WO2001066685A1 - Nicht flüssigwaschmittel mit flüssigen bleichaktivatoren - Google Patents

Nicht flüssigwaschmittel mit flüssigen bleichaktivatoren Download PDF

Info

Publication number
WO2001066685A1
WO2001066685A1 PCT/EP2001/002220 EP0102220W WO0166685A1 WO 2001066685 A1 WO2001066685 A1 WO 2001066685A1 EP 0102220 W EP0102220 W EP 0102220W WO 0166685 A1 WO0166685 A1 WO 0166685A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
agents
liquid
weight
aqueous liquid
Prior art date
Application number
PCT/EP2001/002220
Other languages
English (en)
French (fr)
Inventor
Hans-Jürgen Riebe
Matthias Neumann
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO2001066685A1 publication Critical patent/WO2001066685A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds

Definitions

  • the present invention relates to non-aqueous, liquid detergents or cleaning agents which contain nonionic surfactant (s) and / or anionic surfactant (s) and liquid bleach activators and have good storage and sedimentation stability.
  • Liquid detergents or cleaning agents are in demand by the consumer because of their dust-free applicability, their easy metering and the generally better and faster solubility.
  • the problem with liquid detergent or cleaning agent compositions is the stability of the components used with regard to sedimentation and decomposition. It is almost impossible to incorporate a bleaching system into aqueous agents, since the bleaching agents continuously lose activity due to hydrolysis and the agents thus show reduced washing performance on bleachable stains.
  • the incorporation of bleaching agents and bleach activators into non-aqueous, liquid, detergents or cleaning agents is also problematic. This often leads to sedimentation of dispersed solid particles such as solid bleach or bleach activators.
  • WO 96/10072 proposes a ner process for producing non-aqueous bleach-containing liquid detergents which have high chemical and physical stability and outstanding washing and bleaching results by suspending detergent components of fine particle size in a non-aqueous liquid matrix made from alcohol ethoxylates.
  • WO 98/00510 describes a non-aqueous liquid detergent composition with bleaching agents and powdered bleach activators, which by adding Polycarboxylates and solvents such as butoxy-propoxy-propanol (BPP) are dispersed in the surfactant phase.
  • BPP butoxy-propoxy-propanol
  • the DE 41 31 906 Al describes a non-aqueous liquid to pastenfb 'rmiges washing or cleaning agent containing 5 to 20 wt .-% hydrated zeolite A, 50 to 80 wt .-% of anionic and / or nonionic surfactant, 5 to 20 parts by weight % Bleach, up to 6% by weight of bleach activator and up to 6% by weight of a complexing agent for heavy metals.
  • DE 40 24 531 A1 describes water-free bleach containing liquid detergents with nonionic and anionic surfactants, the liquid matrix containing solvents and preferably N, N, N ', N'-tetraacetylethylene diamine being used as the bleach activator.
  • the present invention was based on the object of providing a stable, liquid, non-aqueous agent for washing or cleaning which has good storage or sedimentation stability.
  • the invention thus relates to a non-aqueous, liquid agent for washing or cleaning, which contains bleach activator (s), nonionic surfactant (s) and / or anionic (s) surfactant (s), all bleach activators being in liquid form.
  • non-aqueous is to be understood as meaning agents which contain only small amounts of free water, ie water which is not bound as water of crystallization or in any other way. Since even non-aqueous solvents and raw materials (especially such technical qualities) have certain water contents, completely water-free agents can only be produced on an industrial scale with great effort and high costs.
  • the “non-aqueous” compositions of the present invention can thus contain small amounts of free water which are below 5% by weight, preferably below 2% by weight, based in each case on the finished composition.
  • liquid bleach activators in non-aqueous detergents enables the formation of a structured liquid matrix into which solid particles can be incorporated in a manner that is stable in storage and sedimentation.
  • the properties of the liquid detergents according to the invention can be both thioxotropic, pseudoplastic and pseudoplastic.
  • Pseudoplastic liquids are characterized by the fact that their viscosity decreases with increasing shear rate.
  • Thixotropic liquids have a viscosity that also depends on the shear rate. As the shear rate increases, the viscosity decreases and as the shear rate subsequently decreases, the viscosity increases again, but this process is time-dependent and may not reach the values that corresponded to the same shear rates before shearing until much later.
  • Structurally viscous liquids are dimensionally stable, easily deformable, rich in liquids and / or gases disperse systems from at least two components, which mostly consist of a solid, colloidally divided substance and a liquid as a dispersant.
  • the solid substance is coherent, that is, it forms a spatial network in the dispersion medium, the particles adhering to one another at different points (adhesion points) due to secondary or main valences.
  • thixotropic and pseudoplastic liquids are particularly preferred, since they are more viscous during storage and transport, where low to low shear forces act, and are less viscous during use or processing, where higher shear forces act, and are therefore easy to pour and process.
  • liquid bleach activators are an essential component of the agents according to the invention.
  • the use of liquid bleach activators in bleach-containing liquid washing or cleaning agents leads to an improved bleaching effect when washing at temperatures of 60 ° C. and below.
  • Another advantage of using liquid bleach activators in the agents according to the invention is that the introduction of other organic solvents can preferably be reduced or even dispensed with, ie solvent-free liquid detergents can be made available to the consumer.
  • solvent-free is to be understood as meaning agents which, due to the production process, only have small amounts or traces of commonly used organic solvents such as alcohols, carboxylic acid esters, ketones and etiers such as ethanol, n- or i-propanol, butanols, Glycol, propane or butanediol, glycerin, diglycol, propyl or butyl diglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether,
  • organic solvents such as alcohols, carboxylic acid esters, ketones and etiers such as ethanol, n- or i-propanol, butanols, Glycol, propane or butanediol, glycerin, diglycol, propyl or butyl diglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethy
  • Ethylene glycol mono-n-butyl ether diethylene glycol methyl ether, diethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol monomethyl or ethyl ether, diisopropylene glycol monomethyl or ethyl ether, methoxy, ethoxy or butoxytriglycol, l Butoxyethoxy-2-propanol, butoxy-propoxy-propanol (BPP), 3-methyl-3-methoxybutanol, propylene glycol t-butyl ether and mixtures of these solvents.
  • the preferred "solvent-free" agents of the present invention may contain small amounts of organic solvents which are below 1% by weight, preferably below 0.5% by weight and in particular below 0.1% by weight, based in each case on the total funds.
  • bleach activators are N-acyl or O-acyl compounds forming H 2 O 2 organic peracids. All liquid are suitable for the present invention
  • Bleach activators preferably acyl lactam bleach activators with the following formula
  • R C ⁇ -C ⁇ linear and branched alkyl
  • n 0 to 4, preferably 1 (valerolactam) and 2 (caprolactam).
  • liquid imide bleach activators of the formula below.
  • compositions of the invention contain particularly preferably the liquid bleaching activators glycerol triacetate (Triacetin ® ex Bayer), triethyl (TEAC), tributyl and ethylene glycol and any mixtures thereof.
  • glycerol triacetate Triacetin ® ex Bayer
  • TEAC triethyl
  • tributyl ethylene glycol
  • the liquid bleach activators can be incorporated into the agents according to the invention in varying amounts.
  • the liquid bleach activator content of the agents according to the invention is preferably 0.1% by weight to 40% by weight, particularly preferably 3% by weight to 30% by weight and in particular 10% by weight to 25% by weight , based on the total mean.
  • the non-aqueous liquid washing or cleaning agents according to the invention can contain one or more nonionic surfactant (s).
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols and amines with preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol or amine, in which the alcohol or amine radical is linear or can preferably be methyl-branched in the 2-position or can contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates and fatty amine ethoxylates with linear residues of alcohols or amines of native origin with 12 to 18 carbon atoms for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C. 12th is alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-1 alcohol with 3 EO and C 12-18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula R 4 O (G) x can also be used as further nonionic surfactants, in which R 4 is a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical with 8 to 22, preferably 12 to 18 C- Atoms means and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as they are are described, for example, in Japanese patent application JP 58/217598 or which are preferably produced by the process described in international patent application WO-A-90/13533.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • Other suitable surfactants are polyhydroxy fatty acid amides of the formula below,
  • R 5 CO is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 6 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z 1 ] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 Hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the following formula
  • R 7 for a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 8 for a linear, branched or cyclic alkyl radical or an aryl radical with 2 to 8 carbon atoms
  • R 9 for a linear, branched or cyclic alkyl radical or Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C ⁇ -alkyl or phenyl radicals being preferred
  • [Z 2 ] representing a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated, derivatives of this rest.
  • [Z 2 ] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • ether carboxylic acids or ether carboxylic acid esters of the formula R 10 (OCH 2 CH 2 O) n CH 2 COOR 11 , where R 10 and R 11 independently of one another are H, linear and or branched alkyl, alkenyl having 1 to 26 carbon atoms and n for Numbers from 1 to 20, preferably from 1 to 10.
  • non-aqueous, liquid washing or cleaning agents which contain 5 to 80% by weight, preferably 15 to 80% by weight and in particular 20 to 70% by weight of one or more nonionic surfactants, in particular from the Group ether carboxylic acids, ether carboxylic acid esters, the alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, alcohols and or carboxylic acids with 8 to 28, preferably 10 to 20 and in particular 12 to 18 carbon atoms.
  • nonionic surfactants in particular from the Group ether carboxylic acids, ether carboxylic acid esters, the alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, alcohols and or carboxylic acids with 8 to 28, preferably 10 to 20 and in particular 12 to 18 carbon atoms.
  • the agents according to the invention can contain anionic surfactants.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are preferably C- 13 alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates such as are obtained, for example, from C 1 -18 mono-olefins with terminal or internal double bonds by sulfonating with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products.
  • Alkanesulfonates which are derived from C 12 are also suitable. 18 -alkanes can be obtained, for example, by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids e.g. the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids are suitable.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and their mixtures, as obtained in the production by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • the alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 1 -C 18 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior analogous to that of the adequate compounds the basis of oleochemical raw materials.
  • the C 12 are - C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C ⁇ ds-alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which are produced for example in accordance with US Patent No. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C -21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched C -11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12-18 fatty alcohols 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8- ⁇ 8 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which are nonionic surfactants in themselves.
  • sulfosuccinates the fatty alcohol residues of which are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly preferred. It is also possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures, but also salts of unsaturated fatty acids, especially oleates.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or Triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the agents according to the invention can contain anionic surfactant (s) in amounts of 0.1% by weight to 50% by weight, preferably 1% by weight to 40% by weight and in particular 5% by weight to 35 % By weight, based on the total composition.
  • the non-aqueous washing or cleaning liquid agents of the present invention may also preferably contain one or more dispersed bleaches.
  • dispersed bleaches include sodium percarbonate, percarbamide, citrate perhydrates, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other bleaching agents that can be used are, for example, peroxopyrophosphates and H 2 O 2 -producing peracid salts or peracids, such as persulfates or persulfuric acid.
  • a combination of sodium percarbonate with sodium sesquicarbonate is preferred in particular when the agents according to the invention are used for textile washing.
  • the agents are used in particular for cleaning hard surfaces, for example in automatic dishwashing, they can, if desired, also contain bleaches from the group of organic bleaches.
  • Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • Other typical organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
  • Preferred representatives are the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monophthalate, the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid, phthalimidapthoxyacid, phthalimidapthoxy acid, phthalimidapthoxyacid,
  • the bleach are can of course also be used in any mixture.
  • the bleaching agents can optionally be coated in order to protect them against premature decomposition.
  • the amount of bleaching agent in the agents according to the invention is usually between 0.1% by weight and 50% by weight, preferably between 2 and 30% by weight and in particular between 4 and 25% by weight, in each case based on the total Medium.
  • the agents according to the invention can contain further ingredients of washing or cleaning agents, for example from the group of builders, enzymes, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, foam inhibitors, silicone oils, anti-redeposition agents, optical brighteners, graying inhibitors, Color transfer inhibitors, anti-crease agents, antimicrobial agents, antioxidants, UV absorbers, complexing agents and antistatic agents.
  • cleaning or cleaning agents for example from the group of builders, enzymes, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, foam inhibitors, silicone oils, anti-redeposition agents, optical brighteners, graying inhibitors, Color transfer inhibitors, anti-crease agents, antimicrobial agents, antioxidants, UV absorbers, complexing agents and antistatic agents.
  • the non-aqueous liquid agents according to the invention can contain builders. All builders commonly used in washing or cleaning agents can be incorporated into the agents according to the invention, in particular thus zeolites, silicates, carbonates, organic cobuilders and - where there are no ecological prejudices against their use - also the phosphates.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + _ 'H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 'yH 2 O are preferred, with ⁇ -sodium disilicate being able to be obtained, for example, by the method described in international patent application WO-A-91/08171 ,
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 um and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024. Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Commercially available and can preferably be used in the context of the present invention for example a co-crystallizate of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and contain preferably 18 to 22% by weight, in particular 20 to 22% by weight of bound water.
  • the zeolites can also be used as over-dried zeolites with lower water contents and are then suitable due to their hygroscopicity for removing unwanted traces of free water.
  • phosphates As builders, provided that such use should not be avoided for ecological reasons.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable.
  • Organic builder substances which can be used as cobuilders and which of course also serve to regulate viscosity are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA) and their descendants, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to establish a lower and milder pH of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Other acidifiers that can be used are known pH regulators such as sodium hydrogen carbonate and sodium hydrogen sulfate.
  • Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UN detector being used. The measurement was made against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard. The molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are, in particular, polyacrylates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates with molecular weights of 2,000 to 10,000 g / mol, and particularly preferably 3,000 to 5,000 g / mol, can in turn be preferred from this group.
  • Suitable polymers can also comprise substances which consist partly or completely of units of vinyl alcohol or its derivatives.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as an aqueous solution or preferably as a powder.
  • the polymers can also contain allylsulfonic acids, such as, for example, EP-B-0 727 448 allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • allylsulfonic acids such as, for example, EP-B-0 727 448 allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • Biodegradable polymers of more than two different monomer units are also particularly preferred, for example those which, according to DE-A-43 00 772, are monomers, salts of acrylic acid and maleic acid, and also vinyl alcohol or vinyl alcohol derivatives or according to DE-C-4221 381 as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives.
  • copolymers are those which are described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Particularly preferred are polyaspartic acids or their salts and derivatives, of which it is disclosed in German patent application DE-A-195 40 086 that, in addition to cobuilder properties, they also have a bleach-stabilizing effect.
  • Polyvinylpyrrolidones, polyamine derivatives such as quaternized and / or ethoxylated hexamethylene diamines are also suitable.
  • castor oil derivatives such as those commercially available from Rheox as Thixatrol ST.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP-A-0280 223.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 g / mol can be used.
  • a preferred dextrin is described in British patent application 94 19 091.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP-A-0 232 202, EP-A-0427 349, EP-A-0 472 042 and EP-A-0 542496 as well as international patent applications WO-A- 92/18542, WO-A-93/08251, WO-A-93/16110, WO-A-94/28030, WO-A-95/07303, WO-A-95/12619 and WO-A-95 / 20608 known.
  • An oxidized oligosaccharide according to German patent application DE-A-196 00 018 is also suitable.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Ethylene diamine N, N'-disuccinate (EDDS) the synthesis of which is described, for example, in US Pat. No. 3,158,615, is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates as described, for example, in US Pat. Nos. 4,524,009, 4,639,325, in European patent application EP-A-0 150 930 and in Japanese patent application JP-A-93/339 896 become. Suitable amounts are 3 to 15% by weight in formulations containing zeolite and / or silicate.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029.
  • the amount of builders in the agents according to the invention is usually 1 to 30% by weight, preferably 4% by weight to 25% by weight.
  • Preferred non-aqueous liquid washing or cleaning agents contain water-soluble builders as builders, preferably from the group of the oligo- and polycarboxylates, the carbonates and the crystalline and / or amorphous silicates.
  • the salts are among these compounds of citric acid has proven to be particularly suitable, the alkali and, in particular, the sodium salts being preferred.
  • Particularly suitable enzymes are those from the classes of hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All these hydrolases help to remove stains such as protein, fat or starchy stains and graying in the laundry. Cellulases and other glycosyl hydrolases can also help to retain color and increase the softness of the textile by removing pilling and microfibrils. Oxireductases can also be used to bleach or inhibit the transfer of color.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All these hydrolases help to remove stains such as protein, fat or starchy stains and graying in the laundry. Cellulases and other glycosyl hydrolases can also help to retain color and increase the softness of
  • Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus and Humicola insolens are particularly suitable.
  • Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • Cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof, are preferably used as cellulases. Since different types of cellulase differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes can be adsorbed or coated as a shaped body on carriers in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, approximately 0.1 to 5% by weight, preferably 0.12 to approximately 2% by weight.
  • Suitable stabilizers in particular for per compounds and enzymes which are sensitive to heavy metal ions, are the salts of polyphosphonic acids, in particular 1-hydroxyethane-1,1-diphosphonic acid (HEDP), diethylenetriaminepentamethylenephosphonic acid (DETPMP) or ethylenediaminetetramethylenephosphonic acid.
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • DETPMP diethylenetriaminepentamethylenephosphonic acid
  • ethylenediaminetetramethylenephosphonic acid ethylenediaminetetramethylenephosphonic acid
  • pH adjusting agents In order to bring the pH of the agents according to the invention into the desired range, the use of pH adjusting agents can be indicated. All known acids or alkalis can be used here, provided that their use is not prohibited for application-related or ecological reasons or for reasons of consumer protection. The amount of these adjusting agents usually does not exceed 2% by weight of the total formulation.
  • the agents according to the invention can also contain components which have a positive influence on the oil and fat washability from textiles (so-called soil repellents). This effect becomes particularly clear when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight, based in each case the non-ionic cellulose ether, and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • Optical brighteners can be added to the agents according to the invention in order to eliminate graying and yellowing of the treated textiles. These substances attach to the fibers and bring about a brightening and simulated bleaching effect by converting invisible ultraviolet radiation into visible longer-wave light, whereby the ultraviolet light absorbed from the sunlight is emitted as a slightly bluish fluorescence and results in pure white with the yellow tone of the grayed or yellowed laundry.
  • salts of 4,4'-bis (2-anilino-4-morpholino-l, 3,5-triazmyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which, instead of the morpholino group, carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group substituted Diphenylstyryle be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl ) -diphenyls, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyls, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyls.
  • Suitable compounds originate, for example, from the substance classes of 4,4'-diamino-2,2'-stilbene disulfonic acids (flavonic acids), 4,4'-distyryl biphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines,
  • Naphthalic acid imides benzoxazole, benzisoxazole and benzimidazole systems as well as the pyrene derivatives substituted by heterocycles. Mixtures of the aforementioned brighteners can also be used.
  • optical brighteners are usually used in amounts between 0.05 and 0.3% by weight, based on the total agent.
  • Dyes and fragrances are added to the agents according to the invention in order to improve the aesthetic impression of the products and, in addition to the washing or cleaning performance, to provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • Individual fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type, can be used as perfume oils or fragrances.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, and the ketones include, for example, the jonones, oc-isomethyl ionone and methyl cedryl ketone , the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • perfume oils can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrances can be incorporated directly into the agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • the agents according to the invention can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, and no pronounced substantivity towards textile fibers in order not to dye them.
  • Foam inhibitors that can be used in the agents according to the invention are, for example, soaps, paraffins or silicone oils, which can optionally be applied to carrier materials. Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • water-soluble colloids of mostly organic nature are suitable, for example glue, gelatin, salts of ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc.
  • Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof are preferably used in amounts of 0.1 to 5% by weight, based on the total agent
  • compositions can contain synthetic anti-crease agents.
  • synthetic anti-crease agents include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, alkylol esters, alkylolamides or fatty alcohols, which are mostly reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid esters.
  • the non-aqueous detergents can contain antimicrobial agents.
  • antimicrobial agents Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostatics and bactericides, fungistatics and fungicides, etc.
  • Important substances from these groups are, for example, benzalkonium chlorides, alkylarylsulfonates, halophenols and phenol mercuric acetate.
  • the formulations can contain antioxidants.
  • Phenols, bisphenols and thiobisphenols substituted by sterically hindered groups can be used as antioxidants.
  • Substance classes are aromatic amines, preferably secondary aromatic amines and substituted p-phenylenediamines, phosphorus compounds with trivalent phosphorus such as phosphines, phosphites and phosphonites, compounds containing endiol groups, so-called reductones, such as ascorbic acid and its derivatives, organosulfur compounds, such as the esters of 3, 3'-thiodipropionic acid with C 1-18 alkanols, in particular C_o- ⁇ _ alkanols, metal ion deactivators which are capable of complexing metal ions catalyzing the autooxidation, such as copper, such as, for example, nitrilotriacetic acid.
  • a large number of examples of such antioxidants is summarized in DE 196 16 570 (BASF AG) - the antioxidants mentioned there can be used in the context of the present invention.
  • Antistatic agents increase the surface conductivity and thus enable the flow of charges that have formed to improve.
  • External antistatic agents are generally substances with at least one hydrophilic molecular ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be divided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents.
  • External antistatic agents are described, for example, in patent applications FR 1,156,513, GB 873 214 and GB 839 407.
  • the lauryl (or stearyl) dimethylbenzylammonium chlorides disclosed here are suitable as antistatic agents for textiles or as an additive to the non-aqueous liquid detergents according to the invention, an additional softening effect being achieved.
  • silicone derivatives can be used in the formulations to improve the water absorption capacity, the rewettability of the treated textiles and to facilitate the ironing of the treated textiles. These additionally improve the rinsing behavior of the wash-active formulations due to their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylarylsiloxanes in which the alkyl groups have one to five carbon atoms have and are fully or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which can optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • the viscosities of the preferred silicones at 25 ° C. are in the range between 100 and 100,000 mPas, it being possible for the silicones to be used in amounts between 0.2 and 5% by weight, based on the total agent.
  • the agents can contain UV absorbers, which absorb onto the treated textiles and improve the lightfastness of the fibers and or the lightfastness of the other formulation components.
  • UV absorbers are understood to mean organic substances (light protection filters) which are able to absorb ultraviolet rays and release the absorbed energy in the form of longer-wave radiation, for example heat.
  • Compounds which have these desired properties are, for example, the compounds and derivatives of benzophenone which are active by radiationless deactivation and have substituents in the 2- and / or 4-position.
  • Substituted benzotriazoles phenyl-substituted acrylates (cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanoic acid are also suitable.
  • 3-Benzylidene camphor or 3-benzylidene norcampher and its derivatives, for example 3- (4-methylbenzylidene) camphor, as described in EP 0693471 B1, are to be mentioned as UV-B absorbers; 4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate; Esters of cinnamic acid, preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, isoamyl 4-methoxycinnamate, 2-cyano-3, 3-2-ethylhexylphenylcinnamate (octocrylene); Esters of salicylic acid, preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenz
  • 2-phenylbenzimidazole-5-sulfonic acid and its alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium and glucammonium salts Sulfonic acid derivatives of benzophenones, preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and their salts
  • Sulfonic acid derivatives of 3-benzylidene camphor such as 4- (2-oxo-3-bornylidene-thyI) benzene-sulfonic acid and 2-methyl-5- (2-oxo-3-bornylidene) sulfonic acid and their salts.
  • UV-A filters such as, for example, 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl -4'-methoxydibertzoylmethane (Parsol 1789), l-phenyl-3- (4'-isopropylphenyl) propane-l, 3-dione and enamine compounds, as described in DE 19712033 AI (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • insoluble light-protection pigments namely finely dispersed, preferably nanoized metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are already used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized. Typical examples are coated titanium dioxides such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. Preferably micronized zinc oxide is used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996).
  • the UV absorbers are usually used in amounts of from 0.01% by weight to 5% by weight, preferably from 0.03% by weight to 1% by weight.
  • Suitable heavy metal complexing agents are, for example, the alkali salts of nitrilotriacetic acid (NTA) and their derivatives and alkali metal salts of anionic polyelectrolytes such as polymaleates and polysulfonates.
  • NTA nitrilotriacetic acid
  • anionic polyelectrolytes such as polymaleates and polysulfonates.
  • a preferred class of complexing agents are the phosphonates, which in preferred liquid non-aqueous agents in amounts of 0.01 to 5% by weight, preferably 0.02 to 1% by weight and in particular 0.1 to 1% by weight are included.
  • These preferred compounds include, in particular, organophosphonates such as, for example, 1-hydroxyethane-l, l-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenetriamine-penta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane -l, 2,4-tricarboxylic acid (PBS-AM), which are mostly used in the form of their ammonium or alkali metal salts.
  • organophosphonates such as, for example, 1-hydroxyethane-l, l-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenetriamine-penta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-
  • the agents according to the invention are produced in a manner known per se by mixing the ingredients in stirred tanks. If it is desired for a certain end product, the solids contained in the agents according to the invention can be further comminuted by a wet grinding step in order to further increase the separation stability of the agents. Colloid mills, roller mills or annular gap or agitator ball mills are suitable for such operations familiar to the person skilled in the art.
  • the liquid bleach activators to be used according to the invention can be added at any point in such a conventional manufacturing process. Usually, the bleaching agents and the bleach activators, if any, are not incorporated into the agents together before grinding, since the intimate contact of the substances during grinding can require decomposition.
  • the non-aqueous liquid agents of the present invention can be made within a wide range of viscosities. Depending on the use of suitable builders, not only viscous and easily movable agents according to the invention can be produced, but also viscous to pasty agents with higher viscosities. The consistency of the pasty agents can also be spreadable or cutable - even in such agents, the use of liquid bleach activators leads to the effects according to the invention.
  • Preferred viscosity ranges (Brookfield RTV, 20 ° C., spindle no. 2, 50 rpm) of the agents according to the invention are between 20 and 50,000 mPas, preferably between 200 and 10,000 mPas and in particular between 500 and 5000 mPas.
  • agents E1 and E2 according to the invention and comparative formulations VI and V2 can be found in Table 1:
  • Genapol ® UD-080 (undecanol with 8 EO ex Clariant) ABS powder (C 9 -C 13 alkylbenzenesulfonate) Dowanol ® DPM (dipropylene glycol monomethyl ether ex Dow) Triacetin ® (glycerol triacetate)
  • compositions of agents according to the invention are given in Table 3.
  • the numerical values given there are percentages by weight and relate to the entire average.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Nichtwässrige flüssige Wasch- oder Reinigungsmittel, die Bleichaktivatoren enthalten, weisen eine gute Lager- und Sedimentationsstabilität auf, wenn flüssige Bleichaktivatoren eingesetzt werden. Durch Einsatz flüssiger Bleichaktivatoren kann sowohl der Einsatz sonstiger organischer Lösungsmittel reduziert werden als auch der Aufbau strukturierter, pseudoplastischer bzw. thixotroper Flüssigmatrices erreicht werden.

Description

NICHT FLÜSSIGWASCHMITTEL MIT FLÜSSIGEN BLEICHAKTIVATOREN
Die vorliegende Erfindung betrifft nichtwäßrige, flüssige Wasch- oder Reinigungsmittel, die nichtionische(s) Tensid(e) und/oder anionische(s) Tensid(e) sowie flüssige Bleichmittelaktivatoren enthalten und eine gute Lager- und Sedimentationsstabilität aufweisen.
Flüssige Wasch- oder Reinigungsmittel sind aufgrund ihrer staubfreien Anwendbarkeit, ihrer einfachen Dosierbarkeit und der im allgemeinen besseren und schnelleren Löslichkeit vom Verbraucher gefragt. Problematisch ist bei flüssigen Wasch- oder Reinigungsmittelzusammensetzungen jedoch die Stabilität der eingesetzten Komponenten in Bezug auf Sedimentation und Zersetzung. So ist es nahezu unmöglich, in wäßrige Mittel ein Bleichmittel-System einzuarbeiten, da die Bleichmittel aufgrund von Hydrolyseerscheinungen stetig an Aktivität verlieren und die Mittel somit verringerte Waschleistungen an bleichbaren Anschmutzungen zeigen. Aber auch die Einarbeitung von Bleichmitteln und Bleichaktivatoren in nichtwäßrige, flüssige, Wasch- oder Reinigungsmittel ist problematisch. So kommt es vielfach zur Sedimentation dispergierter Feststoffpartikel wie beispielsweise fester Bleichmittel bzw. Bleichmittelaktivatoren. Im Stand der Technik existieren mehrere Lösungsvorschläge zur Erhöhung der Lager- und Sedimentationsstabilität von Bleichmittel- und Bleichaktivator-haltigen nichtwäßrigen Flüssigwaschmitteln, wobei es sich zumeist um den Einsatz bestimmter lösungsmittelhaltiger Verdickungssysteme zum Aufbau strukturierter Flüssigmatrices handelt. So schlägt die WO 96/10072 ein Nerfahren zur Herstellung nichtwäßriger bleichmittelhaltiger Flüssigwaschmittel vor, die eine hohe chemische und physikalische Stabilität sowie herausragende Wasch- und Bleichergebnisse aufweisen, indem man Waschmittelkomponenten feiner Korngröße in einer nichtwäßrigen Flüssigkeitsmatrix aus Alkoholethoxylaten suspendiert.
Die WO 98/00510 beschreibt eine nichtwäßrige Flüssigwaschmittelzusammensetzung mit Bleichmitteln und pulverförmigen Bleichmittelaktivatoren, die durch Zusatz von Polycarboxylaten und Lösungsmitteln, wie Butoxy-propoxy-propanol (BPP) in die Tensidphase dispergiert werden.
Die DE 41 31 906 AI beschreibt ein nichtwäßriges, flüssiges bis pastenfb'rmiges Waschoder Reinigungsmittel, enthaltend 5 bis 20 Gew.-% hydratisierten Zeolith A, 50 bis 80 Gew.-% anionisches und/oder nichtionisches Tensid, 5 bis 20 Gew.-% Bleichmittel, bis zu 6 Gew.-% Bleichaktivator sowie bis zu 6 Gew.-% eines Komplexierungsmittels für Schwermetalle.
Die DE 40 24 531 AI beschreibt wasserfreie Bleichmittel-haltige Flüssigwaschmittel mit nichtionischen und anionischen Tensiden, wobei die Flüssigmatrix Lösungsmittel enthält und vorzugsweise N,N,N',N'-Tetraacetylethylendiamin als Bleichaktivator eingesetzt wird.
Die im Stand der Technik beschriebenen Maßnahmen zur Stabilisierung von Feststoffpartikeln in nichtwäßrigen flüssigen Mitteln sind vielfach an den Einsatz von Verdickungsmitteln und teuren, nicht waschaktiven Lösungsmitteln gebunden. Außerdem führt die Einarbeitung fester Bleichmittelaktivatoren zu unerwünschten Niskositäts- veränderungen der tensidhaltigen Flüssigmatrices.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, ein stabiles, flüssiges, nichtwäßriges Mittel zum Waschen oder Reinigen bereitzustellen, welches eine gute Lager- beziehungsweise Sedimentationsstabilität aufweist.
Die Lösung dieser Aufgabe gelingt durch Einsatz flüssiger Bleichmittelaktivatoren in eine nichtwäßrige Waschmittelformulierung.
Gegenstand der Erfindung ist somit ein nichtwäßriges, flüssiges Mittel zum Waschen oder Reinigen, welches Bleichmittelaktivator(en), nichtionische(s) Tensid(e) und/oder anionische(s) Tensid(e) enthält, wobei sämtliche Bleichmittelaktivatoren in flüssiger Form vorliegen. Unter dem Begriff "nichtwäßrig" sind im Rahmen der vorliegenden Erfindung Mittel zu verstehen, die nur geringe Mengen an freiem, also nicht als Kristallwasser oder in sonstiger Weise gebundenem, Wasser enthalten. Da selbst nichtwäßrige Lösungsmittel und Rohstoffe (insbesondere solche technischer Qualitäten) gewisse Wassergehalte aufweisen, sind vollkommen wasserfreie Mittel im industriellen Maßstab nur mit großem Aufwand und hohen Kosten herstellbar. In den "nichtwäßrigen" Mitteln der vorliegenden Erfindung können somit geringe Mengen an freiem Wasser enthalten sein, die unter 5 Gew.-%, vorzugsweise unter 2 Gew.-%, jeweils bezogen auf das fertige Mittel, liegen.
Überraschenderweise wurde gefunden, daß durch den Einsatz flüssiger Bleichmittelaktivatoren in nichtwäßrigen Waschmitteln die Ausbildung einer strukturierten Flüssigmatrix möglich ist, in welche Feststoffpartikel lager- und sedimentationsstabil eingearbeitet werden können.
Die Eigenschaften der erfindungsgemäßen Flüssigwaschmittel können sowohl thioxotroper, pseudoplastischer als auch strukturviskoser Natur sein. Pseudoplastische Flüssigkeiten zeichnen sich dadurch aus, daß ihre Viskosität mit Erhöhung der Schergeschwindigkeit abnimmt. Thixotrope Flüssigkeiten besitzen eine Viskosität, die ebenfalls von der Schergeschwindigkeit abhängig ist. Mit zunehmender Scherrate nimmt die Viskosität ab und bei anschließender Abnahme der Schergeschwindigkeit nimmt die Viskosität zwar wieder zu, dieser Vorgang ist jedoch zeitabhängig und erreicht unter Umständen erst viel später wieder die Werte, die den gleichen Schergeschwindigkeiten vor dem Scheren entsprachen. Strukturviskose Flüssigkeiten sind formbeständige, leicht deformierbare, an Flüssigkeiten und/oder Gasen reiche disperse Systeme aus mindestens zwei Komponenten, die zumeist aus einem festen, kolloid zerteilten Stoff und einer Flüssigkeit als Dispersionsmittel bestehen. Dabei ist die feste Substanz kohärent, daß heißt sie bildet im Dispersionsmittel ein räumliches Netzwerk, wobei die Teilchen durch Nebenoder Hauptvalenzen an verschiedenen Punkten (Haftpunkte) aneinanderhaften. Im Rahmen dieser Erfindung sind thixotrope und pseudoplastische Flüssigkeiten besonders bevorzugt, da diese bei Lagerung und Transport, wo niedrige bis geringe Scherkräfte wirken, höherviskos sind und bei Gebrauch oder Verarbeitung, wo höhere Scherkräfte wirken, weniger viskos und somit gut gießfahig und verarbeitbar sind. Die flüssigen Bleichmittelaktivatoren sind wesentlicher Bestandteil der erfindungsgemäßen Mittel. Der Einsatz flüssiger Bleichmittelaktivatoren fuhrt in Bleichmittel-haltigen flüssigen Wasch- oder Reinigungsmitteln beim Waschen bei Temperaturen von 60 °C und darunter zu einer verbesserten Bleichwirkung. Ein weiterer Vorteil der Verwendung flüssiger Bleichaktivatoren in den erfindungsgemäßen Mitteln ist, daß vorzugsweise die Einbringung sonstiger organischer Lösungsmittel reduziert oder sogar auf sie verzichtet werden kann, d. h. es können dem Verbraucher lösungsmittelfreie Flüssigwaschmittel zur Verfügung gestellt werden.
Unter dem Begriff „lösungsmittelfrei" sind im Rahmen der vorliegenden Erfindung Mittel zu verstehen, die herstellungsbedingt nur geringe Mengen oder Spuren von üblicherweise eingesetzten, organischen Lösungsmitteln wie Alkohole, Carbonsäureester, Ketone und Etlier wie beispielsweise Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether,
Ethylenglykolmono-n-butylether, Diethylenglykol-methylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propyl-ether, Dipropylenglykolmonomethyl-, oder - ethylether, Di-isopropylenglykolmonomethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, l-Butoxyethoxy-2-propanol, Butoxy-propoxy-propanol (BPP), 3-Methyl- 3-methoxybutanol, Propylen-glykol-t-butylether sowie Mischungen dieser Lösungsmittel enthalten. In den bevorzugten "lösungsmittelfreien" Mitteln der vorliegenden Erfindung können geringe Mengen organischer Lösungsmittel enthalten sein, die unter 1 Gew.-%, vorzugsweise unter 0,5 Gew.-% und insbesondere unter 0,1 Gew.-%, jeweils bezogen auf das gesamte Mittel, liegen.
Beispiele für Bleichaktivatoren sind mit H2O2 organische Persäuren bildende N-Acyl- bzw. O-Acyl- Verbindungen. Für die vorliegende Erfindung eignen sich alle flüssigen Bleichaktivatoren, vorzugsweise Acyllactam-Bleichaktivatoren mit nachstehender Formel,
Figure imgf000006_0001
wobei R=Cι-Cπ linear und verzweigtes Alkyl; n=0 bis 4, vorzugsweise 1 (Valerolactam) und 2 (Caprolactam).
Eine weitere Klasse bevorzugter flüssiger Bleichaktivatoren sind die flüssigen Imid- Bleichaktivatoren der nachstehenden Formel,
Figure imgf000006_0002
wobei R1=C7-C13 linear oder verzweigtes, gesättigtes oder ungesättigtes Alkyl, vorzugsweise R1=C -C lineares Alkyl; R2=d-C2 Alkyl, vorzugsweise Methyl und R3=Ci- C2 Alkyl, vorzugsweise Methyl.
Weiterhin geeignet sind flüssige Carbonsäureanhydride sowie deren Derivate, Isoproenylacetat, und 2,5-Diacetoxy-2,5-dihydrofuran. Die erfindungsgemäßen Mittel enthalten besonders bevorzugt die flüssigen Bleichaktivatoren Glycerintriacetat (Triacetin® ex Bayer), Triethylacetylcitrat (TEAC), Tributylacetylcitrat und Ethylenglycoldiacetat sowie beliebige Mischungen hiervon.
Die flüssigen Bleichmittelaktivatoren können in variierenden Mengen in die erfindungsgemäßen Mittel eingebracht werden. Bevorzugt beträgt der Gehalt der erfindungsgemäßen Mittel an flüssigen Bleichmittelaktivatoren 0,1 Gew.-% bis 40 Gew.-%, besonders vorzugsweise 3 Gew.-% bis 30 Gew.-% und insbesondere 10 Gew.-% bis 25 Gew.-%, bezogen auf das gesamte Mittel. Als weiteren wichtigen Bestandteil können die erfindungsgemäßen nichtwäßrigεn flüssigen Wasch- oder Reinigungsmittel ein oder mehrere nichtionische(s) Tensid(e) enthalten.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole und Amine mit vorzugsweise 8 bis 18 C- Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol bzw. Amin eingesetzt, in denen der Alkohol- bzw. Aminrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate und Fettaminethoxylate mit linearen Resten aus Alkoholen bzw. Aminen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14- Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12. is- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-1 - Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxy- lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel R4O(G)x eingesetzt werden, in der R4 einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der nachstehenden Formel,
Rö
R -CO-N-[Z']
in der R5CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z1] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der folgenden Formel,
R8-O-Ry
R7-CO-N-[Z2]
in der R7 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R8 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R9 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Cμ- Alkyl- oder Phenylreste bevorzugt sind und [Z2] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z2] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Ebenso einsetzbar sind Ethercarbonsäuren bzw. Ethercarbonsäureester der Formel R10(OCH2CH2O)nCH2COOR11, wobei R10 und R11 unabhängig voneinander für H, lineares und oder verzweigtes Alkyl, Alkenyl mit 1 bis 26 Kohlenstoffatomen und n für Zahlen von 1 bis 20, vorzugsweise von 1 bis 10 steht.
Im Rahmen der vorliegenden Erfindung sind nichtwäßrige, flüssige Wasch- oder Reinigungsmittel bevorzugt, die 5 bis 80 Gew.-%, vorzugsweise 15 bis 80 Gew.-% und insbesondere 20 bis 70 Gew.-% eines oder mehrerer nichtionischer Tenside, insbesondere aus der Gruppe Ethercarbonsäuren, Ethercarbonsäureester, der alkoxylierten, vorzugsweise ethoxylierten oder ethoxylierten und propoxylierten, Alkohole und oder Carbonsäuren mit 8 bis 28, vorzugsweise 10 bis 20 und insbesondere 12 bis 18 Kohlenstoffatomen, enthalten.
Zusätzlich zu den nichtionischen Tensiden können die erfindungsgemäßen Mittel anionische Tenside enthalten. Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C -13 Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C1 -18-Mono- olefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungs- produkte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12.18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden.
Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capron- säure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C1 -C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20- Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12- C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C^-ds-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C -21 -Alkohole, wie 2-Methyl-verzweigte C -11 -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-ι8-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkoholreste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische, aber auch Salze von ungesättigten Fettsäuren, insbesondere Oleate.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Die erfindungsgemäßen Mittel können anionische(s) Tensid(e) in Mengen von 0,1 Gew.-% bis 50 Gew.-%, vorzugsweise 1 Gew.-% bis 40 Gew.-% und insbesondere 5 Gew.-% bis 35 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Die erfindungsgemäßen nichtwäßrigen flüssigen Mittel zum Waschen oder Reinigen können außerdem vorzugsweise ein oder mehrere dispergierte Bleichmittel enthalten. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Percarbamid, die Citratperhydrate, das Natrium- perborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxopyrophosphate, sowie H2O2 liefernde persaure Salze oder Persäuren, wie Persulfate beziehungsweise Perschwefelsäure. Insbesondere wenn die erfindungsgemäßen Mittel zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt. Werden die Mittel insbesondere für das Reinigen harter Oberflächen, zum Beispiel beim maschinellen Geschirrspülen, eingesetzt, so können sie gewünschtenfalls auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie zum Beispiel Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monope hthalat, die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε- Phthalimidoperoxycapronsäure (Phthalimidoperoxyhexansäure, PAP), o-
Carboxybenzamidoperoxycapronsäure, N-Nonenylamidoperadipinsäure und N- Nonenylamidopersuccinate, und aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperoxysebacinsäure, Di- peroxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-l,4-disäure, N,N- Terephthaloyl-di(6-aminopercapronsäure) können eingesetzt werden. Die Bleichmittel sind selbstverständlich auch in beliebigen Mischungen einsetzbar. Die Bleichmittel können gegebenenfalls gecoated sein, um sie gegen vorzeitige Zersetzung zu schützen. Die Menge an Bleichmittel in den erfindungsgemäßen Mitteln liegt üblicherweise zwischen 0,1 Gew.-% und 50 Gew.-%, vorzugsweise zwischen 2 und 30 Gew.-% und insbesondere zwischen 4 und 25 Gew.-%, jeweils bezogen auf das gesamte Mittel.
Zusätzlich zu den genannten Stoffen können die erfindungsgemäßen Mittel weitere Inhaltsstoffe von Wasch- oder Reinigungsmitteln enthalten, beispielsweise aus der Gruppe der Gerüststoffe, Enzyme, pH-Stellmittel, Duftstoffe, Parfumträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Knitterschutzmittel, antimikrobielle Wirkstoffe, Antioxidantien, UV- Absorber, Komplexbildner und Antistatika.
Neben den tensidischen Bestandteilen und dem flüssigen Bleichmittelaktivator können die erfindungsgemäßen nichtwäßrigen flüssigen Mittel Gerüststoffe enthalten. Es können dabei alle üblicherweise in Wasch- oder Reinigungsmitteln eingesetzten Gerüststoffe in die erfindungsgemäßen Mittel eingebracht werden, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+_ 'H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP- A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si2O5 ' yH2O bevorzugt, wobei ß-Natrium- disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO von 1 :2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 um und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O (l-n)K2O Al2O3 " (2 - 2,5)SiO2 * (3,5 - 5,5) H2O
beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Die Zeolithe können auch als übertrocknete Zeolithe mit geringeren Wassergehalten eingesetzt werden und eignen sich dann aufgrund ihrer Hygroskopizität zur Entfernung unerwünschter Restspuren an freiem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
Als Cobuilder brauchbare organische Gerüstsubstanzen, die selbstverständlich auch der Viskositätsregulation dienen, sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA) und deren Abkömmlinge sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Werts von Waschoder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen. Weitere einsetzbare Säuerungsmittel sind bekannte pH-Regulatoren wie Natriumhydrogencarbonat und Natriumhydrogensulfat.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70 000 g / mol. Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UN-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2 000 bis 20 000 g / mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2 000 bis 10 000 g / mol, und besonders bevorzugt von 3 000 bis 5 000 g / mol, aufweisen, bevorzugt sein.
Geeignete Polymere können auch Substanzen umfassen, die teilweise oder vollständig aus Einheiten aus Vinylalkohol oder dessen Derivaten bestehen.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2 000 bis 70 000 g / mol, vorzugsweise 20 000 bis 50 000 g / mol und insbesondere 30 000 bis 40 000 g / mol. Die (co-)ρolymeren Polycarboxylate können entweder als wäßrige Lösung oder vorzugsweise als Pulver eingesetzt werden.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise in der EP-B-0 727 448 Allyloxybenzolsulfonsäure und Methallyl- sulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE-A-43 00 772 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinyl- alkohol-Derivate oder gemäß der DE-C-4221 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zuckerderivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE- A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/ Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen. Weiterhin eignen sich Polyvinylpyrrolidone, Polyaminderivate wie quaternisierte und/oder ethoxylierte Hexamethylendiamine. Bevorzugt einsetzbar sind auch Rizinusölderivate, wie sie beispielsweise kommerziell von der Firma Rheox als Thixatrol ST erhältlich sind.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Geeignet als organische Buildersubstanzen sind außerdem Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000 g / mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2 000 bis 30 000 g / mol. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung 94 19 091 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0427 349, EP-A-0 472 042 und EP-A-0 542496 sowie den internationalen Patentanmeldungen WO-A-92/18542, WO-A- 93/08251, WO-A-93/16110, WO-A-94/28030, WO-A-95/07303, WO-A-95/12619 und WO-A-95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE- A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin- N,N'-disuccinat (EDDS), dessen Synthese beispielsweise in US 3,158,615 beschrieben wird, bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP-A-0 150 930 und der japanischen Patentanmeldung JP-A-93/339 896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Der Gehalt der erfindungsgemäßen Mittel an Gerüststoffen beträgt üblicherweise 1 bis 30 Gew.-%, vorzugsweise 4 Gew.-% bis 25 Gew.-%. Bevorzugte nichtwäßrige flüssige Wasch- oder Reinigungsmittel enthalten als Gerüststoffe wasserlösliche Gerüststoffe, vorzugsweise aus der Gruppe der Oligo- und Polycarboxylate, der Carbonate und der kristallinen und/oder amorphen Silikate. Unter diesen Verbindungen haben sich die Salze der Citronensäure als besonders geeignet erwiesen, wobei die Alkali- und hierunter insbesondere die Natriumsalze bevorzugt sind.
Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxireduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und ß-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Die Enzyme können als Formkörper an Trägerstoffe adsorbiert oder gecoated eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,12 bis etwa 2 Gew.-% betragen.
Als Stabilisatoren insbesondere für Perverbindungen und Enzyme, die empfindlich gegen Schwermetallionen sind, kommen die Salze von Polyphosphonsäuren, insbesondere 1 -Hydroxyethan- 1 , 1 -diphosphonsäure (HEDP), Diethylentriaminpentamethylenphosphon- säure (DETPMP) oder Ethylendiamintetramethylenphosphonsäure in Betracht.
Um den pH- Wert der erfindungsgemäßen Mittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 2 Gew.-% der Gesamtformulierung nicht.
Zusätzlich können die erfindungsgemäßen Mittel auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl- Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nicht-ionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere. Optische Aufheller (sogenannte „Weißtöner") können den erfindungsgemäßen Mitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignet sind z.B. Salze der 4,4'- Bis(2-anilino-4-morpholino-l,3,5-triazmyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2- Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3 -sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)- diphenyls.
Weitere geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2 '-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline,
Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Die optischen Aufheller werden üblicherweise in Mengen zwischen 0,05 und 0,3 Gew.-%, bezogen auf das gesamte Mittel, eingesetzt.
Färb- und Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Waschoder Reinigungsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl- carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl- glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc- Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfumöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Als Schauminhibitoren, die in den erfindungsgemäßen Mitteln eingesetzt werden können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch λvasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf das gesamte Mittel, eingesetzt
Da textile Flächengebilde, insbesondere aus Reyon, Wolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, - alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
Zur Bekämpfung von Mikroorganismen können die nichtwäßrigen Waschmittel antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarylsulfonate, Halogenphenole und Phenolmercuriacetat.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse oder radikalische Zersetzung verursachte Veränderungen an den Formulierungen und/oder den behandelten Textilien zu verhindern, können die Formulierungen Antioxidantien enthalten. Als Antioxidantien können dabei beispielsweise durch sterisch gehinderte Gruppen substituierte Phenole, Bisphenole und Thiobisphenole verwendet werden. Andere Substanzklassen sind aromatische Amine, bevorzugt sekundäre aromatische Amine und substituierte p-Phenylendiamine, Phosphorverbindungen mit dreiwertigem Phosphor wie Phosphine, Phosphite und Phosphonite, Endiol-Gruppen enthaltende Verbindungen, sogenannte Reduktone, wie die Ascorbinsäure und ihre Derivate, Organoschwefelverbindungen, wie die Ester der 3,3'-Thiodipropionsäure mit C1-18- Alkanolen, insbesondere C_o-ι_-Alkanolen, Metallionen-Desaktivatoren, die in der Lage sind, die Autooxidation katalysierende Metallionen, wie z.B. Kupfer, zu komplexieren, wie beispielsweise Nitrilotriessigsäure. Eine große Zahl an Beispielen für solche Antioxidationsmittel ist in der DE 196 16 570 (BASF AG) zusammengefaßt - die dort genannten Antioxidantien können im Rahmen der vorliegenden Erfindung eingesetzt werden.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfahigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Externe Antistatika sind beispielsweise in den Patentanmeldungen FR 1,156,513, GB 873 214 und GB 839 407 beschrieben. Die hier offenbarten Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich als Antistatika für Textilien bzw. als Zusatz zu den erfmdungsgemäßen nichtwäßrigen Flüssigwaschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügeins der behandelten Textilien können in den Formulierungen beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der waschaktiven Formulierungen durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Silikone liegen bei 25°C im Bereich zwischen 100 und 100.000 mPas, wobei die Silikone in Mengen zwischen 0,2 und 5 Gew.- %, bezogen auf das gesamte Mittel eingesetzt werden können.
Die Mittel können UV- Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern und oder die Lichtbeständigkeit des sonstiger Rezepturbestandteile verbessern. Unter UV-Absorber sind organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni -Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet. Besondere Bedeutung haben Biphenyl- und vor allem Stilbenderivate wie sie beispielsweise in der EP 0728749 A beschrieben werden und kommerziell als Tinosorb® FD oder Tinosorb® FR ex Ciba erhältlich sind. Als UV-B- Absorber sind zu nennen 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher, wie in der EP 0693471 Bl beschrieben; 4- Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethyl- hexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoe- säureamylester; Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 2-Cy ano-3 ,3 - phenylzimtsäure-2-ethylhexylester (Octocrylene); Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomo- menthylester; Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4- methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4- methoxybenzophenon; Ester der Benzalmalonsäure, vorzugsweise 4-Methoxy- benzmalonsäuredi-2-ethylhexylester; Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo- 2'-ethyl-l'-hexyloxy)-l,3,5-triazin und Octyl Triazon, wie in der EP 0818450 AI beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB); Propan-l,3-dione, wie z.B. l-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-l,3-dion; Ketotricyclo(5.2.1.0)- decan-Derivate, wie in der EP 0694521 Bl beschrieben. Weiterhin geeignet sind 2- Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkyl- ammonium-, Alkanolammonium- und Glucammoniumsalze; Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze; Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenme- thyI)benzol-sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze. Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise l-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-l,3-dion, 4-tert.- Butyl-4'-methoxydibertzoylmethan (Parsol 1789), l-Phenyl-3-(4'-isopropylphenyl)- propan-l,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 AI (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse, vorzugsweise nanoisierte Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente bereits für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW- Journal 122, 543 (1996) zu entnehmen. Die UV-Absorber werden üblicherweise in Mengen von 0,01 Gew.-% bis 5 Gew.-%, vorzugsweise von 0,03 Gew.-% bis 1 Gew.-%, eingesetzt.
Um die durch Schwermetalle katalysierte Zersetzung bestimmter Inhaltsstoffe waschaktiver Formulierungen zu vermeiden, können Stoffe eingesetzt werden, die Schwermetalle komplexieren. Geeignete Schwermetallkomplexbildner sind beispielsweise die Alkalisalze der Nitrilotriessigsäure (NTA) und deren Abkömmlinge sowie Alkalimetallsalze von anionischen Polyelektrolyten wie Polymaleaten und Polysulfonaten.
Eine bevorzugte Klasse von Komplexbildnern sind die Phosphonate, die in bevorzugten flüssigen nichtwäßrigen Mitteln in Mengen von 0,01 bis 5 Gew.-%, vorzugsweise 0,02 bis 1 Gew.-% und insbesondere von 0,1 bis 1 Gew.-% enthalten sind. Zu diesen bevorzugten Verbindungen zählen insbesondere Organophosphonate wie beispielsweise 1-Hydroxy- ethan-l,l-diphosphonsäure (HEDP), Aminotri(methylenphosphonsäure) (ATMP), Di- ethylentriamin-penta(methylenphosphonsäure) (DTPMP bzw. DETPMP) sowie 2- Phosphonobutan-l,2,4-tricarbonsäure (PBS-AM), die zumeist in Form ihrer Ammonium- oder Alkalimetallsalze eingesetzt werden.
Die Herstellung der erfindungsgemäßen Mittel erfolgt in an sich bekannter Weise durch Vermischen der Inhaltsstoffe in Rührkesseln. Sofern es für ein bestimmtes Endprodukt gewünscht ist, können die in den erfindungsgemäßen Mitteln enthaltenen Feststoffe durch einen Naßmahlschritt weiter zerkleinert werden, um die Separationsstabilität der Mittel weiter zu erhöhen. Für solche dem Fachmann geläufigen Operationen eignen sich beispielsweise Kolloidmühlen, Walzenstühle oder Ringspalt- bzw. Rührwerk- Kugelmühlen. Die Zugabe der erfindungsgemäß einzusetzenden flüssigen Bleichmittelaktivatoren kann dabei an jeder Stelle in einem solchen üblichen Herstellprozeß erfolgen. Üblicherweise werden die gegebenenfalls vorhandenen Bleichmittel und die Bleichaktivatoren nicht gemeinsam vor dem Mahlen in die Mittel inkorporiert, da der innige Kontakt der Stoffe beim Mahlen die Zersetzung fordern kann. Die nichtwäßrigen, flüssigen Mittel der vorliegenden Erfindung können innerhalb eines breiten Viskositätsbereiches hergestellt werden. So sind je nach Verwendung geeigneter Gerüststoffe nicht nur dünnflüssige und leichtbewegliche erfindungsgemäße Mittel herstellbar, sondern auch dickflüssige bis pastöse Mittel mit höheren Viskositäten. Die Konsistenz der pastenförmigen Mittel kann auch streich- bzw. schneidfahig sein - auch in solchen Mitteln führt der Einsatz flüssiger Bleichmittelaktivatoren zu den erfindungsgemäßen Effekten.
Bevorzugte Viskositätsbereiche (Brookfield RTV, 20°C, Spindel Nr. 2, 50 U/min.) der erfindungsgemäßen Mittel liegen zwischen 20 und 50000 mPas, bevorzugt zwischen 200 und 10.000 mPas und insbesondere zwischen 500 und 5000 mPas.
Beispiele
Beispiele für erfindungsgemäße Mittel El und E2 sowie Vergleichsrezepturen VI und V2 befinden sich in Tabelle 1 :
Alle Angaben werden in Gewichtsprozent, bezogen auf das gesamte Mittel, angegeben. Tabelle 1:
Figure imgf000029_0001
Genapol® UD-080 (Undecanol mit 8 EO ex Clariant) ABS-Pulver (C9-C13-Alkylbenzolsulfonat) Dowanol® DPM (Dipropylenglykolmonomethylether ex Dow) Triacetin® (Glycerintriacetat)
Die Untersuchung der Viskosität in Abhängigkeit von der Schergeschwindigkeit (Tabelle 2) zeigt, daß die erfindungsgemäßen Mittel ein deutlich ausgeprägteres Thixotropieverhalten zeigten als die Vergleichsrezepturen VI und V2.
Die Viskositäten wurden bei 20 °C mit der Spindel Nr. 2 auf einem Brookfield RVT gemessen und in mPas angegeben. Tabelle 2:
Figure imgf000030_0001
Weitere Zusammensetzungen erfindungsgemäßer Mittel sind in Tabelle 3 angegeben. Die dort angegebenen Zahlenwerte sind Gewichtsprozentangaben und beziehen sich jeweils auf das gesamte Mittel.
Figure imgf000031_0001
Figure imgf000031_0002

Claims

Patentansprüche
1. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel, enthaltend nichtionische(s) Tensid(e) und/oder anionische(s) Tensid(e) und Bleichaktivator(en), dadurch gekennzeichnet, daß sämtliche in den Mitteln enthaltenen Bleichaktivatoren in flüssiger Form vorliegen.
2. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach Anspruch 1, dadurch gekennzeichnet, daß das Mittel Bleichaktivator(en) in Mengen von 0,1 Gew.-% bis 40 Gew.-%, vorzugsweise 3 Gew.-% bis 30 Gew.-%, insbesondere 10 Gew.-% bis 25 Gew.-%, bezogen auf das gesamte Mittel, enthält.
3. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mittel als Bleichaktivor(en) Glycerintriacetat, Triethylacetylcitrat, Tributylacetylcitrat, Ethylenglycoldiacetat oder Mischungen hieraus enthalten.
4. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Mittel nichtionisches Tensid in Mengen von 5 Gew.-% bis 80 Gew.-%, vorzugsweise 15 Gew.-% bis 80 Gew.-% und insbesondere 20 Gew.-% bis 70 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
5. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mittel anionische(s) Tensid(e) in Mengen von 0,1 Gew.-% bis 50 Gew.-%, vorzugsweise 1 Gew.-% bis 40 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
6. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Mittel als anionische Tenside Alkylbenzolsulfonate enthalten.
7. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Mittel in der nichtwäßrigen Phase dispergierte Bleichmittel enthalten.
8. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Mittel Bleichmittel in Mengen von 0,1 Gew.-% bis 5 Gew.-%, vorzugsweise 2 Gew.-% bis 30 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
9. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach Anspruch 8, dadurch gekennzeichnet, daß die Mittel als Bleichmittel Natriumperborat, Percarbamid, Citratperhydrat und/oder Natriumpercarbonat, sowie Mischungen hieraus, enthalten.
10. Nichtwäßriges flüssiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Mittel keine sonstigen organischen Lösungsmittel enthalten.
PCT/EP2001/002220 2000-03-08 2001-02-28 Nicht flüssigwaschmittel mit flüssigen bleichaktivatoren WO2001066685A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10011273.0 2000-03-08
DE2000111273 DE10011273A1 (de) 2000-03-08 2000-03-08 Flüssigwaschmittel mit flüssigen Bleichaktivatoren

Publications (1)

Publication Number Publication Date
WO2001066685A1 true WO2001066685A1 (de) 2001-09-13

Family

ID=7633968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002220 WO2001066685A1 (de) 2000-03-08 2001-02-28 Nicht flüssigwaschmittel mit flüssigen bleichaktivatoren

Country Status (2)

Country Link
DE (1) DE10011273A1 (de)
WO (1) WO2001066685A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614741A1 (de) * 2004-07-06 2006-01-11 JohnsonDiversey, Inc. Stabile nichtwässrige Bleich-, Wasch- und Reinigungsmitteldispersion
EP1634991A2 (de) * 2004-09-10 2006-03-15 CHT R. Beitlich Flüssiges Hilfsmittel zur Behandlung und Veredlung von textilen Erzeugnissen
US7435714B2 (en) 2002-12-20 2008-10-14 Evonik Degussa Gmbh Liquid detergent and cleaning agent composition comprising a multi-coated bleach particle
US7588697B2 (en) 2003-05-07 2009-09-15 Evonik Degussa Gmbh Coated sodium percarbonate granules with improved storage stability
US7718592B2 (en) 2004-11-11 2010-05-18 Degussa, Gmbh Sodium percarbonate particles having a shell layer comprising thiosulfate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311886A1 (de) * 2003-03-18 2004-10-07 Henkel Kgaa Nichtwäßrige flüssige Geschirreinigungsmittel
US8871807B2 (en) 2008-03-28 2014-10-28 Ecolab Usa Inc. Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids
US8809392B2 (en) 2008-03-28 2014-08-19 Ecolab Usa Inc. Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents
WO2009118714A2 (en) 2008-03-28 2009-10-01 Ecolab Inc. Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US9242879B2 (en) 2012-03-30 2016-01-26 Ecolab Usa Inc. Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water
US8822719B1 (en) 2013-03-05 2014-09-02 Ecolab Usa Inc. Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring
US10165774B2 (en) 2013-03-05 2019-01-01 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants
US20140256811A1 (en) 2013-03-05 2014-09-11 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
WO2021026410A1 (en) 2019-08-07 2021-02-11 Ecolab Usa Inc. Polymeric and solid-supported chelators for stabilization of peracid-containing compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237285A (en) * 1989-10-27 1991-05-01 Unilever Plc Liquid soap composition
DE4040654A1 (de) * 1990-12-19 1992-06-25 Henkel Kgaa Granulat mit umhuelltem bleichaktivator
WO1993022412A1 (en) * 1992-04-30 1993-11-11 Unilever N.V. Liquid cleaning products
US5378387A (en) * 1992-06-02 1995-01-03 Lever Brothers Company, Division Of Conopco, Inc. Non-aqueous liquid cleaning products comprising polyalkoxylated derivatives of castor oil ricinoleic acid and analogous fatty alcohols
EP0738778A1 (de) * 1995-04-19 1996-10-23 The Procter & Gamble Company Nicht-wässrige, Partikel enthaltende flüssige Waschmittelzusammensetzungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3684217D1 (de) * 1985-09-30 1992-04-16 Unilever Nv Fluessige nichtwaessrige reinigungszusammensetzung und wasserfreies perborat.
GB8527772D0 (en) * 1985-11-11 1985-12-18 Unilever Plc Non-aqueous built liquid detergent composition
GB8810195D0 (en) * 1988-04-29 1988-06-02 Unilever Plc Liquid cleaning products
WO1991000335A1 (en) * 1989-06-26 1991-01-10 Unilever Plc Enzymatic detergent compositions
DE4436151A1 (de) * 1994-08-16 1996-05-02 Henkel Kgaa Verfahren zur Herstellung eines Flüssigwaschmittels mit Bleiche

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237285A (en) * 1989-10-27 1991-05-01 Unilever Plc Liquid soap composition
DE4040654A1 (de) * 1990-12-19 1992-06-25 Henkel Kgaa Granulat mit umhuelltem bleichaktivator
WO1993022412A1 (en) * 1992-04-30 1993-11-11 Unilever N.V. Liquid cleaning products
US5378387A (en) * 1992-06-02 1995-01-03 Lever Brothers Company, Division Of Conopco, Inc. Non-aqueous liquid cleaning products comprising polyalkoxylated derivatives of castor oil ricinoleic acid and analogous fatty alcohols
EP0738778A1 (de) * 1995-04-19 1996-10-23 The Procter & Gamble Company Nicht-wässrige, Partikel enthaltende flüssige Waschmittelzusammensetzungen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435714B2 (en) 2002-12-20 2008-10-14 Evonik Degussa Gmbh Liquid detergent and cleaning agent composition comprising a multi-coated bleach particle
US7588697B2 (en) 2003-05-07 2009-09-15 Evonik Degussa Gmbh Coated sodium percarbonate granules with improved storage stability
EP1614741A1 (de) * 2004-07-06 2006-01-11 JohnsonDiversey, Inc. Stabile nichtwässrige Bleich-, Wasch- und Reinigungsmitteldispersion
WO2006014223A1 (en) * 2004-07-06 2006-02-09 Johnsondiversey, Inc. Stable nonaqueous bleaching detergent composition dispersion
EP1634991A2 (de) * 2004-09-10 2006-03-15 CHT R. Beitlich Flüssiges Hilfsmittel zur Behandlung und Veredlung von textilen Erzeugnissen
EP1634991A3 (de) * 2004-09-10 2008-10-22 CHT R. Beitlich Flüssiges Hilfsmittel zur Behandlung und Veredlung von textilen Erzeugnissen
US7718592B2 (en) 2004-11-11 2010-05-18 Degussa, Gmbh Sodium percarbonate particles having a shell layer comprising thiosulfate

Also Published As

Publication number Publication date
DE10011273A1 (de) 2001-09-20

Similar Documents

Publication Publication Date Title
EP1863895B1 (de) Klares wasch- oder reinigungsmittel mit fliessgrenze
EP2956534B1 (de) Vergrauungsinhibierende waschmittel
EP1735422B2 (de) Wasserlöslich umhüllte bleichmittelteilchen
EP1989282B1 (de) Vergrauungsinhibierendes flüssigwaschmittel
EP1781766B1 (de) Klares wasch- und reinigungsmittel mit fliessgrenze
WO2001066685A1 (de) Nicht flüssigwaschmittel mit flüssigen bleichaktivatoren
EP1735423B1 (de) Flüssiges wasch- oder reinigungsmittel mit wasserlöslich umhülltem bleichmittel
EP2021449A1 (de) Verkapselte bleichmittelteilchen
EP2142630A1 (de) Wasch- oder reinigungsmittel mit polysaccharid
EP2176392B1 (de) Farbschützendes wasch- oder reinigungsmittel mit optischem aufheller
EP0972823B1 (de) Nichtwässrige Flüssigwaschmittel mit Bleiche
WO2008155160A1 (de) Flüssiges, hochschäumendes wasch- oder reinigungsmittel mit stabiler viskosität
EP1358310B1 (de) Wasch- und reinigungsmittel umfassend feine mikropartikel mit reinigungsmittelbestandteilen
EP2113025A1 (de) Verfahren zur herstellung teilchenförmiger bleichmittelzusammensetzungen
WO2021078577A1 (de) Vergrauungsinhibierende waschmittel
EP2108038B1 (de) Wasch- oder reinigungsmittel mit stabiler viskosität
WO2001074981A1 (de) Flüssigwaschmittel mit alkylenglycolcarbonsäureester
WO2001074986A1 (de) Flüssigwaschmittel mit polyamid
WO2001094523A1 (de) Tensidsysteme für flüssigwaschmittel
WO2021078554A1 (de) Vergrauungsinhibierende waschmittel
DE102004017112B4 (de) Verwendung von Pudermittel
WO2009019123A1 (de) Verdicktes, flüssiges wasch- oder reinigungsmittel
DE10064636A1 (de) Flüssiges Wasch-und/oder Reinigungsmittel
DE19920119A1 (de) Waschverfahren mit Waschmitteltabletten
DE102009001813A1 (de) Vergrauungsinhibierendes Waschmittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP