WO2001069828A1 - Appareil et procede de transmission de donnees - Google Patents

Appareil et procede de transmission de donnees Download PDF

Info

Publication number
WO2001069828A1
WO2001069828A1 PCT/JP2001/001898 JP0101898W WO0169828A1 WO 2001069828 A1 WO2001069828 A1 WO 2001069828A1 JP 0101898 W JP0101898 W JP 0101898W WO 0169828 A1 WO0169828 A1 WO 0169828A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission
error
station apparatus
data transmission
Prior art date
Application number
PCT/JP2001/001898
Other languages
English (en)
French (fr)
Inventor
Mitsuru Uesugi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP01912257A priority Critical patent/EP1179905A4/en
Priority to AU41093/01A priority patent/AU4109301A/en
Priority to US09/959,607 priority patent/US6999497B2/en
Publication of WO2001069828A1 publication Critical patent/WO2001069828A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Definitions

  • the present invention relates to a mobile phone in a mobile communication system to which a CDMA (Code Division Multiple Access) method is applied, a mobile station device such as an information terminal device having a mobile phone function and a computer function, and the mobile station device.
  • the present invention relates to a data transmission device and a data transmission method applied to a base station device or the like that performs wireless communication with a base station device.
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are conventional data transmission apparatuses.
  • the base station apparatus 1 shown in FIG. 1 includes a buffer 10, a format converter 11, a spreader 12, a modulator 13, a variable gain amplifier 14, a demodulator 15, It includes a diffusion unit 16, an error detection unit 1 ⁇ , and an SIR detection unit 18.
  • the output signal of the variable gain amplifier 14 is transmitted from the antenna via the circuit 19.
  • the signal received by the antenna is output to the demodulation unit 15 via the circuit 19.
  • the mobile station apparatus 2 shown in FIG. 1 includes a sofa 30, a format converter 31, a spreader 32, a modulator 33, a variable gain amplifier 34, a demodulator 35, It includes a despreading unit 36, an error detecting unit 37, and an SIR detecting unit 38.
  • the output signal of the variable gain amplifier 34 is sent to the antenna via the circuit Sent from The signal received by the antenna is output to the demodulation unit 35 via the circuit 39.
  • the data when data is transmitted from the base station apparatus 1 to the mobile station apparatus 2, the data is buffered in the buffer 10, then is formatted into a predetermined format by the format conversion section 11, and is spread. Spread in part 1 and 2.
  • the spreading factor in the spreading section 12 is determined when a channel is assigned, and is fixed thereafter.
  • the spread data is modulated by the modulator 13, further amplified by the variable gain amplifier 14, and transmitted from the antenna via the sunshine 19.
  • This transmission signal is received by the antenna of the mobile station device 2, input to the demodulation unit 35 via the circuit 39, demodulated here, and then despread by the despreading unit 36. As a result, received data is obtained.
  • the SIR detection section 38 outputs a TPC command (transmission power control signal) requesting the transmission side to raise or lower the level according to the reception level.
  • the error detection unit 37 outputs a retransmission request signal when an error is detected from an error detection bit of the received data.
  • the TPC command and the retransmission request signal are transmitted to base station apparatus 1 via format conversion section 31.
  • the despreading unit 16 of the base station apparatus 1 varies the gain of the variable gain amplifier 14 according to the request so as to meet the request.
  • base station apparatus 1 when a retransmission request is made, base station apparatus 1 having received the retransmission request signal retransmits the transmission data.
  • Such control is similarly performed from the mobile station apparatus 2 to the base station apparatus 1.
  • data communication is performed with a fixed spreading factor.
  • the spreading factor is fixed and Is used so that the receiving performance can be obtained.
  • high-speed transmission power control is performed to maintain the quality.
  • the accuracy of the transmission power control greatly affects the performance, and the control delay during high-speed fading is particularly fatal. That is, if the transmission power control is not executed with high accuracy by the TPC command, the desired quality cannot be maintained.Furthermore, in fast fading, the tracking speed is slow, so that the mobile station device cannot be tracked. There is a problem that efficiency is deteriorated.
  • the W_CDMA system also transmits from multiple antennas, but there is a problem that even if transmission is performed from multiple antennas, the performance improvement as transmission diversity is not so large. Disclosure of the invention
  • An object of the present invention is to provide a data transmission device and a data transmission method capable of improving transmission efficiency, suppressing transmission power as much as possible, and improving diversity performance in transmission from a plurality of antennas. It is to be.
  • the purpose of this is to focus on the fact that it is possible to combine the despread data and the received data can be extracted if the combined result achieves the specified quality.
  • the retransmission is repeated until the data is OK, and the quality is improved by combining the retransmissions at each retransmission. As a result, the transmission is performed with the optimal spreading factor.
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are conventional data transmission apparatuses.
  • FIG. 2 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 1 of the present invention.
  • Figure 3A shows that the signal quality gradually increases when the line condition is good.
  • Figure 3B shows that the signal quality gradually increases when the line condition is poor.
  • FIG. 4 is a diagram showing a base station apparatus which is a data transmission apparatus according to Embodiment 2 of the present invention, and Block diagram showing the configuration of the mobile station device,
  • FIG. 5 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram showing configurations of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 4 of the present invention.
  • FIG. 7 is a block diagram showing configurations of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 5 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 6 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a base station apparatus, which is a data transmission apparatus according to Embodiment 7 of the present invention, and a despreading / combining unit of a mobile station apparatus.
  • FIG. 10 is a block diagram showing a configuration of a despreading / combining unit of a base station apparatus and a mobile station apparatus according to Embodiment 8 of the present invention (
  • FIG. 11 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 9 of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 10 of the present invention.
  • FIG. 13 is a block diagram showing configurations of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 11 of the present invention
  • FIG. 14 is a block diagram showing configurations of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 12 of the present invention.
  • FIG. 15 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 13 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 1 of the present invention.
  • the base station apparatus 100 shown in FIG. 2 includes a buffer 110, a format converter 111, a spreader 112, a modulator 113, a variable gain amplifier 114, and a demodulator. It comprises a section 115, a despreading / combining section 116, and an error detecting section 117.
  • the output signal of the variable gain amplifier 114 is transmitted from the antenna via the circuit 109. Also, the signal received by the antenna is output to the demodulation unit 115 via the communication unit 119.
  • the mobile station apparatus 101 shown in FIG. 2 includes a buffer 130, a format conversion section 13 1, a spreading section 13 2, a modulation section 13 3, and a variable gain amplifier 13. 4, a demodulation unit 135, a despreading / combining unit 135, and an error detection unit 133.
  • the output signal of the variable gain amplifier 134 is transmitted from the antenna via the circuit 139.
  • the signal received by the antenna is output to the demodulation unit 135 via the circuit 139.
  • the feature of the first embodiment is that the diffusion unit 112 (or 132), the despreading / combining unit 116 (or 133), and the error detection unit 117 (or 133) ) After the despreading on the receiving side, the spreading section 1 1 2 transmits the transmission data with a low spreading factor (hereinafter referred to as “low spreading factor”) so that a predetermined signal quality cannot be obtained unless the line condition is good. It is something that spreads.
  • a low spreading factor a low spreading factor
  • the despreading / combining unit 116 despreads the received signal after demodulating it, holds the despread received data, combines it with the next received data, and outputs it to the error detection unit 117. Also, when the combined data is combined with the next received data, the process is repeated. Then, the despreading / combining unit 1 16 sends the OK flag from the error detection unit 1 17 When is input, reset the held data and repeat the above process again.
  • the error detector 1 17 formats the NG flag that sends a retransmission request to the transmitting side when an error is detected from the error detection bit of the received data transmitted from the despreading / combining unit 1 16. Outputs to unit 1 1 and outputs an OK flag if no error is detected.
  • the spread data is modulated by the modulator 113, further amplified by the variable gain amplifier 114, and transmitted from the antenna via the switch 119.
  • This transmission signal is received by the antenna of the mobile station device 101, and the transmission
  • the signal is input to the demodulation unit 135 via the demodulation unit 13, and is demodulated.
  • Base station apparatus 100 that has received the retransmission request instructs demodulation section 115 to retransmit the data held in buffer 110.
  • the data received this time is combined with the previously held data.
  • the error detection unit 1 If no error is detected from the combined received data, the error detection unit 1
  • the OK flag is output to the format conversion section 13 1 and the despreading Z synthesis section 1 36.
  • the received data is obtained, an OK flag is transmitted to the base station apparatus 100, and the data currently being held by the despreading Z combining section 136 is reset. Also, the data currently held in buffer 110 is reset. You.
  • FIG. 3A is a diagram showing that signal quality is improved by combining data at each retransmission when the line condition is good.
  • Fig. 3B is a diagram showing that the signal quality is improved by synthesizing the data every time retransmission is performed when the line condition is poor.
  • the vertical axis (P) represents transmission power
  • the horizontal axis (T) represents time.
  • the broken line 151 indicates the amount of transmission power required to secure a predetermined signal quality when the line condition is good.
  • the broken line 152 indicates the amount of transmission power required to ensure a predetermined signal quality when the line condition is poor.
  • the broken line 15 1 indicates a value lower than the broken line 15 2. This means that better line conditions require less transmit power.
  • data 161 transmitted from base station apparatus 100 to mobile station apparatus 101 is despread by despreading / combining section 1336 and then held.
  • the transmission power of the base station apparatus 100 is weak and the mobile station apparatus 101 does not reach a predetermined communication quality, in this case, an error is detected by the error detection unit 1337, A retransmission request is made to the base station apparatus 100.
  • the base station apparatus 100 having received the retransmission request retransmits the same data 162 as the data 16 1 to the mobile station apparatus 101 at t2.
  • the data 16 2 received by the mobile station apparatus 101 is combined with the data 16 1 already held by the despreading / combining unit 13 36. If no error is detected from the combined received data, a 0K flag is transmitted to base station apparatus 100.
  • data 17 1 is transmitted at T 1
  • data 17 2 is transmitted at T 2
  • the combination of data 17 1 and data 17 2 is performed in the same manner as described above. Is done.
  • an error is detected by the error detection unit 1337.
  • data 1 73 and data 1 ⁇ ⁇ ⁇ ⁇ 4 are combined at T4, and a predetermined signal quality is ensured.
  • the transmission power for ensuring the predetermined communication quality can be small, and the number of retransmissions can be small. (In the case of Fig. 3A, the number of retransmissions is 1)
  • transmission is performed with a low spreading factor, retransmission is repeated until data becomes OK, and the quality is improved by combining each retransmission.
  • transmission can be performed with an optimal spreading factor. As a result, there is no delay in reflecting the optimal rate, and there is no need to notify the rate.
  • transmission power control for maintaining average quality as in the related art need not be performed, a large dynamic range of a demodulation system is not required, and transmission power can be suppressed.
  • FIG. 4 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 2 of the present invention.
  • portions common to FIG. 2 are denoted by the same reference numerals as in FIG. 2, and description thereof will be omitted.
  • FIG. 4 differs from FIG. 2 in an error detection section 2 17 of base station apparatus 200 and an error detection section 2 37 of mobile station apparatus 201.
  • the error detector 2 17 (or 2 3 7) is the despread / combiner 1 1 6 (or 1 3 6) Only when the received data sent from the device is properly received, the number of the properly received data ( ⁇ packet number) is transmitted to the transmitting side.
  • the OK packet number is transmitted to the transmitting side only when the received data is properly received. There is no need to send a request signal.
  • FIG. 5 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 3 of the present invention.
  • the same reference numerals as in FIG. 2 denote the same parts as in FIG. 2, and a description thereof will be omitted.
  • FIG. 5 differs from FIG. 2 in that a channel change section 311 is added to base station apparatus 300 and a channel change section 312 is added to mobile station apparatus 301.
  • the channel change section 311 (or 312) is connected between the error detection section 1 1 7 (or 1 3 7) and the modulation section 1 1 3 (or 1 3 3).
  • an instruction is given to change the channel (eg, frequency) that is the transmission medium of the signal.
  • the channel which is the transmission medium of the signal, is changed at the time of retransmission, so that a diversity effect is obtained, and the line is in a state of low quality for a long time during slow fading. Can be avoided.
  • it may be executed periodically instead of being executed every time retransmission is performed.
  • FIG. 6 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 4 of the present invention.
  • the same parts as in FIG. 2 are denoted by the same reference numerals as in FIG. 2, and the description thereof will be omitted.
  • FIG. 6 differs from FIG. 2 in that base station apparatus 400 and mobile station apparatus 401 have a multicarrier transmission / reception configuration. In this example, it is assumed that frequencies 1 and f2 and F1 and F2 are used.
  • the S / P (Serial / Parallel) converter 411 that converts the transmission data into parallel data and outputs the data to the buffers 110-1 and 110-2, and the modulators 113-1 and 113-2.
  • a mixing unit 412 that mixes the output signal and outputs the mixed signal to the variable gain amplifier 114.
  • each filter 413-1, 413-2 which passes only the frequency F1, F2 components of the received signal through the circuit 119 and outputs to the demodulation units 115-1, 115-2, It has a PZS (Parallel / Serial) conversion unit 414 that converts the received data from the diffusion Z synthesis units 116-1 and 116-2 into parallel and outputs the received data.
  • PZS Parallel / Serial
  • mobile station apparatus 401 mixes the output signals of SZP conversion section 415 which converts the transmission data into parallel data and outputs them to buffers 130-1 and 130-2, and modulation sections 133-1 and 133-2. And a mixing unit 416 that outputs the signal to the variable gain amplifier 134.
  • the filters 417-1 and 417-2 output only to the demodulators 135-1 and 135-2 after passing only the frequency f1 and f2 components of the signal received via the circuit 139, and vice versa.
  • the success or failure of data can be determined independently for each carrier, and a high-speed data rate can be realized on an instantaneous line.
  • a high-speed data rate can be realized on an instantaneous line.
  • FIG. 7 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 5 of the present invention.
  • the same reference numerals as in FIG. 6 denote the same parts as in FIG. 6, and a description thereof will be omitted.
  • FIG. 7 differs from FIG. 6 in that base station apparatus 500 and mobile station apparatus 501 are provided with frequency selection sections 511 to 514 for arbitrarily selecting and setting the frequency of the multicarrier.
  • the frequency selection units 511 to 514 can arbitrarily select and set the carrier frequency of the data to be transmitted and received.
  • the carrier frequency of the transmission / reception data can be set arbitrarily, so that a frequency diversity effect can be obtained.
  • FIG. 8 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 6 of the present invention.
  • the same parts as in FIG. 6 are denoted by the same reference numerals as in FIG. 6, and the description thereof will be omitted.
  • FIG. 8 differs from FIG. 6 in that the base station apparatus 600 and the mobile station apparatus 601 have an IFFT (Inverse Fast Fourier Transform) section 6 11, 613 and an FFT (Fast Fourier Transform) sections 612 and 614.
  • IFFT Inverse Fast Fourier Transform
  • FFT Fast Fourier Transform
  • an IFFT section 611 that performs an inverse Fourier transform of the spread data from the spreading sections 112-1 and 112-2 and outputs the data to the variable gain amplifier 114; And an FFT unit 612 for performing a Fourier transform on the signal received via 19 and outputting it to the despreading / synthesizing units 116-1 and 116_2.
  • IFFT section 613 for performing inverse Fourier transform of the spread data from spreading sections 132-1 and 132-2 and outputting the result to variable gain amplifier 134;
  • an FFT section 614 for performing Fourier transform on the received signal via the 139 and outputting the signals to the despreading / combining sections 136-1 and 136-2.
  • FIG. 9 is a block diagram showing a configuration of a despread Z combining unit of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 7 of the present invention.
  • Despreading / combining section 700 shown in FIG. 9 is any of the despreading / combining sections described in the first to sixth embodiments.
  • the despreading / combining unit 700 is composed of a despreading unit 701, a 90-degree phase rotation unit 702, a 180-degree phase rotation unit 703, and a 270-degree phase rotation unit 70 4, combining sections 705 to 712, a selector 713, a first buffer 714, and a second buffer 715.
  • a 90-degree phase rotation unit 720 After the received signal is despread by the despreading unit 701, a 90-degree phase rotation unit 720, a 180-degree phase rotation unit 73, and a 270-degree phase rotation unit At 704, the 90, 180 and 270 degree phases are rotated.
  • the data after this rotation is together with the data without rotation, together with the previous data held in the first buffer 714 and the second buffer 715 in each of the synthesizing units 705 to 712.
  • the signals are synthesized and output to the selector 713.
  • the selector 713 selects the data of the highest quality, which is output as the received data and held in the first buffer 110. In addition, the second highest quality data is selected, and this is held in the second buffer 715.
  • the data stored in the buffers 714 and 715 is reset when the OK flag is input.
  • the reception data after despreading is rotated to an appropriate phase and synthesized, thereby achieving reception close to optimal quality. You can select the day.
  • the method of combining it is possible to adaptively select not only the phase but also the amplitude, and further improvement in performance can be expected.
  • the hardware scale increases as the number of options increases, but the performance improves.
  • FIG. 10 is a block diagram showing a configuration of a despreading / combining unit of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 8 of the present invention.
  • the despreading / synthesizing unit 800 shown in FIG. 10 is one of the despreading / synthesizing units described in the first to sixth embodiments.
  • the despreading Z combining section 800 includes a despreading section 801, first to fourth buffers 802 to 805, a coefficient generating section 806, and a multiplying section 807 to 810. , 8 14, an adder 8 11, a subtractor 8 12, and a switch 8 13.
  • the received signal is despread by the despreading section 81, it is held in the first to fourth buffers 802 to 805. This holding is performed in the order of reception.
  • Each of the held data is multiplied by the coefficients from the coefficient generation unit 806 in the multiplication units 807 to 810, 814, and the results of these multiplications are all added in the addition unit 811.
  • This addition data is output as received data, and is subtracted from the expected value by the subtraction section 812, whereby the difference between the two is output to the coefficient generation section 806 via the switch 813.
  • the coefficient generation unit 806 every time a new retransmission signal comes, all the coefficients are updated again. Past coefficients are unchanged and only new coefficients are optimized. That is, for the past coefficient, the coefficient determined in the past is used as an initial value, and for the new coefficient, all coefficients are optimized again using 0 as an initial value.
  • the despreading Z combining unit of the data transmission apparatus As described above, according to the despreading Z combining unit of the data transmission apparatus according to the eighth embodiment, as a method of combining the received data after despreading and the held data, the least squares method is applied to all retransmitted signals.
  • FIG. 11 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 9 of the present invention.
  • the mobile communication system shown in FIG. 11 has three users, that is, three mobile station devices 901, 902, and 903, and the base station device 900 has the number of mobile station devices 901, 902, and 903. 911, 912, 913 and the transmitting antennas mounted on them.
  • Each mobile station device 901, 902, 903 has the same configuration as the mobile station device 101 in FIG. Also, the transmission / reception units 911, 912, and 913 of the mobile station device 900 correspond to the buffer 110, the format conversion unit 111, the spreading unit 112, the modulation unit 113, the variable gain amplifier 114, and the demodulation unit 115 of the base station device 100 in FIG. , A despreading / combining unit 116 and an error detecting unit 117.
  • the base station apparatus 900 is provided with a transmitting antenna in each transmitting / receiving section and communicates with the mobile station apparatuses 901, 902, and 903.
  • the data transmission apparatus of the ninth embodiment by using a plurality of transmission antennas of base station apparatus 900, fading between mobile station apparatuses 901, 9002, and 903 can be performed independently, particularly in the downlink. Therefore, interference can be reduced.
  • the effect can be further enhanced.
  • FIG. 12 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 10 of the present invention.
  • FIG. 12 portions common to FIG. 11 are denoted by the same reference numerals as in FIG. 11, and description thereof will be omitted.
  • FIG. 12 differs from FIG. 11 in that it includes synthesis units 1011, 1012 and This is because one group is grouped together and the signals are transmitted from different antennas for each group.
  • the number of users is four, that is, the mobile station apparatus is provided with a mobile station apparatus 904 in addition to the mobile station apparatus shown in FIG. 11, and the base station apparatus 1000 has these mobile station apparatuses 90 1, 90 2, 90
  • the transmission / reception units 911, 912, 913, 914 corresponding to the number of 3,904 are provided, and two transmission antennas.
  • the combining unit 1011 combines the transmission data from the transmitting / receiving units 911 and 912, and the combining unit 1012 transmits the transmission data from the transmitting / receiving units 913 and 914. Combine. In this case, one transmitting antenna of the base station apparatus 100 transmits data to two mobile station apparatuses 90 1 and 90 2, and the other transmitting antenna transmits two mobile stations. Transmit the data to the station devices 903 and 904.
  • FIG. 13 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 11 of the present invention.
  • portions common to FIG. 12 are denoted by the same reference numerals as in FIG. 11, and description thereof will be omitted.
  • FIG. 13 The difference between FIG. 13 and FIG. 12 is that a group change unit 1101 is connected to the base station apparatus 110 between the output side of each transmission sequence and the antenna, and this allows data to be transmitted. The content of the grouping is changed each time the data is retransmitted.
  • FIG. 14 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 12 of the present invention.
  • the same reference numerals as in FIG. 2 denote the same parts as in FIG. 2, and a description thereof will be omitted.
  • FIG. 14 differs from FIG. 2 in that the base station apparatus 1200 and the mobile station apparatus 1201 have a counter 1210 between the error detection section 117 (or 137) and the format conversion section 111 (or 131). , 1211 connected.
  • the count 1210 or 1211
  • the number of times for restricting the transmission of the NG flag is set, and the number of transmissions of the NG flag is counted.
  • the transmission of the NG flag is stopped.
  • the data transmission apparatus of the twelfth embodiment it is possible to prevent a signal of an almost unusable line from being repeatedly retransmitted forever. Also, it will not interfere with other users for a long time.
  • FIG. 15 is a block diagram showing a configuration of a base station apparatus and a mobile station apparatus which are data transmission apparatuses according to Embodiment 13 of the present invention.
  • portions common to FIG. 2 are denoted by the same reference numerals as in FIG. 2, and description thereof will be omitted.
  • FIG. 15 differs from FIG. 2 in that, in base station apparatus 1300 and mobile station apparatus 1301, between error detection section 117 (or 137) and format conversion section 111 (or 131). This means that the response signal generators 1310 and 1311 are connected.
  • the response signal generation unit 1310 When the 0 K flag or the NG flag is received, the response signal generation unit 1310 (or 1311) outputs a response signal indicating that the flag has been correctly received. Reply to the sender of the message.
  • the reception response signal is returned to the transmission source. Eliminates the gap in control between sending and receiving, which is caused by resending the evening when it is not necessary to resend, or halting the resending when the resending has to be done.
  • transmission efficiency can be improved, transmission power can be suppressed as much as possible, and diversity performance in transmission from multiple antennas can be improved. be able to.
  • the present invention relates to a mobile phone in a mobile communication system to which a CDMA system is applied, a mobile station device such as an information terminal device having a mobile phone function and a computer function, and a base for performing wireless communication with the mobile station device. It is suitable for use in station devices and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)

Description

明 細 書 データ伝送装置及びデータ伝送方法 技術分野
本発明は、 C D MA (Code Division Multiple Access) 方式が適用された移 動体通信システムにおける携帯電話機や、 携帯電話機能及びコンピュー夕機能 を備えた情報端末装置等の移動局装置、 及びこの移動局装置と無線通信を行う 基地局装置等に適用されるデータ伝送装置及びデータ伝送方法に関する。 背景技術
従来、 この種のデータ伝送装置及びデータ伝送方法としては、 特許第 1 6 4 7 3 9 6号公報に記載されているものがある。
図 1は、 従来のデータ伝送装置である基地局装置及び移動局装置の構成を示 すブロック図である。
図 1に示す基地局装置 1は、 ノ ッファ 1 0と、 フォーマッ ト変換部 1 1と、 拡散部 1 2と、 変調部 1 3と、 可変利得アンプ 1 4と、 復調部 1 5と、 逆拡散 部 1 6と、エラー検出部 1 Ίと、 S I R検出部 1 8とを備えて構成されている。 可変利得アンプ 1 4の出力信号は、 サーキユレ一夕 1 9を介してアンテナか ら送信される。 また、 アンテナに受信された信号はサーキユレ一夕 1 9を介し て復調部 1 5へ出力される。
また、 図 1に示す移動局装置 2は、 ノ ソファ 3 0と、 フォーマット変換部 3 1と、 拡散部 3 2と、 変調部 3 3と、 可変利得アンプ 3 4と、 復調部 3 5と、 逆拡散部 3 6と、 エラ一検出部 3 7と、 S I R検出部 3 8とを備えて構成され ている。
可変利得アンプ 3 4の出力信号は、 サーキユレ一夕 3 9を介してアンテナか ら送信される。 また、 アンテナに受信された信号はサーキユレ一夕 3 9を介し て復調部 3 5へ出力される。
このような構成において、 基地局装置 1から移動局装置 2へデ一夕が送信さ れる場合、 バッファ 1 0でバッファリングされた後、 フォーマット変換部 1 1 で所定の型式にフォーマツ卜され、 拡散部 1 2で拡散される。 この拡散部 1 2 での拡散率はチャネルをアサインした時点で決定され、 以降固定される。 拡散データは、 変調部 1 3で変調され、 更に可変利得アンプ 1 4で増幅され て、 サ一キユレ一夕 1 9を介してアンテナから送信される。
この送信信号は、 移動局装置 2のアンテナで受信され、 サーキユレ一夕 3 9 を介して復調部 3 5に入力され、 ここで復調された後、 逆拡散部 3 6で逆拡散 される。 これによつて受信データが得られる。
この受信の際、 S I R検出部 3 8は、 受信レベルに応じて、 送信側にレベル の上げ下げを要求する T P Cコマンド (送信電力制御信号) を出力する。 また、 エラ一検出部 3 7は、 受信データの誤り検出ビットからエラーが検出 された場合に、 再送要求信号を出力する。
T P Cコマンド及び再送要求信号は、 フォーマット変換部 3 1を介して基地 局装置 1へ送信される。
T P Cコマンドでレペルの上げ下げの要求が行われた場合、 基地局装置 1の 逆拡散部 1 6は、 その要求に応じて可変利得アンプ 1 4の利得を要求通りとな るように可変する。
また、 再送要求が行われた場合、 再送要求信号を受信した基地局装置 1が、 送信データを再送する。
このような制御は、 移動局装置 2から基地局装置 1に対しても同様に行われ る。
このように、 従来のデータ伝送方法では、 拡散率を固定してデータ通信を行 つている。 つまり、 再送要求は行っているものの、 拡散率は固定で、 かつ 1回 で受信性能が取れるような拡散率を使用している。 また、 そのための品質維持 のために高速の送信電力制御を行っている。
しかしながら、 従来の装置においては、 C D MA方式であるため、 送信電力 制御の精度が性能に与える影響が大きく、 特に高速フェージング時の制御遅延 は致命的となる。 即ち、 送信電力制御を T P Cコマンドによって高精度に実行 しなければ所望の品質を保持することができず、 また、 高速フェージングでは 追随速度が遅いので移動局装置に追随できないことがあり、 このため伝送効率 が悪化するという問題がある。
これは今後、 移動体通信システムにおいて使用周波数帯が高くなるに連れ、 フェージングの変動速度も速くなるので、 現在より余計に劣化が大きくなり、 また、 T P Cコマンドを頻繁に送信しなければならないので、 その処理時間が 大きくなり、 さらに伝送効率が悪化すると予想される。
また、 固定拡散率では、 ある程度条件の悪い回線を想定して、 ある程度大き な拡散率を定めなければならないので、シンボルレートを上げることができず、 高速伝送を行うことができなくなり、 伝送効率が悪化するという問題がある。 また、 平均品質を保持するために送信電力制御を行うと、 回線品質の悪いュ 一ザは、 多大な送信電力が必要であり、 送信アンプとしては大きなダイナミツ クレンジに対応しなくてはならない。 また、 回線状態がよい場合は送信電力を 落とせるものの平均送信電力でも損である。 例えば、 標準より半分の電力で送 信する確率と標準より 2倍の電力で送信する確率とが等しいとした場合、 常に 標準の送信電力で送信した場合より大きな平均送信電力が必要となるという問 題がある。 更に、 送信電力制御によって干渉信号のダイナミックレンジが増大 し、 大きな復調系のダイナミックレンジが要求されるという問題がある。
また、 拡散率を適応的に変化させることもできるが、 このためには拡散率を 伝達しなければならない。 この伝達を行うために最適な拡散率を推定すること は困難であり、 例え推定できたとしても推定のための遅延時間がかかる場合、 高速通信のための妨げになり、 更に推定のための情報を伝送する場合、 全体の 信号量が増加するので伝送効率が悪化するという問題がある。
また現在、 W_ C D MA方式では複数のアンテナから送信することも実施さ れているが、 このように複数のアンテナから送信しても送信ダイバーシチとし ての性能向上がそれほど大きくないという問題がある。 発明の開示
本発明の目的は、 伝送効率を向上させることができ、 送信電力を極力抑制す ることができ、 複数アンテナからの送信におけるダイバーシチ性能を向上させ ることができるデータ伝送装置及びデータ伝送方法を提供することである。 この目的は、 逆拡散デ一夕は合成することが可能であり、 合成結果が所定品 質を達成すれば、 受信デ一夕を取り出すことができることに着目し、 低拡散率 で送信を行い、 デ一夕が O Kとなるまで再送を繰り返して再送の度に合成して 品質を向上させて行くことで、 結果的に最適な拡散率で送信することにより達 成される。 図面の簡単な説明
図 1は、 従来のデータ伝送装置である基地局装置及び移動局装置の構成を示 すプロック図、
図 2は、 本発明の実施の形態 1に係るデ一夕伝送装置である基地局装置及び 移動局装置の構成を示すブロック図、
図 3 Aは、 回線状態の良好時において、 信号品質が段階的に高まることを示 した図、
図 3 Bは、 回線状態の不良時において、 信号品質が段階的に高まることを示 した図、
図 4は、 本発明の実施の形態 2に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図、
図 5は、 本発明の実施の形態 3に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図、
図 6は、 本発明の実施の形態 4に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図、
図 7は、 本発明の実施の形態 5に係るデ一夕伝送装置である基地局装置及び 移動局装置の構成を示すブロック図、
図 8は、 本発明の実施の形態 6に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図、
図 9は、 本発明の実施の形態 7に係るデータ伝送装置である基地局装置及び 移動局装置の逆 散/合成部の構成を示すプロック図、
図 1 0は、 本発明の実施の形態 8 (こ係るデータ伝送装置である基地局装置及 び移動局装置の逆拡散/合成部の構成を示すプロック図、
図 1 1は、 本発明の実施の形態 9に係るデータ伝送装置である基地局装置及 び移動局装置の構成を示すブロック図、
図 1 2は、 本発明の実施の形 1 0に係るデータ伝送装置である基地局装置 及び移動局装置の構成を示すプロック図、
図 1 3は、 本発明の実施の形態 1 1に係るデータ伝送装置である基地局装置 及び移動局装置の構成を示すプロック図、
図 1 4は、 本発明の実施の形態 1 2に係るデ一夕伝送装置である基地局装置 及び移動局装置の構成を示すブロック図、 および、
図 1 5は、 本発明の実施の形態 1 3に係るデータ伝送装置である基地局装置 及び移動局装置の構成を示すブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて説明する。 (実施の形態 1 )
図 2は、 本発明の実施の形態 1に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図である。
図 2に示す基地局装置 1 0 0は、 ノ ッファ 1 1 0と、 フォーマット変換部 1 1 1と、 拡散部 1 1 2と、 変調部 1 1 3と、 可変利得アンプ 1 1 4と、 復調部 1 1 5と、 逆拡散/合成部 1 1 6と、 エラー検出部 1 1 7とを備えて構成され ている。
可変利得アンプ 1 1 4の出力信号は、 サーキユレ一夕 1 1 9を介してアンテ ナから送信される。 また、 アンテナに受信された信号はサ一キユレ一夕 1 1 9 を介して復調部 1 1 5へ出力される。
また、 図 2に示す移動局装置 1 0 1は、 ノ ッファ 1 3 0と、 フォーマッ ト変 換部 1 3 1と、 拡散部 1 3 2と、 変調部 1 3 3と、 可変利得アンプ 1 3 4と、 復調部 1 3 5と、 逆拡散/合成部 1 3 6と、 エラー検出部 1 3 7とを備えて構 成されている。
可変利得アンプ 1 3 4の出力信号は、 サーキユレ一夕 1 3 9を介してアンテ ナから送信される。 また、 アンテナ受信された信号はサーキユレ一夕 1 3 9を 介して復調部 1 3 5へ出力される。
この実施の形態 1の特徴は、 拡散部 1 1 2 (又は 1 3 2 ) と、 逆拡散/合成 部 1 1 6 (又は 1 3 6 ) と、 エラ一検出部 1 1 7 (又は 1 3 7 ) とにある。 拡散部 1 1 2は、 受信側での逆拡散後に、 よほど回線の状態が良くない限り 所定の信号品質が得られないくらい低い拡散率 (以降、 「低拡散率」 という) で、 送信データを拡散するものである。
逆拡散/合成部 1 1 6は、 受信信号を復調後に逆拡散を行い、 この逆拡散さ れた受信データを保持し、 次の受信データと合成してエラー検出部 1 1 7へ出 力し、 また、 その合成データも次の受信データと合成するといつた処理を繰り 返す。 そして、 逆拡散/合成部 1 1 6は、 エラ一検出部 1 1 7から O Kフラグ が入力された時点で、 保持データをリセットし、 再び上記処理を繰り返す。 エラー検出部 1 1 7は、 逆拡散/合成部 1 1 6から送出されてきた受信デ一 夕の誤り検出ビットからエラーが検出された場合に、 送信側に再送要求を行う N Gフラグをフォーマツト変換部 1 1 1へ出力し、 エラーが未検出の場合に、 O Kフラグを出力する。
このような構成において、 基地局装置 1 0 0から移動局装置 1 0 1へ送信デ —夕が送信される場合、 バッファ 1 1 0でバッファリングされた後、 フォーマ ット変換部 1 1 1で所定の型式にフォーマツトされ、 拡散部 1 1 2で拡散され る o
拡散データは、 変調部 1 1 3で変調され、 更に可変利得アンプ 1 1 4で増幅 されて、 サ一キユレ一夕 1 1 9を介してアンテナから送信される。
この送信信号は、 移動局装置 1 0 1のアンテナで受信され、 サ一キユレ一夕
1 3 9を介して復調部 1 3 5に入力され、 ここで復調された後、 逆拡散 Z合成 部 1 3 6で逆拡散され、 この逆拡散データが保持される。
この受信の際、 エラ一検出部 1 3 7において、 受信データの誤り検出ビッ ト からエラーが検出された場合に、 N Gフラグを出力することによって、 基地局 装置 1 0 0へ再送要求を行う。
再送要求を受けた基地局装置 1 0 0は、 復調部 1 1 5にて、 バッファ 1 1 0 に保持されているデータを再送するように指示する。
また、 N Gフラグが入力された逆拡散 /合成部 1 3 6では、 今回受信された データが前回の保持データと合成される。
この合成された受信データからエラ一が検出されなければ、 エラ一検出部 1
3 7から O Kフラグが、 フォーマツト変換部 1 3 1及び逆拡散 Z合成部 1 3 6 へ出力される。 これによつて、 受信データが得られるとともに、 基地局装置 1 0 0へ O Kフラグが送信され、 逆拡散 Z合成部 1 3 6で現在保持中のデータが リセットされる。 また、 バッファ 1 1 0で現在保持中のデータがリセットされ る。
図 3 Aは、 回線状態の良好時における、 再送毎にデ一夕を合成することで信 号品質が向上していくことを示した図である。 図 3 Bは、 回線状態の不良時に おける、 再送毎にデ一夕を合成することで信号品質が向上していくことを示し た図である。 縦軸 (P ) は送信電力を、 横軸 (T ) は時間を表わしている。 また、 破線 1 5 1は、 回線状態良好時の所定の信号品質を確保するために必 要な送信電力量を示す。 破線 1 5 2は、 回線状態不良時の所定の信号品質を確 保するために必要な送信電力量を示す。 破線 1 5 1は破線 1 5 2よりも低い値 を示す。 これは、 回線状態が良いほうが、 送信電力が少なくてすむことを表わ す。
t 1において、 基地局装置 1 0 0から移動局装置 1 0 1に送信されたデータ 1 6 1は、 逆拡散/合成部 1 3 6にて、 逆拡散された後保持される。 このとき 基地局装置 1 0 0の送信電力が弱く、 移動局装置 1 0 1において所定の通信品 質を確保するまでに至らなかったとすると、 この場合エラー検出部 1 3 7では エラーが検出され、 基地局装置 1 0 0へ再送要求を行う。
再送要求を受けた基地局装置 1 0 0は、 t 2において移動局装置 1 0 1にデ —夕 1 6 1と同一のデータ 1 6 2を再送する。 移動局装置 1 0 1で受信された データ 1 6 2は、 逆拡散/合成部 1 3 6ですでに保持されているデ一夕 1 6 1 との合成が行われる。 この合成された受信データからエラーが検出されなけれ ば、 基地局装置 1 0 0へ 0 Kフラグが送信される。
図 3 Bにおいても、 上記同様、 T 1においてデータ 1 7 1が送信され、 T 2 においてデ一夕 1 7 2が送信され、 デ一夕 1 7 1とデ一夕 1 7 2との合成が行 われる。 しかし、 これでは所定の信号品質を確保できないことから、 エラー検 出部 1 3 7でエラーが検出される。 そこで、 T 3において、 さらにデータ 1 7 3、 T 4においてデータ 1 Ί 4の合成が行われ、 所定の信号品質を確保するに 至る。 図 3 Aに示すように、 回線状態が良いときは、 所定の通信品質を確保するた めの送信電力が小さくてすむので、再送回数も少なくてすむ。 (図 3 Aの場合、 再送回数は 1回)
しかし、 図 3 Bに示すように、 回線状態が悪いときは、 所定の通信品質を確 保するための送信電力が大きいので、 再送回数も多くなる。 (図 3 Bの場合、 再送回数は 3回)
このように、 実施の形態 1のデータ伝送装置によれば、 低拡散率で送信を行 い、 データが O Kとなるまで再送を繰り返して再送の度に合成して品質を向上 させて行くことで、 結果的に最適な拡散率で送信することができる。 このこと で、 最適レートの反映遅延もなく、 レートを通知する必要もない。
つまり、従来のような固定拡散率での、ある程度条件の悪い回線を想定した、 ある程度大きな拡散率を定めなくともよいので、 シンボルレートを上げること ができ、 これによつて伝送効率を向上させることができる。
また、 平均品質を保持するための T P Cコマンドを頻繁に伝送する送信電力 制御を行わなくともよいので、 その制御を行わない分、 伝送効率を向上させる ことができる。
また、 従来のような平均品質を保持するための送信電力制御を行わなくとも よいので、 大きな復調系のダイナミックレンジが要求されることもなくなり、 送信電力を抑制することができる。
(実施の形態 2 )
図 4は、 本発明の実施の形態 2に係るデ一夕伝送装置である基地局装置及び 移動局装置の構成を示すブロック図である。 但し、 図 4において、 図 2と共通 する部分には図 2と同一符号を付し、 その説明を省略する。
図 4が図 2と異なる点は、 基地局装置 2 0 0のエラー検出部 2 1 7と移動局 装置 2 0 1のエラー検出部 2 3 7とにある。
エラ一検出部 2 1 7 (又は 2 3 7 )は、 逆拡散/合成部 1 1 6 (又は 1 3 6 ) から送出されてきた受信データが適正に受信された場合にのみ、 送信側に、 そ の適正に受信されたデータの番号 (ο κパケット番号) を送信する。
このように、 実施の形態 2のデータ伝送装置によれば、 受信デ一夕が適正に 受信された場合にのみ、 送信側に O Kパケット番号を送信するので、 再送が多 い場合に無駄な再送要求信号を送信しなくて済む。
(実施の形態 3 )
図 5は、 本発明の実施の形態 3に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図である。 但し、 図 5において、 図 2と共通 する部分には図 2と同一符号を付し、 その説明を省略する。
図 5が図 2と異なる点は、 基地局装置 3 0 0にチャネル変更部 3 1 1と、 移 動局装置 3 0 1にチャネル変更部 3 1 2とを追加したことにある。
チャネル変更部 3 1 1 (又は 3 1 2 ) は、 エラ一検出部 1 1 7 (または 1 3 7 ) と変調部 1 1 3 (または 1 3 3 ) との間に接続され、 N Gフラグによる再 送時に、信号の伝送媒体であるチャネル(例えば周波数) を変える指示を行う。 このように、 実施の形態 3のデータ伝送装置によれば、 再送時に信号の伝送 媒体であるチャネルを変えるようにしたので、 ダイバーシチ効果が得られ、 低 速フェージング時に回線が長時間低品質の状態になることを避けることができ る。 なお、 再送の度に実行しなくても定期的に実行してもよい。
(実施の形態 4 )
図 6は、 本発明の実施の形態 4に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図である。 但し、 図 6において、 図 2と共通 する部分には図 2と同一符号を付し、 その説明を省略する。
図 6が図 2と異なる点は、 基地局装置 4 0 0と移動局装置 4 0 1とをマルチ キヤリア送受信構成としたことにある。 この例では、周波数 1 , f 2と F 1 , F 2とが用いられているものとする。
即ち、 図 6に示すように、 図 2に示した構成要素を 2系統備えると共に、 基 ±也局装置 400において、 送信データをパラレル変換して各バッファ 110— 1、 110— 2へ出力する S/P (Serial/Parallel)変換部 411と、各変調部 113—1, 113— 2の出力信号を混合して可変利得アンプ 114へ出力す る混合部 412とを備えた。
また、 サーキユレ一夕 119を介した受信信号の周波数 F 1, F 2成分のみ を通過させて各復調部 115—1, 115-2へ出力する各フィル夕 413— 1, 413— 2と、 逆拡散 Z合成部 116— 1, 116-2からの受信データ をパラレル変換して受信データを出力する PZS (Parallel/Serial)変換部 4 14とを備えた。
また、 移動局装置 401において、 送信データをパラレル変換して各バヅフ ァ 130— 1 , 130— 2へ出力する SZP変換部 415と、 各変調部 133 — 1, 133— 2の出力信号を混合して可変利得アンプ 134へ出力する混合 部 416とを備えた。
また、 サーキユレ一夕 139を介した受信信号の周波数 f 1, f 2成分のみ を通過させて各復調部 135— 1, 135— 2へ出力する各フィル夕 417— 1 , 417— 2と、 逆拡散/合成部 136— 1, 136 - 2からの受信デ一夕 をパラレル変換して受信デ一夕を出力する P/S変換部 418とを備えた。 このように、 実施の形態 4のデータ伝送装置によれば、 マルチキャリア伝送 を使用することで、 ダイバ一シチ効果が高まり、 かつ高速レート伝送が可能で あり、なおかつ平均送信レートをある程度一定に保つことができる(多数のキヤ リアがあれば、 そのうち OKのキャリア数は、 ほぼ一定に近い)。
また、 キャリア毎にデータの成否を独立に判定することができ、 瞬時的によ かった回線では、 高速のデータレートが実現できる。 ここで、 パケット伝送を 考えると、 平均誤り率を向上させるよりも、 品質に差をつけて、 偶然良かった パケットを短時間で終了させる方がよい。
(実施の形態 5) 図 7は、 本発明の実施の形態 5に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図である。 但し、 図 7において、 図 6と共通 する部分には図 6と同一符号を付し、 その説明を省略する。
図 7が図 6と異なる点は、 基地局装置 500と移動局装置 501とに、 マル チキャリアの周波数を任意に選択して設定する周波数選択部 5 1 1〜514を 備えたことにある。
即ち、 周波数選択部 5 1 1〜514で、 送受信されるデ一夕のキャリア周波 数を任意に選択して設定することができる。
このように、 実施の形態 5のデータ伝送装置によれば、 送受信データのキヤ リア周波数を任意に設定できるので、 周波数ダイバーシチ効果が得られる。
(実施の形態 6)
図 8は、 本発明の実施の形態 6に係るデータ伝送装置である基地局装置及び 移動局装置の構成を示すブロック図である。 但し、 図 8において、 図 6と共通 する部分には図 6と同一符号を付し、 その説明を省略する。
図 8が図 6と異なる点は、 OFDM通信を行うために基地局装置 600と移 動局装置 601とに、 I FFT(Inverse Fast Fourier Transform)部 6 1 1 , 6 13と、 F F T(Fast Fourier Transform)部 6 12, 614とを備えたこと にある。
即ち、 基地局装置 600において、 拡散部 1 12— 1, 1 12— 2からの拡 散データを、 逆フーリエ変換して可変利得アンプ 1 14へ出力する I FFT部 61 1と、 サーキユレ一夕 1 19を介した受信信号をフーリエ変換して逆拡散 /合成部 1 16— 1, 1 16 _ 2へ出力する F FT部 612とを備えた。 また、 移動局装置 601において、 拡散部 132— 1, 132— 2からの拡 散デ一夕を、 逆フーリエ変換して可変利得アンプ 134へ出力する I FFT部 6 13と、 サ一キユレ一夕 139を介した受信信号をフーリエ変換して逆拡散 /合成部 136— 1, 136— 2へ出力する F FT部 614とを備えた。 このように、 実施の形態 6のデ一夕伝送装置によれば、 O F D M通信を行う ことにより周波数効率を向上させることができる。
(実施の形態 7 )
図 9は、 本発明の実施の形態 7に係るデータ伝送装置である基地局装置及び 移動局装置の逆拡散 Z合成部の構成を示すブロック図である。 図 9に示す逆拡 散/合成部 7 0 0は、 実施の形態 1〜 6で説明した逆拡散/合成部のいずれか である。
逆拡散/合成部 7 0 0は、 逆拡散部 7 0 1と、 9 0度位相回転部 7 0 2と、 1 8 0度位相回転部 7 0 3と、 2 7 0度位相回転部 7 0 4と、 各合成部 7 0 5 〜7 1 2と、 セレクタ 7 1 3と、 第 1バッファ 7 1 4と、 第 2バッファ 7 1 5 とを備えて構成されている。
このような構成において、 受信信号が逆拡散部 7 0 1で逆拡散された後、 9 0度位相回転部 7 0 2、 1 8 0度位相回転部 7 0 3及び 2 7 0度位相回転部 7 0 4で、 9 0度、 1 8 0度及び 2 7 0度位相が回転させられる。
この回転後のデ一夕は無回転デ一夕と共に、 各合成部 7 0 5〜7 1 2で、 第 1バッファ 7 1 4及び第 2バッファ 7 1 5に保持された前回のデ一夕と合成さ れ、 セレクタ 7 1 3へ出力される。
セレクタ 7 1 3で、 最も品質の良いデ一夕が選択され、 これが受信デ一夕と して出力されると共に、 第 1バッファ 1 1 0に保持される。 また、 2番目に品 質の良いデータが選択され、 これが第 2バッファ 7 1 5に保持される。
各バッファ 7 1 4 , 7 1 5に保持されたデ一夕は、 O Kフラグの入力時にリ セッ卜される。
このように、 実施の形態 7のデータ伝送装置の逆拡散 Z合成部によれば、 逆 拡散後の受信デ一夕を、 適当な位相に回転させて合成することにより、 最適な 品質に近い受信デ一夕を選択することができる。 合成の仕方としては、 位相以 外に振幅に関しても適応に選択することができ、更に性能の向上が期待できる。 これらは、 選択肢を増やせば増やすほどハードウェア規模は大きくなるが、 性 能は向上する。
(実施の形態 8 )
図 1 0は、 本発明の実施の形態 8に係るデータ伝送装置である基地局装置及 び移動局装置の逆拡散/合成部の構成を示すプロック図である。 図 1 0に示す 逆拡散/合成部 8 0 0は、 実施の形態 1〜 6で説明した逆拡散/合成部のいず れかである。
逆拡散 Z合成部 8 0 0は、 逆拡散部 8 0 1と、 第 1〜第 4バッファ 8 0 2〜 8 0 5と、 係数生成部 8 0 6と、 乗算部 8 0 7〜 8 1 0, 8 1 4と、 加算部 8 1 1と、 減算部 8 1 2と、 スィツチ 8 1 3とを備えて構成されている。
このような構成において、 受信信号が逆拡散部 8 0 1で逆拡散された後、 第 1〜第 4バッファ 8 0 2〜8 0 5に保持される。この保持は受信順に行われる。 各保持データは、 乗算部 8 0 7〜8 1 0 , 8 1 4で係数生成部 8 0 6からの 係数と乗算され、 これら乗算結果が全て加算部 8 1 1で加算される。 この加算 データが受信デ一夕として出力されると共に、 減算部 8 1 2で期待値と減算さ れることにより、 双方の差分がスィツチ 8 1 3を介して係数生成部 8 0 6へ出 力される。
係数生成部 8 0 6では、 新たな再送信号が来る度に全ての係数が再度更新さ れる。 過去の係数は不変として新たな係数のみ最適化される。 即ち、 過去の係 数は過去に定めた係数を初期値として用い、 新規の係数は 0を初期値として用 いて再度全部の係数を最適化するなどである。
このように、 実施の形態 8のデータ伝送装置の逆拡散 Z合成部によれば、 逆 拡散後の受信デ一夕と保持データとの合成方法として、 再送した全ての信号に 対して、最小自乗誤差を指導原理とする適応信号処理 {LMS(Least Mean Square) や RLS(Recursive Least Squares)や GA( Generic Algorithm)など } により、 最 適な係数を求めて合成するようにしたので、 最適な品質に近い受信データを得 ることができる。
(実施の形態 9)
図 11は、 本発明の実施の形態 9に係るデータ伝送装置である基地局装置及 び移動局装置の構成を示すプロック図である。
この図 11に示す移動体通信システムは、 ユーザが 3人、 即ち移動局装置が 901, 902, 903の 3台であり、 基地局装置 900が、 それら移動局装 置 901, 902, 903の数に対応した数の送受信部 911, 912, 91 3及びこれに搭載される送信アンテナを備える構成となっている。
なお、 各移動局装置 901, 902, 903は図 2の移動局装置 101と同 一の構成をとる。 また、 移動局装置 900の各送受信部 911, 912, 91 3は、図 2の基地局装置 100のバッファ 110、 フォーマツト変換部 111、 拡散部 112、 変調部 113、 可変利得アンプ 114、 復調部 115、 逆拡散 /合成部 116、 エラー検出部 117の構成を備える。
即ち、 基地局装置 900が、 各送受信部に送信アンテナを備えて、 移動局装 置 901, 902, 903と通信を行うようになっている。
このように、 実施の形態 9のデータ伝送装置によれば、 基地局装置 900の 送信アンテナを複数にすることで、 特に下り回線では、 移動局装置 901, 9 02, 903間のフェージングを独立にすることができ、 これによつて干渉を 低減することができる。
また、 移動局装置の数以上の送信アンテナを有して、 移動局装置毎に完全に 異なるアンテナから送信することで、 更に効果を増すことができる。
(実施の形態 10 )
図 12は、 本発明の実施の形態 10に係るデ一夕伝送装置である基地局装置 及び移動局装置の構成を示すブロック図である。 但し、 図 12において、 図 1 1と共通する部分には図 11と同一符号を付し、 その説明を省略する。
図 12が図 11と異なる点は、 合成部 1011, 1012を備え、 特定のュ 一ザ同士をグルービングし、 グループ毎に異なるアンテナから送信するように したことにある。
例えばユーザが 4人、 即ち移動局装置が図 1 1に示した他に移動局装置 9 0 4を備え、 基地局装置 1 0 0 0がそれら移動局装置 9 0 1, 9 0 2, 9 0 3 , 9 0 4の数に対応した数の送受信部 9 1 1, 9 1 2 , 9 1 3 , 9 1 4及び、 2 本の送信アンテナを備えている。
合成部 1 0 1 1は、 送受信部 9 1 1 , 9 1 2からの送信データを合成し、 合 成部 1 0 1 2は、 送受信部 9 1 3 , 9 1 4からの送信デ一夕を合成する。 この場合、 基地局装置 1 0 0 0の一方の送信アンテナで、 2台の移動局装置 9 0 1 , 9 0 2へデ一夕を送信し、 他方の送信アンテナで、 他の 2台の移動局 装置 9 0 3, 9 0 4へデ一夕を送信する。
このように、 実施の形態 1 0のデータ伝送装置によれば、 特定の移動局装置 同士をグルーピングし、 グループ毎に異なる送信アンテナから送信することに よって、 特に、 送信アンテナをユーザ数分以上用意する事が困難な場合でも、 干渉を低減させることができる。
(実施の形態 1 1 )
図 1 3は、 本発明の実施の形態 1 1に係るデータ伝送装置である基地局装置 及び移動局装置の構成を示すブロック図である。 但し、 図 1 3において、 図 1 2と共通する部分には図 1 1と同一符号を付し、 その説明を省略する。
図 1 3が図 1 2と異なる点は、 基地局装置 1 1 0 0に、 各送信系列の出力側 とアンテナとの間に、 グループ変更部 1 1 0 1を接続し、 これで、 データを再 送する度にグルーピングの中身を変更することにある。
このように、 実施の形態 1 1のデータ伝送装置によれば、 特定の移動局装置 同士が、 常に同一回線で送信されるということを避けることができ、 より干渉 を低減することができる。 なお、 再送の度にやらなくても、 定期的にやっても よい。 (実施の形態 12 )
図 14は、 本発明の実施の形態 12に係るデータ伝送装置である基地局装置 及び移動局装置の構成を示すブロック図である。 但し、 図 14において、 図 2 と共通する部分には図 2と同一符号を付し、 その説明を省略する。
図 14が図 2と異なる点は、 基地局装置 1200と、 移動局装置 1201に おいて、 エラー検出部 117 (又は 137) とフォーマツト変換部 111 (又 は 131) との間に、 カウン夕 1210, 1211を接続したことにある。 カウン夕 1210 (又は 1211) は、 NGフラグの送信を規制するための 回数が設定され、 NGフラグの送信回数をカウントし、 このカウント回数が設 定回数となると N Gフラグの送信を中止する。
このように制限がないと、 殆ど使えない回線の信号がいつまでも再送を繰り 返すことになり、 他の移動局装置に長時間干渉を及ぼすことになり、 このよう な場合、 回線断などの処理が実行されてしまう。
このように、 実施の形態 12のデータ伝送装置によれば、 殆ど使えない回線 の信号がいつまでも再送を繰り返すといったことを防止することができる。 ま た、 他ユーザに長時間干渉を及ぼすこともなくなる。
(実施の形態 13)
図 15は、 本発明の実施の形態 13に係るデ一夕伝送装置である基地局装置 及び移動局装置の構成を示すブロック図である。 但し、 図 15において、 図 2 と共通する部分には図 2と同一符号を付し、 その説明を省略する。
図 15が図 2と異なる点は、 基地局装置 1300と、 移動局装置 1301に おいて、 エラ一検出部 117 (又は 137) とフォ一マツト変換部 111 (又 は 131 ) との間に、 応答信号生成部 1310, 1311を接続したことにあ る。
応答信号生成部 1310 (又は 1311) は、 0 Kフラグ又は N Gフラグが 受信された場合に、 そのフラグを正しく受信したことを示す応答信号を、 フラ グの送信元へ返信する。
このように、 実施の形態 13のデータ伝送装置によれば、 OKフラグ又は N Gフラグを受信した場合に、 その受信応答信号を送信元へ返信するので、 その フラグが誤った場合に、 例えばデ一夕を再送しなくてよいのに再送してしまつ たり、 再送しなくてはならないのに再送をやめてしまったりすることによって 生じる、 送受間の制御のずれが無くなる。
以上の説明から明らかなように、 本発明によれば、 伝送効率を向上させるこ とができ、 送信電力を極力抑制することができ、 複数アンテナからの送信にお けるダイバ一シチ性能を向上させることができる。
本明細書は、 2000年 3月 15日出願の特願 2000— 072715に基 づくものである。 この内容をここに含めておく。 産業上の利用可能性
本発明は、 CDMA方式が適用された移動体通信システムにおける携帯電話 機や、 携帯電話機能及びコンピュータ機能を備えた情報端末装置等の移動局装 置、及びこの移動局装置と無線通信を行う基地局装置等に用いるに好適である。

Claims

請 求 の 範 囲
1 . 受信データを逆拡散して保持し、 この保持したデータと再送された逆拡散 後のデータとを合成する逆拡散手段と、 この逆拡散手段にて合成されたデータ の誤り検出を行うエラー検出手段と、 を具備するデータ伝送装置。
2 . エラー検出手段は、 エラーの未検出時に適正なデ一夕が受信されたことを 送信側に通知する請求の範囲 1記載のデータ伝送装置。
3 . エラー検出手段は、 エラーの検出時には通信相手への再送要求を行わず、 前記エラーの未検出時に適正なデータが受信されたことを前記通信相手に通知 する請求の範囲 1記載のデータ伝送装置。
4 . 逆拡散手段は、 逆拡散後のデータを任意位相回転した複数のデータと保持 データとを合成し、 この合成デ一夕の中から最適なものを出力する請求の範囲 1記載のデータ伝送装置。
5 . 逆拡散手段は、 最小自乗誤差を指導原理とする適応信号処理で合成係数を 求め、 この係数と複数の保持データとを乗算したのち加算する請求の範囲 1記 載のデータ伝送装置。
6 . データの再送回数を任意に制限する手段を具備する請求の範囲 1記載のデ 一夕伝送装置。
7 . 送信データを一時的に保持する保持手段と、 この保持手段に保持された送 信データを拡散する拡散手段と、 通信相手から再送要求を受けた場合に前記保 持手段に送信データを保持させ、 通信相手から再送要求を受けなかった場合に 前記保持手段に保持された送信データをリセットする復調手段と、 を具備する データ伝送装置。
8 . 拡散手段は、 受信側において回線状態が最良の状態にある場合以外では逆 拡散後の信号が所定の品質を得ることが殆どできない低拡散率で、 送信データ を拡散する請求の範囲 7記載のデータ伝送装置。
9 . エラーの検出による再送時又は定期的に、 データの伝送媒体であるチヤネ ルを変更するチャネル変更手段を具備する請求の範囲 7記載のデータ伝送装置 c 1 0 . デ一夕の送信にマルチキャリアを用いた請求の範囲 7記載のデ一夕伝送
1 1 . マルチキャリアから送受信データのキャリア周波数を任意に選択して設 定する周波数選択手段を具備する請求の範囲 1 0記載のデータ伝送装置。
1 2 . 拡散後のデータを O F D Mでマルチキャリア化を行う請求の範囲 1 0記 載のデータ伝送装置。
1 3 . 複数の送信アンテナを具備し、 通信相手の各々に 1本の送信アンテナを 対応付けて、 データを送信する請求の範囲 7記載のデータ伝送装置。
1 4 . 複数の通信相手をグループ化し、 このグループの各々に 1本の送信アン テナを対応付けて、 データを送信する請求の範囲 1 3記載のデ一夕伝送装置。
1 5 . 送信アンテナに対応付けるグループを変更するグループ変更手段を具備 する請求の範囲 1 4記載のデータ伝送装置。
1 6 . エラ一検出の結果を示すフラグが正しく受信できたことを示す応答信号 をフラグの送信元へ返信する返信手段を具備する請求の範囲 7記載のデータ伝
1 7 .データ伝送装置を具備する移動局装置であって、前記データ伝送装置は、 逆拡散後のデータを保持し、 この保持したデータと再送されてきた逆拡散後の データとを合成する逆拡散手段と、 拡散された受信データの逆拡散後のデータ からエラ一を検出した際に、 通信相手にデ一夕の再送要求を行うエラー検出手 段と、 を具備する。
1 8 .データ伝送装置を具備する基地局装置であって、前記データ伝送装置は、 逆拡散後のデータを保持し、 この保持したデータと再送されてきた逆拡散後の データとを合成する逆拡散手段と、 拡散された受信データの逆拡散後のデータ からエラーを検出した際に、 通信相手にデータの再送要求を行うエラー検出手 段と、 を具備する。
1 9 . 送信側は、 受信側において回線状態が最良の状態にある場合以外では逆 拡散後の信号が所定の品質を得ることが殆どできない低拡散率で、 送信データ を拡散して送信し、 受信側は、 受信データを逆拡散して保持し、 この保持した データと再送された逆拡散後のデータとを合成したデータに誤りが検出された 場合に前記送信側にデータの再送要求を行い、 前記送信側は、 受信側から再送 要求を受けた場合に送信デ一夕を再送するデータ伝送方法。
2 0 . 送信側は、 受信側にて受信データに誤りが検出されなくなるまで再送を 繰り返し、 前記受信側は前記受信データを保持し、 前記再送の度に受信データ を前記保持されたデ一夕と合成し、 合成データの誤り検出を行うデ一夕伝送方 法。
2 1 . 受信側は、 受信データが適正となった場合にのみ送信側に通知を行い、 前記送信側は前記適正の通知を受けるまで再送を行う請求の範囲 2 0記載のデ 一夕伝送方法。
2 2 . 送信側は、 デ一夕再送時にデータの伝送媒体であるチャネルを前回と変 える請求の範囲 2 0記載のデータ伝送方法。
2 3 . データの送受信にマルチキャリアを用い、 送信側は、 デ一夕を再送する キャリアを前回と変える請求の範囲 2 0記載のデータ伝送方法。
2 4 . マルチキャリア化を O F D Mで行う請求の範囲 2 3記載のデ一夕伝送方 法。
2 5 . データの再送回数を任意に制限する請求の範囲 2 0記載のデータ伝送方
2 6 . エラ一検出の結果を示すフラグが正しく受信できたことをフラグの送信 元へ返信する請求の範囲 2 0記載のデータ伝送方法。
PCT/JP2001/001898 2000-03-15 2001-03-12 Appareil et procede de transmission de donnees WO2001069828A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01912257A EP1179905A4 (en) 2000-03-15 2001-03-12 DEVICE AND METHOD FOR DATA TRANSMISSION
AU41093/01A AU4109301A (en) 2000-03-15 2001-03-12 Data transmitting apparatus and data transmitting method
US09/959,607 US6999497B2 (en) 2000-03-15 2001-03-12 Data transmitting apparatus and data transmitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000072715A JP2001268049A (ja) 2000-03-15 2000-03-15 データ伝送装置及びデータ伝送方法
JP2000-72715 2000-03-15

Publications (1)

Publication Number Publication Date
WO2001069828A1 true WO2001069828A1 (fr) 2001-09-20

Family

ID=18591077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001898 WO2001069828A1 (fr) 2000-03-15 2001-03-12 Appareil et procede de transmission de donnees

Country Status (7)

Country Link
US (1) US6999497B2 (ja)
EP (1) EP1179905A4 (ja)
JP (1) JP2001268049A (ja)
KR (1) KR100438240B1 (ja)
CN (1) CN100488092C (ja)
AU (1) AU4109301A (ja)
WO (1) WO2001069828A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0110125D0 (en) 2001-04-25 2001-06-20 Koninkl Philips Electronics Nv Radio communication system
KR100866195B1 (ko) * 2001-11-10 2008-10-30 삼성전자주식회사 직교주파수분할다중 방식의 이동통신시스템에서 시공간-주파수 부호화/복호화 장치 및 방법
AU2002348618B2 (en) * 2001-11-10 2004-09-23 Samsung Electronics Co., Ltd. STFBC coding/decoding apparatus and method in an OFDM mobile communication system
JP3679759B2 (ja) 2002-01-17 2005-08-03 松下電器産業株式会社 無線送信装置
JP2003218778A (ja) * 2002-01-24 2003-07-31 Nec Corp 無線送受信装置及び無線通信システム
US8018904B2 (en) 2002-09-06 2011-09-13 Nokia Corporation Antenna selection method
JP4071117B2 (ja) * 2003-01-23 2008-04-02 シャープ株式会社 送受信回路及び送受信方法並びに送受信装置
US7046716B1 (en) * 2003-07-14 2006-05-16 Miao George J Dual-mode ultra wideband and wireless local area network communications
WO2006048061A1 (en) 2004-11-03 2006-05-11 Matsushita Electric Industrial Co., Ltd. Method and transmitter structure removing phase ambiguity by repetition rearrangement
EP1655878A1 (en) 2004-11-03 2006-05-10 Matsushita Electric Industrial Co., Ltd. Method and transmitter structure reducing ambiguity by repetition rearrangement in the symbol domain
WO2006048090A1 (en) * 2004-11-03 2006-05-11 Matsushita Electric Industrial Co. Ltd. Method for reducing ambiguity levels of transmitted symbols
KR101245403B1 (ko) * 2005-08-12 2013-03-25 뉴저지 인스티튜트 오브 테크놀로지 NxM 안테나를 이용한 다중 입출력 시스템에서의 재전송 배열 방법 및 장치
US7733988B2 (en) * 2005-10-28 2010-06-08 Alcatel-Lucent Usa Inc. Multiframe control channel detection for enhanced dedicated channel
JP4809143B2 (ja) * 2006-07-06 2011-11-09 株式会社リコー データ処理装置
JP2008278530A (ja) * 2008-06-18 2008-11-13 Nokia Corp アンテナ選択方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328146A (ja) * 1986-07-21 1988-02-05 Nippon Telegr & Teleph Corp <Ntt> データ再送伝送方法
JPH06318926A (ja) * 1993-02-03 1994-11-15 Philips Electron Nv マルチユーザ拡散スペクトル通信システム
WO1995022210A2 (en) * 1994-02-14 1995-08-17 Qualcomm Incorporated Dynamic sectorization in a spread spectrum communication system
JPH11136212A (ja) * 1997-08-26 1999-05-21 Centre For Wireless Commun Natl Univ Of Singapore Cdma受信方法及び受信機
WO1999026371A1 (en) 1997-11-13 1999-05-27 Qualcomm Incorporated Method and apparatus for time efficient retransmission using symbol accumulation
JPH11274976A (ja) * 1998-03-19 1999-10-08 Fujitsu Ltd 無線基地局のアレーアンテナシステム
JPH11275054A (ja) * 1998-03-20 1999-10-08 Nec Saitama Ltd 無線通信システム並びにこのシステムに使用する送信装置及び受信装置
JP2000004196A (ja) 1998-03-10 2000-01-07 Conexant Syst Inc タ―ボ復号化を用いる無線多元サ―ビス通信環境下における再送信パケットキャプチャシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881356A (ja) 1981-11-10 1983-05-16 Kokusai Denshin Denwa Co Ltd <Kdd> 誤り制御方式
JPS61222335A (ja) 1985-03-27 1986-10-02 Mitsubishi Electric Corp デ−タ受信装置
JPH01300732A (ja) 1988-05-30 1989-12-05 Toshiba Corp 再送要求方式
US6175551B1 (en) * 1997-07-31 2001-01-16 Lucent Technologies, Inc. Transmission system and method employing peak cancellation to reduce the peak-to-average power ratio
US6145108A (en) * 1997-09-04 2000-11-07 Conexant Systems, Inc. Retransmission packet capture system within a wireless multiservice communications environment
JP3525728B2 (ja) 1998-03-03 2004-05-10 日本電信電話株式会社 データ通信装置
JP2000031944A (ja) 1998-07-07 2000-01-28 Matsushita Electric Ind Co Ltd 送信装置並びに受信装置及びデータ伝送方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328146A (ja) * 1986-07-21 1988-02-05 Nippon Telegr & Teleph Corp <Ntt> データ再送伝送方法
JPH06318926A (ja) * 1993-02-03 1994-11-15 Philips Electron Nv マルチユーザ拡散スペクトル通信システム
WO1995022210A2 (en) * 1994-02-14 1995-08-17 Qualcomm Incorporated Dynamic sectorization in a spread spectrum communication system
JPH11136212A (ja) * 1997-08-26 1999-05-21 Centre For Wireless Commun Natl Univ Of Singapore Cdma受信方法及び受信機
WO1999026371A1 (en) 1997-11-13 1999-05-27 Qualcomm Incorporated Method and apparatus for time efficient retransmission using symbol accumulation
JP2000004196A (ja) 1998-03-10 2000-01-07 Conexant Syst Inc タ―ボ復号化を用いる無線多元サ―ビス通信環境下における再送信パケットキャプチャシステム
JPH11274976A (ja) * 1998-03-19 1999-10-08 Fujitsu Ltd 無線基地局のアレーアンテナシステム
JPH11275054A (ja) * 1998-03-20 1999-10-08 Nec Saitama Ltd 無線通信システム並びにこのシステムに使用する送信装置及び受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1179905A4

Also Published As

Publication number Publication date
KR20010114266A (ko) 2001-12-31
CN1364360A (zh) 2002-08-14
EP1179905A4 (en) 2009-03-04
CN100488092C (zh) 2009-05-13
JP2001268049A (ja) 2001-09-28
EP1179905A1 (en) 2002-02-13
US6999497B2 (en) 2006-02-14
KR100438240B1 (ko) 2004-07-02
AU4109301A (en) 2001-09-24
US20020159502A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
RU2456752C2 (ru) Схема селективного объединения harq с прямым и обратным смещением для систем ofdma
KR101410120B1 (ko) 이동통신시스템에서 복합 자동 재전송을 지원하는 응답 신호를 송수신하는 장치 및 방법
JP2768354B2 (ja) 中継方式及びこれに用いる送信装置及び中継装置
JP4623992B2 (ja) 送信装置ならびに受信装置
RU2450461C2 (ru) Схема избирательного комбинирования наrq для систем ofdm/ofdma
WO2001069828A1 (fr) Appareil et procede de transmission de donnees
TWI441467B (zh) 用於動態功率放大器後移之方法及裝置
EP1742383A1 (en) Wireless communication system and radio station
US20070287465A1 (en) Method and system for transmitting/receiving data in a communication system
US8385851B2 (en) Radio communication method, radio transmission apparatus and receiving apparatus
JP5113533B2 (ja) マルチキャリア通信装置及び同装置におけるピーク抑圧方法
JP2003283460A (ja) マルチキャリア送信装置およびマルチキャリア送信方法
KR20110074620A (ko) 통신 장치, 통신 방법 및 집적 회로
WO2003061171A1 (fr) Dispositif de transmission radio, dispositif de reception radio et procede de transmission radio
JP4611842B2 (ja) リピータ装置
US20130121323A1 (en) Method for Receiving Frames in a Wireless Local Area Network
US20040100896A1 (en) De-boosting in a communications environment
JP2008160579A (ja) 無線通信装置および無線通信方法
JP2006203877A (ja) 送信装置及び信号抑圧方法
JP3112659B2 (ja) 周波数ダイバーシティ方式ならびにその送信装置、受信装置
JP3793637B2 (ja) Ofdm信号伝送装置
WO2010079785A1 (ja) 基地局装置、移動端末装置及び情報送信方法
JP2009147609A (ja) 無線通信方法、無線通信システム、および中継局
WO2013035597A1 (ja) 送信装置、プロセッサ、送信方法および送信プログラム
JP4498381B2 (ja) 無線通信方法、無線送信装置及び無線受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800442.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 09959607

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/011369/K

Country of ref document: IN

Ref document number: IN/PCT/2001/01139/KO

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001912257

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017014500

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017014500

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001912257

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020017014500

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10977301

Country of ref document: BG