WO2001073101A1 - Procede de production de composes amidiques - Google Patents

Procede de production de composes amidiques Download PDF

Info

Publication number
WO2001073101A1
WO2001073101A1 PCT/JP2001/002333 JP0102333W WO0173101A1 WO 2001073101 A1 WO2001073101 A1 WO 2001073101A1 JP 0102333 W JP0102333 W JP 0102333W WO 0173101 A1 WO0173101 A1 WO 0173101A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
nitrile
concentration
cells
compound
Prior art date
Application number
PCT/JP2001/002333
Other languages
English (en)
French (fr)
Inventor
Takeya Abe
Kiyoshi Ito
Kenju Sasaki
Seiichi Watanabe
Toshihisa Tachibana
Tamotsu Asano
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to AU42769/01A priority Critical patent/AU767517B2/en
Priority to DE60132053T priority patent/DE60132053T2/de
Priority to EP01915730A priority patent/EP1182260B1/en
Priority to US09/980,102 priority patent/US6849432B2/en
Publication of WO2001073101A1 publication Critical patent/WO2001073101A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes

Definitions

  • the present invention relates to a method for producing an amide compound, and more particularly, to a method for continuously producing a high-concentration amide compound aqueous solution by hydrating a nitrile compound at a high conversion rate,
  • the present invention relates to a method for producing an aqueous solution of an amide compound which has little residual nitrile compound after the reaction and is industrially suitable.
  • a hydration method using nitrile compounds as a raw material has been used in many cases.
  • acrylamide has been used since ancient times for metallic copper catalysts such as Raney-copper, etc.
  • atalylonitrile is used as a raw material by hydration catalysts such as microbial cells containing nitrile hydratase and processed cells thereof.
  • the product acrylamide is usually supplied in the form of an aqueous solution or crystals, but when it is used, it is generally diluted with an aqueous solvent or used after being dissolved. For this reason, in recent years, most of them are supplied in the form of an aqueous solution.
  • the product form In the supply of acrylamide aqueous solution, the product form must have a higher concentration from the viewpoint of cost such as transportation and storage.On the other hand, it is necessary to prevent crystal precipitation during transportation or storage. is there. For this reason, the acrylamide concentration suitable for transportation at around normal temperature and for shellfish storage is usually about 40 to 50% by weight.
  • the acrylamide concentration in the reaction step is usually less than 40% by weight depending on the production process and the type of catalyst used. The reason is that when the concentration of acrylonitrile and Z or acrylamide is increased in the reaction process, the catalytic activity is deactivated, the reaction is not completed and the raw material atarilonitrile remains, and by-products increase. There is a tendency and removal of heat of reaction This is because there are problems such as limitations due to heat capacity, and it is usually difficult to directly obtain acrylamide having the final product concentration at the end of the above reaction.
  • the concentration of the acrylamide-containing solution is performed under reduced pressure.
  • atalylamide is a highly reactive polymerizable monomer
  • there is a high risk of polymerization during the concentration for this reason, for example, a method of stabilizing by introducing oxygen during concentration, a method of coexisting nitric oxide, and a method of coexisting metal ions have been performed.However, it is impossible to completely prevent polymerization. Have difficulty.
  • Japanese Patent Application Laid-Open No. 11-89575 discloses a method for producing acrylamide using microbial cells or a processed product of the microbial cells.
  • starting acrylonitrile is used at the start of the reaction or at the start of the reaction. It is described that by adding acrylonitrile during the reaction so that the concentration of acrylonitrile is equal to or higher than the saturation concentration of acrylyl nitrile in an aqueous medium, a high concentration of acrylamide can be obtained with a smaller amount of cells. This makes it possible to obtain an aqueous solution of acrylamide with a concentration of 40% by weight or more without concentration.
  • the amount of the reaction catalyst used, the reaction temperature, and the acrylonitrile at the start or during the reaction can be obtained.
  • inconvenience may occur.
  • the reaction is completed within a short time, the initial heat of reaction is large and a relatively large heat exchanger is required for the reactor, or conversely, the acrylonitrile conversion rate is 9%.
  • a long reaction time is required to achieve 9% or more.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a high-concentration amide compound by converting a nitrile compound at a high conversion rate. Another object of the present invention is to provide an industrially suitable production method capable of continuous operation with extremely little residual nitrile compound and capable of continuous operation.
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, brought into contact with a nitrile compound in an aqueous medium with a cell of a microorganism containing nitrile hydratase or a treated product thereof, and then reacted.
  • the inventors have found that it is an extremely effective means for achieving the object to further react the reaction solution under conditions having a plug flow-compatible basin, and have completed the present invention.
  • a method for continuously producing an amide compound by reacting a cell of a microorganism containing nitrile hydratase or a treated product thereof with an nitrile compound in an aqueous medium, An amide characterized in that after contacting the cells or treated cells with a nitrile compound in an aqueous medium, the resulting reaction solution is further reacted under conditions having a plug flow basin.
  • the nitrile compound is acrylonitrile
  • the ratio of water and acrylonitrile in contact with the microbial cells or the processed product of the microbes is such that the ratio of acrylonitrile to 1 part by weight of water is 0%;
  • An important point of the present invention is that a microorganism cell containing nitril hydratase or a treated product thereof is used as a catalyst for amidation of the nitrile group of a nitrile compound.
  • the point is that it is possible to efficiently produce an amide compound aqueous solution having a high conversion rate and a high concentration while suppressing the generation of products.
  • nitrile hydratase referred to in the present invention refers to an enzyme having the ability to hydrolyze a nitrile compound to produce a corresponding amide compound.
  • the microorganisms containing nitrile hydratase include nitrile hydratase having the ability to hydrolyze nitrile compounds to produce the corresponding amide compounds, and a 30% by weight aqueous acrylamide solution.
  • the microorganism is not particularly limited as long as it is a microorganism that retains the activity of nitrinolehydratase.
  • the genus Nocardia the genus Corynebacterium, the genus Bacillus, the thermophilic bacillus, the genus Pseudomonas, the genus Micrococcus, Rhodococcus spp., Rhodococcus spp., Acinetobacter spp., Xanthobacter spp., Streptomyces sp., Rhizobium sp., Klebsiella sp., Klebsiella sp.
  • the genus Represented by the genus (Enterobacter), the genus Erwinia, the genus Aeromonas, the genus Citrobacter, the genus Achromobacter, the genus Agrobacterium or the thermophila
  • Preferred examples include microorganisms belonging to the genus Pseudonocardia. It is possible.
  • a transformant in which the 2-trinolehydratase gene cloned from the microorganism is expressed in any host is also included in the microorganism according to the present invention.
  • Escherichia coli is a typical example of the arbitrary host as described in Examples described later, but it is not particularly limited to Escherichia coli, and Bacillus subtilis and the like are not limited to Escherichia coli.
  • Other microbial strains such as Bacillus, yeast and actinomycetes are also included.
  • MT—1082 2 this strain was established on February 7, 1996, 1-3-1, Tsukuba-Higashi, Ibaraki Pref., Ministry of International Trade and Industry It has been deposited with the Institute of Technology under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for Patent Procedure under the accession number FE RM BP-5 785.
  • one or more of the constituent amino acids of the enzyme may be replaced using recombinant DNA technology.
  • cells of the microorganisms or processed cells of the microorganisms are used.
  • the cells can be prepared by using general methods known in the fields of molecular biology, biotechnology, and genetic engineering. For example, after inoculating the microorganism in a normal liquid medium such as LB medium or M9 medium, the appropriate culture temperature (generally 20 to 50 ° C, but in the case of thermophilic bacteria, At 50 ° C. or higher), followed by separating and collecting the microorganism from the culture solution by centrifugation.
  • the microbial cell treated product of the present invention may be an extract of the microbial cell, a ground product, a post-isolate obtained by separating and purifying a nitrile hydratase active fraction of the extract or the ground product
  • the microbial cell refers to an immobilized product obtained by immobilizing an extract, a ground product, and a separated product of the microbial cell using an appropriate carrier, and these are the present invention as long as they have nitrile hydratase activity. This corresponds to the processed bacterial cell.
  • These may be of a single type, or two or more different types may be used simultaneously or alternately.
  • the reaction format is two or more reactors.
  • a microbial cell or processed cell, a nitrile compound, and an aqueous medium are supplied to a reactor at the preceding stage.
  • the type of reaction at this time is not particularly limited.
  • the reaction may be carried out as a suspension bed or a fixed bed.
  • a suspended bed in a tank reactor provided is more preferably used.
  • the type of nitrile compound is not particularly limited.
  • the nitrile compound is a nitrile compound having about 2 to 20 carbon atoms, and has a wide range of nitrile, for example, aliphatic nitrile. And aromatic nitriles.
  • the aliphatic nitrile include saturated or unsaturated nitriles having 2 to 6 carbon atoms, for example, acetonitrile, propionitrile, butyronitrile, and isobutyronitrile.
  • Fatty saturated mononitrile such as toluene, isovaleronitrile, forcepronitrile; aliphatic saturated dinitrile such as malononitrile, succinonitrile, adiponitrile; aliphatic such as acrylonitrile, methacrylonitrile, crotonnitrile Unsaturated-tolyl and the like.
  • Aromatic nitriles include benzonitrile, o—, m—, and p—benzobenzonitrinole, o—, m—, and p—funoleo benzonitrinolole, o—, m—, and p—nitro Benzonitrinole, o-, m-, and P-tolunitrile, benzyl cyanide and the like.
  • acrylonitrile, methacrylonitrile, croton nitrile and the like are preferred examples.
  • the aqueous medium in the present invention is water or a buffer such as phosphate, an inorganic salt such as sulfate or carbonate, an alkali metal hydroxide, or an amide compound at an appropriate concentration. It refers to a dissolved aqueous solution.
  • the concentration of the nitrile compound to be supplied to the reactor at the former stage is a concentration equal to or higher than the saturation concentration of the nitrile compound at the start of the reaction.
  • the upper limit of the concentration is not particularly limited, but the supply of a too large excess of nitrile compound may require a large amount of catalyst and a reactor having an excessive volume to complete the reaction, and a heat removal. Requires an excessive heat exchanger, etc., which increases the economic burden on facilities. Therefore, the theoretical concentration of the nitrile compound when it is converted to the corresponding amide compound is 40 to 80% by weight in the case of acrylamide.
  • Atarilonitrile More specifically, it is preferable to supply 0.4 to 1.5 parts by weight of atarilonitrile per 1 part by weight of water.
  • methacrylamide more specifically, 0.18 to 0.08% of methacrylonitrile is added to 1 part by weight of water so that the theoretical concentration of the solution is in the range of 10 to 40% by weight. It is preferable to supply the nitrile compound and water as 5 parts by weight.
  • the reaction solution taken out from the reactor at the preceding stage is further reacted under a condition having a plug flow basin. More specifically, the reaction solution obtained in the former reactor is sent to the latter reactor having a watershed that is consistent with the port of Braggow.
  • a reactor having a plug flow basin is a reactor generally called a tubular reactor or a tubular reactor, and has a piping shape. The reaction proceeds while moving the reaction solution in a biston flow in a closed tube.To remove the heat of reaction, use a double-tube type or shell-and-tube type. Can be.
  • the reactor having the plug-flow basin is not limited to the above-mentioned type, and any other type of reactor may be used in which the short-path of the reaction solution hardly occurs. If you can use it enough.
  • the reaction solution can have a Bragg flow basin depending on conditions such as the flow rate, and if the reaction heat can be removed, it can be used as a reactor with a plug flow basin.
  • various types such as a spiral type and a plate type in a heat exchanger or a tower type reactor can be used.
  • baffles baffles
  • plugs of the reaction solution may be used depending on conditions such as the flow rate. If it has a flow basin, it can be used as a reactor having a plug flow basin.
  • each of the reactors at the former stage and the reactor having the plug flow basin at the latter stage described above is not limited to one each, and each may be used alone or in series or in parallel. It may be a format that can be arranged in.
  • the reaction time (residence time) in the above-mentioned first and second-stage reactions is not fixed depending on conditions such as the amount of catalyst used and temperature, but is usually in the range of 0.5 to 40 hours, preferably each. Range from 1 to 20 hours.
  • the reaction time of the former reactor is 20 to 99%, preferably 40 to 90% of the total reaction time
  • the reaction time of the latter half reactor is It is 1 to 80%, preferably 10 to 60% of the total reaction time.
  • the amount of the catalyst used varies depending on the reaction conditions, the type of the catalyst, and its form, but it is usually 10 to 500,000,000 ppm by weight, preferably in terms of the dry cell weight of the microorganism, relative to the reaction solution. Is 50 to 30000 ppm by weight.
  • the amidation reaction is usually carried out at or near normal pressure, but can also be carried out under pressure to increase the solubility of the nitrile compound in the aqueous medium.
  • the reaction temperature is not particularly limited as long as it is higher than the freezing point of the aqueous medium. o Force Usually, it is preferably carried out in the range of 0 to 50 ° C, more preferably in the range of 10 to 40 ° C. Further, the reaction can be performed even in a slurry state in which the product is crystallized in the reaction solution.
  • the pH of the reaction solution during the amidation reaction is not particularly limited as long as the activity of nitrinolehydratase is maintained, but is preferably in the range of pH 6 to 10, and more preferably in the range of pH 6. It is in the range of 7-9.
  • amino acid substitutions retaining nitrile hydratase activity were obtained by site-specific mutation.
  • a recombinant plasmid is constructed by a method other than site-specific mutation based on the type of base to be replaced with the mutation point disclosed in the Examples and introduced into a host cell, It is possible to obtain the same result as in the embodiment.
  • a DNA synthesizer or the like By substituting the obtained fragment with a region corresponding to the fragment of pPT-DB1 which has been separately separated, a desired recombinant plasmid can be obtained.
  • the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
  • the HPLC analysis of the reaction solution was performed using ULTRON 80HG (50 X 8 ⁇ ) as an HP LC column, and using a 1 OmM phosphoric acid aqueous solution as a developing solution, using acrylamide and atarilonitrile. Is the concentration measured by detecting the absorbance at 220 nm.
  • LA PCR invitromutagenesis Kit is simply called a kit. In the following examples, the principle and operation method of the kit were basically followed.
  • a 10 ml LB liquid medium was prepared in a 30 ml test tube, and sterilized by an autoclave at 121 ° C for 20 minutes. After ampicillin was added to the medium to a final concentration of 100 gZm 1, a loopful of MT-10822 was inoculated and cultured at 37 ° C. ⁇ 300 rpm for about 20 hours. After 1 ml of the culture solution was collected in an appropriate centrifuge tube, the cells were separated by centrifugation (15000 rpm x 5 minutes). Subsequently, a plasmid DNA of pPT-DB1 was prepared from the cells by Arikari SDS extraction method.
  • PCR reaction No. 1 was a 50 ⁇ l total system containing 50 pmo 1 of each of the primer described in SEQ ID NO: 1 in the sequence listing and the M13 primer M4 (sequence described in SEQ ID NO: 2 in the sequence listing). The conditions were as follows: heat denaturation (98 ° C) for 15 seconds, annealing (55 ° C) for 30 seconds, and extension reaction (72 ° C) for 120 seconds for 25 cycles.
  • TE trishydroxymethylaminoaminomethane / EDTA buffer
  • 50 ⁇ l of each solution was prepared.
  • TAK ARAL AT a for annealing solution 0.5i1 was added to q and heat treatment was performed at 72 ° C for 3 minutes to complete a heteroduplex.
  • PCR reaction by repeating 25 cycles of heat denaturation (98 ° C) for 15 seconds, annealing (55 ° C) for 30 seconds, and elongation reaction (72 ° C) for 120 seconds No 3 went.
  • This DNA was subjected to phenol-Z chloroform extraction and ethanol precipitation according to a conventional method to purify the DNA fragment, which was finally dissolved in 10 ⁇ l of DNA.
  • the purified amplified DNA fragment of about 2.0 kbp was digested with restriction enzymes EcoRI and Hindill, this restriction enzyme-treated solution was subjected to phenol Z-cloth form extraction and ethanol precipitation to obtain the DNA.
  • the fragment was purified and finally dissolved in 101 TE.
  • pPT-DB1 is cleaved by EcoRI and Hindill, the only restriction enzyme sites on pPT-DB1, and agarose gel electrophoresis (using Sigma type VII low melting point agarose; Agarose concentration was 0.7%), and only a DNA fragment of about 2.7 Kbp was cut out from the agarose gel.
  • the cut agarose pieces (about 0.1 g) were finely pulverized, suspended in an lm 1 TE solution, and kept at 55 ° C for 1 hour to completely melt the agarose. The melt was subjected to phenol / mouth opening form extraction and ethanol precipitation to purify the DNA fragment, and finally dissolved in 10 ⁇ l of TE.
  • the amplified DNA product thus obtained and the pPT-DB1 fragment were ligated using a DNA ligation kit (Takara Shuzo), and then a E. coli HB101 combi- tive cell (Toyobo Co., Ltd.) ) Was transformed to prepare an E. coli bank.
  • the cells were suspended in 200 ⁇ l of potassium phosphate buffer ( ⁇ 7.0), 1% by weight of acrylonitrile was added thereto, and the mixture was reacted at 10 ° C. for 2 minutes.
  • the reaction was stopped by adding an equal volume of 1-Myric acid aqueous solution to the reaction solution, and the concentration of the generated acrylamide was measured by the same HP LC analysis as in Example 2. As a result, generation of acrylamide was detected in 4 out of 5 clones, and it was confirmed that nitrile hydratase activity was retained.
  • site-specific mutagenesis was performed by the same procedure as above, using plasmid DNA of clone No. 1 as type ⁇ . .
  • 10 ml of an LB liquid medium was prepared in a 30 ml test tube, and sterilized by an autoclave at 121 ° C for 20 minutes. After ampicillin was added to this medium to a final concentration of 100 ⁇ g / m 1, a loopful of the resulting clone No. 1 strain was inoculated into the medium and incubated at 37 ° C at 300 rpm for about 20 minutes. Cultured for hours. The culture 1 m After fractionating 1 into an appropriate centrifuge tube, the cells were separated by centrifugation (1500 rpm x 5 minutes). Subsequently, plasmid DNA of the clone No. 1 strain was prepared from the bacterial cells by the Arikari SDS extraction method.
  • the PCR reaction No. 4 was a 50 ⁇ l total system containing 50 pmo 1 each of the primer 1 described in SEQ ID NO: 5 in the sequence listing and the M13 primer M4 (sequence described in SEQ ID NO: 2 in the sequence listing). (According to the conditions described in the kit), 25 cycles of heat denaturation (98 ° C) for 15 seconds, annealing (55 ° C) for 30 seconds, and extension reaction (72 ° C) for 120 seconds. went.
  • PCR 5 had a total amount of 50 ⁇ l containing the MUT4 primer (sequence described in SEQ ID NO: 3 in the sequence listing) and the M13 primer RV (sequence described in SEQ ID NO: 4 in the sequence listing) at 50 pm 01, respectively.
  • the PCR was performed in the same manner as in PCR reaction No. 4 for the system (the composition was based on the conditions described in the kit). PCR reactions No. 4 and No. Agarosu electrophoresis using reaction solution each 5 1 of 5 (Agarosu concentration 1.0 wt. / 0) was analyzed for DNA amplification produced product, the amplified DN A product The existence was confirmed. Thereafter, an E. coli bank was prepared in exactly the same manner as in the case of clone No. 1.
  • clones arbitrarily selected from the Escherichia coli bank were inoculated in a loop of 10 ml of the same active expression medium as in the case of clone No. 1 at a rate of 37 ° C at 300 rpm for about 20 hours. Cultured. After dispensing 1 ml of the culture termination solution into an appropriate centrifuge tube, nitrile hydratase activity was measured. As a result, production of acrylamide was detected in 4 out of 5 clones, and it was confirmed that the product possessed nitrile hydratase activity.
  • the four clones were separated from the remaining 1 ml of the culture solution used for the measurement of nitrile hydratase activity, and plasmid DNA of each clone was prepared by alkaline SDS extraction. Subsequently, the nucleotide sequence of the nitrile hydratase structural gene of each clone was determined by the same operation as in the case of clone No. 1. As a result, in clone No. 2 shown in Table 2, the 6th Leu of ⁇ -subunit of nitrile hydratase was replaced by Met, and the 126th Phe of ct subunit was replaced by Tyr. .
  • site-specific mutagenesis was performed in the same manner as above using plasmid DNA of clone No. 2 in order to replace Ser at position 212 of the ⁇ -subunit with Tyr.
  • plasmid DNA of clone No. 2 in order to replace Ser at position 212 of the ⁇ -subunit with Tyr.
  • a 1 Om 1 LB liquid medium was prepared in a 30 ml 1 test tube, and sterilized by an autoclave at 121 ° C for 20 minutes. After adding ampicillin to this medium to a final concentration of 100 gZm, inoculate a platinum loop of the resulting clone No. 2 strain and incubate at 37 ° C ⁇ 300 rpm for about 20 hours. did. After 1 ml of the culture solution was collected in an appropriate centrifuge tube, the cells were separated by centrifugation (15000 rpm x 5 minutes). Subsequently, plasmid DNA of clone No. 1 strain was prepared from the cells by alkaline SDS extraction.
  • PCR reaction No. 6 was a 50 ⁇ l total system containing 50 pm o 1 of each of the primer described in SEQ ID NO: 6 in the sequence listing and the M13 primer M4 (sequence described in SEQ ID NO: 2 in the sequence listing). (Under the conditions described in the kit), repeated 25 cycles of heat denaturation (98 ° C) for 15 seconds, annealing (55 ° C) for 30 seconds, and extension reaction (72 ° C) for 120 seconds. . PCR reaction No.
  • clones arbitrarily selected from the Escherichia coli bank were inoculated in a loop of 10 ml of the same active expression medium as that of clone No. 1 at 37 ° C and 300 rpm.
  • the cells were cultured for about 20 hours.
  • nitrile hydratase activity was measured.
  • the production of acrylamide was detected in four of the five clones, confirming that it retained nitrinolehydratase activity.
  • the cells of this clone No. 3 were cultured to obtain the cells required for the reaction.
  • a typical culture example is shown below.
  • a medium having the following composition 100 ml of a medium having the following composition was prepared in a 500 ml baffled conical flask, and sterilized by an autoclave at 121 ° C for 20 minutes. After ampicillin was added to this medium to a final concentration of 50 ⁇ g Zm 1, one platinum loop of the cells of the above-mentioned clone No. 3 was inoculated, and the cells were incubated at 37 ° C. The cells were cultured for 0 hours. Only the cells were separated from the culture solution by centrifugation (15000 GX for 15 minutes), and then the cells were resuspended in 50 ml of physiological saline. I got
  • the reaction time was the same as in the above example, and the reactor was used only as the first reactor, which was the stirring tank. That is, the operation was performed in the same manner as in Example except that the reactor was changed to a 2 L glass flask, and the internal liquid amount was changed to 800 g.
  • the reaction liquid at the outlet of the first reactor was continuously fed to a 1-L glass flask previously charged with 400 g of water while stirring, as in the first reactor.
  • the same operation as in Example 1 was performed, except that the reaction solution was continuously extracted so as to keep the liquid level constant.
  • a nitrile compound can be hydrated at a high conversion to produce an aqueous solution of a high-concentration amide compound continuously, and no residual nitrile compound is observed.
  • the method of the present invention can be suitably used as an industrial amide compound production method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

糸田 » ァミド化合物の製造方法 技術分野
本発明はアミ ド化合物の製造方法に関するものであり、 より詳しくは、 二トリ ル化合物を高転化率で水和して高濃度ァミ ド化合物水溶液を連続的に製造する方 法であって、 反応後の残留二トリル化合物が少なく、 かつ工業的にも適したアミ ド化合物水溶液の製造方法に関する。 背景技術
アミ ド化合物の主要な製造方法の一つとして、 二トリル化合物を原料とする水 和法は多くの場合に用いられており、 特にアクリルアミ ドは、 古くからラネ一銅 等の金属銅触媒、 あるいは近年では二トリルヒドラターゼを含有する微生物菌体 およびその菌体処理物等の水和触媒により、 アタリロニトリルを原料として製造 されることが知られている。
上記において、 製品アクリルアミ ドは通常、 水溶液または結晶の形態で供給さ れるが、 それを使用する際には水性溶媒で希釈したり、 あるいは溶解して用いる ことが一般的である。 このため、 特に近年では水溶液の形態での供給がほとんど である。
アクリルアミ ド水溶液の供給においては、 製品形態は輸送および貯蔵等のコス トの観点から、 より高濃度のものが求められるが、 また一方、 輸送または貯蔵中 等では結晶の析出を防止する必要がある。 このため、 常温付近での輸送および貝宁 蔵等に適したアクリルアミ ド濃度は、 通常は 4 0〜5 0重量%程度である。
ところ力 従来の工業的製造技術にぉレ、ては、 反応工程でのァクリルアミ ド濃 度は製造プロセスおよび使用触媒の種類にもよる力 通常 4 0重量%未満である。 その理由は、 反応工程でァクリロニトリルおよび Zまたはアクリルアミ ドの濃度 を高めた場合は、 触媒活性が失活する、 反応が未完結となり原料ァタリロニトリ ルが残存する、 副生成物が増加する、 等といった傾向がみられ、 また反応熱の除 熱能力による制限等といった問題もあるからであり、 最終的な製品濃度のァクリ ルアミ ドのものを、 上記反応終了時に直接得ることは、 通常は困難であるからで ある。
従って、 現状のアク リルアミ ドの工業的製造プロセスにおいては、 原料ァクリ ロニトリルを多段供給する方法 (特公昭 5 7— 1 2 3 4号公報) や反応液の一部 循環による原料希釈法 (特公昭 5 8 - 3 5 0 7 7号公報) 等により原料ァクリ口 二トリルの濃度を制限したり、または原料ァクリロ二トリルの転化率を低く抑え、 反応液中のァクリルァミ ド濃度を 4 0重量%未満とすること等により、 触媒の失 活ゃ副生成物の増加を抑制している。 このため通常は、 得られたアクリルアミ ド 水溶液の濃度向上、 および Zまたは残存ァクリロニトリルの除去を目的とした濃 縮が行われることが多い。
ところが一般に、 アクリルアミ ド含有液の濃縮は減圧下に行われるが、 アタリ ルアミ ドは非常に反応性に富む重合性モノマーであるため、 濃縮中に重合を起こ す危険性が大きい。 このため、例えば濃縮時に酸素を導入して安定化させる方法、 一酸化窒素を共存させる方法、 および金属イオンを共存させる方法等が行われた りしているが、 重合を完全に防止することは困難である。
また特開平 1 1 一 8 9 5 7 5号公報には、 微生物の菌体または菌体処理物を利 用したアクリルアミ ドの製法が開示され、 該公報では原料アクリロニトリルを、 反応の開始時または反応途中のァクリロニトリル濃度が水性媒体中でのァクリル 二トリルの飽和濃度以上となるように添加することにより、 より少ない菌体量で 高濃度アクリルアミ ド濃度が得られる旨記載している。 これにより濃縮をせずと も、 濃度 4 0重量%以上のアクリルアミ ド水溶液を得ることは可能であるが、 反 応の触媒の使用量や反応温度と、 開始時または反応途中のァクリロ二トリル濃度 の関係によっては、 不都合を生じる場合がある。 例えば、 短時間のうちに反応を 完結させるような場合では、 初期の反応熱が大きく、 反応器に対して比較的大き な熱交換器が必要となったり、 あるいは逆に、 アクリロニトリル転化率を 9 9 % 以上とするために長時間の反応時間を要する。
以上の理由から、 アミ ド化合物の工業的な製法としては、 二トリル化合物の転 化率がより高く、 濃縮工程が不要で、 かつ高濃度アミ ド化合物がより効率的に得 られる方法が切望されていた。 発明の開示
本発明は以上の問題点を解決するためになされたものであり、 その目的とする ところは、 二トリル化合物を高転化率で転化して高濃度ァミ ド化合物を製造でき る方法であって、 残留二トリル化合物が極めて少なく、 連続操業の可能な、 工業 的にも適した製造方法を提供することにある。
本発明者らは上記目的を達成するために鋭意検討した結果、 二トリルヒ ドラタ ーゼを含有する微生物の菌体もしくは菌体処理物を水性媒体中で二トリル化合物 と接触させて反応させ、 次いで該反応液を、 プラグフロ一性の流域を有する条件 下でさらに反応させることが、 目的達成の上で極めて有効な手段であることを見 出し、 本発明を完成するに至った。
すなわち、 本発明は、
( 1 ) 二トリルヒ ドラタ一ゼを含有する微生物の菌体またはその菌体処理物を水 性媒体中で二トリル化合物と反応して、 ァミ ド化合物を連続定に製造する方法に おいて、該菌体または菌体処理物を水性媒体中で二トリル化合物と接触させた後、 得られた反応液を、 プラグフロー性の流域を有する条件下でさらに反応させるこ とを特徴とするアミ ド化合物の製造方法であり、
また、 (2 ) 二ト リル化合物がアク リ ロニト リルであり、 微生物の菌体またはそ の菌体処理物と接触させる際の、 水およびアクリ ロニトリルの比率が、 水 1重量 部に対しアクリロニトリル 0 . 4〜1 . 5重量部である上記 (1 ) に記載の製造 方法であり、
また、 (3 ) 微生物の菌体が、 微生物よりクローニングした二トリルヒ ドラタ一 ゼ遺伝子を任意の宿主で発現させた形質転換体である、 上記 (1 ) または (2 ) に記載の製造方法である。 発明を実施する最良の形態
本発明で重要な点は、 二ト リルヒ ドラターゼを含有する微生物菌体またはその 菌体処理物を二トリル化合物の二トリル基のァミ ド化触媒として用レ、、 特に副生 物の生成を抑制しつつ、 高転化率でしかも高濃度のアミ ド化合物水溶液を効率よ く製造できる点にある。
本発明にいう二ト リルヒ ドラターゼとは、 二トリル化合物を加水分解して対応 するアミ ド化合物を生成する能力をもつ酵素をいう。
ここで、 二トリルヒ ドラターゼを含有する微生物としては、 二トリル化合物を 加水分解して対応するアミ ド化合物を生成する能力を有する二トリルヒドラター ゼを産生し、 かつ 3 0重量%のァクリルアミ ド水溶液中で二ト リノレヒ ドラターゼ の活性を保持している微生物であれば、 特に制限されるものではない。 具体的に は、 ノカルティア(Nocardia)属、 コリネノくクテリゥム(Corynebacterium)属、 ノく チルス (Bacillus)属、 好熱性のバチルス属、 シユードモナス(Pseudomonas)属、 ミクロコッカス(Micrococcus)属、 口ドク口ウス(rhodochrous)種に代表される口 ドコッカス (Rhodococcus)属、 ァシネトパクター (Acinetobacter)属、 キサントバ クタ一 (Xanthobacter)属、 ス トレプトマイセス(Streptomyces)属、 リゾビゥム (Rhizobium)属、 クレブシエラ(Klebsiella)属、 ェンテロバクタ一 (Enterobacter) 属、 エルウイニァ(Erwinia)属、 エアロモナス(Aeromonas)属、 シトロパクター (Citrobacter)属、 ァクロモバクタ一 (Achromobacter)属、 ァグロパクテリゥム ( Agrobacterium)属またはサーモフィラ(thermophila)種に代表されるシユード ノカルディァ (Pseudonocardia)属に属する微生物を好適な例として挙げることが できる。
また、 該微生物よりクロ一ユングした二ト リノレヒ ドラタ一ゼ遺伝子を任意の宿 主で発現させた形質転換体も本発明でいう微生物に含まれる。 なお、 ここでいう 任意の宿主には、 後述の実施例のように大腸菌 (Escherichia coli)が代表例として 挙げられるが、 特に大腸菌に限定されるのものではなく、 枯草菌 (Bacillus subtilis)等のバチルス属菌、 酵母や放線菌等の他の微生物菌株も含まれる。 その 様なものの例として、 MT— 1 0 8 2 2 (本菌株は、 1 9 9 6年 2月 7日に茨城 県つくば巿東 1丁目 1番 3号の通商産業省工業技術院生命工学工業技術研究所に 受託番号 F E RM B P— 5 7 8 5として、 特許手続き上の微生物の寄託の国際 的承認に関するブダペスト条約に基づいて寄託されている。) が挙げられる。 ま た、 組換え D N A技術を用いて該酵素の構成アミノ酸の 1個または 2個以上を他 のアミノ酸で置換、 欠失、 削除もしくは挿入することにより、 アクリルアミ ド耐 性ゃァクリロ二トリル耐性、 温度耐性をさらに向上させた変異型の二トリルヒ ド ラターゼを発現させた形質転換体も、 本発明でいう微生物に含まれる。
上記したような微生物を用い、 アミ ド化合物を製造するに際しては通常、 該微 生物の菌体あるいは菌体処理物を用いる。 菌体は、 分子生物学、 生物工学、 遺伝 子工学の分野において公知の一般的な方法を利用して調製すればよレ、。 例えば、 L B培地や M 9培地等の通常液体培地に該微生物を植菌した後、 適当な培養温度 (一般的には、 2 0 °C〜5 0 °Cであるが、 好熱菌の場合は 5 0 °C以上でもよい) で生育させ、 続いて、 該微生物を遠心分離によって培養液より分離、 回収して得 る方法が挙げられる。
また、 本発明における微生物の菌体処理物は、 上記微生物菌体の抽出物ゃ磨碎 物、 該抽出物や磨砕物の二トリルヒドラターゼ活性画分を分離精製して得られる 後分離物、 該微生物菌体ゃ該菌体の抽出物、 磨砕物、 後分離物を適当な担体を用 いて固定化した固定化物等を指し、 これらは二トリルヒ ドラターゼの活性を有し ている限りは本発明の菌体処理物に相当するものである。 これらは、 単一の種類 を用いてもよいし、 2種類以上の異なる形態のものを同時あるいは交互に用レ、て もよい。
本発明において、 二トリルヒドラターゼを含有する微生物菌体、 あるいはその 微生物菌体の処理物を用いて、 二トリル化合物からァミ ド化合物を得る場合の反 応形式は、 2基以上の反応器が用いられ、 その前段の反応器に、 微生物の菌体も しくは菌体処理物、 二トリル化合物および水性媒体が供給される。 この際の反応 形式としては、特に限定するものではなく、例えば懸濁床として行ってもよいし、 固定床であってもよいが、 通常は、 反応熱の除熱の容易さから、 攪拌機を備えた 槽形反応器での懸濁床がより好ましく用いられる。
本発明において、 二トリル化合物の種類については特に限定されるものではな く、 具体的には炭素数が 2〜 2 0程度の二トリル化合物であり、 広い範囲のニト リル、 たとえば脂肪族二トリル、 芳香族二トリルなどが含まれる。 脂肪族二トリ ノレとしては、 炭素数 2〜 6の飽和または不飽和二トリル、 たとえば、 ァセトニト リル、 プロピオ二 トリル、 ブチロニト リル、 イソブチロニトリル. バレル二 トリ D ル、 イソバレロ二トリル、 力プロニトリルなどの脂肪族飽和モノ二トリル類;マ ロノ二トリル、 サクシノニトリル、 ァジポニトリノレなどの脂肪族飽和ジニトリル 類;アクリロニトリル、 メタアクリロニトリル、 クロトン二トリルなどの脂肪族 不飽和-トリルなどが挙げられる。 芳香族二トリルとしては、 ベンゾニトリル、 o—, m—, および p —クロ口べンゾニトリノレ、 o—, m—, および p—フノレオ 口べンゾニト リノレ、 o—, m—, および p—ニ トロべンゾニト リノレ、 o—, m—, および P — トル二トリル、 ベンジルシアナイド等が挙げられる。 中でもァクリロ 二トリル、 メタクリロニトリル、 およびクロトン二トリル等が好適な例として挙 げられる。
また、 本発明における水性媒体とは、 水、 またはリン酸塩等の緩衝剤、 硫酸塩 や炭酸塩等の無機塩、 アル力リ金属の水酸化物、 もしくはアミ ド化合物等を適当 な濃度で溶解させた水溶液をいう。
本発明において、 前段の反応器に供給する二トリル化合物の濃度は、 反応開始 時において該ニトリル化合物の飽和濃度以上の濃度である。 その濃度の上限は特 に制限されるものではないが、 あまりに大過剰の二トリル化合物の供給は、 反応 を完結させるために多くの触媒量および過大な容積をもつ反応器、 および除熱の ための過大な熱交換器等が必要となり、 設備面での経済的負担が大きくなる。 こ のため、 二トリル化合物の供給濃度としては、 それが全て対応するアミ ド化合物 に転化したときにその理論的な生成液濃度が、 アクリルアミ ドの場合は 4 0〜 8 0重量%の範囲となるように、 より具体的には水 1重量部に対しアタリロニトリ ル 0 . 4〜1 . 5重量部として供給することが好ましレ、。 またメタクリルアミ ド の場合はその理論的生成液濃度が 1 0〜 4 0重量%の範囲となるように、 より具 体的には水 1重量部に対しメタタリロニトリル 0 . 0 8〜0 . 5重量部として、 二トリル化合物および水を供給することが好ましい。
次いで本発明では、 上記前段の反応器から取り出された反応液はプラグフロー 性の流域を有する条件下で、 さらに反応を行わせる。 より具体的には前段の反応 器で得られた反応液は、 ブラグフ口一性の流域を有した後段の反応器に送液され る。 ここでプラグフロー性の流域を有した反応器とは、 一般的には管型反応器ま たはチューブラー反応器とも言われることのある反応器であり、 配管形状を有し た管の中で反応液をビストン流れで移動させながら反応を進行させるようにした もので、 反応熱を除熱するために、 二重管形式のものやシェル &チューブ形式等 のものを用いることができる。
しかしながら、 本発明ではプラグフロー性の流域を有する反応器として上記形 式のものに限られるわけではなく、 他の形式の反応器であっても反応液のショー トパスが起こり難い形態のものであれば、 十分それを使用することができる。 す なわち流速等、 条件次第で反応液がブラグフロー性の流域を有することができれ ば、 そして反応熱の除熱ができる構造のものであれば、 プラグフロー性の流域を 有した反応器として使用することができる。 例えば、 熱交換器におけるスパイラ ル型ゃプレート型であるもの、あるいは塔型反応器等、多様のものが使用できる。 さらには、これらの内部に反応液の流動状態を均一にもっていくための邪魔板(バ ッフル) や、 充填物を有している場合であっても、 流速等の条件次第で反応液の プラグフロー性の流域を有すれば、 プラグフロー性の流域を有した反応器として 使用することが可能である。
なお、 上記で示した前段の反応器、 および後段であるプラグフロー性の流域を 有した反応器はそれぞれが 1基ずつに限られるものではなく、 それぞれが単独で もまたは複数が直列にあるいは並列に並べられる形式であっても構わない。 また 上記前段および後段の反応における反応時間 (滞留時間) は触媒使用量や温度等 の条件にも左右され一定しないが、 通常はそれぞれが 0 . 5〜4 0時間の範囲で あり、 好ましくはそれぞれが 1〜2 0時間の範囲である。 また、 全反応時間のう ち、 前段の反応器の反応時間は、 全体の反応時間の 2 0〜9 9 %、 好ましくは 4 0〜 9 0 %であり、 後半の反応器の反応時間は、 全体の反応時間の 1〜 8 0 %、 好ましくは 1 0〜 6 0 %である。
触媒の使用量については、 反応条件や触媒の種類、 およびその形態により変化 するが、 通常は該微生物乾燥菌体重量換算で、 反応液に対し、 1 0〜5 0 0 0 0 重量 ppm、 好ましくは 5 0〜3 0 0 0 0重量 ppmである。
また、 アミ ド化反応は通常は常圧あるいは常圧近辺で行われるが、 水性媒体中 への二トリル化合物の溶解度を高めるために加圧下で行うこともできる。 また、 反応温度に関しては、 水性媒体の氷点以上であれば特に制限されるものではない o 力 通常は 0〜 50 °Cの範囲で行うのが好ましく、 より好ましくは 10〜 40 °C の範囲である。 また、 生成物が反応液中に晶出したスラリ一状態でも反応を行う ことができる。
また、 上記アミ ド化反応時における反応液の pHは、 二トリノレヒ ドラターゼ活 性が維持されている限りは特に制限されるものではないが、 好ましくは pH6〜 10の範囲であり、 より好ましくは pH 7〜 9の範囲である。
また、 本実施例では二トリルヒ ドラターゼ活性を保持したアミノ酸置換体の取 得を部位特異的な変異によって行っている。 しかし、 実施例において開示される 変異点と置換される塩基の種類に基づいて、 部位特異的な変異以外の方法で組替 えプラスミ ドを構築し、 それを宿主細胞に導入しても、 本実施例と同様の結果を 得ることが可能である。
例えば、 実施例にぉレ、て開示される変異点に相当する領域の D N Aの塩基配列 がァミノ酸置換後の配列となるような塩基配列を有する D N Aフラグメントを D N Aシンセサイザ一等で合成し、 得られたフラグメントと別途分離しておいた p PT— DB 1の該フラグメントに相当する領域とを置換することにより、 目的と する組替えプラスミ ドを取得することができる。 実施例
以下、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明は以下の実施 例によって何等限定されるものではない。 以下において、 反応液の H PLC分析 は、 HP L Cカラムとして ULTRON 80HG (50 X 8 πΐΓη) を用い、 1 OmMリン酸水溶液を展開液として使用したものであり、 アクリルアミ ドおよ びアタリロニトリルは 220 nmの吸光度により検出し、 濃度を測定したもので ある。
実施例 1
( 1 ) 二トリルヒ ドラタ一ゼ活性を保持したァミノ酸置換体の取得
αサブュニットの 6番目の L e uを Me tに置換するために、 特開平 9 2 75978で得られた p PT-DB 1プラスミ ド DN Aを铸型として、 宝酒造社 製の 「LA PCR i n v i t r o mu t a g e n e s i s K i t」 ¾用レヽ た部位特異的な変異導入を行った。 以後、 「LA P CR i n v i t r o m u t a g e n e s i s K i t」 を単にキットと呼ぶ。 以下の実施例では、 基本的 にキットの原理および操作方法を踏襲した。
30m lの試験管に 10 m 1の L B液体培地を調製し、 1 21 °C · 20分間 のオートクレーブにより滅菌した。 この培地に終濃度が 1 00 gZm 1 とな るようにアンピシリンを添加した後、 MT— 10822株を一白金耳植菌し、 3 7°C · 300 r p mにて約 20時間培養した。 該培養液 1 m 1を適当な遠心チ ュ一ブに分取した後、 遠心分離 (1 5000 r pmX 5分) により該菌体を分 離した。 続いてアル力リ SD S抽出法により該菌体より p PT— DB 1のプラス ミ ド DN Aを調製した。
p P T-DB 1のプラスミ ド DNA 1 μ gを铸型として 2種類の P CR反応 を行った。 PCR反応 No. 1は、 配列表の配列番号 1記載のプライマー及び M 13プライマー M 4 (配列表の配列番号 2に配列を記載) を各々 50 p m o 1含 む全量 50 μ 1の系 (組成はキットに記載の条件による) で、 熱変性 (98°C) 15秒、 アニーリング (55°C) 30秒、 伸長反応 (72°C) 1 20秒の条件 を 25サイクル繰り返すことにより行った。 PCR反応 No. 2は、 MUT4プ ライマ一 (配列表の配列番号 3に配列を記載) 及び Ml 3プライマー RV (配列 表の配列番号 4に配列を記載) を各々 50 p m o 1含む全量 50 1の系 (組 成はキットに記載の条件による) で、 PCR反応 No. 1と同様の操作により行 つた。 PCR反応 No. 1および No. 2の反応終了液各 5 μ 1を用いたァガ ロース電気泳動 (ァガロース濃度 1. 0重量%) により DN Α増幅産物の分析を 行ったところ、増幅 DN A産物の存在が確認できた。 Mi c r o c o n l O O (宝 酒造社製) を用いてそれぞれの PC R反応終了液より過剰なプライマーおよび d NT Pを除去した後、 TE (トリスヒ ドロキシメチルァミノメタン · EDT A緩 衝液) を加えて各々 50 μ 1の溶液を調製した。 該 TE溶液を各 0. 5 μ ΐず つ含む全量 47. 5 μ 1のァニーリング溶液 (組成はキットに記載の条件によ る) を調製し、 熱変性処理 (98°C) を 10分間行った後、 37 °Cまで 60分 間かけて一定の速度で冷却を行い、 続いて 3 7°Cで 1 5分間保持することによ つてアニーリング処理を行った。 アニーリング処理液に TAK ARAL A T a qを 0. 5 i 1加えて 7 2 °Cで 3分間加熱処理を行い、 ヘテロ 2本鎖を完成さ せた。 これに Ml 3プライマー M4 (配列表の配列番号 2に配列を記載) 及び M 1 3プライマー RV (配列表の配列番号 4に配列を記載) を各々 50 pmo l加 えて全量を 50 1 とした後、 熱変性 (98°C) 1 5秒、 ァニーリング (5 5°C) 30秒、 伸長反応 (7 2°C) 1 2 0秒の条件を 2 5サイクル繰り返すことによ る P CR反応 N o. 3を行った。 PCR反応 N o. 3の反応終了液 5 1を用 いたァガロース電気泳動 (シグマ社製タイプ V I I低融点ァガロース使用;ァガ ロース濃度 0. 8重量%) により DN A増幅産物の分析を行ったところ、 約 2. 0 k b pの増幅 DNA産物の存在が確認できた。 続いて、 ァガロースゲルから約 2. 0 Kb pの DN A断片のみを切り出し、 該ァガロース片 (約 0. l g) を細 かく粉砕し 1 m l の TE溶液に懸濁後、 5 5°Cで 1時間保温してァガロースを 完全に融解させた。 この融解液に対して常法に従ってフエノール Zクロロホルム 抽出とエタノール沈澱を行って該 DN A断片を精製し、 最終的に 1 0 μ 1 の Τ Εに溶解した。 精製した約 2. 0 k b pの増幅 DNA断片を制限酵素 E c o RI 及び H i n dill により切断した後、 この制限酵素処理液に対してフエノール Z クロ口ホルム抽出とェタノ一ル沈澱を行つて該 D N A断片を精製し、 最終的に 1 0 1の TEに溶解した。 同様に、 p P T— DB 1上の唯一の制限酵素サイ ト である E c o RIおよび H i n dill により p PT— DB 1を切断し、 ァガロー スゲル電気泳動 (シグマ社製タイプ V I I低融点ァガロース使用;ァガロース濃 度 0. 7%) を行い、 ァガロースゲルから約 2. 7Kb pの DNA断片のみを切 り出した。 切りだしたァガロース片 (約 0. 1 g) を細かく粉砕し lm 1の TE 溶液に懸濁後、 5 5°Cで 1時間保温してァガロースを完全に融解させた。 この 融解液に対してフェノール/ク口口ホルム抽出とェタノール沈澱を行つて該 D N A断片を精製し、 最終的に 1 0 μ 1の TEに溶解した。 この様にして得られた 増幅 DNA産物と p PT— DB 1断片を DNAライゲーシヨンキット (宝酒造社 製) を用いて連結させた後、 大腸菌 HB 1 0 1のコンビテントセル (東洋紡績社 製) を形質転換し、 大腸菌バンクを調製した。
30m l の試験管に 40 μ g Zm 1の硫酸第二鉄 .七水和物及び 1 0 μ g / m 1の塩ィヒコバルト ·二水和物を含む 1 0 m 1の LB液体培地 (以後、 活性発現 培地と呼ぶ) を調製し、 1 21 °C ' 20分間のォートクレーブにより滅菌した。 この培地に終濃度が 100 gZm 1 となるようにアンピシリンを添; した後、 該大腸菌バンクより任意に選別した 5クローンを各一白金耳ずっ植菌し、 3 7 °C · 300 r p mにて約 20時間培養した。 該培養終了液 1 m〗 をそれぞれ 適当な遠心チューブに分取した後、 遠心分離 (1 5000 r pmX 5分) によ り菌体を分離した。 該菌体を 200 μ 1のリン酸カリウムバッファ一 (ρΗ7. 0) に懸濁し、 これに 1重量%のアクリロニトリルを添加して 1 0°Cで 2分間 反応させた。反応液にこれと等量の 1 Myン酸水溶液を添加して反応を停止させ、 生成したアクリルアミ ド濃度を実施例 2と同様の HP LC分析により測定した。 その結果、 5クローン中 4クローンでアクリルアミ ドの生成が検出され、 二トリ ルヒドラターゼ活性を保持していることが確認された。
二トリルヒ ドラターゼ活性の測定に供した上記培養液の残部 1 m Iより該 4ク ローンの菌体をそれぞれ分離し、 アルカリ SDS抽出法により各クローンのプラ スミ ド DN Aを調製した。 続いて、 AB I社製のシークェンシングキットとォ一 トシ一タエンサー 373 Aを用いたプライマーェクステンション法により各ク口 —ンの二トリルヒ ドラタ一ゼ構造遺伝子の塩基配列を決定した。 その結果、 表 1 に示したクローン N o . 1において二トリルヒ ドラターゼの αサブュニッ卜の 6番目の L e uが Me tに置換されていた。 1
Figure imgf000012_0001
続いて、 αサブュニットの 1 26番目の P h eを Ty rに置換するために、 クローン No. 1のプラスミ ド DNAを铸型として、 上述と同様の操作により部 位特異的な変異導入を行った。
すなわち、 30m lの試験管に 10 m 1の L B液体培地を調製し、 1 21 °C · 20分間のォ一トクレーブにより滅菌した。 この培地に終濃度が 1 00 μ g/ m 1 となるようにアンピシリンを添加した後、 得られたクローン No. 1株を一 白金耳植菌し、 3 7 °C · 300 r p mにて約 20時間培養した。 該培養液 1 m 1を適当な遠心チューブに分取した後、 遠心分離 (1 5 0 00 r pmX 5分) により菌体を分離した。 続いてアル力リ SD S抽出法により該菌体よりクローン No. 1株のプラスミ ド DNAを調製した。
このクローン No. 1株のプラスミ ド DNA 1 μ gを鍀型として 2種類の P CR反応を行った。 PCR反応 No. 4は、 配列表の配列番号 5記載のプライマ 一及び Ml 3プライマー M4 (配列表の配列番号 2に配列を記載) を各々 50 p mo 1含む全量 50 μ 1の系 (組成はキッ トに記載の条件による) で、 熱変性 ( 98 °C) 1 5秒、 アニーリ ング (55°C) 30秒、 伸長反応 (72°C) 1 2 0秒の条件を 25サイクル繰り返すことにより行った。 PCR反応 No. 5は、 MUT4プライマー (配列表の配列番号 3に配列を記載) 及び Ml 3プライマー R V (配列表の配列番号 4に配列を記載) を各々 50 p m 0 1含む全量 50 μ 1の系 (組成はキットに記載の条件による) で、 PCR反応 No. 4と同様の操 作により行った。 PCR反応 No. 4および No. 5の反応終了液各 5 1を 用いたァガロース電気泳動 (ァガロース濃度 1. 0重量。 /0) により DNA増幅産 物の分析を行ったところ、 増幅 DN A産物の存在が確認できた。 以後、 クローン No. 1の場合と全く同じ操作により大腸菌バンクを調製した。
該大腸菌バンクより任意に選別した 5クローンをクローン No. 1の場合と同 じ活性発現培地 1 0 m 1に各一白金耳ずっ植菌し、 3 7°C · 300 r pmにて 約 20時間培養した。 該培養終了液 1 m 1をそれぞれ適当な遠心チューブに分取 した後、 二トリルヒ ドラターゼ活性を測定した。 その結果、 5クローン中 4クロ ーンでアクリルアミ ドの生成が検出され、 二トリルヒ ドラターゼ活性を保持して いることが確認された。
二トリルヒ ドラタ一ゼ活性の測定に供した上記培養液の残部 1 m 1より該 4ク ローンの菌体をそれぞれ分離し、 アルカリ SDS抽出法により各クローンのプラ スミ ド DNAを調製した。 続いて、 クローン No. 1の場合と同様の操作により 各クローンの二トリルヒ ドラターゼ構造遺伝子の塩基配列を決定した。その結果、 表 2に示したクローン N o . 2において二トリルヒ ドラターゼの αサブュニッ トの 6番目の L e uが M e tに、 ctサブュニットの 1 26番目の P h eが T y rにそれぞれ置換されていた。 2
Figure imgf000014_0001
続いて、 βサブュニットの 2 1 2番目の S e rを Ty rに置換するために、 クローン No. 2のプラスミ ド DNAを铸型として、 上述と同様の操作により部 位特異的な変異導入を行った。
すなわち、 30m 1の試験管に 1 Om 1の LB液体培地を調製し、 1 21 °C · 20分間のォ一トクレーブにより滅菌した。 この培地に終濃度が 100 gZ m】 となるようにアンピシリンを添加した後、 得られたクローン No. 2株を一 白金耳植菌し、 3 7°C · 300 r pmにて約 20時間培養した。 該培養液 1 m 1を適当な遠心チューブに分取した後、 遠心分離 (1 5000 r pmX 5分) により菌体を分離した。 続いてアルカリ SDS抽出法により該菌体よりクロ一ン No. 1株のプラスミ ド DNAを調製した。
このクローン No. 2のプラスミ ド DNA 1 μ gを铸型として 2種類の P C R反応を行った。 PCR反応 No. 6は、 配列表の配列番号 6記載のプライマー 及び M 13プライマー M 4 (配列表の配列番号 2に配列を記載) を各々 50 pm o 1含む全量 50 μ 1の系 (組成はキットに記載の条件による) で、 熱変性 (9 8°C) 1 5秒、 アニーリング (55°C) 30秒、 伸長反応 (72°C) 1 20秒 の条件を 25サイクル繰り返すことにより行った。 PCR反応 No. 7は、 MU T 4プライマ一 (配列表の配列番号 3に配列を記載) 及び M 1 3プライマー R V (配列表の配列番号 4に配列を記載) を各々 50 p m o 1含む全量 50 1の 系 (組成はキットに記載の条件による) で、 PCR反応 No. 6と同様の操作に より行った。 PCR反応 No. 6および No. 7の反応終了液各 5 μ 1を用い たァガロース電気泳動 (ァガロース濃度 1. 0重量。 /。) により DNA増幅産物の 分析を行ったところ、 増幅 DN Α産物の存在が確認できた。 以後、 クローン No. 1の場合と全く同じ操作により大腸菌バンクを調製した。
該大腸菌バンクより任意に選別した 5クローンをクローン No. 1の場合と同 じ活性発現培地 1 0 m 1に各一白金耳ずっ植菌し、 37°C · 300 r pmにて 約 20時間培養した。 該培養終了液 1 m 1をそれぞれ適当な遠心チューブに分取 した後、 二トリルヒ ドラターゼ活性を測定した。 その結果、 5クローン中 4クロ —ンでアクリルアミ ドの生成が検出され、 二トリノレヒ ドラターゼ活性を保持して いることが確認された。
二トリルヒ ドラターゼ活性の測定に供した上記培養液の残部 1 m】より該 4ク ローンの菌体をそれぞれ分離し、 アルカリ SDS抽出法により各クローンのプラ スミ ド DNAを調製した。 続いて、 クローン No. 1の場合と同様の操作により 各クローンの二トリノレヒドラターゼ構造遺伝子の塩基配列を決定した。その結果、 表 3に示したクローン N o. 3において二トリノレヒ ドラターゼの; 3サブュニッ トの 2 1 2番目の S e rが Ty rに置換されていた。 3
Figure imgf000015_0001
このクローン NO. 3の菌体を培養し、 反応に必要な菌体を得た。 以下典型的 な培養例を示す。
500m lのバッフル付三角フラスコに下記の組成の培地 1 00m lを調製し、 1 2 1 °C · 20分間のオートクレーブにより滅菌した。 この培地に終濃度が 5 0 μ gZm 1 となるようにアンピシリンを添加した後、 上記クローン NO. 3 の菌体を一白金耳植菌し、 3 7°C · 1 3 0 r pmにて 2 0時間培養した。 遠心 分離 ( 1 5000 G X 1 5分間) により菌体のみを培養液より分離し、 続いて、 50m lの生理食塩水に該菌体を再懸濁した後に、 再度遠心分離を行って湿菌体 を得た。
培地組成 酵母エキス トラク ト 5. 0 g/L
ポリぺプトン 1 0. 0 g/L
N a C 1 5. 0 g/L
塩化コバルト .六水和物 1 0. O g/
硫酸第二鉄 ·七水和物 40. 0 m g pH7. 5
(2) アタリロニトリルの水和によるアクリルアミ ドの合成反応
上記の培養方法により得られた湿菌体 2重量部を 0. 3mM-N a OH水溶液 98重量部に懸濁し、 この懸濁液とアクリロニトリルを各々 50 gZh、 30 g /hで、 第 1反応器として予め 400 gの水を仕込んだ 1 Lガラス製フラスコで 攪拌を行いながら連続的にフィードし、 液面レベルを一定に保つように 80 g/ hづっ反応液を連続的に抜き出した。 その液を第 2反応器として内径 5mmのテ フロン製チューブ 2 Omに連続的にフィードした。 反応温度は、 いずれも約 10 〜20°Cの水浴中に上記第 1反応器および第 2反応器を浸漬し、 内部の液温が 15 °Cになるように制御した。
反応開始から 200時間後に H P L C分析により、 第 2反応器出口での反応液 の分析を行った結果、 反応液中にはアクリルアミ ドのみが存在 (濃度 = 50重 量。 /。) しており、 アクリロニトリルは検出限界 (100重量!3 111) 以下であつ た。
比較例 1
反応時間は上記実施例の場合と同様とし、 反応器を第 1反応器である撹拌槽の みとして行った。 すなわち、 反応器を 2 Lのガラス製フラスコに変更し、 そして 内部の液量を 800 gに変更した以外は、 実施例と同様に操作した。
反応開始から 200時間後に H P L C分析により、 反応器出口の反応液の分析 を行った結果、反応液中のァクリルアミ ドは 48重量0 /0、アタリロニトリルは 1. 9重量%が検出された。 このように、 本比較例では未反応のアクリロニトリルが 残存しており、 反応が未完結であることが確認された。
比較例 2
第 2反応器として、 第 1反応器と同様に予め 400 gの水を仕込んだ 1 Lガラ ス製フラスコに、 攪拌を行いながら、 第 1反応器出口の反応液を連続的にフィー ドし、 液面レベルを一定に保つように連続的に反応液を抜き出す様操作を行う以 外は、 実施例 1と同様に操作を行った。
反応開始から 200時間後に H PLC分析により、 第 2反応器出口での反応液 の分析を行った結果、 反応液中にはアクリルアミ ドは 49. 5%であり、 ァクリ ロニトリル力 S 3 0 0 0重量 p p m検出された。 本比較例でも未反応のァクリ口. トリルが残存しており、 反応が未完結であることが確認された。 発明の効果
本発明によれば、 二トリル化合物を高い転化率で水和して高濃度アミ ド化合物 水溶液を連続的に製造することができ、 残留二トリル化合物も認められず、 また 比較的短時間のうちに容易に製造することが可能であり、 本発明の方法は、 工業 的なアミ ド化合物の製法として好適に用いることができる。

Claims

清 求 の 範 囲
1 . 二トリルヒ ドラターゼを含有する微生物の菌体またはその菌体処理物を水性 媒体中で二トリル化合物と反応して、 アミ ド化合物を連続的に製造する方法にお いて、該菌体又はその菌体処理物を水性媒体中で二トリル化合物と接触させた後、 得られた反応液を、 ブラダフ口一性の流域を有する条件下でさらに反応させるこ とを特徴とするアミ ド化合物の製造方法。
2 . 二トリル化合物がアクリロニトリルであり、 微生物の菌体またはその菌体処 理物と接触させる際の、 水およびアクリロニ トリルの比率が、 水 1重量部に対し アクリロニトリル 4〜1 . 5重量部である 1に記載の製造方法。
3 . 微生物の菌体が、 微生物よりクローニングした二トリルヒ ドラターゼ遺伝子 を任意の宿主で発現させた形質転換体である、 1または 2に記載の製造方法。
PCT/JP2001/002333 2000-03-29 2001-03-23 Procede de production de composes amidiques WO2001073101A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU42769/01A AU767517B2 (en) 2000-03-29 2001-03-23 Process for producing amide compounds
DE60132053T DE60132053T2 (de) 2000-03-29 2001-03-23 Verfahren zur herstellung von amidverbindungen
EP01915730A EP1182260B1 (en) 2000-03-29 2001-03-23 Process for producing amide compounds
US09/980,102 US6849432B2 (en) 2000-03-29 2001-03-23 Process for producing amide compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000091203 2000-03-29
JP2000-91203 2000-03-29

Publications (1)

Publication Number Publication Date
WO2001073101A1 true WO2001073101A1 (fr) 2001-10-04

Family

ID=18606692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002333 WO2001073101A1 (fr) 2000-03-29 2001-03-23 Procede de production de composes amidiques

Country Status (8)

Country Link
US (1) US6849432B2 (ja)
EP (1) EP1182260B1 (ja)
KR (1) KR100549598B1 (ja)
CN (1) CN1279175C (ja)
AU (1) AU767517B2 (ja)
DE (1) DE60132053T2 (ja)
TW (1) TWI296652B (ja)
WO (1) WO2001073101A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116781A1 (ja) * 2006-04-06 2007-10-18 Mitsui Chemicals, Inc. アクリルアミドの製造方法
WO2007116824A1 (ja) * 2006-04-06 2007-10-18 Mitsui Chemicals, Inc. アクリルアミドの製造方法
WO2014091676A1 (ja) * 2012-12-10 2014-06-19 三菱レイヨン株式会社 アクリルアミドの製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053253A1 (fr) * 2000-01-17 2001-07-26 Mitsui Chemicals, Inc. Procede de purification d'un compose amide
DE10120555A1 (de) * 2001-04-26 2002-10-31 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung einer wässrigen Acrylamidlösung mit einem Biokataysator
TWI312010B (en) * 2001-06-22 2009-07-11 Mitsubishi Rayon Co A producing method of using control reactive temperature of a living catalyst of chemical compound
US7354141B2 (en) 2001-12-04 2008-04-08 Labcyte Inc. Acoustic assessment of characteristics of a fluid relevant to acoustic ejection
EP1988172A4 (en) * 2006-02-24 2012-03-14 Mitsui Chemicals Inc METHOD OF MANUFACTURING (METH) ACRYLAMIDE
JPWO2007132601A1 (ja) * 2006-05-15 2009-09-24 三井化学株式会社 (メタ)アクリルアミドの製造方法
AU2009224295B2 (en) * 2008-03-14 2015-01-22 Mitsubishi Chemical Corporation Process for production of amide compounds
US7753636B2 (en) * 2008-03-25 2010-07-13 Hennig Emmett D Adjustable bale mover spikes
KR101647165B1 (ko) * 2008-10-03 2016-08-09 다이야니트릭스 가부시키가이샤 아크릴아마이드의 제조방법
CN103571898A (zh) * 2012-07-27 2014-02-12 上海市农药研究所 利用管壳式反应器的微生物催化生产丙烯酰胺的工艺和装置
CN107779482A (zh) * 2017-12-05 2018-03-09 山东宝莫生物化工股份有限公司 一种高浓度丙烯酰胺的生产工艺
EP3778911A4 (en) * 2018-03-28 2021-12-22 Mitsui Chemicals, Inc. METHOD OF PREPARING AN AMIDE COMPOUND

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248968A (en) * 1978-03-29 1981-02-03 Nitto Chemical Industry Co., Ltd. Process for producing acrylamide or methacrylamide utilizing microorganisms
US4440858A (en) * 1979-05-02 1984-04-03 Nitto Chemical Industry Co., Ltd. Process for the continuous production of acrylamide or methacrylamide using microorganisms
JPH1189575A (ja) * 1997-09-19 1999-04-06 Mitsui Chem Inc 微生物を用いたアミド化合物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524077A (en) * 1983-11-14 1985-06-18 Monsanto Company Liquid 2-hydroxy-4-methylthiobutyric acid and process for the preparation thereof
US5648256A (en) * 1990-02-28 1997-07-15 Nitto Chemical Industry Co., Ltd. Gene encoding a polypeptide having nitrile hydratase activity, a transformant containing the gene and a process for the production of amides using the transformant
CN1243825C (zh) * 1996-02-14 2006-03-01 三井化学株式会社 新型腈水合酶
JP3408737B2 (ja) * 1998-03-16 2003-05-19 三井化学株式会社 ニトリルヒドラターゼの活性化に関与するタンパク質及びそれをコードする遺伝子
US6153415A (en) * 1998-04-29 2000-11-28 Board Of Trustees Operating Michigan State University Method for producing amide compounds using a nitrile hydratase from a thermophilic bacillus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248968A (en) * 1978-03-29 1981-02-03 Nitto Chemical Industry Co., Ltd. Process for producing acrylamide or methacrylamide utilizing microorganisms
US4440858A (en) * 1979-05-02 1984-04-03 Nitto Chemical Industry Co., Ltd. Process for the continuous production of acrylamide or methacrylamide using microorganisms
JPH1189575A (ja) * 1997-09-19 1999-04-06 Mitsui Chem Inc 微生物を用いたアミド化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEO YOUNG ET AL.: "Continuous production of acrylamide using immobilized brevibacterium sp. CH2 in a two-stage packed bed reactor", BIOTECHNOL. LETT., vol. 12, no. 1, 1990, pages 23 - 28, XP002942260 *
See also references of EP1182260A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116781A1 (ja) * 2006-04-06 2007-10-18 Mitsui Chemicals, Inc. アクリルアミドの製造方法
WO2007116824A1 (ja) * 2006-04-06 2007-10-18 Mitsui Chemicals, Inc. アクリルアミドの製造方法
JP2012061010A (ja) * 2006-04-06 2012-03-29 Mitsui Chemicals Inc アクリルアミドの製造方法
JP2012090643A (ja) * 2006-04-06 2012-05-17 Mitsui Chemicals Inc アクリルアミドの製造方法
JP4959683B2 (ja) * 2006-04-06 2012-06-27 三井化学株式会社 アクリルアミドの製造方法
JP4975735B2 (ja) * 2006-04-06 2012-07-11 三井化学株式会社 アクリルアミドの製造方法
WO2014091676A1 (ja) * 2012-12-10 2014-06-19 三菱レイヨン株式会社 アクリルアミドの製造方法
AU2013358494B2 (en) * 2012-12-10 2015-11-26 Mitsubishi Chemical Corporation Method for producing acrylamide
JPWO2014091676A1 (ja) * 2012-12-10 2017-01-05 三菱レイヨン株式会社 アクリルアミドの製造方法
US10160982B2 (en) 2012-12-10 2018-12-25 Mitsubishi Chemical Corporation Method for producing acrylamide

Also Published As

Publication number Publication date
CN1320705A (zh) 2001-11-07
US6849432B2 (en) 2005-02-01
EP1182260B1 (en) 2007-12-26
TWI296652B (en) 2008-05-11
DE60132053D1 (de) 2008-02-07
AU4276901A (en) 2001-10-08
KR20020020898A (ko) 2002-03-16
KR100549598B1 (ko) 2006-02-03
AU767517B2 (en) 2003-11-13
CN1279175C (zh) 2006-10-11
US20020160466A1 (en) 2002-10-31
EP1182260A1 (en) 2002-02-27
DE60132053T2 (de) 2008-12-11
EP1182260A4 (en) 2003-04-23

Similar Documents

Publication Publication Date Title
WO2001073101A1 (fr) Procede de production de composes amidiques
JP4970276B2 (ja) アミド化合物の製造方法
JP4672161B2 (ja) アミド化合物の製造方法
CN101426924A (zh) (甲基)丙烯酰胺的制造方法
JPWO2002050297A1 (ja) 微生物触媒を用いたアミド化合物の製造方法
KR100482686B1 (ko) 아미드화합물의 정제방법
AU727092B2 (en) Protein participating in activation of nitrile hydratase and gene encoding same
JP3827420B2 (ja) 微生物を用いたアミド化合物の製造方法
CN101370942B (zh) (甲基)丙烯酰胺的制造方法
JP4959059B2 (ja) アミド化合物の精製方法
JP2019176835A (ja) アミド化合物の製造方法
JP2013162746A (ja) アミド化合物の製造方法
KR20140024001A (ko) 아크릴아미드 수용액의 제조 방법
JP2012062268A (ja) アミド化合物の精製方法
JP6098510B2 (ja) アクリルアミド水溶液の製造方法
JP4709186B2 (ja) 微生物触媒を用いたアミド化合物の製造方法
CN101415832A (zh) 丙烯酰胺的制造方法
JP2012031126A (ja) アミド化合物の精製方法
JP2007295933A (ja) 微生物触媒を用いたアミド化合物の製造方法
JP2014079199A (ja) 原料混合供給によるアミド化合物の製造方法およびアミド化合物の製造装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

WWE Wipo information: entry into national phase

Ref document number: 42769/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001915730

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09980102

Country of ref document: US

Ref document number: 1020017015327

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001915730

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017015327

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020017015327

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001915730

Country of ref document: EP