischen Funktionsschicht (5) ;
Vorsehen und Strukturieren einer zweiten mikromechanischen Funktionsschicht (10) auf der ersten Verschlußschicht (8), welche zumindest eine Abdeckfunktion aufweist und zumindest teilweise in der ersten mikromechanischen Funktionsschicht (5) verankert wird; Beweglichmachen der Sensorstruktur (6); und
Vorsehen einer zweiten Verschlußschicht (8) auf der zweiten mikromechanischen Funktionsschicht (10) .
2. Verfahren nach Anspruch 1, gekennzeichnet durch die Schritte:
Vorsehen einer Opferschicht (4) auf dem Substrat (1) ; und
Ätzen der Opferschicht (4) zum Beweglichmachen der Sensorstruktur (6) .
3. Verfahren nach Anspruch 2, gekennzeichnet durch die Schritte:
Strukturieren der ersten mikromechanischen Funktionsschicht (5) derart, daß sie bis zur Operschicht (4) reichende erste Durchgänge (7) aufweist;
Strukturieren der zweiten mikromechanischen Funktionsschicht (10) derart, daß sie bis zur ersten Verschlußschicht (8) reichende zweite Durchgänge (11) aufweist, wel- ehe durch Verbindungsbereiche (16) der ersten Verschlußschicht (8) mit den ersten Durchgängen (7) verbunden sind; Ätzen der ersten Verschlußschicht (8) zum Entfernen der Verbindungsbereiche (16) unter Verwendung der zweiten Durchgänge (11) als Ätzkanäle; und
Ätzen der Opferschicht (4) unter Verwendung der durch das Entfernen der Verbindungsbereiche (16) miteinander verbundenen ersten und zweiten Durchgänge (7, 11) als Ätzkanäle.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekenn- zeichnet, daß eine vergrabene Polysiliziumschicht (3) unterhalb der ersten oder zweiten mikromechanischen Funktionsschicht (5, 10) vorgesehen wird.
5. Verfahren nach Anspruch 1, 2, 3 oder 4, dadurch ge- kennzeichnet, daß die erste und zweite Verschlußschicht (8, 13) wesentlich dünner als die erste und zweite mikromechanische Funktionsschicht (5, 10) gestaltet werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet 2 bis 4, daß die erste und/oder zweite
Verschlußschicht (8, 13) durch eine nicht-konforme Abscheidung derart vorgesehen werden, daß die ersten bzw. zweiten Durchgänge (7, 11) nur im oberen Bereich verpropft werden.
7. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die ersten und/oder zweiten Durchgänge (7, 11) als Gräben oder Löcher gestaltet werden, die sich nach oben hin verengen. WO 01/77009 _ g _ PCT/DE01/00921
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erste und/oder zweite mikromechanische Funktionsschicht (5, 10) aus einem leitenden Material, vorzugsweise Polysilizium, hergestellt werden.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erste und/oder zweite Verschlußschicht (8, 13) aus einem dielektrischen Material, vorzugsweise Siliziumdioxid, hergestellt werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf der zweiten Verschlußschicht (13) eine oder mehrere Leiterbahnschichten (15) , vorzugsweise aus Aluminium, vorgesehen werden.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in die zweite mikromechanische Funktionsschicht (10) eine Leiterbahnstrukur integriert wird.
12. Mikromechanisches Bauelement mit:
einem Substrat (1) ;
einer beweglichen Sensorstruktur (6) in einer über dem Substrat liegenden ersten mikromechanischen Funktionsschicht (5); einer ersten Verschlußschicht (8) auf der ersten mikromechanischen Funktionsschicht (5) , die zumindest teilweise strukturiert ist;
einer zweiten mikromechanischen Funktionsschicht (10) auf der ersten Verschlußschicht (8), welche zumindest eine Abdeckfunktion aufweist zumindest teilweise in der ersten mikromechanischen Funktionsschicht (5) verankert ist; und
einer zweiten Verschlußschicht (8) auf der zweiten mikromechanischen Funktionsschicht (10).
13. Mikromechanisches Bauelement nach Anspruch 12, dadurch gekennzeichnet, daß
die beweglichen Sensorstruktur (6) über einer auf dem Substrat (1) befindlichen Opferschicht (4) liegt; und
durch zumindest teilweises Entfernen der Opferschicht (4) beweglich gemacht ist.
14. Mikromechanisches Bauelement nach Anspruch 13, dadurch gekennzeichnet, daß
die erste mikromechanische Funktionsschicht (5) bis zur Tiefe der Operschicht (4) reichende erste Durchgänge (7) aufweist; die zweite mikromechanische Funktionsschicht (10) bis zur Tiefe der ersten Verschlußschicht (8) reichende zweite Durchgänge (11) aufweist; und
die ersten und zweiten Durchgänge (7, 11) durch entfernte Verbindungsbereiche (16) der ersten Verschlußschicht (8) miteinander verbunden sind.
14. Mikromechanisches Bauelement nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß eine vergrabene Polysiliziumschicht (3) unterhalb der beweglichen Sensorstruktur (10) zwischen der Opferschicht (4) und dem Substrat (1) vorgesehen ist.
15. Mikromechanisches Bauelement nach Anspruch 11, 12, 13 oder 14, dadurch gekennzeichnet, daß die erste und zweite Verschlußschicht (8, 13) wesentlich dünner als die erste und zweite mikromechanische Funktionsschicht (5, 10) sind.
16. Mikromechanisches Bauelement nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, daß die erste und/oder zweite Verschlußschicht (8, 13) Pfropfen (9, 9Λ) zum Verschließen entsprechender erster bzw. zweiter Durchgänge (7, 11) aufweist.
17. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche 14 bis 16, dadurch gekennzeichnet, daß die ersten und/oder zweiten Durchgänge (7, 11) Gräben oder Löcher sind, die sich nach oben hin verengen.
18. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche 12 bis 17, dadurch gekennzeichnet, daß die erste und/oder zweite mikromechanische Funktionsschicht (5, 10) aus einem leitenden Material, vorzugsweise Polysilizium, hergestellt sind.
19. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche 12 bis 18, dadurch gekennzeichnet, daß die erste und/oder zweite Verschlußschicht (8, 13) aus einem dielektrischen Material, vorzugsweise Siliziumdioxid, hergestellt sind.
20. Mikromechanisches Bauelement nach einem der vorherge- henden Ansprüche 12 bis 19, dadurch gekennzeichnet, daß auf der zweiten Verschlußschicht (13) eine oder mehrere Leiterbahnschichten (15), vorzugsweise aus Aluminium, vorgesehen sind.
21. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche 12 bis 20, dadurch gekennzeichnet, daß die zweite mikromechanische Funktionsschicht (10) eine Leiter- bahnstrukur aufweist.
22. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche 12 bis 21, dadurch gekennzeichnet, daß die zweite mikromechanische Funktionsschicht (10) eine Membranstrukur aufweist.
PCT/DE2001/000921 2000-04-07 2001-03-10 Mikromechanisches bauelement und entsprechendes herstellungsverfahren WO2001077009A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50103327T DE50103327D1 (de) 2000-04-07 2001-03-10 Mikromechanisches bauelement und entsprechendes herstellungsverfahren
US10/240,339 US7041225B2 (en) 2000-04-07 2001-03-10 Micromechanical component and method for producing the same
EP01919184A EP1274648B1 (de) 2000-04-07 2001-03-10 Mikromechanisches bauelement und entsprechendes herstellungsverfahren
JP2001575492A JP5090603B2 (ja) 2000-04-07 2001-03-10 マイクロメカニック構造素子および相当する製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10017422A DE10017422A1 (de) 2000-04-07 2000-04-07 Mikromechanisches Bauelement und entsprechendes Herstellungverfahren
DE10017422.1 2000-04-07

Publications (1)

Publication Number Publication Date
WO2001077009A1 true WO2001077009A1 (de) 2001-10-18

Family

ID=7637987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000921 WO2001077009A1 (de) 2000-04-07 2001-03-10 Mikromechanisches bauelement und entsprechendes herstellungsverfahren

Country Status (5)

Country Link
US (1) US7041225B2 (de)
EP (1) EP1274648B1 (de)
JP (1) JP5090603B2 (de)
DE (2) DE10017422A1 (de)
WO (1) WO2001077009A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106327A1 (de) * 2002-06-12 2003-12-24 Robert Bosch Gmbh Bauelement und verfahren zu dessen herstellung
WO2004108585A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems having trench isolated contacts, and methods for fabricating same
WO2004109769A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems and methods for encapsulating
WO2005081702A2 (en) 2004-02-12 2005-09-09 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
WO2005096495A1 (en) 2004-03-04 2005-10-13 Robert Bosch Gmbh Temperture controlled mems resonator and method for controlling resonator frequency
EP1460038A3 (de) * 2003-03-20 2005-12-14 Robert Bosch Gmbh Elektromechanisches System mit einer kontrollierten Atmosphäre und dessen Herstellungverfahren
US7172917B2 (en) 2003-04-17 2007-02-06 Robert Bosch Gmbh Method of making a nanogap for variable capacitive elements, and device having a nanogap
WO2007021396A2 (en) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
EP1296886B1 (de) * 2000-05-18 2008-10-08 Robert Bosch Gmbh Herstellungsverfahren für ein mikromechanisches bauelement
US7456042B2 (en) 2006-06-04 2008-11-25 Robert Bosch Gmbh Microelectromechanical systems having stored charge and methods for fabricating and using same
WO2010107619A2 (en) 2009-03-19 2010-09-23 Robert Bosch Gmbh Substrate with multiple encapsulated pressures
US7824943B2 (en) 2006-06-04 2010-11-02 Akustica, Inc. Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
JP2012196758A (ja) * 2003-07-25 2012-10-18 Robert Bosch Gmbh Soi基板を持つマイクロ電気機械システム用アンカー及びその製造方法
CN103420332A (zh) * 2012-04-25 2013-12-04 罗伯特·博世有限公司 用于制造混合集成的构件的方法
US8871551B2 (en) 2006-01-20 2014-10-28 Sitime Corporation Wafer encapsulated microelectromechanical structure and method of manufacturing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845200A1 (fr) * 2002-09-26 2004-04-02 Memscap Procede de fabrication d'un composant electronique incluant une structure micro-electromecanique
US7335971B2 (en) 2003-03-31 2008-02-26 Robert Bosch Gmbh Method for protecting encapsulated sensor structures using stack packaging
US6917459B2 (en) * 2003-06-03 2005-07-12 Hewlett-Packard Development Company, L.P. MEMS device and method of forming MEMS device
DE10334238A1 (de) * 2003-07-28 2005-02-24 Robert Bosch Gmbh Sensoreinlasskanal
DE102004027501A1 (de) * 2004-06-04 2005-12-22 Robert Bosch Gmbh Mikromechanisches Bauelement mit mehreren Kavernen und Herstellungsverfahren
JP4791766B2 (ja) * 2005-05-30 2011-10-12 株式会社東芝 Mems技術を使用した半導体装置
FI119728B (fi) * 2005-11-23 2009-02-27 Vti Technologies Oy Menetelmä mikroelektromekaanisen komponentin valmistamiseksi ja mikroelektromekaaninen komponentti
DE102005060870A1 (de) 2005-12-20 2007-06-21 Robert Bosch Gmbh Verfahren zum Verschließen einer Öffnung
DE102005062554A1 (de) 2005-12-27 2007-07-05 Robert Bosch Gmbh Mikromechanisches Bauelement mit Kappe mit Verschluss
DE102006061386B3 (de) * 2006-12-23 2008-06-19 Atmel Germany Gmbh Integrierte Anordnung, ihre Verwendung und Verfahren zu ihrer Herstellung
DE102007025880A1 (de) * 2007-06-01 2008-12-04 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements mit einer Dünnschichtkappe
CA2761028A1 (en) * 2009-06-02 2010-12-09 Micralyne Inc. Semi-conductor sensor fabrication
JP5605347B2 (ja) * 2011-11-01 2014-10-15 株式会社デンソー 半導体装置の製造方法
US9181086B1 (en) 2012-10-01 2015-11-10 The Research Foundation For The State University Of New York Hinged MEMS diaphragm and method of manufacture therof
DE102016200489A1 (de) 2016-01-15 2017-07-20 Robert Bosch Gmbh Mikromechanisches Bauelement
DE102017208357A1 (de) * 2017-05-18 2018-11-22 Robert Bosch Gmbh Mikroelektromechanisches Bauelement
DE102018219537A1 (de) * 2018-11-15 2020-05-20 Robert Bosch Gmbh Verfahren zum Herstellen einer mikromechanischen Vorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001038A1 (de) * 1977-07-05 1979-03-21 International Business Machines Corporation Herstellung einer Siliciummaske und ihre Verwendung
US4665610A (en) * 1985-04-22 1987-05-19 Stanford University Method of making a semiconductor transducer having multiple level diaphragm structure
DE19509868A1 (de) * 1995-03-17 1996-09-19 Siemens Ag Mikromechanisches Halbleiterbauelement
DE19537814A1 (de) * 1995-10-11 1997-04-17 Bosch Gmbh Robert Sensor und Verfahren zur Herstellung eines Sensors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508070B2 (ja) * 1987-04-08 1996-06-19 日本電装株式会社 圧力検出素子及びその製造方法
JP2669216B2 (ja) * 1991-09-30 1997-10-27 日産自動車株式会社 半導体応力検出装置
JPH05264576A (ja) * 1992-03-19 1993-10-12 Hitachi Ltd 加速度センサ
JPH05340961A (ja) * 1992-06-09 1993-12-24 Hitachi Ltd 加速度センサ
JP3355916B2 (ja) * 1996-04-01 2002-12-09 株式会社日立製作所 マイクロgスイッチ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001038A1 (de) * 1977-07-05 1979-03-21 International Business Machines Corporation Herstellung einer Siliciummaske und ihre Verwendung
US4665610A (en) * 1985-04-22 1987-05-19 Stanford University Method of making a semiconductor transducer having multiple level diaphragm structure
DE19509868A1 (de) * 1995-03-17 1996-09-19 Siemens Ag Mikromechanisches Halbleiterbauelement
DE19537814A1 (de) * 1995-10-11 1997-04-17 Bosch Gmbh Robert Sensor und Verfahren zur Herstellung eines Sensors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU C ET AL: "SEALING OF MICROMACHINED CAVITIES USING CHEMICAL VAPOR DEPOSITION METHODS: CHARACTERIZATION AND OPTIMIZATION", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,IEEE INC. NEW YORK,US, vol. 8, no. 2, June 1999 (1999-06-01), pages 135 - 145, XP000912714, ISSN: 1057-7157 *
NING Y B ET AL: "Fabrication of a silicon micromachined capacitive microphone using a dry-etch process", SENSORS AND ACTUATORS A,CH,ELSEVIER SEQUOIA S.A., LAUSANNE, vol. 53, no. 1, 1 May 1996 (1996-05-01), pages 237 - 242, XP004018152, ISSN: 0924-4247 *
PARTRIDGE A ET AL: "New thin film epitaxial polysilicon encapsulation for piezoresistive accelerometers", TECHNICAL DIGEST. MEMS 2001. 14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (CAT. NO.01CH37090), TECHNICAL DIGEST. MEMS 2001. 14TH IEEE INTERNATIONAL CONFERENCE ON MEMS, INTERLAKEN, CH, 21-25 JANUARY 2001, 21 January 2001 (2001-01-21) - 25 January 2001 (2001-01-25), 2001, Piscataway, NJ, USA, IEEE, USA, pages 54 - 59, XP002169905, ISBN: 0-7803-5998-4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296886B1 (de) * 2000-05-18 2008-10-08 Robert Bosch Gmbh Herstellungsverfahren für ein mikromechanisches bauelement
WO2003106327A1 (de) * 2002-06-12 2003-12-24 Robert Bosch Gmbh Bauelement und verfahren zu dessen herstellung
US7382031B2 (en) 2002-06-12 2008-06-03 Robert Bosch Gmbh Component including a fixed element that is in a silicon layer and is mechanically connected to a substrate via an anchoring element and method for its manufacture
EP1460038A3 (de) * 2003-03-20 2005-12-14 Robert Bosch Gmbh Elektromechanisches System mit einer kontrollierten Atmosphäre und dessen Herstellungverfahren
US8018077B2 (en) 2003-03-20 2011-09-13 Robert Bosch Gmbh Electromechanical system having a controlled atmosphere, and method of fabricating same
US9771257B2 (en) 2003-03-20 2017-09-26 Robert Bosch Gmbh Electromechanical system having a controlled atmosphere, and method of fabricating same
US7172917B2 (en) 2003-04-17 2007-02-06 Robert Bosch Gmbh Method of making a nanogap for variable capacitive elements, and device having a nanogap
WO2004108585A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems having trench isolated contacts, and methods for fabricating same
JP2006526509A (ja) * 2003-06-04 2006-11-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的装置及びその封緘方法及び製造方法
EP3527529A1 (de) 2003-06-04 2019-08-21 Robert Bosch GmbH Mikroelektromechanische systeme mit grabenisolierten kontakten und verfahren zu deren herstellung
JP2011245620A (ja) * 2003-06-04 2011-12-08 Robert Bosch Gmbh マイクロ電気機械的装置及びその封緘方法及び製造方法
WO2004109769A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems and methods for encapsulating
JP4908202B2 (ja) * 2003-06-04 2012-04-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的装置及びその封緘方法及び製造方法
EP3498662A1 (de) 2003-06-04 2019-06-19 Robert Bosch GmbH Mikroelektromechanische systeme und verfahren zur verkapselung und herstellung davon
JP2012196758A (ja) * 2003-07-25 2012-10-18 Robert Bosch Gmbh Soi基板を持つマイクロ電気機械システム用アンカー及びその製造方法
US8980668B2 (en) 2004-02-12 2015-03-17 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
US8372676B2 (en) 2004-02-12 2013-02-12 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
US7115436B2 (en) 2004-02-12 2006-10-03 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
US7923278B2 (en) 2004-02-12 2011-04-12 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
WO2005081702A2 (en) 2004-02-12 2005-09-09 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
WO2005096495A1 (en) 2004-03-04 2005-10-13 Robert Bosch Gmbh Temperture controlled mems resonator and method for controlling resonator frequency
WO2007021396A3 (en) * 2005-08-16 2007-06-28 Bosch Gmbh Robert Microelectromechanical devices and fabrication methods
US7956428B2 (en) 2005-08-16 2011-06-07 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
WO2007021396A2 (en) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
US10099917B2 (en) 2006-01-20 2018-10-16 Sitime Corporation Encapsulated microelectromechanical structure
US9440845B2 (en) 2006-01-20 2016-09-13 Sitime Corporation Encapsulated microelectromechanical structure
US11685650B2 (en) 2006-01-20 2023-06-27 Sitime Corporation Microelectromechanical structure with bonded cover
US10766768B2 (en) 2006-01-20 2020-09-08 Sitime Corporation Encapsulated microelectromechanical structure
US8871551B2 (en) 2006-01-20 2014-10-28 Sitime Corporation Wafer encapsulated microelectromechanical structure and method of manufacturing same
US10450190B2 (en) 2006-01-20 2019-10-22 Sitime Corporation Encapsulated microelectromechanical structure
US9434608B2 (en) 2006-01-20 2016-09-06 Sitime Corporation Wafer encapsulated microelectromechanical structure
US9758371B2 (en) 2006-01-20 2017-09-12 Sitime Corporation Encapsulated microelectromechanical structure
US7824943B2 (en) 2006-06-04 2010-11-02 Akustica, Inc. Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
US7767482B1 (en) 2006-06-04 2010-08-03 Robert Bosch Gmbh Microelectromechanical systems having stored charge and methods for fabricating and using same
US8343790B2 (en) 2006-06-04 2013-01-01 Robert Bosch Gmbh Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
US7456042B2 (en) 2006-06-04 2008-11-25 Robert Bosch Gmbh Microelectromechanical systems having stored charge and methods for fabricating and using same
US8766706B2 (en) 2006-06-04 2014-07-01 Robert Bosch Gmbh Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
US7875482B2 (en) 2009-03-19 2011-01-25 Robert Bosch Gmbh Substrate with multiple encapsulated pressures
WO2010107619A2 (en) 2009-03-19 2010-09-23 Robert Bosch Gmbh Substrate with multiple encapsulated pressures
CN103420332A (zh) * 2012-04-25 2013-12-04 罗伯特·博世有限公司 用于制造混合集成的构件的方法

Also Published As

Publication number Publication date
EP1274648A1 (de) 2003-01-15
US7041225B2 (en) 2006-05-09
EP1274648B1 (de) 2004-08-18
US20030173330A1 (en) 2003-09-18
DE50103327D1 (de) 2004-09-23
DE10017422A1 (de) 2001-10-11
JP5090603B2 (ja) 2012-12-05
JP2003530234A (ja) 2003-10-14

Similar Documents

Publication Publication Date Title
EP1274648B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
EP1274647B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
EP2170763B1 (de) Verfahren zur herstellung von leiterbahnbrücken und bauteil mit leitfähiger schicht
DE10063991B4 (de) Verfahren zur Herstellung von mikromechanischen Bauelementen
DE10065013B4 (de) Verfahren zum Herstellen eines mikromechanischen Bauelements
EP1257496A2 (de) Verfahren zur herstellung eines mikromechanischen bauelements sowie ein nach dem verfahren hergestelltes bauelement
DE10005555A1 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
WO2007071515A1 (de) Mikromechanischer kapazitiver druckwandler und herstellungsverfahren
DE102007026445A1 (de) Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
WO2018069028A1 (de) Mikromechanischer sensor mit stressentkopplungsstruktur
DE102010029709B4 (de) Mikromechanisches Bauelement und Verfahren zum Herstellen eines mikromechanischen Bauelements
DE102013209266A1 (de) Bauelement mit einem Hohlraum
DE102011081033B4 (de) Verfahren zur Herstellung einer mikromechanischen Struktur und mikromechanische Struktur
DE102012213313B4 (de) Mikromechanische Struktur
WO2010012547A2 (de) Verfahren zum verkappen eines mems-wafers sowie mems-wafer
DE102006007729A1 (de) Verfahren zur Herstellung eines MEMS-Substrats, entsprechendes MEMS-Substrat und MEMS-Prozess unter Verwendung des MEMS-Substrats
DE10024697B4 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE19817311A1 (de) Herstellungsverfahren für mikromechanisches Bauelement
DE19819456A1 (de) Verfahren zur Herstellung eines mikromechanischen Bauelements
WO2007074017A1 (de) Mikromechanisches bauelement mit kappe
EP2150488A2 (de) Verfahren zur herstellung eines mikromechanischen bauelements mit auffüllschicht und maskenschicht
DE102009027321A1 (de) Verfahren zum Herstellen einer elektrischen Durchkontaktierung in einem Substrat sowie Substrat mit einer elektrischen Durchkontaktierung
DE102007025880A1 (de) Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements mit einer Dünnschichtkappe
DE10348908B4 (de) Verfahren zur Herstellung eines Mikrosystems mit integrierter Schaltung und mikromechanischem Bauteil
WO2009059850A2 (de) Mikromechanisches bauelement, kurzprozess zur herstellung von mems-bauelementen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001919184

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 575492

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001919184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10240339

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001919184

Country of ref document: EP