WO2001077009A1 - Mikromechanisches bauelement und entsprechendes herstellungsverfahren - Google Patents
Mikromechanisches bauelement und entsprechendes herstellungsverfahren Download PDFInfo
- Publication number
- WO2001077009A1 WO2001077009A1 PCT/DE2001/000921 DE0100921W WO0177009A1 WO 2001077009 A1 WO2001077009 A1 WO 2001077009A1 DE 0100921 W DE0100921 W DE 0100921W WO 0177009 A1 WO0177009 A1 WO 0177009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- micromechanical
- functional layer
- micromechanical functional
- passages
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00261—Processes for packaging MEMS devices
- B81C1/00333—Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0228—Inertial sensors
- B81B2201/0235—Accelerometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/01—Packaging MEMS
- B81C2203/0136—Growing or depositing of a covering layer
Definitions
- the present invention relates to a micromechanical component with a substrate and a movable sensor structure in a first micromechanical functional layer on the sacrificial layer.
- the invention also relates to a corresponding manufacturing method.
- Structures in particular sensors and actuators, can be used, the present invention and the underlying problem with regard to a micromechanical component that can be produced in the technology of silicon surfaces ikromechanics, e.g. an acceleration sensor explained.
- the OMM process is simplified because, owing to the second micromechanical functional layer, which performs at least one covering function, the cap wafer is omitted and the structures can be contacted from above.
- the process gains functionality, i.e. the designer has other mechanical and / or electrical components available to implement the component.
- the following functional elements can be created:
- a pressure sensor membrane in the second micromechanical functional layer a conductor track structure in the second micromechanical functional layer, which can cross over with a further conductor track structure provided above the second sealing layer;
- a sacrificial layer is provided on the substrate and the sacrificial layer is etched to make the sensor structure movable.
- the substrate with a sacrificial layer and the first micromechanical functional layer can be provided as an SOI (Silicon on Insulator) structure.
- the first micromechanical functional layer is structured in such a way that it has first passages reaching as far as the opera layer.
- the second micromechanical functional layer is structured in such a way that it has second passages which extend as far as the first closure layer and which are connected to the first passages by connecting regions of the first closure layer. The first closure layer is then etched to remove the connection regions using the second passages as etching channels.
- the sacrificial layer is etched using the first and second passages which are connected to one another by removing the connection regions, as etching channels. This minimizes the effort for the etching processes, since the sacrificial layer and the first sealing layer can be etched in one process.
- running etching channels are thus generated by the first and second micromechanical functional layer and the first sealing layer lying between them.
- the thickness of the second micromechanical functional layer can be increased and its strength or rigidity can be improved.
- larger areas can be spanned and the components exposed to higher stress.
- a buried polysilicon layer is provided below the first or second micromechanical functional layer. Eliminating the buried polysilicon and an insulation layer underneath is also possible, since further wiring levels are available above the sensor structure.
- first and second closure layers are made significantly thinner than the first and second micromechanical functional layers.
- the first and / or second sealing layer is provided by a non-conformal deposition such that the first and second passages are only grafted in the upper area. This reduces the etch time when removing the sacrificial layer since only a part of the passages are clogged.
- first and / or second passages are designed as trenches or holes which narrow upwards.
- the first and / or second micromechanical functional layer are produced from a conductive material, preferably polysilicon.
- the first and / or second sealing layer are produced from a dielectric material, preferably silicon dioxide.
- one or more interconnect layers are provided on the second sealing layer.
- a conductor track structure is integrated in the second micromechanical functional layer.
- FIG. 1 shows a schematic cross-sectional view of a micromechanical component according to a first embodiment of the present invention in a first process stage
- FIG. 2 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment. form of the present invention in a second process stage;
- FIG. 3 shows a schematic cross-sectional view of the micro-mechanical component according to the first embodiment of the present invention in a third process stage
- FIG. 4 shows a schematic cross-sectional view of the micro-mechanical component according to the first embodiment of the present invention in a fourth process stage
- FIG. 5 shows an enlarged detail of the schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention according to FIG. 4.
- FIG. 1 shows a schematic cross-sectional view of a micromechanical component according to a first embodiment of the present invention in a first process stage.
- 1 denotes a silicon substrate wafer, 2 a lower oxide, 3 a buried polysilicon layer, 4 a sacrificial oxide, 20 a contact hole in the lower oxide 2 and 21 contact holes in the sacrificial oxide 4.
- the entire surface of the lower oxide 2 is first deposited on the silicon substrate wafer 1.
- polysilicon is deposited and structured in order to produce conductor tracks in the buried polysilicon layer 3.
- the sacrificial oxide 4 is applied to the entire structure over the entire surface, for example by an LTO (low temperature oxide) process or by a TEOS (tetraethyl orthosilicate) process.
- the contact holes 20 and 21 are created at the locations provided for this purpose using conventional photo techniques and etching techniques.
- FIG. 2 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention in a second process stage.
- FIG. 2 in addition to the reference symbols 5 already introduced, denote a first micromechanical functional layer in the form of an epitaxial polysilicon layer, 6 a sensor structure (comb structure) to be made movable later, 7 trenches in the first micromechanical functional layer 5, 8 a first sealing oxide ( LTO, TEOS or the like), 9 stoppers in the trenches 7 consisting of the sealing oxide 8, 16 oxide connection areas for later sacrificial oxide etching and 22 contact holes in the sealing oxide 8.
- LTO low-TEOS
- 9 stoppers in the trenches 7 consisting of the sealing oxide 8
- 16 oxide connection areas for later sacrificial oxide etching 16 oxide connection areas for later sacrificial oxide etching and 22 contact holes in the sealing oxide 8.
- epitaxial polysilicon is first deposited in a known manner to form the first micromechanical functional layer 5, the micromechanical functional layer 5 is structured to form the movable sensor structure ⁇ and the trenches 7.
- the refill is not complete, but only covers the structure below 100% upwards and also provides a seal. This is shown in more detail in Figure 5.
- contact holes 22 serve to anchor the second micromechanical functional layer 10 to be applied later (see FIG. 3) and to delimit the oxide connection areas 16 for later sacrificial oxide etching.
- 3 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention in a third process stage.
- FIG. 3 in addition to the reference numerals 10 already introduced, denote a second micromechanical functional layer in the form of an epitaxial polysilicon layer and 11 trenches in the second micromechanical functional layer 10.
- the second micromechanical functional layer 10 is deposited analogously to the first micromechanical functional layer 5 as a stable closure layer for the underlying sensor structure 6.
- the second micromechanical functional layer 10 can of course also be used for contacting, as a lead, as an upper electrode, etc. for the component. This is followed by a structuring of this layer 10 for producing the trenches 11, which will later be required together with the trenches 9 for the sacrificial oxide etching.
- FIG. 4 shows a schematic cross-sectional view of the micromechanical component according to the first embodiment of the present invention in a fourth process stage.
- FIG. 4 in addition to the reference symbols 13 already introduced, denote a second sealing oxide (LTO, TEOS aa), 14 a contact hole in the sealing oxide 13, 15 a conductor track level made of aluminum, which is connected via the contact holes 14 to the second micromechanical functional layer 10.
- LTO second sealing oxide
- TEOS aa TEOS aa
- the sealing oxide 8 is etched to remove the oxide connection regions 16 using the second trenches 11 as etching channels.
- the sacrificial layer 4 is then etched using the first and second trenches 7, 11, which are connected to one another by the removal of the connection regions 16, as etching channels.
- a long sacrificial oxide etching is possible because there is no aluminum on the surface.
- a second refill process takes place to form the second sealing oxide 13, this deposition likewise not being a conformal deposition, but rather grafting the trenches 11 only on their surface. This is illustrated in more detail in FIG. 5.
- the internal pressure or the internal atmosphere enclosed in the sensor structure 6 are dependent on the process conditions in the refill process. These parameters determine e.g. the damping of the sensor structure.
- the second sealing oxide 13 is then structured to form the contact holes 14 and one Deposition and structuring of the interconnect layer 15 made of aluminum.
- any micromechanical basic materials such as Germanium, and not just the exemplary silicon substrate.
- Any sensor structures can also be formed, and not just the illustrated acceleration sensor.
- the trenches 7 and 11 can be narrowed upwards in order to promote the non-conformal deposition of the first and second sealing layers 8, 13.
- a variation in the layer thicknesses of the first and second micromechanical functional layers 5, 10 can be carried out in a simple manner by the epitaxial and planarization process, since the sacrificial layer etching does not depend on the permeability of the second micromechanical functional layer.
- micromechanical functional layer / sealing layer can be repeated and one can also provide a buried guideway under a respective micromechanical functional layer above the underlying micromechanical functional layer.
- the optional planarization of the individual levels can also be carried out only in a single polishing step, preferably only for the second sealing layer.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Pressure Sensors (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE50103327T DE50103327D1 (de) | 2000-04-07 | 2001-03-10 | Mikromechanisches bauelement und entsprechendes herstellungsverfahren |
US10/240,339 US7041225B2 (en) | 2000-04-07 | 2001-03-10 | Micromechanical component and method for producing the same |
EP01919184A EP1274648B1 (de) | 2000-04-07 | 2001-03-10 | Mikromechanisches bauelement und entsprechendes herstellungsverfahren |
JP2001575492A JP5090603B2 (ja) | 2000-04-07 | 2001-03-10 | マイクロメカニック構造素子および相当する製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10017422A DE10017422A1 (de) | 2000-04-07 | 2000-04-07 | Mikromechanisches Bauelement und entsprechendes Herstellungverfahren |
DE10017422.1 | 2000-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001077009A1 true WO2001077009A1 (de) | 2001-10-18 |
Family
ID=7637987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/000921 WO2001077009A1 (de) | 2000-04-07 | 2001-03-10 | Mikromechanisches bauelement und entsprechendes herstellungsverfahren |
Country Status (5)
Country | Link |
---|---|
US (1) | US7041225B2 (de) |
EP (1) | EP1274648B1 (de) |
JP (1) | JP5090603B2 (de) |
DE (2) | DE10017422A1 (de) |
WO (1) | WO2001077009A1 (de) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003106327A1 (de) * | 2002-06-12 | 2003-12-24 | Robert Bosch Gmbh | Bauelement und verfahren zu dessen herstellung |
WO2004108585A2 (en) | 2003-06-04 | 2004-12-16 | Robert Bosch Gmbh | Microelectromechanical systems having trench isolated contacts, and methods for fabricating same |
WO2004109769A2 (en) | 2003-06-04 | 2004-12-16 | Robert Bosch Gmbh | Microelectromechanical systems and methods for encapsulating |
WO2005081702A2 (en) | 2004-02-12 | 2005-09-09 | Robert Bosch Gmbh | Integrated getter area for wafer level encapsulated microelectromechanical systems |
WO2005096495A1 (en) | 2004-03-04 | 2005-10-13 | Robert Bosch Gmbh | Temperture controlled mems resonator and method for controlling resonator frequency |
EP1460038A3 (de) * | 2003-03-20 | 2005-12-14 | Robert Bosch Gmbh | Elektromechanisches System mit einer kontrollierten Atmosphäre und dessen Herstellungverfahren |
US7172917B2 (en) | 2003-04-17 | 2007-02-06 | Robert Bosch Gmbh | Method of making a nanogap for variable capacitive elements, and device having a nanogap |
WO2007021396A2 (en) * | 2005-08-16 | 2007-02-22 | Robert Bosch Gmbh | Microelectromechanical devices and fabrication methods |
EP1296886B1 (de) * | 2000-05-18 | 2008-10-08 | Robert Bosch Gmbh | Herstellungsverfahren für ein mikromechanisches bauelement |
US7456042B2 (en) | 2006-06-04 | 2008-11-25 | Robert Bosch Gmbh | Microelectromechanical systems having stored charge and methods for fabricating and using same |
WO2010107619A2 (en) | 2009-03-19 | 2010-09-23 | Robert Bosch Gmbh | Substrate with multiple encapsulated pressures |
US7824943B2 (en) | 2006-06-04 | 2010-11-02 | Akustica, Inc. | Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same |
JP2012196758A (ja) * | 2003-07-25 | 2012-10-18 | Robert Bosch Gmbh | Soi基板を持つマイクロ電気機械システム用アンカー及びその製造方法 |
CN103420332A (zh) * | 2012-04-25 | 2013-12-04 | 罗伯特·博世有限公司 | 用于制造混合集成的构件的方法 |
US8871551B2 (en) | 2006-01-20 | 2014-10-28 | Sitime Corporation | Wafer encapsulated microelectromechanical structure and method of manufacturing same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2845200A1 (fr) * | 2002-09-26 | 2004-04-02 | Memscap | Procede de fabrication d'un composant electronique incluant une structure micro-electromecanique |
US7335971B2 (en) | 2003-03-31 | 2008-02-26 | Robert Bosch Gmbh | Method for protecting encapsulated sensor structures using stack packaging |
US6917459B2 (en) * | 2003-06-03 | 2005-07-12 | Hewlett-Packard Development Company, L.P. | MEMS device and method of forming MEMS device |
DE10334238A1 (de) * | 2003-07-28 | 2005-02-24 | Robert Bosch Gmbh | Sensoreinlasskanal |
DE102004027501A1 (de) * | 2004-06-04 | 2005-12-22 | Robert Bosch Gmbh | Mikromechanisches Bauelement mit mehreren Kavernen und Herstellungsverfahren |
JP4791766B2 (ja) * | 2005-05-30 | 2011-10-12 | 株式会社東芝 | Mems技術を使用した半導体装置 |
FI119728B (fi) * | 2005-11-23 | 2009-02-27 | Vti Technologies Oy | Menetelmä mikroelektromekaanisen komponentin valmistamiseksi ja mikroelektromekaaninen komponentti |
DE102005060870A1 (de) | 2005-12-20 | 2007-06-21 | Robert Bosch Gmbh | Verfahren zum Verschließen einer Öffnung |
DE102005062554A1 (de) | 2005-12-27 | 2007-07-05 | Robert Bosch Gmbh | Mikromechanisches Bauelement mit Kappe mit Verschluss |
DE102006061386B3 (de) * | 2006-12-23 | 2008-06-19 | Atmel Germany Gmbh | Integrierte Anordnung, ihre Verwendung und Verfahren zu ihrer Herstellung |
DE102007025880A1 (de) * | 2007-06-01 | 2008-12-04 | Robert Bosch Gmbh | Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements mit einer Dünnschichtkappe |
CA2761028A1 (en) * | 2009-06-02 | 2010-12-09 | Micralyne Inc. | Semi-conductor sensor fabrication |
JP5605347B2 (ja) * | 2011-11-01 | 2014-10-15 | 株式会社デンソー | 半導体装置の製造方法 |
US9181086B1 (en) | 2012-10-01 | 2015-11-10 | The Research Foundation For The State University Of New York | Hinged MEMS diaphragm and method of manufacture therof |
DE102016200489A1 (de) | 2016-01-15 | 2017-07-20 | Robert Bosch Gmbh | Mikromechanisches Bauelement |
DE102017208357A1 (de) * | 2017-05-18 | 2018-11-22 | Robert Bosch Gmbh | Mikroelektromechanisches Bauelement |
DE102018219537A1 (de) * | 2018-11-15 | 2020-05-20 | Robert Bosch Gmbh | Verfahren zum Herstellen einer mikromechanischen Vorrichtung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0001038A1 (de) * | 1977-07-05 | 1979-03-21 | International Business Machines Corporation | Herstellung einer Siliciummaske und ihre Verwendung |
US4665610A (en) * | 1985-04-22 | 1987-05-19 | Stanford University | Method of making a semiconductor transducer having multiple level diaphragm structure |
DE19509868A1 (de) * | 1995-03-17 | 1996-09-19 | Siemens Ag | Mikromechanisches Halbleiterbauelement |
DE19537814A1 (de) * | 1995-10-11 | 1997-04-17 | Bosch Gmbh Robert | Sensor und Verfahren zur Herstellung eines Sensors |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2508070B2 (ja) * | 1987-04-08 | 1996-06-19 | 日本電装株式会社 | 圧力検出素子及びその製造方法 |
JP2669216B2 (ja) * | 1991-09-30 | 1997-10-27 | 日産自動車株式会社 | 半導体応力検出装置 |
JPH05264576A (ja) * | 1992-03-19 | 1993-10-12 | Hitachi Ltd | 加速度センサ |
JPH05340961A (ja) * | 1992-06-09 | 1993-12-24 | Hitachi Ltd | 加速度センサ |
JP3355916B2 (ja) * | 1996-04-01 | 2002-12-09 | 株式会社日立製作所 | マイクロgスイッチ |
-
2000
- 2000-04-07 DE DE10017422A patent/DE10017422A1/de not_active Withdrawn
-
2001
- 2001-03-10 EP EP01919184A patent/EP1274648B1/de not_active Expired - Lifetime
- 2001-03-10 US US10/240,339 patent/US7041225B2/en not_active Expired - Lifetime
- 2001-03-10 DE DE50103327T patent/DE50103327D1/de not_active Expired - Lifetime
- 2001-03-10 WO PCT/DE2001/000921 patent/WO2001077009A1/de active IP Right Grant
- 2001-03-10 JP JP2001575492A patent/JP5090603B2/ja not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0001038A1 (de) * | 1977-07-05 | 1979-03-21 | International Business Machines Corporation | Herstellung einer Siliciummaske und ihre Verwendung |
US4665610A (en) * | 1985-04-22 | 1987-05-19 | Stanford University | Method of making a semiconductor transducer having multiple level diaphragm structure |
DE19509868A1 (de) * | 1995-03-17 | 1996-09-19 | Siemens Ag | Mikromechanisches Halbleiterbauelement |
DE19537814A1 (de) * | 1995-10-11 | 1997-04-17 | Bosch Gmbh Robert | Sensor und Verfahren zur Herstellung eines Sensors |
Non-Patent Citations (3)
Title |
---|
LIU C ET AL: "SEALING OF MICROMACHINED CAVITIES USING CHEMICAL VAPOR DEPOSITION METHODS: CHARACTERIZATION AND OPTIMIZATION", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,IEEE INC. NEW YORK,US, vol. 8, no. 2, June 1999 (1999-06-01), pages 135 - 145, XP000912714, ISSN: 1057-7157 * |
NING Y B ET AL: "Fabrication of a silicon micromachined capacitive microphone using a dry-etch process", SENSORS AND ACTUATORS A,CH,ELSEVIER SEQUOIA S.A., LAUSANNE, vol. 53, no. 1, 1 May 1996 (1996-05-01), pages 237 - 242, XP004018152, ISSN: 0924-4247 * |
PARTRIDGE A ET AL: "New thin film epitaxial polysilicon encapsulation for piezoresistive accelerometers", TECHNICAL DIGEST. MEMS 2001. 14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (CAT. NO.01CH37090), TECHNICAL DIGEST. MEMS 2001. 14TH IEEE INTERNATIONAL CONFERENCE ON MEMS, INTERLAKEN, CH, 21-25 JANUARY 2001, 21 January 2001 (2001-01-21) - 25 January 2001 (2001-01-25), 2001, Piscataway, NJ, USA, IEEE, USA, pages 54 - 59, XP002169905, ISBN: 0-7803-5998-4 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1296886B1 (de) * | 2000-05-18 | 2008-10-08 | Robert Bosch Gmbh | Herstellungsverfahren für ein mikromechanisches bauelement |
WO2003106327A1 (de) * | 2002-06-12 | 2003-12-24 | Robert Bosch Gmbh | Bauelement und verfahren zu dessen herstellung |
US7382031B2 (en) | 2002-06-12 | 2008-06-03 | Robert Bosch Gmbh | Component including a fixed element that is in a silicon layer and is mechanically connected to a substrate via an anchoring element and method for its manufacture |
EP1460038A3 (de) * | 2003-03-20 | 2005-12-14 | Robert Bosch Gmbh | Elektromechanisches System mit einer kontrollierten Atmosphäre und dessen Herstellungverfahren |
US8018077B2 (en) | 2003-03-20 | 2011-09-13 | Robert Bosch Gmbh | Electromechanical system having a controlled atmosphere, and method of fabricating same |
US9771257B2 (en) | 2003-03-20 | 2017-09-26 | Robert Bosch Gmbh | Electromechanical system having a controlled atmosphere, and method of fabricating same |
US7172917B2 (en) | 2003-04-17 | 2007-02-06 | Robert Bosch Gmbh | Method of making a nanogap for variable capacitive elements, and device having a nanogap |
WO2004108585A2 (en) | 2003-06-04 | 2004-12-16 | Robert Bosch Gmbh | Microelectromechanical systems having trench isolated contacts, and methods for fabricating same |
JP2006526509A (ja) * | 2003-06-04 | 2006-11-24 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | マイクロ電気機械的装置及びその封緘方法及び製造方法 |
EP3527529A1 (de) | 2003-06-04 | 2019-08-21 | Robert Bosch GmbH | Mikroelektromechanische systeme mit grabenisolierten kontakten und verfahren zu deren herstellung |
JP2011245620A (ja) * | 2003-06-04 | 2011-12-08 | Robert Bosch Gmbh | マイクロ電気機械的装置及びその封緘方法及び製造方法 |
WO2004109769A2 (en) | 2003-06-04 | 2004-12-16 | Robert Bosch Gmbh | Microelectromechanical systems and methods for encapsulating |
JP4908202B2 (ja) * | 2003-06-04 | 2012-04-04 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | マイクロ電気機械的装置及びその封緘方法及び製造方法 |
EP3498662A1 (de) | 2003-06-04 | 2019-06-19 | Robert Bosch GmbH | Mikroelektromechanische systeme und verfahren zur verkapselung und herstellung davon |
JP2012196758A (ja) * | 2003-07-25 | 2012-10-18 | Robert Bosch Gmbh | Soi基板を持つマイクロ電気機械システム用アンカー及びその製造方法 |
US8980668B2 (en) | 2004-02-12 | 2015-03-17 | Robert Bosch Gmbh | Integrated getter area for wafer level encapsulated microelectromechanical systems |
US8372676B2 (en) | 2004-02-12 | 2013-02-12 | Robert Bosch Gmbh | Integrated getter area for wafer level encapsulated microelectromechanical systems |
US7115436B2 (en) | 2004-02-12 | 2006-10-03 | Robert Bosch Gmbh | Integrated getter area for wafer level encapsulated microelectromechanical systems |
US7923278B2 (en) | 2004-02-12 | 2011-04-12 | Robert Bosch Gmbh | Integrated getter area for wafer level encapsulated microelectromechanical systems |
WO2005081702A2 (en) | 2004-02-12 | 2005-09-09 | Robert Bosch Gmbh | Integrated getter area for wafer level encapsulated microelectromechanical systems |
WO2005096495A1 (en) | 2004-03-04 | 2005-10-13 | Robert Bosch Gmbh | Temperture controlled mems resonator and method for controlling resonator frequency |
WO2007021396A3 (en) * | 2005-08-16 | 2007-06-28 | Bosch Gmbh Robert | Microelectromechanical devices and fabrication methods |
US7956428B2 (en) | 2005-08-16 | 2011-06-07 | Robert Bosch Gmbh | Microelectromechanical devices and fabrication methods |
WO2007021396A2 (en) * | 2005-08-16 | 2007-02-22 | Robert Bosch Gmbh | Microelectromechanical devices and fabrication methods |
US10099917B2 (en) | 2006-01-20 | 2018-10-16 | Sitime Corporation | Encapsulated microelectromechanical structure |
US9440845B2 (en) | 2006-01-20 | 2016-09-13 | Sitime Corporation | Encapsulated microelectromechanical structure |
US11685650B2 (en) | 2006-01-20 | 2023-06-27 | Sitime Corporation | Microelectromechanical structure with bonded cover |
US10766768B2 (en) | 2006-01-20 | 2020-09-08 | Sitime Corporation | Encapsulated microelectromechanical structure |
US8871551B2 (en) | 2006-01-20 | 2014-10-28 | Sitime Corporation | Wafer encapsulated microelectromechanical structure and method of manufacturing same |
US10450190B2 (en) | 2006-01-20 | 2019-10-22 | Sitime Corporation | Encapsulated microelectromechanical structure |
US9434608B2 (en) | 2006-01-20 | 2016-09-06 | Sitime Corporation | Wafer encapsulated microelectromechanical structure |
US9758371B2 (en) | 2006-01-20 | 2017-09-12 | Sitime Corporation | Encapsulated microelectromechanical structure |
US7824943B2 (en) | 2006-06-04 | 2010-11-02 | Akustica, Inc. | Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same |
US7767482B1 (en) | 2006-06-04 | 2010-08-03 | Robert Bosch Gmbh | Microelectromechanical systems having stored charge and methods for fabricating and using same |
US8343790B2 (en) | 2006-06-04 | 2013-01-01 | Robert Bosch Gmbh | Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same |
US7456042B2 (en) | 2006-06-04 | 2008-11-25 | Robert Bosch Gmbh | Microelectromechanical systems having stored charge and methods for fabricating and using same |
US8766706B2 (en) | 2006-06-04 | 2014-07-01 | Robert Bosch Gmbh | Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same |
US7875482B2 (en) | 2009-03-19 | 2011-01-25 | Robert Bosch Gmbh | Substrate with multiple encapsulated pressures |
WO2010107619A2 (en) | 2009-03-19 | 2010-09-23 | Robert Bosch Gmbh | Substrate with multiple encapsulated pressures |
CN103420332A (zh) * | 2012-04-25 | 2013-12-04 | 罗伯特·博世有限公司 | 用于制造混合集成的构件的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1274648A1 (de) | 2003-01-15 |
US7041225B2 (en) | 2006-05-09 |
EP1274648B1 (de) | 2004-08-18 |
US20030173330A1 (en) | 2003-09-18 |
DE50103327D1 (de) | 2004-09-23 |
DE10017422A1 (de) | 2001-10-11 |
JP5090603B2 (ja) | 2012-12-05 |
JP2003530234A (ja) | 2003-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1274648B1 (de) | Mikromechanisches bauelement und entsprechendes herstellungsverfahren | |
EP1274647B1 (de) | Mikromechanisches bauelement und entsprechendes herstellungsverfahren | |
EP2170763B1 (de) | Verfahren zur herstellung von leiterbahnbrücken und bauteil mit leitfähiger schicht | |
DE10063991B4 (de) | Verfahren zur Herstellung von mikromechanischen Bauelementen | |
DE10065013B4 (de) | Verfahren zum Herstellen eines mikromechanischen Bauelements | |
EP1257496A2 (de) | Verfahren zur herstellung eines mikromechanischen bauelements sowie ein nach dem verfahren hergestelltes bauelement | |
DE10005555A1 (de) | Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren | |
WO2007071515A1 (de) | Mikromechanischer kapazitiver druckwandler und herstellungsverfahren | |
DE102007026445A1 (de) | Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements | |
WO2018069028A1 (de) | Mikromechanischer sensor mit stressentkopplungsstruktur | |
DE102010029709B4 (de) | Mikromechanisches Bauelement und Verfahren zum Herstellen eines mikromechanischen Bauelements | |
DE102013209266A1 (de) | Bauelement mit einem Hohlraum | |
DE102011081033B4 (de) | Verfahren zur Herstellung einer mikromechanischen Struktur und mikromechanische Struktur | |
DE102012213313B4 (de) | Mikromechanische Struktur | |
WO2010012547A2 (de) | Verfahren zum verkappen eines mems-wafers sowie mems-wafer | |
DE102006007729A1 (de) | Verfahren zur Herstellung eines MEMS-Substrats, entsprechendes MEMS-Substrat und MEMS-Prozess unter Verwendung des MEMS-Substrats | |
DE10024697B4 (de) | Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren | |
DE19817311A1 (de) | Herstellungsverfahren für mikromechanisches Bauelement | |
DE19819456A1 (de) | Verfahren zur Herstellung eines mikromechanischen Bauelements | |
WO2007074017A1 (de) | Mikromechanisches bauelement mit kappe | |
EP2150488A2 (de) | Verfahren zur herstellung eines mikromechanischen bauelements mit auffüllschicht und maskenschicht | |
DE102009027321A1 (de) | Verfahren zum Herstellen einer elektrischen Durchkontaktierung in einem Substrat sowie Substrat mit einer elektrischen Durchkontaktierung | |
DE102007025880A1 (de) | Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements mit einer Dünnschichtkappe | |
DE10348908B4 (de) | Verfahren zur Herstellung eines Mikrosystems mit integrierter Schaltung und mikromechanischem Bauteil | |
WO2009059850A2 (de) | Mikromechanisches bauelement, kurzprozess zur herstellung von mems-bauelementen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001919184 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 575492 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 2001919184 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10240339 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001919184 Country of ref document: EP |