CN103420332A - 用于制造混合集成的构件的方法 - Google Patents

用于制造混合集成的构件的方法 Download PDF

Info

Publication number
CN103420332A
CN103420332A CN2013102943068A CN201310294306A CN103420332A CN 103420332 A CN103420332 A CN 103420332A CN 2013102943068 A CN2013102943068 A CN 2013102943068A CN 201310294306 A CN201310294306 A CN 201310294306A CN 103420332 A CN103420332 A CN 103420332A
Authority
CN
China
Prior art keywords
mems
asic
substrate
structural details
mechanical structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102943068A
Other languages
English (en)
Other versions
CN103420332B (zh
Inventor
J·克拉森
H·韦伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN103420332A publication Critical patent/CN103420332A/zh
Application granted granted Critical
Publication of CN103420332B publication Critical patent/CN103420332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/008MEMS characterised by an electronic circuit specially adapted for controlling or driving the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00238Joining a substrate with an electronic processing unit and a substrate with a micromechanical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00246Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0735Post-CMOS, i.e. forming the micromechanical structure after the CMOS circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0757Topology for facilitating the monolithic integration
    • B81C2203/0771Stacking the electronic processing unit and the micromechanical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0785Transfer and j oin technology, i.e. forming the electronic processing unit and the micromechanical structure on separate substrates and joining the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]

Abstract

本发明提出了用于混合集成的构件的制造方法。混合集成的构件应当包括至少两个MEMS结构元件(120、220),至少两个MEMS结构元件分别配置有至少一个ASIC结构元件(110、210)。根据本发明,彼此无关地产生两个MEMS/ASIC晶圆堆叠(100、200),其方式是,彼此无关地处理两个ASIC基底(110、210);在两个ASIC基底中的每个ASIC基底的经处理的表面上装配一半导体基底(120、220);然后在两个半导体基底(120、220)中的每个上产生一微机械结构。然后,两个MEMS/ASIC晶圆堆叠(100、200)以MEMS对MEMS的方式相叠地装配。然后才分离出多个构件。

Description

用于制造混合集成的构件的方法
技术领域
本发明涉及一种用于制造具有至少两个MEMS(micro electromechanical systems:微电子机械系统)结构元件的、混合集成的构件的方法,所述至少两个MEMS结构元件分别配置有至少一个ASIC结构元件。
背景技术
具有MEMS结构元件的构件多年来例如在汽车技术和消费电子的领域中,在批量生产中被制造用于不同的应用。在此,构件的微型化正赢得了越来越重要的意义。一方面,构件的微型化大大地有助于制造成本的降低。另一方面,尤其是在消费电子领域中,越来越多的功能进而构件应当被接收在一最终设备内,而所述最终设备本身则总是变得越来越小。结果,在应用电路板上提供给单个构件的空间越来越少。
由实践中已知用于传感器构件的各种不同的微型化方案,这些微型化方案设置了以微机械方式实现的传感器功能和传感器信号的电路技术上的加工和评价在一个构件内的集成。除了MEMS功能和ASIC功能横向集成在一共同的芯片上以外,还存在用于所谓的竖直混合集成的方案,按照所述方案形成了一由ASIC、MEMS和一罩晶圆构成的芯片堆叠。
这类竖直集成的构件以及用于其制造的方法在US201I/0049652A1中被描述。这种已知的方法设置:将用于MEMS结构元件的初始基底键合到一已经被处理过和必要时也已结构化的ASIC基底上。然后,才在MEMS基底上产生一微机械的结构。与此无关地,将一罩晶圆结构化并且准备用于装配在MEMS基底的微机械结构上以及ASIC基底上。在MEMS基底的结构化之后,将这样被处理的罩晶圆键合到ASIC基底上,从而使得所述微机械结构在ASIC基底与罩晶圆之间气密密封地被围住。
该已知的方法能够实现具有微机械的传感器功能和评价电路的耐用的结构元件的成本低廉的批量生产,这是因为这里不仅各个构件部件、即MEMS结构元件、罩和ASIC在所述晶圆复合物中产生,而且实现了使它们装配成一在晶圆级(Waferebene)上的传感器构件。可在晶圆级上对MEMS功能和ASIC功能进行测试,并且甚至可在晶圆级上进行各个传感器构件的校准。已知构件的经堆叠的构型同样有助于缩减制造成本,这是因为这些构件在第二级装配时仅需要相对少的装配面。
发明内容
由从US201I/0049652A1已知的构件构型出发,通过本发明提出了用于实现混合集成的构件的措施,通过这些措施能够简单且成本低廉地达到还要更高的微型化程度。
通过根据本发明的方法来制造混合集成的、具有至少两个MEMS结构元件的构件,所述至少两个MEMS结构元件分别配置有至少一个ASIC结构元件。为此,首先彼此无关地产生两个MEMS/ASIC晶片堆叠,其方式是,彼此无关地对两个ASIC基底进行处理,在所述两个ASIC基底中的每个ASIC基底的经处理的表面上装配有一半导体基底,并且然后,在这两个半导体基底中的每个半导体基底上产生一微机械结构。然后,将所述两个MEMS/ASIC晶片堆叠叠置地进行装配,更确切地说是以MEMS对MEMS的方式。然后才由晶圆复合物中分解和分离多个所述构件。
根据本发明,相应地产生一包括至少四个结构元件的晶圆堆叠。仅仅由此,根据本发明所制造的构件在每个装配面上配备有非常高的功能性。有利地,各一个MEMS结构元件和一个ASIC结构元件形成了一功能单元,例如以微机械传感器元件的形式,该传感器元件的信号处理和评价电路集成在所配置的ASIC结构元件上。当这些结构元件应当满足类似功能时,一构件的两个MEMS结构元件的微机械结构可以是相同或者相似的。然而,在根据本发明的方法的范畴中,也可以在一个构件内组合具有完全不同功能的多个MEMS结构元件并且相应地也组合完全不同的多个微机械结构。
根据本发明的构型尤其适用于实现非接触式工作的传感器,例如加速度传感器、偏转率传感器(Drehratensensoren)和其他惯性传感器。在一惯性传感器的情况下,所述微机械结构包括至少一个弹性悬挂的、振动的质量,所述振动质量基于加速被偏转。也可通过离心力或者旋转运动来引起这些加速。所述振动质量的偏转被检测和评价。这类传感器元件的微机械结构应当被封罩,以便最小化对测量信号的环境影响并且防止传感器结构受到污染、湿度和颗粒的影响。此外,通过这种方式能为传感器结构提供受限定的压力关系,这些压力关系显著地连带确定了传感器的阻尼性能。根据本发明,这类封罩或者封装通过MEMS结构元件在所配置的ASIC结构元件之间的三明治式的布置来实现,为此将不需要单独的罩结构。
根据本发明的制造方法能够以多种多样的方式进行改动,这尤其是涉及到四重晶圆堆叠的各个部件之间的机械连接和电连接以及所形成的构件的外部电接触。在此,必须要考虑到待完成的构件的功能、规定和装配地点。
如已提到的那样,在所述ASIC结构元件上,优选集成了用于所配置的MEMS结构元件的信号处理和评价电路。然而,ASIC结构元件当然也可配备有其他的电路功能。此外,在ASIC基底的处理的范畴中可进行表面的结构化,在所述表面上应当装配所述MEMS基底。在此,不仅可在ASIC表面中产生凹陷部,而且可以产生用于装配MEMS基底的插座结构(Sockelstruktur)。由此例如能够确保结构元件在所配置的MEMS结构元件内的可运动性。
优选在一键合过程中建立MEMS基底与ASIC基底之间的连接,这是因为通过这种方式不仅能够在MEMS结构元件与ASIC结构元件之间实现气密密封的机械连接,而且能够实现可靠的电连接。对此,有一系列已知的且已经过实践检验的过程变型以供使用。
微机械惯性传感器的灵敏度主要依赖于振动质量的尺寸。根据本发明的制造方法的一变型方案特别适用于实现具有相对大的振动质量的MEMS结构元件。在此,所述振动质量在一个结构化过程中被限定并露出,所述振动质量在所述MEMS基底的整个厚度上延伸。在此,可制造具有最大厚度、即具有MEMS基底厚度的振动质量。为此,首先将所述MEMS基底减薄直至一预先给定的结构高度。在该减薄和抛光过程的范畴中,MEMS结构元件产生的表面能够已经为与其他MEMS结构元件的连接做好准备,至少这涉及它们的粗糙度。优选在一开槽过程(Trenchprozess)中产生所述MEMS结构,这是因为通过该工艺能够产生出具有特别高的高宽比的沟结构。
在尽可能紧凑的构件构型和所述构件的各个部件之间的可靠的内部电接触方面已证实为有利的是,在所述两个MEMS基底中的至少一个MEMS基底内产生过孔(Durchkontakte),该过孔在所配置的ASIC基底和MEMS基底的背离该ASIC基底的表面之间建立电连接。
如MEMS基底在所配置的ASIC基底上的装配那样,也优选在一键合过程中进行多个MEMS/ASIC晶圆堆叠的装配,这是因为通过这种方式可以在两个MEMS/ASIC晶圆堆叠之间建立起简单可靠的且持久的机械连接和电连接。
在任何情况下,根据本发明的方法的最终产品都是一种具有至少两个MEMS结构元件的构件,所述至少两个MEMS结构元件分别配置有至少一个ASIC结构元件,其中,所述两个MEMS结构元件相叠地并且三明治式地装配在所述两个ASIC结构元件之间,从而使得通过所述两个ASIC结构元件封罩所述两个MEMS结构元件的微机械结构。有利地,微机械结构分别在所述两个MEMS结构元件中的一个MEMS结构元件的整个厚度上延伸。
在任何情况下,通过两个ASIC中的一个ASIC来进行这类构件在第二级装配的范畴中的机械固定。有利地,在所述ASIC结构元件内构造有过孔,所述过孔可以实现所述构件在一电路板上的直接装配。在此,除了所述构件在所述电路板上的机械式固定以外,也建立与电路板上的导体轨迹的电连接。但是,当在ASIC中的至少一个ASIC上构造有相应的、露出的联接垫时,一这类构件的外部电接触也可通过引线键合来进行。
如上所述,存在各种不同的、以有利的方式来设计并改进本发明的可能性。对此,一方面参照引用独立权利要求的从属权利要求,另一方而参照借助附图对本发明的多个实施例进行的随后说明。
附图说明
图1至7借助示意性截面图示出了MEMS/ASIC晶圆堆叠相应于根据本发明的方法的制造;
图8、9借助示意性截面图示出了一种基于两个MEMS/ASIC晶圆堆叠的构件的根据本发明的结构;
图10、11借助示意性截面图示出了两个不同的、用于根据本发明完成的构件的外部电接触的可能性。
具体实施方式
在根据本发明的、用于制造具有两个MEMS结构元件的混合集成式构件的方法的范畴内,其中,所述两个MEMS结构元件分别配置有至少一个ASIC结构元件,首先彼此独立地产生所述两个MEMS/ASIC晶圆堆叠。下面结合图1至图7对此予以进一步阐述。
用于这样的MEMS/ASIC晶圆堆叠的产生的出发点是各一个经处理的ASIC基底10,如图1中所示。在ASIC基底10上的氧化物层11内构造有多个电路平面12。有利地,这里集成了用于所配置的MEMS结构元件的信号处理和评价电路的至少部分。但除此之外,还可实现与MEMS无关的电路功能。在此并未详细描述ASIC基底10的CMOS处理,因为本发明并未进一步指定该CMOS处理。基底表面设有氮化物钝化部13。
将钝化层13结构化,以便能够实现ASIC基底10的最上面的电路平面12的电接触。在本实施例中,然后为装配MEMS基底而产生托脚结构(Standoff-Struktur)14。为此,在结构化的钝化层13上,在ASIC基底10的表面上沉积一氧化物层14并且以适当的方式进行结构化。图2示出了该结构化过程的结果。
结构化的氧化物层14形成了用于未结构化的MEMS基底20的装配面。在此,MEMS基底20与ASIC基底10之间的连接是在一等离子激活的直接键合工艺中建立起来的并且是气密密封的。现将相对厚的MEMS基底20减薄,直到其厚度大致相应于MEMS结构元件所追求的结构高度。该结构高度典型地在10μn和150μm之间的范围内。为此,首先将MEMS基底20磨削并且然后抛光,以便去除硅晶体的划痕和受损处。所述抛光过程此外用于使基底表面设有适用于MEMS对MEMS装配的粗糙度。图3示出了带有已经被减薄、但还是未结构化的MEMS基底20的ASIC基底10,其中,托脚结构14作为ASIC基底10的闭合表面与MEMS基底20之间的间隔保持件起作用。
只有与ASIC基底10连接,MEMS基底20才被结构化。在本实施例中,该结构化以两个步骤进行。
第一个蚀刻步骤用于产生过孔、所谓的穿孔22。在此,在MEMS基底20和被结构化的氧化物层14内产生具有基本为圆形横断面的贯穿开口21,更确切地说,是在钝化层13被开口用于电接触ASIC基底10的位置上。贯通开口21的布置在图4中示出。所述贯通开口21优选具有5∶1至20∶1的高宽比,并且在MEMS基底20的整个厚度上延伸穿过被结构化的氧化物层14,直到ASIC基底10的第一电路平面12。所述贯通开口21在一沉积过程中被填充以一导电的材料22、例如铜或者钨。图5示出了具有MEMS基底20的ASIC基底10,在填充了贯通开口21之后并且在在此沉积在MEMS基底20的表面上的可传导的材料又被去除之后。之后,MEMS基底20的表面、尤其是在其中一些穿孔22上的区域内设有结构化的键合层31,这在图6中示出。下面结合图8和图9更详细地探讨结构化的键合层31。
在第二蚀刻步骤中产生MEMS结构元件的微机械结构,所述微机械结构在此同样在MEMS基底20的整个厚度上延伸,如图7中所示那样。无论是对第一蚀刻步骤,还是对第二蚀刻步骤均优选选择开槽过程,因为通过该工艺能够产生具有特别高的高宽比的结构。在当前情况下,微机械结构包括了多个有弹性地悬挂着的、振动的质量23,所述振动质量通过MEMS基底20内的开槽沟24来限定并且露出。ASIC基底10上的托脚结构14确保了振动质量23的可运动性。
根据本发明,现在将两个这样的如图7中所示的MEMS/ASIC晶圆堆叠以MEMS对MEMS的方式叠置地进行装配。在这里要再次明确地指出,在此并不必涉及两个相同的MEMS/ASIC晶圆堆叠,而是也可以将两个在结构和功能上各不相同的MEMS/ASIC晶圆堆叠进行组合。该变型方案通过图8和图9示出。
图8示出了两个混合集成的MEMS/ASIC晶圆堆叠100和200,所述晶圆堆叠以MEMS对MEMS定向的方式彼此相叠地布置。两个MEMS基底120和220的微机械结构并不相同。两个MEMS/ASIC晶圆堆叠100和200仅在穿孔122和222的布置上以及在键合层31和32的结构化上在MEMS基底120和220的表面上相互协调。在键合过程中,现在在键合层31、32的区域中建立起两个MEMS/ASIC晶圆堆叠100和200之间的持久的机械式连接。在此,两个MEMS结构元件120和220的微机械结构有利被气密式密封,其中,可预先给定两个ASIC基底110与210之间的产生的空腔30内所存在的内压。
除了机械式连接以外,还通过键合层31和32,在两个MEMS/ASIC晶圆堆叠100与200之间建立起电连接,这通过图9示出。因此,键合层31和32连同穿孔122和222一起形成了两个ASIC基底110与210之间的电连接。
只有在两个MEMS/ASIC晶圆堆叠100、200的前面所述的装配之后,由晶圆复合物构成的各个构件才被分解。例如可通过锯割来进行所述构件的分离。
这样完成的构件能够在第二级装配的范畴中简单地通过两个ASIC中的一个ASIC而被装配在一载体、例如电路板上,并且进行电接触,这是因为所述构件的所有其他部件通过穿孔和键合连接而与该ASIC电连接并且因此可通过该ASIC电接触。
用于根据本发明的构件的外部接触的一实现可能性在图10中示出,该实现可能性特别良好地适用于直接装配在电路板上。在这里通过ASIC110内的过孔41、所谓的TSV(Through Silicon Vias:直通硅晶穿孔)将构件40的电信号向外引导。该TSV41由ASIC110的最下方的电路平面12延伸直到其背侧面,在该处构造有联接垫42并且所述联接垫作为用于所述构件40的装配面起作用。在这里,可简单地借助焊凸点43建立起与电路板之间的电连接,构件40通过这些焊凸点也被机械式地固定在所述电路板上。
然而,根据本发明的构件也可在第二级装配的范畴内通过引线键合来电接触。为此,在图11中所示的构件50中,在ASIC110的上侧面上构造有电的联接垫51。在一锯割或者蚀刻过程中,去除所配置的MEMS结构元件120在该联接垫51上的材料,正如第二MEMS/ASIC晶圆堆叠200的材料,以便露出联接垫51并且因此可以实现所述构件50通过引线键合52的外部接触。

Claims (11)

1.用于制造具有至少两个MEMS结构元件的、混合集成的构件(40;50)的方法,所述至少两个MEMS结构元件分别配置有至少一个ASIC结构元件,
·在所述方法中,首先彼此无关地产生两个MEMS/ASIC晶圆堆叠(100、200),其方式是,
-彼此无关地处理两个ASIC基底(110、210);
-在所述两个ASIC基底中的每个ASIC基底的经处理的表面上装配一半导体基底(120、220);以及
-然后在所述两个半导体基底(120、220)中的每个半导体基底上产生一微机械结构,
·在所述方法中,所述两个MEMS/ASIC晶圆堆叠(100、200)以MEMS对MEMS的方式叠置地进行装配;并且
·在所述方法中,然后才分离出多个所述构件。
2.根据权利要求1所述的方法,其特征在于,所述两个ASIC基底(110、210)中的至少一个ASIC基底的经处理的表面被结构化,其方式是,在所述MEMS结构元件的待产生的微机械结构下方的区域内产生至少一个凹陷部和/或产生一用于装配所配置的MEMS基底(120、220)的插座结构(14)。
3.根据权利要求1或2所述的方法,其特征在于,所述两个MEMS基底(120、220)中的至少一个MEMS基底被键合到所配置的所述ASIC基底(110、210)上。
4.根据权利要求1至3中任一项所述的方法,其特征在于,所述两个MEMS基底(120、220)中的至少一个MEMS基底被减薄直到待产生的微机械结构的预先给定的结构高度,从而使得一微机械结构然后被产生,所述微机械结构在所述MEMS基底(120、220)的整个厚度上延伸。
5.根据权利要求1至4中任一项所述的方法,其特征在于,所述微机械结构在所述两个MEMS基底(120、220)中的至少一个MEMS基底中在一开槽过程中被产生。
6.根据权利要求1至5中任一项所述的方法,其特征在于,在所述两个MEMS基底(120、220)中的至少一个MEMS基底内产生过孔(122、222),所述过孔在所配置的所述ASIC基底(110、210)和所述MEMS基底(120、220)的背离所述ASIC基底(110、210)的表面之间建立电连接。
7.根据权利要求1至6中任一项所述的方法,其特征在于,在一键合过程中建立所述两个MEMS/ASIC晶圆堆叠(100、200)之间的机械连接和电连接。
8.具有至少两个MEMS结构元件(120、220)的构件(40、50),所述至少两个MEMS结构元件分别配置有至少一个ASIC结构元件(110、210),尤其是以根据权利要求1至7中任一项所述的方法来制造,具特征在于,所述两个MEMS结构元件(120、220)的所述微机械结构分别在所述MEMS结构元件的整个厚度上延伸;所述两个MEMS结构元件(120、220)相叠地并且三明治式地装配在两个ASIC结构元件(110、210)之间,从而使得所述两个MEMS结构元件(120、220)的所述微机械结构通过所述两个ASIC结构元件(110、210)封罩。
9.根据权利要求8所述的构件(40),其特征在于,至少在所述两个ASIC结构元件(110)中的一个ASIC结构元件内构造有用于所述构件(40)的外部电接触的过孔(41)。
10.根据权利要求8或9所述的构件(50),其特征在于,至少在所述ASIC结构元件(110)中的一个ASIC结构元件上构造有露出的联接垫(51),用于所述构件(50)的外部接触。
11.根据权利要求8至10中任一项所述的惯性传感器构件,其中,所述两个MEMS结构元件中的至少一个MEMS结构元件的所述微机械结构包括至少一个振动质量并且配备有用于检测所述振动质量的偏转的电路器件,其中,所述振动质量至少在所述MEMS结构元件的整个厚度上延伸,并且其中,在所配置的所述ASIC基底上集成有用于传感器信号的评价电路的至少部分。
CN201310294306.8A 2012-04-25 2013-04-22 用于制造混合集成的构件的方法 Active CN103420332B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012206875.9 2012-04-25
DE102012206875.9A DE102012206875B4 (de) 2012-04-25 2012-04-25 Verfahren zum Herstellen eines hybrid integrierten Bauteils und entsprechendes hybrid integriertes Bauteil

Publications (2)

Publication Number Publication Date
CN103420332A true CN103420332A (zh) 2013-12-04
CN103420332B CN103420332B (zh) 2017-07-18

Family

ID=49323210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310294306.8A Active CN103420332B (zh) 2012-04-25 2013-04-22 用于制造混合集成的构件的方法

Country Status (4)

Country Link
US (1) US9067778B2 (zh)
CN (1) CN103420332B (zh)
DE (1) DE102012206875B4 (zh)
TW (1) TWI619669B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104370271A (zh) * 2014-09-29 2015-02-25 武汉新芯集成电路制造有限公司 一种mems器件集成工艺
CN105399047A (zh) * 2015-11-10 2016-03-16 中国工程物理研究院电子工程研究所 一种多电容梳齿式微加速度计的加工方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210049A1 (de) * 2012-06-14 2013-12-19 Robert Bosch Gmbh Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
US20140264655A1 (en) * 2013-03-13 2014-09-18 Invensense, Inc. Surface roughening to reduce adhesion in an integrated mems device
ITTO20130350A1 (it) * 2013-04-30 2014-10-31 St Microelectronics Srl Assemblaggio a livello di fetta di un dispositivo sensore mems e relativo dispositivo sensore mems
WO2015042700A1 (en) * 2013-09-24 2015-04-02 Motion Engine Inc. Mems components and method of wafer-level manufacturing thereof
EP3028007A4 (en) 2013-08-02 2017-07-12 Motion Engine Inc. Mems motion sensor and method of manufacturing
DE102013222616A1 (de) * 2013-11-07 2015-05-07 Robert Bosch Gmbh Mikromechanische Sensorvorrichtung
KR20150063746A (ko) * 2013-12-02 2015-06-10 삼성전기주식회사 Mems 센서모듈 패키지 및 그 제조방법
DE102013225375A1 (de) * 2013-12-10 2015-06-11 Robert Bosch Gmbh Hybrid integriertes Bauteil mit einer Dichtstruktur
US20170030788A1 (en) 2014-04-10 2017-02-02 Motion Engine Inc. Mems pressure sensor
US11674803B2 (en) 2014-06-02 2023-06-13 Motion Engine, Inc. Multi-mass MEMS motion sensor
US20160075554A1 (en) * 2014-09-11 2016-03-17 Invensense, Inc. Internal barrier for enclosed mems devices
WO2016090467A1 (en) 2014-12-09 2016-06-16 Motion Engine Inc. 3d mems magnetometer and associated methods
US10407299B2 (en) 2015-01-15 2019-09-10 Motion Engine Inc. 3D MEMS device with hermetic cavity
US9969614B2 (en) 2015-05-29 2018-05-15 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS packages and methods of manufacture thereof
DE102015217918A1 (de) 2015-09-18 2017-03-23 Robert Bosch Gmbh Mikromechanisches Bauelement
DE102015217928A1 (de) 2015-09-18 2017-03-23 Robert Bosch Gmbh Mikromechanisches Bauelement
DE102015217921A1 (de) 2015-09-18 2017-03-23 Robert Bosch Gmbh Mikromechanisches Bauelement
EP3261366B1 (en) * 2016-06-21 2021-09-22 Sciosense B.V. Microphone and pressure sensor package and method of producing the microphone and pressure sensor package
US10403674B2 (en) 2017-07-12 2019-09-03 Meridian Innovation Pte Ltd Scalable thermoelectric-based infrared detector
EP3947260A1 (en) 2019-04-01 2022-02-09 Meridian Innovation Pte Ltd Heterogenous integration of complementary metal-oxide-semiconductor and mems sensors
EP3875424A1 (en) * 2020-03-05 2021-09-08 Meridian Innovation Pte Ltd Cmos cap for mems devices
DE102022200340A1 (de) 2022-01-13 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanische Sensoreinrichtung
WO2023146865A1 (en) * 2022-01-25 2023-08-03 Analog Devices, Inc. Microelectromechanical systems (mems) and related packages

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595940A (en) * 1994-05-25 1997-01-21 Robert Bosch Gmbh Method of producing micromechanical structures
WO2001077009A1 (de) * 2000-04-07 2001-10-18 Robert Bosch Gmbh Mikromechanisches bauelement und entsprechendes herstellungsverfahren
DE10132683A1 (de) * 2001-07-05 2003-01-16 Bosch Gmbh Robert Mikromechanische Kappenstruktur und entsprechendes Herstellungsverfahren
TW587059B (en) * 2002-06-07 2004-05-11 Ind Tech Res Inst Manufacturing method of micro mechanical floating structure
CN101616864A (zh) * 2006-12-21 2009-12-30 大陆-特韦斯贸易合伙股份公司及两合公司 封装模块、该封装模块的制造方法及应用
CN102001614A (zh) * 2009-08-28 2011-04-06 美商明锐光电股份有限公司 微机电装置与其制造方法
US20120032283A1 (en) * 2010-08-09 2012-02-09 Jens Frey Sensor module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174673B2 (ja) * 2005-10-14 2013-04-03 エスティーマイクロエレクトロニクス エス.アール.エル. 基板レベル・アセンブリを具えた電子装置及びその製造処理方法
US7892176B2 (en) * 2007-05-02 2011-02-22 General Electric Company Monitoring or imaging system with interconnect structure for large area sensor array
US20080315331A1 (en) * 2007-06-25 2008-12-25 Robert Gideon Wodnicki Ultrasound system with through via interconnect structure
US7811849B2 (en) * 2008-01-30 2010-10-12 Winmems Technologies Co., Ltd. Placing a MEMS part on an application platform using a guide mask
US8525342B2 (en) * 2010-04-12 2013-09-03 Qualcomm Incorporated Dual-side interconnected CMOS for stacked integrated circuits
TWI434803B (zh) * 2010-06-30 2014-04-21 Ind Tech Res Inst 微機電元件與電路晶片之整合裝置及其製造方法
WO2013001448A1 (en) * 2011-06-27 2013-01-03 Koninklijke Philips Electronics N.V. Ultrasound transducer assembly and method of manufacturing the same
DE102012206854B4 (de) * 2012-04-25 2020-11-12 Robert Bosch Gmbh Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
DE102012208031A1 (de) * 2012-05-14 2013-11-14 Robert Bosch Gmbh +Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595940A (en) * 1994-05-25 1997-01-21 Robert Bosch Gmbh Method of producing micromechanical structures
WO2001077009A1 (de) * 2000-04-07 2001-10-18 Robert Bosch Gmbh Mikromechanisches bauelement und entsprechendes herstellungsverfahren
DE10132683A1 (de) * 2001-07-05 2003-01-16 Bosch Gmbh Robert Mikromechanische Kappenstruktur und entsprechendes Herstellungsverfahren
TW587059B (en) * 2002-06-07 2004-05-11 Ind Tech Res Inst Manufacturing method of micro mechanical floating structure
CN101616864A (zh) * 2006-12-21 2009-12-30 大陆-特韦斯贸易合伙股份公司及两合公司 封装模块、该封装模块的制造方法及应用
CN102001614A (zh) * 2009-08-28 2011-04-06 美商明锐光电股份有限公司 微机电装置与其制造方法
US20120032283A1 (en) * 2010-08-09 2012-02-09 Jens Frey Sensor module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104370271A (zh) * 2014-09-29 2015-02-25 武汉新芯集成电路制造有限公司 一种mems器件集成工艺
CN104370271B (zh) * 2014-09-29 2016-08-31 武汉新芯集成电路制造有限公司 一种mems器件集成工艺
CN105399047A (zh) * 2015-11-10 2016-03-16 中国工程物理研究院电子工程研究所 一种多电容梳齿式微加速度计的加工方法
CN105399047B (zh) * 2015-11-10 2017-07-28 中国工程物理研究院电子工程研究所 一种多电容梳齿式微加速度计的加工方法

Also Published As

Publication number Publication date
US9067778B2 (en) 2015-06-30
CN103420332B (zh) 2017-07-18
DE102012206875A1 (de) 2013-10-31
TWI619669B (zh) 2018-04-01
DE102012206875B4 (de) 2021-01-28
US20130285165A1 (en) 2013-10-31
TW201350424A (zh) 2013-12-16

Similar Documents

Publication Publication Date Title
CN103420332A (zh) 用于制造混合集成的构件的方法
TWI598965B (zh) 混合整合構件及其製造方法
CN103523741B (zh) 混合集成的部件和其制造方法
CN104773705B (zh) 微机械压力传感器装置以及相应的制造方法
US8866238B2 (en) Hybrid integrated component and method for the manufacture thereof
CN105940287B (zh) 微机械压力传感器装置以及相应的制造方法
KR102151453B1 (ko) 마이크로 기계 압력 센서 장치 및 그 제조 방법
US9862596B2 (en) Component having a substrate with cavities with micromechanical structures located therein
US9346666B2 (en) Composite wafer semiconductor
CN103508408B (zh) 混合集成部件及其制造方法
US9046546B2 (en) Sensor device and related fabrication methods
CN109641741B (zh) 用于制造微机械传感器的方法
CN103424107B (zh) 微机械的惯性传感器及其制造方法
TWI726915B (zh) 微機械構件
CN109553065A (zh) 微机电系统装置与微机电系统的封装方法
CN103771334B (zh) 混合集成部件
CN103420321A (zh) 混合集成的构件和用于其制造的方法
Chanchani et al. A new wafer-level packaging technology for MEMS with hermetic micro-environment
JP7192147B2 (ja) マイクロメカニカルセンサ装置とこれに対応する製造方法
KR101886134B1 (ko) 멤스 센서 및 그 제조 방법
KR101988469B1 (ko) 멤스 센서 및 그 제조 방법
TW201713591A (zh) 微機械構件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant