WO2001061074A1 - Procede et dispositif de production d'eau ozonee par electrolyse et procede de regeneration de membrane d'electrolyte a polymere solide - Google Patents

Procede et dispositif de production d'eau ozonee par electrolyse et procede de regeneration de membrane d'electrolyte a polymere solide Download PDF

Info

Publication number
WO2001061074A1
WO2001061074A1 PCT/JP2001/000779 JP0100779W WO0161074A1 WO 2001061074 A1 WO2001061074 A1 WO 2001061074A1 JP 0100779 W JP0100779 W JP 0100779W WO 0161074 A1 WO0161074 A1 WO 0161074A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
ozone water
polymer electrolyte
solid polymer
pressing force
Prior art date
Application number
PCT/JP2001/000779
Other languages
English (en)
French (fr)
Inventor
Takafumi Kanaya
Noriaki Okubo
Original Assignee
Shinko Plant Construction Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Plant Construction Co., Ltd. filed Critical Shinko Plant Construction Co., Ltd.
Priority to JP2001559907A priority Critical patent/JP3680096B2/ja
Priority to EP01904320A priority patent/EP1193329A4/en
Priority to KR1020017013219A priority patent/KR100744009B1/ko
Priority to AU32229/01A priority patent/AU3222901A/en
Priority to US09/926,344 priority patent/US6787020B2/en
Publication of WO2001061074A1 publication Critical patent/WO2001061074A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/30Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation

Definitions

  • the present invention relates to a method for producing ozone water by producing ozone water by electrolysis of water. More specifically, the present invention relates to an electrolytic ozone water production method capable of continuously producing ozone water over a long period of time and an apparatus therefor. It is about. Background art
  • typical methods for producing ozone water include a gas dissolution method in which ozone gas is dissolved in water to produce ozone water, and oxygen generated on the anode side by electrolysis of water converted to ozone by an ozonation catalyst.
  • the water electrolysis method is known to produce ozone water by dissolving it immediately in the water flowing to the anode side, and the water electrolysis method has recently attracted attention and is being put to practical use.
  • the method for producing ozone water by such a water electrolysis method is described in JP-A-1-31092, JP-A-8-134677, JP-A-8-134678. Some have been proposed. The outline of these devices will be described with reference to a representative example shown in FIG.
  • the solid polymer electrolyte membrane 5 (hereinafter simply referred to as “membrane” or “electrolyte membrane”) has an inner surface coated with a material having corrosion resistance to ozone (for example, fluororesin or glass).
  • an anode-side casing 1 and a cathode-side casing 2 are defined in an anode chamber 6 and a cathode chamber 7.
  • An anode electrode 3 provided with a noble metal (such as platinum) 16 having a catalytic function of generating ozone is pressed against and brought into contact with the surface of the electrolyte membrane 5 on the anode chamber 6 side.
  • a cathode electrode 4 having a contact surface of noble metal (white gold, silver, etc.) 20 is similarly pressed against the other cathode chamber 7 side.
  • inlets 8 and 9 and outlets 10 and 11 for raw water are formed, respectively.
  • a DC voltage is applied between the electrodes 3 and 4 by the DC power supply 24 via the electrode rods 19 and 23.
  • the portions of the two electrodes 3 and 4 that are in contact with the electrolyte membrane 5 are respectively described as disclosed in Japanese Patent Application Laid-Open No. 8-134677. It is assumed that the wire mesh is made of a noble metal such as platinum.
  • the lath nets 17 and 21 and titanium plates 18 and 22 formed on the back surface of titanium or the like having ozone-resistant properties are sequentially TO-bonded, and brazing, spot welding and other machinery are performed.
  • the raw water intensifies while flowing through the flow path composed of the wire net and the lath net or the lath net and the lath net, and generates turbulence and eddy current. Dissolves in water. As a result of the dissolution occurring continuously and accumulating on the anode electrode surface of the electrolyte membrane, a high concentration of ozone water is obtained.
  • a predetermined density is set at an initially set current density. If continuous operation is performed to produce zonal water, the performance of the electrolyte membrane will decrease (deterioration of the membrane), and the ozone concentration in the ozone water will decrease over time, so increase the current density to prevent this The formula was taken.
  • the operation time is controlled by controlling the current value A (current density, the same applies hereinafter) so that the concentration X of the ozone water in the ozone water is maintained at a predetermined value Xs. With the passage of time, the current value increases, and at time t1, finally reaches the current upper limit value Ae allowed for the device.
  • the electrode rods 19, 23 are inserted through the through holes 12, 13 formed in the anode-side casing 1 and the cathode-side casing 2, respectively.
  • each end is connected to a fluid pressure cylinder device 14, 15, whereby the anode electrode 3 and the cathode electrode 4 can move forward and backward with respect to the electrolyte membrane 5, respectively. It differs from the device in Fig. 17.
  • Fig. 18 When the concentration X of the ozone water reaches the predetermined lower limit value Xe after the current value A reaches the allowable upper limit value Ae, the operation of the device is stopped (energization and water flow stop), and As shown in FIG. 20, the fluid pressure cylinders 14 and 15 are actuated to separate the rain electrodes 3 and 4 from the electrolyte membrane 5 to release the pressing force on the electrolyte membrane 5. Then, the electrolyte membrane is regenerated by maintaining this state for a certain period of time, and after that, both electrodes 3 and 4 are again advanced toward the electrolyte membrane and pressed with a predetermined pressing force to supply electricity and water. And restart the device operation.
  • the electrolyte membrane that has deteriorated with time during operation of the apparatus is opened by releasing the pressing force to regenerate the electrolyte membrane.
  • the operation state is shown in the time chart in FIG. That is, similarly to the case of FIG. 18, the current value A increases with the lapse of the operation time t so that the concentration X of the ozone water is maintained at the predetermined concentration Xs.
  • the current value A reaches the upper limit value Ae allowed for the device. Since the current value cannot be increased any more, at this point, the power supply and water supply to the device are stopped, and the operation of the device is stopped. That is, as shown in FIG.
  • both electrodes 3 and 4 are separated from each other by separating them from the electrolyte membrane 5 and the operation of the apparatus is stopped.
  • time t3 when time t3 is reached, the electrodes 3 and 4 are advanced again and pressed against the electrolyte membrane 5, and current supply and water flow are resumed to resume operation (time t3 ).
  • time t4 when the current value A reaches the upper limit value Ae (time t4), the operation is similarly stopped, and after a predetermined time has elapsed (time t5), the operation is restarted. This operation is repeated, and when a predetermined concentration of ozone water cannot be obtained even after restarting the operation, the electrolyte membrane 5 is replaced at that point.
  • the concentration X of the ozone water ozone water goes raises the predetermined value X s to become such a current value A It is.
  • the current value A reaches the upper limit value Ae, which is the allowable limit value of the device (time t1)
  • the surface pressure P of the electrode pressing the electrolyte membrane is increased from the initial P1 to the higher pressure P2. Enhance.
  • the ozone generation rate increases, and the current value A required to maintain the predetermined concentration Xs of ozone water decreases, so the current value A decreases from its upper limit Ae to the normal operation value AO.
  • the current value A required to maintain the predetermined ozone water concentration gradually increases again with the decrease in the performance of the electrolyte membrane, and the upper limit value A e again increases.
  • Reaches time t6.
  • the required current value A decreases again, and the current value reaches the upper limit value Ae again (time t7).
  • the pressing force of the electrolyte membrane can be further increased, the same operation is repeated.
  • the operation is continued with the current value at the upper limit Ae.
  • the current value A can be reduced by increasing the pressing force P of the electrode against the electrolyte membrane, so that the operation continuation time of the device is dramatically increased. It becomes possible to increase to.
  • the electrode pressing force P reached the upper limit, continuous operation over a long period of time was impossible in that the operation of the apparatus had to be stopped and the recovery of the membrane performance had to be waited.
  • the present invention aims at achieving the long-term continuous operation which can be said to be the long-awaited desire in the electrolytic ozone water production system by further improving each of the above-mentioned improved systems. Disclosure of the invention
  • the first method is to arrange an anode electrode with a catalytic function to generate ozone on one surface of the electrolyte membrane and a cathode electrode on the other surface, and at least one or both of the two electrodes can move forward and backward.
  • a DC voltage is applied between the two electrodes in a state where both the electrodes are pressed against the electrolyte membrane, water is allowed to flow through both sides of the electrolyte membrane, and the anode water is electrolyzed to the anode side.
  • the pressing of the anode electrode, the cathode electrode, or both electrodes on the electrolyte membrane is changed according to preset conditions. After that, the operation of changing the pressing force to return to the original pressing condition is performed, and the electrolyte membrane is regenerated while producing ozone water.
  • the operation of changing the pressing force on the electrolyte membrane is
  • the pressing force by the electrode can be changed in a direction of decreasing or increasing, or in a combination thereof.
  • the pattern for changing the pressing force is a pattern of a pressure change such that a state in which the pressing force is reduced below a predetermined pressing force or a state in which the pressure is increased to a predetermined pressing force or more exists for a certain period of time or more.
  • an operation of changing the current or the voltage is performed instead of the operation of changing the pressing force. Specifically, while the flow of water and the energization are continued, the operation of forcibly changing the current or voltage so as to return to the original value or a value close to it is performed. By doing so, the electrolyte membrane is regenerated while producing ozone water.
  • the operation of forcibly changing the current or the voltage is performed by changing the current or voltage from a value at the start of the operation to a minimum value near or near 0 and a maximum allowable value of the device, and It is preferable to use a method in which the state of the maximum allowable value is held for a certain period of time and then changed to the original value or a value close to the original value.
  • the ozone water when the operation of changing the pressing force or the operation of forcibly changing the current or the voltage leads to insufficient regeneration of the electrolyte membrane, the ozone water
  • the production is stopped, the two electrodes are removed from the electrolyte membrane, this state is maintained for a predetermined time, the electrolyte membrane is regenerated, and then the production of ozone water is resumed under predetermined operating conditions. is there . According to this method, it is possible to further improve the life of the electrolyte membrane.
  • FIG. 1 is an operation time chart showing an embodiment of the first method of producing ozone water of the present invention
  • FIG. 2 is a flow chart showing the operation control method of FIG.
  • FIG. 4 is an operation time chart showing a modification example of the change of the pressing force in the method of FIG. 1, and FIG. 4 is an operation time chart showing another embodiment of the first method of the present invention.
  • FIG. 5 is an operation time chart showing still another embodiment of the first system of the present invention
  • FIG. 6 is a flow chart showing the operation control method of FIG. 5
  • FIG. 8 is an operation time chart showing still another embodiment of the first method of the present invention
  • FIG. 8 is an operation time chart showing still another example of the first method of the present invention.
  • FIG. 8 is a flowchart showing the operation control method of FIG. 8
  • FIG. 10 is a flowchart of the first method of the present invention.
  • FIG. 11 is an operation time chart showing an embodiment of the second system of the present invention.
  • FIG. 12 is a sectional view of an essential part showing an embodiment of an electrolytic ozone water producing apparatus used in the present invention.
  • FIG. 13 is another embodiment of an electrolytic ozone water producing apparatus used in the present invention.
  • FIG. 14 is a sectional view of a main part showing It is principal part sectional drawing which shows another Example of an electrolytic ozone water production apparatus.
  • FIG. 15 is an example of an operation time chart in an actual operation in the first method of the present invention
  • FIG. 16 is an example of an actual operation time chart by the conventional method.
  • FIG. 17 is a sectional view of an essential part showing an example of a conventional electrolytic ozone water producing apparatus
  • FIG. 18 is an operation time chart showing an operation example of the apparatus shown in FIG.
  • FIG. 19 is a sectional view of a main part showing another example of the conventional electrolytic ozone water producing apparatus and the electrolytic ozone water producing apparatus used in the present invention
  • FIG. 20 is a sectional view of the apparatus shown in FIG.
  • FIG. 7 is a cross-sectional view of a main part showing a state of regeneration of a conventional solid polymer electrolyte membrane.
  • FIG. 21 is a conceptual diagram showing a control system of the electrolytic ozone water producing apparatus according to the present invention
  • FIG. 21 is a time chart showing a conventional operation method using the apparatus shown in FIG.
  • FIG. 23 is a time chart showing another conventional operation method using the apparatus shown in FIG.
  • FIG. 24 is a cross-sectional view of a principal part showing another example of the electrolytic ozone water producing apparatus used in the present invention
  • FIG. 25 is a still another example of the electrolytic ozone water producing apparatus used in the present invention. It is principal part sectional drawing which shows an example. BEST MODE FOR CARRYING OUT THE INVENTION
  • the ozone water production apparatus used in this method includes an ozone water production apparatus main body 1, a pressing force control device 81, a pressing force setting section 82, a power supply device 24, and a raw water supply.
  • An ozone water concentration detection sensor 84 having a device 83 and detection means and a control device main body 85 are provided.
  • the portions denoted by the same reference numerals as those in the apparatus of FIG. 19 have the same configuration, and the duplicated description will be omitted.
  • the pressing force control device 81 is connected to the forward / backward drive units 14 and 15 of the ozone water production device main body 1, and controls the pressing force of the anode electrode 3 and the cathode electrode 4 on the electrolyte membrane 5. I have.
  • the pressing force setting section 82 is connected to the pressing force control device 81 so that a predetermined pressing force can be set.
  • the power supply device 24 is a power supply for applying a voltage to both the electrodes 3 and 4, and includes a current detector 91 for detecting a current value.
  • the raw water supply device 83 supplies raw water as a raw material for ozone generation.
  • the ozone water concentration detection sensor 84 is a sensor that detects the concentration of ozone water.
  • the control device main body 85 includes a control unit 86, a timer 87, a comparison unit 88, a set value storage unit 89, and a stop count counting unit 90, and includes the pressing force control device 81 and the power supply device 2.
  • Various commands are sent to 4 and the raw water supply device 83.
  • the control unit 86 includes a first command unit 86 a that issues a control command to the power supply device 24, a second command unit 86 b that issues a control command to the pressing force control device 81, and operation of the device.
  • the third part 86c that issues control of stop / stop is provided.
  • the comparing section 88 includes a first comparator 88a, a second comparator 88b, a third comparator 88c, and a fourth comparator 88d.
  • the first comparator 88 a includes an ozone water concentration detection sensor 84, a set value storage unit 89, the first command unit 86 a, the first command unit 86 b, and the third ⁇ unit 8. 6c and connected to.
  • the first comparator 88 a stores the measured ozone water concentration (X) at that time transmitted from the ozone water concentration detection sensor 84 and the ozone water concentration target value stored in the word storage unit 89.
  • a signal indicating the deviation of the ozone water concentration is output to the first command section 86a in comparison with (X s), and when the measured value (X) reaches the target value (X s), A signal to that effect is output to the second command section 86b.
  • the second comparator 88 b is connected to the current detector 91 of the power supply 24 and the It is connected to the fixed value storage unit 89 and the third unit 86c.
  • the second comparator 88 b stores the current value (A) detected by the current detector 91 in the power supply 24 as an upper limit of the power supply stored in the set value storage unit 89.
  • the current value (A) reaches the upper limit value (Ae) by comparing the current value (Ae) with the value (Ae)
  • a signal indicating this is output to the third command section 86c.
  • the third comparator 88c is connected to the timer 87, the set value storage section 89, the first command section 86a, and the third command section 86c.
  • the third comparator 88 c calculates the elapsed time (t) during operation or stoppage of the device measured by the timer 87, for a predetermined time stored in the set value storage unit 90. (Tc) and the like, when the operation time or the stop time (t) of the device reaches a predetermined time (Tc) or the like, a signal indicating that the predetermined time has been reached is transmitted to the first command unit 86a or This is output to the third command section 86c.
  • the fourth comparator 88d stores the number of stoppages (N) of the device counted by the device stoppage number counting unit 90 for measuring the number of stoppages (N) of the device in the set value storage unit 89. This is compared with a predetermined number of stop times (N e) set in advance, and the result is output to the third command section 88c.
  • the storage unit 89 of the set value stores target generation concentration (Xs) of ozone water to be set in advance as an operation condition, control start concentration (Xm) for starting predetermined control described later, and allowable lower limit concentration (Xe).
  • Various setting values required for operation such as a control cycle time (Tc) of the apparatus described later, a change pressing force holding time (T1) described later, and an upper limit value (Ae) of the current value are stored.
  • the first command section 86 a of the control section 86 compares the ozone water concentration.Based on the signal from the first comparator 88 a, the ozone water concentration (X) becomes the target value (Xs).
  • is output to the power supply device 24.
  • the second ⁇ section 86b is connected to the first comparator 88a, the third comparator 88c, and the pressing force control device 81, and the third comparator 88c
  • the elapsed time (t) during operation of the device is determined by the signal from
  • the second instruction unit 86 b determines the ozone water concentration (X) based on the signal from the first comparator 88 a based on the set value (X) of the control start ozone water concentration. m) is detected, a command to change the pressing force of both electrodes 3 and 4 is output to the pressing force control device 81. Further, the second ⁇ section 86b sets the elapsed time (t) during operation of the device to the above-mentioned predetermined value (T1) based on the signal from the third comparator 88c. When it is detected that the pressing force is applied, the command for changing the pressing force of both electrodes 3 and 4 to the initial pressing force is output to the pressing force control device 81.
  • the third command section 86c includes the first comparator 88a to the third comparator 88c, the power supply device 24, the raw water supply device 83, the pressing force control device 81, and the Timer 1 87 is connected to.
  • This third command part 86 Detects that the current value has reached the upper limit value (A e) based on the signal of the second comparator 88 b and determines the concentration of the ozone water based on the signal from the first comparator 88 a.
  • (X) has reached the lower limit (Xe)
  • a command to turn off the power supply device 24, the raw water supply device 83, and the pressure control device 21 is output.
  • the third command section 86 c restarts the apparatus after a predetermined time has elapsed based on the signal from the timer 87, and outputs the power supply 24, the raw water supply 83, and the pressure controller 8. It is also output to 1.
  • FIGS. 2 and 21 show an operation timing chart of FIG. 1 and a flow chart for performing the operation of the time chart. This will be described with reference to FIG. First, in Fig. 2, at the start of operation, the main switch of the power supply unit 24 is turned on, and the control system is energized. Subsequently, the flow of raw material water is started from the water outlets 8, 9, and both electrodes are turned on.
  • the pressing force of the electrodes 3 and 4 against the electrolyte membrane 5 is set to the initial value P1 by the pressing force setting section 82 (S2).
  • the measurement of the elapsed time t is started by the timer 87 (S3).
  • the concentration X of the ozone water is constantly detected by the ozone water concentration sensor 84, and the detected concentration X is compared with the first concentration. It is compared with the ozone water concentration target value Xs in the vessel 88a (S4).
  • the target value Xs is set so as to allow a predetermined variation (X)
  • the detected density X is actually compared with Xs ⁇ x ( ⁇ Xs).
  • the concentration of ozone water is low (X ⁇ Xs) (S 4, No)
  • the current value A at that time is preset in the power supply unit 24 by a signal from the first command unit 86a.
  • a command is issued to increase A to A + a by adding the current value a, and operation is performed with the new current value (S5).
  • the signal from the ⁇ r section 86a causes An instruction is issued to change the current value A to the current value A minus A—a.
  • the current value A is controlled so that the concentration X of the ozone water is always maintained at a value near Xs.
  • FIG. 1 shows the state after the point at which the concentration of ozone water reaches Xs in this way. If the operation is continued in this state, as shown in Fig. 1, the values of the current A and the voltage V are adjusted so that the concentration X of the ozone water is maintained at the concentration Xs with the deterioration of the electrolyte membrane. It gradually rises with the passage of time t. Therefore, an appropriate time (Tc) is set in advance so that the performance of the electrolyte membrane does not decrease and the concentration X of the ozone water does not decrease to the allowable lower limit Xe.
  • Tc an appropriate time
  • the operation of the operation time t is monitored by the third comparator 88c, and when t ⁇ Tc is reached (time t10) (S6, Yes), while energization and water flow are maintained ( That is, while the operation of the device is continued), the pressing force control device 81 is controlled based on the signal of the second ⁇ ⁇ part 86 b, and the pressing force P of both electrodes 3 and 4 is set to the initial value P 1 Is changed to low pressure P4 (S7). At the same time as the pressing force P is changed, the elapsed time (t ') after the start of the change in the pressing force is measured by a timer (S8).
  • the current value A decreases to the lower current value A1 from the initial value A0 and the ozone water
  • the concentration X also starts to slightly decrease from the predetermined value Xs.
  • the voltage V rises to the maximum voltage value V e of the power supply.
  • a predetermined period (time til) up to an appropriate time (time til) in the period in which the concentration of the ozone water is maintained at or above the allowable lower limit Xe is maintained.
  • the third comparator 88 c compares the elapsed time t ′ after the change to the low voltage with the low-pressure holding period T 1, and when it reaches ⁇ T 1 (S 9, Y es), the third comparator 88 c Output to the first command unit 86 b. Then, a signal for returning the pressing force P to the initial value P1 is output from the second command section 86b to the pressing force control device 81 (shift to S2). As described above, the operation is restarted such that the concentration X of the ozone water is maintained at the predetermined value Xs. As a result, the concentration X of the ozone water returns to the predetermined value Xs, and the current and the voltage return to near the original values, respectively.
  • the concentration of ozone water is below the set value Xs, so in order to recover this, the current value A instantaneously rises to the maximum allowable value Ae of the device and the concentration of ozone water increases. Enhance. However, when the concentration of the ozone water returns to the predetermined value Xs, the current value also returns to the vicinity of the initial value A0.
  • the pressing force P of both electrodes 3 and 4 against the electrolyte membrane was reduced to a low pressure.
  • the period T1 during which the electrolyte membrane is reduced to P4 is the regeneration period of the electrolyte membrane, and its regeneration principle is not clear.
  • a change in the pressing force is applied to the electrolyte membrane whose function has been reduced due to harmful substances (such as hydrogen ions and impurities of impurities contained in the raw water) accumulated in the membrane or over the membrane surface over time. It is presumed that this will destroy the equilibrium state of harmful substances and restore membrane performance.
  • the time T1 for maintaining the pressing force at the low pressure P4 (hereinafter referred to as "low pressure time”) is basically set to the lower limit Xe at which the concentration of the ozone water is allowed. It is arbitrary as long as it is a time until reaching.
  • the repetition period (Tc: period from t10 to t12) is arbitrary as long as the concentration of the ozone water reaches the allowable lower limit Xe, but the relationship between the two is taken into consideration. There must be. That is, if the repetition cycle Tc is long, the low pressure time T1 is also long, and if the repetition cycle Tc is short, the low pressure time T1 may be short. Generally, when the repetition cycle Tc is set to about 10 to 30 minutes, the low pressure time T1 is set to several seconds, that is, about 1 to 5 seconds.
  • (a) shows a method in which the pressing force P is changed from an initial value P1 to a pressure P5 lower than the pressure P4 in the V ⁇ 1 dog.
  • the pressing force of P4 or less is maintained for a predetermined period of time from time 16 to t17, and the current A also decreases as the pressing force P decreases, and the current A decreases in the case of FIG.
  • the current drops to a value A2 lower than the current A1 and gradually increases as the pressing force P increases.
  • the voltage V rises as the pressing force P decreases, reaches the allowable maximum value V e, and then continues to this state, and decreases to the initial value V 0 as the pressing force recovers. Become.
  • FIG. 11B is different from (a) in that the pressing force P is changed into a U-shape, and the pressure is reduced from the time t 18 to t 19 to a pressure lower than the set low pressure P 4.
  • FIG. 3 (c) shows that the pressing force is changed to that of a dog, which is the same as that of (a) above, but at time t20 a predetermined low pressure P4 is reached, and the pressure is immediately increased to P1. It has become like. That is, in this case, there is no holding time at the predetermined low pressure P4 or less, but there is no particular problem with this method. However, in this case, the recovery force of the electrolyte membrane tends to be inferior to the operation of changing the pressing force in FIG. 1 or the operation of changing the pressing force in the above (a) and (b). It is necessary to consider shortening the cycle or setting the value of the set low pressure P4 low.
  • FIG. 4 shows another embodiment of the method of FIG.
  • the pressing force P of the electrode against the electrolyte membrane is reduced from the initial value P1 to a low pressure.
  • the return of the pressing force P to the initial value P1 and the change to the low pressure P4 are performed once to a plurality of times within a predetermined period (T2) until time t22.
  • T2 a predetermined period
  • this operation is performed periodically.
  • a t low pressure time
  • the concentration X of the ozone water changes little by little while increasing and decreasing while the change of the pressing force is repeated every minute time (A t).
  • the pulse-like pressure change is stopped, the pressure is returned to the original pressing force P1, and the operation is continued.
  • the time t23 after the lapse of the predetermined time (Tc) has been reached, the same pulse-shaped change in the pressing force is performed until the time t24, and the operation is continued by returning to the original pressing force P1 again. The same operation is repeated thereafter.
  • the control for changing the pulse-like pressing force is performed by controlling the elapsed time t from the timer 187 shown in FIG. 21 and the signal from the word storage unit 89 storing the At. Is transmitted to the third comparator 88 c to perform a comparison operation, and outputs the result to the third command section 86 c every time ⁇ t elapses. This can be done by outputting the change ⁇ ⁇ to the pressing force controller 81.
  • the repetition period of the change of the pressing force (T 2) and the cycle of the operation of changing the pressing force P (T c: period of t 21 to t 23) are the same as the above-mentioned case. Is arbitrary within a period until the value falls to the allowable lower limit value Xe. Also, if the performance of the electrolyte membrane cannot be recovered sufficiently even by the operation of changing the pressing force P, the concentration X of the ozone water will reach the allowable lower limit Xe. The treatment after reaching the lower limit Xe will be described later.
  • FIG. 5 is an operation time chart showing another embodiment of the present invention. You. If the operation is continued while controlling the operation so that the concentration of the ozone water becomes the predetermined target value Xs, the current value A gradually increases and reaches the upper limit value Ae allowed for the device at time t31. If the operation is further continued in that state, the concentration of the ozone water gradually decreases, so an appropriate value Xm between the allowable lower limit Xe and the predetermined value Xs is set. When this word value Xm is detected (time t32), the pressing force of the electrolyte membrane is changed from the initial value P1 to the low pressure P4 as in the case of FIG.
  • FIG. 6 shows a flowchart for realizing this operation time chart.
  • the point where the concentration of ozonized water is controlled to a predetermined value Xs until the current value A reaches the upper limit value Ae of the device is (S1 to S4). Is the same as
  • the second comparator 88b detects that the current value A has reached the upper limit value Ae (S5, Yes)
  • the concentration of the ozone water thereafter starts to decrease.
  • the concentration detection sensor 84 continues to detect the state of decrease in ozone water concentration.
  • the concentration X of the ozone water drops below the pressure change control start set value Xm (S7, Yes)
  • the second ⁇ unit 88b instructs the pressing force P to change to the low pressure P4 ( S 8).
  • the third comparator determines whether or not the elapsed time t ′ in the state of changing the pressing force P has exceeded a predetermined time T3 (S8, S9), and the elapsed time t ′ is determined as t ′ When ⁇ T3, (S10, Yes).
  • the third comparator outputs a signal to that effect to the second command unit 86a. Then, the second command part 86b presses again.
  • a signal for setting the pressure P to the initial value P1 is output to the pressing force control device 81 (shift to S2), and the operation of the device is continued.
  • the pattern for changing the pressing force may be another form such as a V-shape or a U-shape as shown in FIG. 3, and the operation period for changing the pressing force (T 3)
  • the operation of changing the pressure in a pulsed manner at every minute time ⁇ ⁇ may be performed a plurality of times in the same manner as in the method shown in FIG.
  • the operation for changing the pressing force is started by detecting that the concentration of the ozone water has reached Xm.
  • the operation of changing the pressing force is started by detecting the current, voltage, or supply amount of raw water (when the ozone water concentration decreases, there is a method of reducing the supply amount of raw water to recover the concentration). It is also possible to do this when the value reaches a predetermined value.
  • FIG. 7 is an operation time chart showing another embodiment of the present invention.
  • the difference from the method of FIGS. 1 to 5 is in the operation of changing the pressing force P of the electrolyte membrane. That is, in the methods shown in FIGS. 1 and 3 to 5, the change in the pressing force P is a change in the direction in which the pressing force P is reduced.
  • the present embodiment shows an example in which the pressing force P is changed in a direction to increase. That is, as described above, in FIG. 7, the current value A gradually increases when the operation is performed so as to maintain the concentration of the ozone water at the predetermined value Xs.
  • the pressing force P is reduced from the initial value P1 to a low pressure P4, and after maintaining this pressure for a predetermined time (T4).
  • a method of increasing the voltage to P1 again at time t46 is shown.
  • the operation of changing the pressing force includes a method of decreasing the initial pressure from P1 to the low pressure P4, a method of increasing the pressure to the high pressure P6, and a method of appropriately combining these.
  • the specific method of changing the pressing force such as applying various patterns as shown in FIG. 3 or pulse-like pressure changes as shown in FIG. These patterns can be used alone or in combination.
  • a case will be described in which a long-term continuous operation is performed while repeatedly performing the operation of changing the pressing force, and as a result, the performance recovery by the operation of changing the pressing force reaches a limit.
  • FIG. 8 is an operation time chart when the operation is continued while the operation of changing the pressing force by the method shown in FIG. 1 is repeated.
  • the section (a) in the figure shows the state during normal operation, and as described above, the pressing force is reduced from the initial value P1 to the low pressure P4 at regular intervals, as described above.
  • the concentration X of ozone water is always maintained at the target value Xs.
  • the current value A does not decrease from the upper limit value Ae, so that the concentration of ozone water continues to decrease, and finally at time 166, the concentration of ozone water reaches the lower limit value Xe. It is meaningless to continue the regeneration operation of the electrolyte membrane by the operation of changing the pressing force P any more.
  • the first measure is to stop the operation of the device, disassemble the device and replace the electrolyte membrane
  • the second measure is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. H11-172824.
  • the third method is to stop the operation of the device, suspend the electrolyte membrane, and wait for the membrane function to recover.
  • the third measure is, as shown in PCT / JP985 / 5576, This is a measure to activate the film by increasing the pressing force on the film.
  • the first measure is replacement of the electrolyte membrane, detailed description will be omitted, and the second and third measures will be described.
  • This stopping step is performed in accordance with the method described in the above-mentioned Japanese Patent Application Laid-Open No. 11-172 / 482, in which the electrolyte membrane 5 is stopped to restore the membrane function of the electrolyte membrane 5 to recover the membrane function.
  • the number N of times at which this operation is stopped is counted by the number of stop times mi tens part 90 (S13), and it is determined by the fourth comparator 88d whether or not the predetermined number Ne has been reached. If the predetermined number Ne has not been reached (S14, No), the comparison operation is continued by the third comparator 88c until the stop time t exceeds the predetermined stop period Tr (S16). , No). When the predetermined stop period Tr has elapsed (S16, Yes), a signal to that effect is transmitted to the third command unit 86c to start the operation of the device (section e in FIG. 8). , S1).
  • the pressing force of the electrolyte membrane is in a completely released state, and during this time, impurities and the like accumulated in the electrolyte membrane are released by the pressing force to regenerate the membrane.
  • This period Tr needs at least 30 minutes or more, preferably about 3 to 12 hours.
  • the electrolyte membrane is pressed again with the initial value P1 by the two electrodes from time t67, and the water is passed through. , Restart the power supply.
  • the current value A is reduced from the initial value AO, as in the case of Fig.
  • the concentration X of the ozone water quickly reaches the predetermined value Xs. Thereafter, the operation is continued while repeating the operation of changing the pressing force as shown in FIG. Then, when the performance of the electrolyte membrane deteriorates again and the predetermined concentration of ozone water cannot be obtained, the operation of stopping the operation and restoring the membrane function by releasing the pressing force on the electrolyte membrane as described above must be performed again. become. The same applies hereafter, and if such operations are repeated, it will not be possible to finally recover the membrane function.
  • FIG. 10 also shows an example in which the operation is performed by performing the operation of changing the pressing force in FIG.
  • the section (c) in the figure is the same as the section (c) in FIG. 8, and the membrane function does not recover even if the operation of changing the pressing force is performed.
  • X has reached the lower limit Xe.
  • this third method when the concentration X of the ozone water reaches the lower limit value Xe, this is detected and the pressing force P is increased from the initial value P1 to a higher pressure P7, and a new pressing operation is performed. Transition to operation under conditions (section f).
  • the contact area between the two electrodes and the electrolyte membrane increases, the contact resistance decreases, and the functional area of the membrane increases, so that the membrane capacity increases.
  • the concentration X of the ozone water gradually recovers and returns to the predetermined value Xs, while the current value A gradually returns to the original value AO.
  • the pressing force P is reduced from the predetermined value P7 to the low pressure value P4, and after maintaining this low pressure value for time T1, the time t72 The operation of returning the pressing force to the predetermined value P 7 again is periodically repeated.
  • the electrolyte membrane is regenerated by changing the pressing force P of the electrode against the electrolyte membrane and maintaining the changed state for a predetermined time, but the principle is not clear. .
  • the first hypothesis is that ions and ion clusters (aggregates of ions) that have accumulated in the electrolyte membrane over time and have degraded membrane performance have undergone state destruction due to changes in pressing force. It is believed that this will restore membrane function.
  • the ion pair formed by the fixed charge and the ions in the electrolyte membrane acts as an electric dipole, but the distribution width of the negative charge is larger than the positive charge, and an effective dipole layer is formed on the ion cluster surface. Formation Is done.
  • the reason why the distribution width of the negative charge is larger than that of the positive charge is that an asymmetric force acts between the negative fixed charges due to the arrangement energy of the polymer chain.
  • ions move between clusters by hopping, they must cross the potential barrier created by the dipole layer.
  • This potential barrier increases with the size and number of clusters, while the number and size of ion classes in the electrolyte membrane increase with time. For this reason, it is considered that the ion permeation barrier increases with time.
  • tap water and well water used for ozone water production contain many impurities, and when this is electrolyzed, ions of various potentials pass through the membrane. It is thought that ions that easily permeate and ions that do not easily permeate simultaneously act on the electrolyte membrane. As a result, ion clusters accumulate in the membrane as a whole, and the permeable area gradually narrows with time. It is considered that applying a physical shock to the membrane in this state due to a change in the pressing force destroys the equilibrium state of the ion clusters and restores the membrane function.
  • the second hypothesis is that the polarization state is eliminated by applying a change in the pressing force to the electrolyte membrane in which the permeation resistance of ions due to the polarization action is increased.
  • hydrogen ions permeate to the cathode side.
  • the ions combine to generate hydrogen molecules and become gaseous. Since the site through which hydrogen ions permeate is extremely small, the generated gas also becomes extremely fine bubbles. It is considered that the hydrogen in the fine bubbles adheres to the contact portion between the film and the electrode, and a state as if a hydrogen film was formed is generated. This phenomenon is similar to what is called polarization in the field of batteries. Since these fine bubbles of hydrogen are difficult to separate by physical impacts such as a water flow, the resistance gradually increases, and the film performance decreases. Change the pressing force in this state It is thought that the operation removes the fine bubbles of hydrogen and restores the membrane performance.
  • the operation of changing the pressing force is preferably performed by changing the pressing force in the depressurizing direction. According to the results of experiments conducted by the present inventors, the change in the direction in which the pressing force is reduced is shorter than the case in which the pressing force is changed in the direction in which the pressing force is increased. This is because recovery has been recognized.
  • the present inventors have succeeded in realizing a long-term continuous operation for one month or longer, which was conventionally impossible, by repeating the operation of changing the pressing force as shown in FIG. 1 during operation.
  • This fact means that the operation and stoppages are repeated, and the actual operation rate of the electrolytic ozone water production equipment, which was said to be about 50%, is reduced to an ideal operation rate that is practically close to 100%.
  • the first method is a method in which the membrane function is regenerated by changing the pressing force of the electrode against the electrolyte membrane.
  • the second method an operation of changing the current value or the voltage value instead of the change of the pressing force is performed.
  • FIG. 11 is an operation time chart showing the second method.
  • the current value A gradually increases as described above. Therefore, at an appropriate time (time t51) before the current value A reaches the allowable upper limit value Ae of the device, the current value A is increased or decreased between the allowable maximum value Ae and the low current value A2.
  • the operation of changing the pulse shape is performed for a predetermined time (T 5) until time t52.
  • T 5 a predetermined time (T 5) until time t52.
  • the voltage V changes in a pulsed manner between the low voltage value V 2 and the maximum allowable voltage value V e of the device, in response to the change in the current A, contrary to the change in the current A.
  • the electrolyte membrane 5 is kept pressed at a predetermined pressing force P 1, so that various ion or ion clusters accumulated in the membrane or hydrogen formed between the membrane and the electrode as described above are formed. It is presumed that the fine bubbles collapse by the electric shock and the membrane function is restored.
  • the operation for changing the current includes the method shown in FIG. 11, that is, a method in which the current is changed in a pulsed manner within a predetermined time T5, and a method in which the current value is changed to a small current value.
  • there is a method in which the state is changed to a small current value and the state is held for a certain period of time Regarding the operation of changing the current, which of these methods is adopted is arbitrary.
  • As for the change of the waveform there is a waveform such as a pattern shown in FIGS. 1, 3 to 5, and 7 which is an example of the operation of changing the pressing force, and the selection is arbitrary. .
  • FIG. 1 is an embodiment of the first method described above. This is a time chart similar to that of the above method.
  • the ozone water producing apparatus used in the first method is required to be configured such that the anode electrode 3 or the cathode electrode 4 or both of them can retreat with respect to the electrolyte membrane 5.
  • FIG. 21 shows an example of the ozone water producing apparatus used in the first method, but the apparatus used in the present invention is not limited to this. Therefore, any other ozone 7K manufacturing apparatus having a mechanism for moving the electrode back and forth can be used.
  • the ozone water producing apparatus having a mechanism for moving the electrode forward and backward will be described.
  • FIG. 12 is a cross-sectional view of a principal part showing another example of an ozone water producing apparatus provided with a mechanism for moving electrodes back and forth.
  • Electrolyte membrane 5 force It is disposed between the anode-side casing 1 and the cathode-side casing 2 that have corrosion resistance to ozone, and the anode-side casing 1 and the cathode-side casing 2 are connected to the anode chamber 6.
  • the cathode chamber 7 is defined.
  • An anode electrode 3 provided with a noble metal 16 having a catalytic function of generating ozone is pressed and in contact with the surface of the electrolyte membrane 5 on the anode chamber 6 side.
  • the cathode electrode 4 having a contact surface of the noble metal 20 is pressed and in contact with the surface of the electrolyte membrane 5 on the other cathode chamber 7 side.
  • the anode compartment 6 and cathode compartment 7 Each of them is provided with an inlet 8 and 9 for raw water and an outlet 10 and 11, and a DC voltage 24 between the two electrodes 3 and 4, and a DC voltage between the electrodes 3 and 4. Is applied.
  • An elastic rubber film 31 is disposed between the back surface of the electrode plate 18 of the anode electrode 3 and the anode-side casing 1, and the anode chamber 6 is air-tight.
  • a stretchable rubber film 32 is also arranged between the back surface of the cathode electrode 4 and the cathode-side casing 2, and the shade 7 is also air-tight.
  • Pneumatic pressure or water pressure from a pressure supply source 41 can be supplied to the positive electrode 6 and the cathode chamber 7 by pipes 37, 38 connected to the through holes 33, 34.
  • Air pressure or water pressure from the pressure supply source 41 is supplied to the anode chamber 6 via the switching valve 39 and the pipe 37, and pneumatic or water pressure is supplied to the cathode chamber 7 via the pipe 38.
  • the anode electrode 3 and the cathode electrode 4 advance toward the electrolyte membrane 5 by air pressure or water pressure, respectively, and press the electrolyte membrane 5 from both sides.
  • the switching valve 39 is operated to make the vent pipe 40 communicate with the pipes 37 and 38, and the inside of the anode chamber 6 and the cathode chamber
  • the pressure in the chambers 6 and 7 is reduced, and the pressing force is reduced.
  • FIG. 13 is a cross-sectional view of a principal part showing another example of an ozone water producing apparatus provided with a mechanism for moving electrodes used in the present invention.
  • the apparatus shown in FIG. 12 is an example using an air compressor.
  • the ozone water producing apparatus shown in FIG. 13 is an example in which a water pressure machine using raw water is used.
  • the ozone water producing apparatus shown in FIG. 13 is basically the same as the apparatus shown in FIG. 12 except that a water pressure machine 51 is used instead of the pressure supply source 41 shown in FIG. Therefore, the same components are denoted by the same reference numerals, and redundant description will be omitted.
  • a water pressure machine 51 is used instead of the pressure supply source 41 shown in FIG. Therefore, the same components are denoted by the same reference numerals, and redundant description will be omitted.
  • a pipe 55 branched from a raw water pipe is connected to the positive pressure side of the cylinder chamber 53 of the large diameter biston 52, and a solenoid valve 54 is connected to the pipe. Is arranged.
  • a pipe 57 provided with an electromagnetic valve 56 is branched from the raw water pipe.
  • a drain pipe 61 is provided between the solenoid valves 54, 56 and the hydraulic machine 51 through a solenoid valve 58, 59 to the drainage channel 60.
  • piping 65a, 65b which connects the anode chamber 6 and the through-holes 33, 34 of the anode chamber 63, check valve 64
  • the solenoid valve 66 is disposed in the bypass circuit 67 of the check valve 64.
  • the pressure of water is increased, and the pressure is supplied to the piping 65 a and 65 b via the check valve 64 into the anode chamber 6 and the shade 7. Both electrodes are advanced by the back pressure, and press the electrolyte membrane 5 from both sides. This pressing force is performed by adjusting the opening of the solenoid valve 54.
  • the raw water is discharged from the raw water inlets 8 and 9 to the outside of the apparatus from the outlets 10 and 11 through the flow channels composed of lath nets 17 and 21.
  • power is supplied to both electrodes 3 and 4 from the DC power supply 24, ozone water is generated on the anode side by electrolysis of water, and the ozone water flows out from the outlet 10.
  • the solenoid valve 54 When the predetermined time has elapsed, the solenoid valve 54 is closed, and when the solenoid valve 58 is opened, the water pressure to the large-diameter cylinder chamber 53 due to the raw water is released.
  • the large-diameter cylinder chamber 53 is opened to the drainage channel 60 via the pipe 55 and the solenoid valve 58, and as a result, the small-diameter cylinder is closed.
  • the pressure in the anode chamber 63 is also released, the pressure acting on the anode chamber 6 and the negative electrode 7 is reduced, and the pressing force of the anode electrode 3 and the cathode electrode 4 on the electrolyte membrane 5 is also reduced.
  • the reciprocating mechanism of the two electrodes may be of any type and structure, and is not limited to the above-described example.
  • shape and structure of the electrodes are not limited to those shown in the figures. For example, as shown in FIG. 14, by making the width of the anode electrode 3 smaller than the width of the cathode electrode 4 and forming the width of the positive electrode 6 smaller than the width of the cathode chamber 7 accordingly, It is also possible to increase the current density on the anode electrode 3 side compared to the cathode electrode 4 and increase the ozone water generation efficiency. Further, a structure in which only the anode electrode 3 can advance and retreat as shown in FIG.
  • FIGS. 14, 24, and 25 a structure in which only the cathode electrode 4 can advance and retreat as shown in FIG. 25 may be used.
  • FIGS. 14, 24, and 25 the same components as those of the above-described device are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • any shape can be used as long as the electrode is configured to be able to advance and retreat with respect to the electrolyte membrane so that the pressing force of the electrode against the electrolyte membrane can be adjusted. It may be a dog structure. Therefore, the present invention is not limited to the use of the apparatus shown in the above embodiment.
  • a continuous production test of ozone water was conducted using an electrolytic ozone water production system in which the anode and cathode were pressed against the electrolyte membrane by air pressure or water pressure.
  • the electrolyte membrane used in the test was a perfluorocarbon cation exchange membrane, and the anode and the cathode were both 15 Ocm 2 plate electrodes.
  • a platinum wire mesh having a catalytic function to generate ozone is attached to the contact surface with the electrolyte membrane, and a titanium mesh is placed on the back surface.
  • the raw water flows through the lath net.
  • the equipment was operated under the following operating conditions using the method shown in Fig. 1.
  • the same apparatus used in the above embodiment was operated by the conventional method according to the method shown in FIG. 22 under the same conditions as in the above embodiment except that the operation of changing the pressing force was performed.
  • the results are shown in FIG.
  • the current value starts to increase about 3 hours after the start of operation, and the current value ⁇ has reached near the upper limit of the equipment, 18 OA, after about 5 hours. .
  • the concentration of ozone water was still at the specified level of 10 ppm, so it was possible to continue operation.
  • the operation of the device was stopped once, the anode electrode and the cathode electrode were separated from the electrolyte membrane, and left for about 1 hour and 10 minutes in that state.
  • the method of the present invention is a method that enables long-term continuous operation in a true sense.
  • the life of the electrolyte membrane depends on the water quality of the raw water, and as is clear from the example shown in Fig. 16, the ozone water production, in which membrane degradation occurs in about 5 hours, is relatively characteristic.
  • the method of the present invention continuous operation for more than one month is possible more than anything. I must say that it deserves special mention.
  • the method for producing ozone water according to the first method of the present invention, water is electrolyzed while the electrolyte membrane is pressed by the electrodes to produce ozone water.
  • the regeneration of the electrolyte membrane in the degradation process is performed.
  • the electrolyte membrane in the process of deterioration is regenerated by rapidly and rapidly changing the current value or the voltage value while producing ozone water.
  • the regeneration of the electrolyte membrane reaches the limit by the operation of changing the pressing force on the electrolyte membrane or the operation of forcibly changing the current or the voltage, once the apparatus is stopped, the electrode is separated from the electrolyte membrane.
  • the pressure changes to a preset high pressing force.
  • the unit price of ozone water can be significantly reduced. This is because the operation rate of the electrolysis ozone water production device can be astonishingly approaching 100% from the conventional 50% 1 ⁇ . Furthermore, the life of expensive electrolyte membranes can be dramatically improved, so that the operation cost of the equipment can be reduced from this aspect as well, and the ozone water production cost can be significantly reduced. Become.
  • the equipment will be easy for the user to handle, and the ozone water production equipment will be able to spread further.
  • maintenance costs such as replacement of the electrolyte membrane are reduced, which not only reduces ozone production costs, but also eliminates maintenance complexity.
  • the production cost of ozone water is low, and the equipment for producing ozone water is easy to use even if it is an unfamiliar user. It is expected to increase dramatically, and a great improvement is expected from the viewpoint of the environment and sanitation of the people. Some are not.
  • the method for producing electrolytic ozone water according to the present invention and the apparatus thereof can be continuously operated for a long time, and thus are extremely useful in the field of various cleaning and sterilization using ozone water.
  • the method for regenerating a solid polymer electrolyte membrane is a technique that uses a solid polymer electrolyte membrane and can be applied to apparatuses in all fields. Particularly, the continuous operation of the electrolytic ozone water producing apparatus is extremely difficult. This is a useful technique.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

明 細 書 電解式オゾン水製造方法及びその装置並びに固体高分子電解質膜の再生 方法 技術分野
本発明は、 水の電解によりオゾン水を製造するオゾン水の製造方法に 関するものであり、 詳しくは、 オゾン水を長時間に亘つて連続的に製造 し得る電解式ォゾン水製造方法とその装置に関するものである。 背景技術
従来、 オゾン水を製造する代表的な方法としては、 オゾンガスを水中 に溶解させてオゾン水を製造するガス溶解法と、 水の電気分解によって 陽極側に生成する酸素をオゾン化触媒によってオゾンに変換させ、 これ を直ちに陽極側に流れる水中に溶解させてオゾン水を製造する水電解法 とが知られており、 最近では、 水電解法が注目され実用化が進んでいる
。 係る水電解法では、 入手容易な水を原料とし、 数十ボルト (V ) X数 十アンペア (A ) の小型の電源装置を用いた小型の電解装置が使用され る。
係る水電解法によるオゾン水製造方法としては、 特開平 1—3 1 2 0 9 2号公報, 特開平 8— 1 3 4 6 7 7号公報, 特開平 8— 1 3 4 6 7 8 号公報に提案されているものがある。 これらの装置の概要を第 1 7図に 示した代表例によって説明する。 同図において、 固体高分子電解質膜 5 (以下単に 『膜』 又は 『電解質膜』 と記載する) は、 オゾンに対して耐 蝕性を有する材料 (例えば、 フッ素樹脂或いはガラス等) を内面にコー ティングした陽極側ケ一シング 1 と陰極側ケ一シング 2との間に配置さ れ、 陽極側ケーシング 1 と陰極側ケ一シング 2を、 陽極室 6と陰極室 7 とに画成している。 前記電解質膜 5の陽極室 6側の面には、 オゾンを生 成させる触媒機能を有する貴金属 (白金等) 1 6を備えた陽極電極 3が 押圧して接触されている。 又、 他方の陰極室 7側の面には、 貴金属 (白 金, 銀等) 2 0の接触面を有する陰極電極 4が、 同様に押圧して接触さ れている。 陽極室 6と陰極室 7の夫々には、 原料水の流入口 8 , 9と流 出口 1 0, 1 1が形成されている。 両電極 3 , 4間には直流電源 2 4に よって電極棒 1 9 , 2 3を介して直流電圧が印加される。
係る構成の装置においては、 陽1^ 6と陰 7に夫々通水しつつ両 電極間に直流電流を印加して通電すると、 電解質膜 5を挟んで水の電気 分解が生じる。 そして、 陽極電極 3側には酸素とオゾンが生成し、 陰極 電極 4側には水素が発生する。 この陽極電極 3側で発生したォゾンは水 中に溶解してオゾン水になり、 流出口 1 0からオゾン水として送出され る。
ここで、 効率的にオゾン水を生成するために、 特開平 8— 1 3 4 6 7 7号公報に開示されている様に、 両電極 3 , 4の電解質膜 5に接する部 分を、 夫々白金等の貴金属で形成した金網 1 6 , 2 0とする。 又、 その 背面にオゾンに対して 性を有するチタン等で形成したラス網 1 7 , 2 1 と電極板 1 8 , 2 2とを順に TOして、 ろう付け, スボッ ト溶接そ の他.機械的接合法等により接合して一体化した構造のものに電極棒 1 9 , 2 3を接合した電極構造とする。 原料水は金網とラス網或いはラス網 とラス網とからなる流路を流通する間に激し 、乱流と渦流を生じ、 これ により、 陽極電極側で生成したオゾンは発生直後に瞬時にして水中に溶 解される。 この溶解が電解質膜の陽極電極面で連続的に生じ且つ累積す る結果、 高濃度のオゾン水が得られる。
ところで、 係る装置によって、 初期設定した電流密度で所定濃度のォ ゾン水を製造すべく連続運転を行うと、 電解質膜の性能の低下 (膜劣化 ) が生じ、 時間経過と共にオゾン水中のオゾン濃度の低下が生じるので 、 これを防止するために電流密度を上昇させる方式がとられていた。 即 ち第 1 8図に示す様に、 オゾン水中のオゾン水の濃度 Xを所定の値 X s に維持する様に、 電流値 A (電流密度, 以下同じ) を制御していくと運 転時間の経過と共に電流値は上昇し、 時間 t 1では、 遂に装置に許容さ れている電流上限値 A eに達する。 この状態に達すると、 これ以上の電 流値の増加が行えないから、 次第にオゾン水の濃度 Xが低下し、 所定の 限界値 X eにまで低下する (時間 t 2 ) 。 この限界値 X eに達すると、 一般には、 この時点で装置の運転を停止し、 装置の分解と劣化した電解 質膜 5の交換が行われる事になる。 しかしながら、 これでは、 オゾン水 製造装置の分解, 再組立が煩わしいのみならず、 装置稼働効率も著しく 低くなり、 オゾン水製造コス卜を高価なものにしていた。
そこで、 この電解質膜の煩雑な交換作業を軽減し、 電解質膜 5の再生 を、 装置を分解する事なく容易に行う方式が、 本出願人等によって特願 平 9一 3 4 0 1 8 8号 (特開平 1 1— 1 7 2 4 8 2号) にて提案されて いる。 即ち、 この方式は、 第 1 9図に示している様に、 前記 OTタイプ の陽極電極 3及び陰極電極 4の背面に夫々電極棒 1 9 , 2 3が接続され ている点では前述の第 1 7図の装置と同一であるが、 次の点でその構造 が異なっている。 即ち、 第 1 9図の装置では、 電極棒 1 9 , 2 3力 前 記陽極側ケ一シング 1及び陰極側ケ一シング 2に夫々形成されている貫 通孔 1 2, 1 3を揷通して配置され、 夫々の端部が、 流体圧シリンダ装 置 1 4 , 1 5に接続され、 これにより陽極電極 3及び陰極電極 4が夫々 電解質膜 5に対して進退自在となされている点で前記第 1 7図の装置と 異なっている。
この装置による運転方法について以下に説明する。 前記第 1 8図にお いて、 電流値 Aが許容された上限値 A eに達した後のオゾン水の濃度 X が所定の下限値 X eに達すると、 装置の運転を停止 (通電, 通水の停止 ) し、 第 2 0図に示している様に、 前記流体圧シリンダ 1 4, 1 5を作 動させ、 前記雨電極 3, 4を電解質膜 5から離反させて該電解質膜 5に 対する押圧力を開放する。 そして、 この状態を一定時間保持する事によ つて電解質膜の再生を行い、 しかる後に、 再度両電極 3 , 4を電解質膜 に向けて前進させて所定の押圧力で押圧し、 通電, 通水を開始して装置 の運転を再開する。 即ち、 装置運転時に経時的劣化した電解質膜を、押 圧力を解除する事によつて開放し該電解質膜の再生を行う様にしたもの である。 この運転状態をタイムチャートに示すと第 2 2図の如きもの となる。 即ち、 第 1 8図の場合と同様に、 オゾン水の濃度 Xが所定の濃 度 X sに維持される様に、 電流値 Aは、 運転時間 tの経過と共に上昇し 、 時間 t 1で該電流値 Aは、 装置に許容されている上限値 A eに達する 。 これ以上の電流値の上昇は行えないから、 この時点で、 装置への通電 , 通水を停止し、 装置の運転を休止する。 即ち、 第 2 0図に示している 様に、 両電極 3, 4を^!させて電解質膜 5と離反させ、 装置の運転を 休止する。 この状態を所定時間保持した後、 時間 t 3に至ると、 両電極 3, 4を再度前進させて電解質膜 5に押圧し、 通電と通水を再開して運 転を再開する (時間 t 3 ) 。 以後、 同様にして電流値 Aが上限値 A eに 達すると (時間 t 4 ) 、 同様にして運転を休止し、 所定時間経過した後 (時間 t 5 ) 運転を再開する。 この操作を繰り返し行い、 運転再開後も 所定のオゾン水の濃度が得られなくなると、 その時点で電解質膜 5の交 換を行う方式である。
この場合には、 電解質膜の交換頻度は少なくなり、 電解質膜の寿命向 上と装置メンテナンスの容易化を達成している点では、 従来法に比して 効果が認められるが、 装置を頻繁に停止しなければならないため、 連続 したオゾン水の製造が不可能である点では、 従来の問題点の基本的解決 には至っていない。
そこで、 本出願人等は、 上記特願平 9一 3 4 0 1 8 8号の優先権主張 に基づく P C T出願 (P C T/ J P 9 8 / 5 5 7 6 ) において、 更に上 記方法を改良する方式を提案している。 この方式も第 1 9図に示した如 き両電極を電解質膜に対して進退させる様にした機構を有する電解式ォ ゾン水製造装置を用いるものであるが運転方法が異なつている。
即ち、 第 2 3図にその運転タイムチャートを示している様に、 オゾン 水中のオゾン水の濃度 Xが一定値 X sとなる様に電流値 Aを上昇させて 行く点は従前の方式と同一である。 電流値 Aが装置の許容限界値である 上限値 A eに達すると (時間 t 1 ) 、 前記電解質膜を押圧している電極 の面圧 Pを、初期の P 1から、 より高圧の P 2に高める。 するとオゾン 生成速度が向上し、 所定のオゾン水の濃度 X sを維持するために必要な 電流値 Aは低下するので、 電流値 Aは、 その上限値 A eから正常運転値 A Oに低下する。 この状態で運転を継続していると、 再び電解質膜の性 能の低下に伴って、 所定のオゾン水の濃度を維持するために必要な電流 値 Aが次第に増加し、 再度その上限値 A eに達する (時間 t 6 ) 。 この 時点で再度電解質膜への押圧力 Pを、 更に高い圧力の P 3に昇圧すると 、 再び所要の電流値 Aが低下し、 再度電流値が上限値 A eに達する (時 間 t 7 ) 。 この時点で電解質膜の押圧力を更に高められる場合には、 同 様の操作を繰り返し行う事になる。 しかし、 該電解質膜の押圧力が設定 された上限値に達している場合には、 電流値が上限値 A eの状態で運転 を継続する。 そして、 オゾン水の濃度 Xが下限値 X eにまで低下すると (時間!; 8 ) 、 装置の運転を停止し、 前述の第 2 0図に示した場合と同 様に、電極による電解質膜の押圧状態を開放して、 該電解質膜に作用し ていたストレスを放出させ、 膜機能の復元を図る。 その後、 再度電極を 電解質膜に初期の押圧力 P 1で押圧し、 通電, 流水を再開して装置の運 転を再開するか、 装置を分解して電解質膜を交換するかのいずれかの方 策がとられる。
この方式によると、 電流値 Aが上限値 A eに達しても、 電解質膜に対 する電極の押圧力 Pを高める事によって電流値を低下させる事ができる ので、 装置の運転継続時間を飛躍的に増大させる事が可能となる。 しか しながら、 電極の押圧力 Pが上限値に達すると、 装置の運転を停止して 、 膜の性能の回復を待たねばならない点では、 長期間に亘る連続運転は 不可能であった。
そこで、 本発明は、 上記各改良方式を更に改良して、 電解式オゾン水 製造方式における念願とも言える長期連続運転を達成する事を最大の目 的とするものである。 発明の開示
本発明は、 係る観点の元になされたものであって、 基本的には 2つの 方法がある。 先ず、 第一の方法は、 電解質膜の片面にオゾンを発生させ る触媒機能を備えた陽極電極を、 他面に陰極電極を配置し、 両電極の少 なく とも一方或いは両方が進退可能な機構を設け、 両電極を前記電解質 膜を押圧した状態で該両電極間に直流電圧を印加し、 前記電解質膜の両 面に水を流通させて該流通水の電解によつて前記陽極電極側にォゾン水 を生成させるオゾン水製造方法において、 通水, 通電を継続した状態で 、 前記陽極電極又は陰極電極或いはこれら両電極の前記電解質膜に対す る押 件を、 予め設定された条件に従って変化させた後、 元の押 1¾ 件に復帰させるように押圧力を変化させる操作によって、 ォゾン水を製 造しつつ電解質膜の再生操作を行う様にしたものである。
この方法において、 前記電解質膜に対する押圧力を変化させる操作は 、 前記電極による押圧力を減少させる方向或いは増加させる方向又はこ れらの組合せで変化させる事ができる。 又、 この押圧力を変化させるパ ターンは、 予め設定された押圧力以下に減少された状態又は予め設定さ れた押圧力以上に昇圧された状態が一定時間以上存在する様な圧力変化 のパターンを有するものがこの好ましい。 更に、 この操作を、 所定周期 で繰り返す方式と、 ォゾン水の生成能力が所定の値以下に低下した事を 検知して 1回又は複数回行う方式があり、 いずれの方式を採用するかは 任意である。
次に、 第二の方法は、 前記押圧力を変化させる操作に代えて、 電流又 は電圧を変化させる操作を行うものであり、 具体的には、 通水, 通電を 継続した状態で、 直流電源の電流値又は電圧値を、 予め設定された条件 に基づいて急 JIに変化させた後、 元の値又はその近傍の値に復帰させる 様に、 電流又は電圧を強制的に変化させる操作を行う事によって、 ォゾ ン水を製造しつつ電解質膜の再生を行う様にしたものである。
この方法において、 前記電流又は電圧を強制的に変化させる操作は、 当該操作の開始時点の値から 0又はその近傍の最小値と装置の最大許容 値との間で変化させると共に、 該最小値及び最大許容値の状態を夫々一 定時間保持させた後に元の値又はその近傍の値に変ィヒさせる方式が好ま しい。 又、 この強制的に変化させる操作を、 所定周期で繰り返す方式と 、 オゾン水の濃度又はその生成能力が所定の値以下に低下した事を検知 して 1回又は複数回行う方式とがある。
又、 上記第一, 第二の方法において、 前記押圧力を変化させる操作或 いは電流又は電圧を強制的に変化させる操作によっても電解質膜の再生 が不充分な状態に至ると、 オゾン水の製造を停止して前記両電極を該電 解質膜から させ、 この状態を所定時間保持して該電解質膜の再生を 行つた後、 再度所定の運転条件でォゾン水の製造を再開する方式もある 。 この方式によれば、 電解質膜の寿命を更に一層向上させる事が可能と なる。
同様に、 前記押圧力を変化させる操作或いは電流又は電圧を強制的に 変化させる操作によって、 電解質膜の再生が不充分な状態に至ると、 前 記電解質膜に対する前記電極の押圧力を、 予め設定されている高い押圧 力に変化させてオゾン水の製造を継続する方式もある。 この方式によれ ば、 ォゾン水の連続製造を更に飛躍的に延ばす事が可能となる。 図面の簡単な説明
第 1図は本発明の第一の方式のオゾン水製造方法における実施例を示 す運転タイムチャートであり、 第 2図は第 1図の運転制御方法を示すフ ローチヤ一卜であり、 第 3図は第 1図の方法における押圧力の変化の変 形例を示す運転タイムチヤ一トであり、 第 4図は本発明の第一の方法の 他の実施例を示す運転タイムチヤ一卜であり、 第 5図は本発明の第一の 方式の更に他の実施例を示す運転タイムチヤ一トであり、 第 6図は第 5 図の運転制御方法を示すフローチヤ一卜であり、 第 7図は本発明の第一 の方式の更に他の実施例を示す運転タイムチヤ一トであり、 第 8図は本 発明の第一の方式の更に他の実施例を示す運転タイムチヤ一トであり、 第 9図は第 8図の運転制御方法を示すフローチャートであり、 第 1 0図 は本発明の第一の方式の更に他の実施例を示す運転タイムチヤ一トであ る。
第 1 1図は本発明の第二の方式の実施例を示す運転タイムチャートで ある。
第 1 2図は本発明で使用する電解式オゾン水製造装置の実施例を示す 要部断面図であり、 第 1 3図は本発明で使用する電解式オゾン水製造装 置の他の実施例を示す要部断面図であり、 第 1 4図は本発明で使用する 電解式ォゾン水製造装置の更に他の実施例を示す要部断面図である。 第 1 5図は本発明の第一の方式における実際の運転における運転タイ ムチャート例であり、 第 1 6図は従来法による実際の運転タイムチヤ一 ト例である。
第 1 7図は従来の電解式オゾン水製造装置の例を示す要部断面図であ り、 第 1 8図は上記第 1 7図の装置の運転例を示す運転タイムチヤ一卜 であり、 第 1 9図は従来の電解式オゾン水製造装置及び本発明で使用す る電解式オゾン水製造装置の他の例を示す要部断面図であり、 第 2 0図 は第 1 9図の装置における従来の固体高分子電解質膜の再生状態を示す 要部断面図である。
第 2 1図は本発明に係る電解式オゾン水製造装置の制御システムを示 す概念図であり、 第 2 2図は上記第 1 9図の装置による従来の運転方法 を示すタイムチャートであり、 第 2 3図は上記第 1 9図の装置による従 来の他の運転方法を示すタイムチャートである。
第 2 4図は本発明で使用する電解式オゾン水製造装置の他の例を示す 要部断面図であり、 第 2 5図は本発明で使用する電解式オゾン水製造装 置の更に他の例を示す要部断面図である。 発明を実施するための最良の形態
以下、 本発明について図面を用いて詳細に説明する。 先ず、 本発明の 第一の方式について説明する。 この方式で使用するオゾン水製造装置は 、第 2 1図に示す様に、 オゾン水製造装置本体 1 と押圧力制御装置 8 1 と押圧力の設定部 8 2と電源装置 2 4と原料水供給装置 8 3と検出手段 を有するオゾン水の濃度検出センサ 8 4と制御装置本体 8 5とを備えて いる。 ここで、 オゾン水製造装置本体 1は、 第 1 9図の装置と同一符号 が付されている部分は同一構成を示しており、 重複説明は省略する。 押圧力制御装置 8 1は、 オゾン水製造装置本体 1の進退駆動部 1 4 , 1 5に接続されており、 陽極電極 3と陰極電極 4の電解質膜 5に対する 押圧力を制御する様になつている。 押圧力設定部 8 2は、 押圧力制御装 置 8 1に接続されており、 所定の押圧力に設定できる様になつている。 電源装置 2 4は、 両電極 3, 4に電圧を印加する電源であり、 電流値を 検出する電流検出器 9 1を備えている。 原料水供給装置 8 3は、 オゾン 生成の原料となる原料水を供給するものである。 ォゾン水の濃度検出セ ンサ 8 4は、 オゾン水の濃度を検出するセンサである。
制御装置本体 8 5は、 制御部 8 6とタイマー 8 7と比較部 8 8と設定 値の格納部 8 9と停止回数計数部 9 0とを備え、 前記押圧力制御装置 8 1 と電源装置 2 4と原料水供給装置 8 3とに種々の指令を送る様になつ ている。
制御部 8 6は、 前記電源装置 2 4に制御指令を出す第 1指令部 8 6 a と、 前記押圧力制御装置 8 1に制御指令を出す第 2指令部 8 6 bと、 装 置の運転/停止の制御 を出す第 3 部 8 6 cとを備えている。 比較部 8 8は、 第 1比較器 8 8 aと第 2比較器 8 8 bと第 3比較器 8 8 cと第 4比較器 8 8 dとを備えている。
第 1比較器 8 8 aは、 オゾン水の濃度検出センサ 8 4と設定値の格納 部 8 9と前記第 1指令部 8 6 aと前記第 1指令部 8 6 bと前記第 3 ^ 部 8 6 cとに接続されている。 この第 1比較器 8 8 aは、 オゾン水濃度 検出センサ 8 4から送信されるその時点での測定オゾン水濃度 (X ) を 言^値格納部 8 9に記憶されているオゾン水濃度目標値 (X s ) と比較 して、 オゾン水濃度の偏差を示す信号を前記第 1指令部 8 6 aに出力す ると共に、 前記測定値 (X ) が前記目標値 (X s ) に達すると、 その旨 の信号を前記第 2指令部 8 6 bに出力する様になつている。
第 2比較器 8 8 bは、 前記電源装置 2 4の電流値検出器 9 1 と前記設 定値格納部 8 9と前記第 3 部 86 cとに接続されている。 この第 2 比較器 8 8 bは、 前記電源装置 2 4内の前記電流検出器 9 1で検出され た電流値 (A) を前記設定値格納部 8 9に記憶されている電源装置の上 限値 (Ae) とを比較して、 電流値 (A) がその上限値 (Ae) に達す ると、 その旨を示す信号を前記第 3指令部 8 6 cに出力する様になって いる。
第 3比較器 8 8 cは、 前記タイマー 8 7と前記設定値格納部 8 9と前 記第 1指令部 8 6 aと前記第 3指令部 86 cとに接続されている。 この 第 3比較器 88 cは、 前記タイマー 8 7で計測された装置の運転中や停 止中の経過時間 (t ) を、 前記設定値格納部 90に記憶されている予め 設定された所定時間 (Tc) 等と比較し、 装置の運転時間や停止時間 ( t) が所定時間 (Tc ) 等に達すると、 所定の時間に達した事を示す信 号を前記第 1指令部 8 6 aや第 3指令部 8 6 cに出力するものである。 又、 第 4比較器 88 dは、 装置が停止した回数 (N) を計測する装置 停止回数計数部 90で計数された装置の停止回数 (N) を、 前記設定値 格納部 8 9に記憶されている予め設定された所定の停止回数 (N e) と 比較して、 その結果を前記第 3指令部 88 cに出力するものである。 前記設定値の格納部 8 9には、 運転条件として予め設定させるべきォ ゾン水の生成目標濃度 (Xs) や後述する所定の制御を開始する制御開 始濃度 (Xm) や許容下限濃度 (Xe) 、 後述する装置の制御サイクル タイム時間 (Tc) 、 後述する変化押圧力保持時間 (T 1 ) 、 電流値の 上限値 (Ae) 等の運転に必要な各種設定値が記憶格納されている。 前記制御部 8 6の前記第 1指令部 8 6 aは、 オゾン水濃度を比較する 前記第 1比較器 88 aからの信号に基づいて、 オゾン水濃度 (X) が目 標値 (Xs) に近づく様に前記両電極 3, 4間に供給される電流値 (A ) を変化させる ^を前記電源装置 2 4に出力する様になつている。 前記第 2 ^^部 8 6 bは、 前記第 1比較器 8 8 aと前記第 3比較器 8 8 cと前記押圧力制御装置 8 1に接続されており、 前記第 3比較器 8 8 cからの信号に基づいて、 装置の運転中の経過時間 ( t ) が前記設定値
( T c ) 等に達した事を検知すると、 両電極 3 , 4の押圧力を変化させ る指令を前記押圧力制御装置 8 1に出力する様になつている。 又、 この 第 2 ί旨令部 8 6 bは、 前記第 1比較器 8 8 aからの信号に基づいて、 ォ ゾン水の濃度 (X ) が、 前記制御開始オゾン水濃度の設定値 (X m ) に 達した事を検知すると、 両電極 3 , 4の押圧力を変化させる指令を前記 押圧力制御装置 8 1に出力する様にもなつている。 更に、 この第 2 ^^ 部 8 6 bは、 前記第 3比較器 8 8 cからの信号に基づいて、 装置の運転 中の経過時間 ( t ) が前述の所定の値 (T 1 ) に達した事を検知すると 、 両電極 3, 4の押圧力を初期の押圧力に変化させる指令を前記押圧力 制御装置 8 1に出力する様になつている。
前記第 3指令部 8 6 cは、 前記第 1比較器 8 8 a〜第 3比較器 8 8 c と前記電源装置 2 4と前記原料水供給装置 8 3と前記押圧力制御装置 8 1と前記タイマ一 8 7とに接続されている。 この第 3指令部 8 6。は、 前記第 2比較器 8 8 bの信号に基づいて電流値が上限値 (A e ) に達し た事を検知し且つ第 1比較器 8 8 aからの信号に基づいてオゾン水の濃 度 (X ) が下限値 (X e ) に達した事を検知すると、 電源装置 2 4と原 料水供給装置 8 3と圧力制御装置 2 1を O F Fにする指令を出力する様 になっている。 又、 第 3指令部 8 6 cは、 タイマ一 8 7からの信号に基 づいて所定時間経過後に装置を再稼働させる ¾ ^を電源装置 2 4と原料 水供給装置 8 3と圧力制御装置 8 1に出力する様にもなつている。 次に、 本発明の第一の方式についての実施形態を、 第 1図の運転タイ ムチヤ一トと該タイムチャートの運転を行うためのフローチヤ一トであ る第 2図と前記第 2 1図とを用いて説明する。 先ず、 第 2図において、 運転開始時には電源装置 2 4のメインスイツ チが入れられて、 制御系に通電が開始され、 続いて、 流水口 8, 9から 原料水の通水が開始され、 両電極 3 , 4間に直流電圧が印加される ( S 1 ) 。 次に、 押圧力設定部 8 2により、 両電極 3 , 4の電解質膜 5に対 する押圧力を初期値 P 1に設定する (S 2 ) 。 又、 タイマー 8 7によつ て経過時間 tの計測が開始される (S 3) 。 電解によりオゾン水が生成 して流出口 1 0よりオゾン水が送出され始まると、 このオゾン水の濃度 Xをオゾン水濃度検出センサ 8 4で常時検出し、 該検出された濃度 Xを 第 1比較器 88 aでオゾン水の濃度目標値 X sと比較する ( S 4 ) 。 こ こで該目標値 Xsは所定のばらつき (X) を許容する様に設定されてい るので、 実際には、 検出された濃度 Xは X s ±x (^X s) と比較され る。 オゾン水の濃度が低い場合 (Xく Xs) には (S 4 , N o) 、 第 1 指令部 86 aからの信号によって、 電源装置 24には、 その時の電流値 Aに予め設定されている電流値 aを加えて Aを A+ aに上げる指令が出 され、 新たな電流値で運転を行う (S 5) 。 一方、 オゾン水の濃度 Xが 所定の目標値より高い場合 (X>Xs) には (S 4, N o) 、 第 ^ r 部 8 6 aからの信号によって、 電源装置 2 4には、 その時の電流値 Aか ら電流値 aを減じた A— aに変更する指示が出される。 これにより、 常 時、 オゾン水の濃度 Xは X s近傍の値に維持される様に電流値 Aが制御 される事になる。
第 1図は、 この様にしてオゾン水の濃度が X sに達した時点以降の状 態を示している。 この状態で運転を継続していると、 第 1図に示した如 く、 電流 A及び電圧 Vの値は、 電解質膜の劣化に伴ってオゾン水の濃度 Xを濃度 X sに維持する様に時間 tの経過と共に次第に上昇していく。 そこで、 電解質膜の性能が低下してォゾン水の濃度 Xが許容される下限 値 Xeにまで低下しない様な適当な時間 (Tc) を予め設定しておく。 前記第 3比較器 8 8 cで運転時間 tの経過を監視しておき、 t≥ T cに 至ると (時間 t 10) ( S 6 , Y e s ) 、通電及び通水を維持した状態で (即ち装置の運転を継続している状態で) 、 第 2 ^·部 8 6 bの信号に 基づいて押圧力制御装置 8 1を制御し、 両電極 3、 4の押圧力 Pを初期 値 P 1から低圧の P 4に変更させる (S 7 ) 。 又、 押圧力 Pを変更させ ると同時に押圧力の変化の開始後の経過時間 (t ' ) をタイマーで計測 を開始する (S 8 ) 。
押圧力の低下により電解質膜 5と両電極 3 , 4との間の接触抵抗が増 加するため、 電流値 Aは初期値 A 0よりも低電流値の A 1に低下すると 共に、 オゾン水の濃度 Xも所定値 X sから僅かに低下し始める。 一方、 電圧 Vは、 電源の最大電圧値 V eにまで上昇する事になる。 この状態で は、 オゾン水の濃度は低下を続けているので、 該オゾン水の濃度が許容 下限値 X e以上に維持されている期間内の適当な時間 (時間 t i l ) まで の所定の期間 (T 1 ) これを保持する。 即ち、 第 3比較器 8 8 cは、 低 圧に変更した後の経過時間 t ' と低圧保持期間 T 1とを比較して ≥ T 1に達すると ( S 9 , Y e s ) 、 その信号を第 1指令部 8 6 bに出力 する。 そして、 第 2指令部 8 6 bから押圧力 Pを初期値 P 1に復帰させ る信号を押圧力制御装置 8 1に出力する (S 2へ移行) 。 前述の要領で 、 オゾン水の濃度 Xが所定の値 X sに維持される様な運転が再開される 。 この結果、 オゾン水の濃度 Xは所定の値 X sに復帰し、 電流, 電圧も 夫々元の値近傍に復帰する。 尚、 復帰直後においては、 オゾン水の濃度 は設定値 X s以下であるので、 これを回復するために電流値 Aは瞬間的 に装置の許容最大値 A eにまで上昇してォゾン水の濃度を高める。 しか し、 オゾン水の濃度が所定値 X sに戻ると電流値も初期値 A 0近傍に復 帰する。
上記操作において、 電解質膜に対する両電極 3, 4の押圧力 Pを低圧 の P 4に下げている期間 T 1が該電解質膜の再生期間であり、 その再生 原理は明確ではない。 しかし、 後述する如く時間経過と共に膜内或いは 膜面に蓄積した有害物 (水素ィォン及び原料水中に含有されている不純 物のイオン等) により機能の低下した電解質膜に、押圧力の変化を施す 事によって有害物の平衡状態を破壊し、 膜性能の回復が図られるものと 推定されている。
同様にして、 所定の押圧力を変化させる周期 T cに達すると (時間 t 12) 、 前述の要領で押圧力 Pを初期値 P 1から P 4に低下させ、 この状 態を時間 t 13までの一定時間 (T 1 ) 保持させた後に、 再度押圧力を初 期値 F 1に復帰させる。 この様な操作を、 装置の運転を休止する事なく 、 繰り返し行う事になる。
上記方法において、 押圧力を低圧 P 4に保持するための時間 T 1 (以 下、 「低圧時間」 という。 ) は、 基本的には、 オゾン水の濃度が許容さ れた下限値 X eに至るまでの時間であれば任意である。 又、 この繰り返 し周期 (T c : t l0〜 t l2の期間) は、 オゾン水の濃度が許容下限値 X eに至るまでの期間であれば任意であるが、 両者の関係は考慮されなけ ればならない。 即ち、 該繰り返し周期 T cが長ければ低圧時間 T 1も長 くなり、 繰り返し周期 T cが短ければ低圧時間 T 1も短くて良い事にな る。 一般的には、繰り返し周期 T cを 1 0分〜 3 0分程度に設定した場 合には、 低圧時間 T 1は数秒、 即ち、 1〜 5秒程度に設定される事にな る。
尚、押圧力を変化させることにより電解質膜の回復が限界に近くなる と、押圧力を初期値 P 1に復帰させた後の電流値 Aが初期値 A 0よりも 高い値となり、 押圧力を変化させる操作の度に次第に高くなつて、 遂に は短時間で上限値 A eに達し、 オゾン水の濃度 Xが許容下限値 X eに達 することになる。 係る事態に到った後の処理については ί する。 上記した第 1図の例においては、押圧力 Pを初期値 P 1から低圧の P 4に急、激に変化させ、 その低圧状態を一定時間 (T 1 ) 保持させる様に している。 この押圧力を変化させるパターンには種々の変形例がある。 第 3図は、 この押圧力を変化させるパターンの種々の例を示したもので ある。
同図中 (a ) は、 押圧力 Pを初期値 P 1から前記 P 4よりも低い圧力 の P 5に V^l犬に変化させる方式である。 この場合には、 前記 P 4以下 の押圧力に時間 16から t 17の所定期間保持される事になり、 電流 Aも 押圧力 Pの低下に連れて低下すると共に、 第 1図の場合の低電流 A 1よ りも更に低い値 A 2にまで低下し、押圧力 Pの増加に連れて次第に上昇 する。 一方、 電圧 Vは押圧力 Pの低下に連れて上昇し、 許容最大値 V e に達した後、 その状態が継続し、 押圧力の回復に連れて初期値 V 0にま で低下する事になる。
次に、 同図 (b ) は、 前記 (a ) とは前記押圧力 Pを U字状に変化さ せた点で相違し、 設定された低圧 P 4より低い圧力に時間 t 18から t 19 の間で保持されている。 次に同図 (c ) は、 押圧力を 犬に変化させ た点は前記 (a ) と同一であが、 時間 t 20において所定の低圧 P 4に達 し、 直ちに P 1に向けて昇圧される様になつている。 即ち、 この場合に は、 所定の低圧 P 4以下の圧力における保持時間はないが、 この方式で も格別問題はない。 但し、 この場合には、 第 1図の押圧力を変化させる 操作や、 前記 (a ) , ( b ) の押圧力を変化させる操作に比べて電解質 膜の回復力が劣る傾向にあるので、 繰り返し周期を短くするか或いは設 定低圧 P 4の値を低く設定する等の考慮が必要である。
次に、 第 4図は、 上記第 1図の方法の他の実施例である。 装置運転中 における電解質膜の性能の低下が少ない期間内における適当な時間 t 21 に至ると、 前記電極の電解質膜に対する押圧力 Pを初期値 P 1から低圧 の P 4に低下させる点は、 前記第 1図の場合と同一である。 本例では、 時間 t 22までの所定期間 (T 2 ) 内に、該押圧力 Pの初期値 P 1への復 帰と低圧 P 4への変化とを、 パルス状に 1回〜複数回行うと共に、 この 操作を周期的に実施する様にしている。 これにより、 低圧時間 (A t ) の度に少しづつ電解質膜の' f生能回復がなされる事になる。 又、 この場合 のオゾン水の濃度 Xは、 押圧力の変化が微小時間 (A t ) 毎に繰り返さ れている間は、 減少と増加を繰り返しつつ少しづつ変化する。 時間 t 22 に達すると、 このパルス状の圧力の変化を中止して元の押圧力 P 1に復 帰させ、 運転を継続する。 更に、 所定時間 (T c ) 経過後の時間 t 23に 達すると、 同様のパルス状の押圧力の変化を時間 t 24まで行い、 再度元 の押圧力 P 1に復帰させて運転を継続する。 以後も同様の操作を繰り返 す。
又、 このパルス状の押圧力を変化させる場合の制御は、 第 2 1図に示 すタイマ一 8 7からの経過時間 tと前記 A tを記憶している言 値格納 部 8 9からの信号を第 3比較器 8 8 cに送信して比較演算し、 その結果 を前記△ t経過毎に前記第 3指令部 8 6 cに出力して該第 3指令部 8 6 cから押圧力 Pの変化 ¾ ^を押圧力制御装置 8 1に出力する事により行 う事が可能である。
この場合の押圧力の変化の繰り返し期間 ( T 2 ) 及び押圧力 Pを変化 させる操作の周期 (T c : t 21〜t 23の期間) は、 前述の場合と同様に 、 オゾン水の濃度 Xが許容下限値 X eに低下するまでの期間内であれば 任意である。 又、 上記押圧力 Pを変化させる操作によっても電解質膜の 性能回復が充分に行えなくなると、 オゾン水の濃度 Xが許容下限値 X e に達する事になるが、 このオゾン水の濃度 Xが許容下限値 X eに達した 後の処置については後述する。
次に、 第 5図は、 本発明の他の実施例を示す運転タイムチャートであ る。 オゾン水の濃度が、 所定の目標値 Xsとなる様に運転制御を行いつ つ運転を継続すると、 電流値 Aは次第に上昇し時間 t 31において装置に 許容された上限値 A eに達する。 その状態で更に運転を継続していると 、 オゾン水の濃度は次第に低下してくるので、 許容下限値 Xeと所定値 Xsとの間の適当な値 Xmを設定しておく。 この言^値 Xmが検出され ると (時間 t32) 、 前述の第 1図の場合と同様に電解質膜の押圧力を初 期値 P 1から低圧の P 4に変化させ、 この状態を時間 t 33までの所定期 間 (T 3 ) 保持した後、 再度初期値 P 1に復帰させる。 即ち、 第 1図, 第 3図, 第 4図の例は、 所定周期 (Tc) 毎に押圧力を変化させる操作 を行って電解質膜の再生を行うものであるが、 これに対し、 本実施例で は、 押圧力 Pを変化させる操作により電解質膜の再生を行う点では同一 であるが、 ォゾン水の濃度の低下を検出して押圧力 Pを変化させる操作 を開始する点で相違している。
この運転タイムチヤ一トを実現するためのフローチャートを第 6図に 示す。 第 6図において、 電流値 Aが装置の上限値 A eに達するまではォ ゾン水の濃度が所定の値 X sとなる様に制御される点は (S 1〜S 4 ) 、 第 2図の場合と同一である。 電流値 Aが上限値 A eに達した事が第 2 比較器 88 bにて検出されると (S 5, Ye s) 、 これ以後のオゾン水 の濃度は低下を開始するので、 オゾン水の濃度検出センサ 84にてォゾ ン水の濃度の低下状態を検出し続ける。 該オゾン水の濃度 Xが前記圧力 変化制御開始設定値 Xm以下に低下すると (S 7, Ye s) 、 第 2 ^ 部 88 bにて押圧力 Pを低圧の P 4への変更を指示する (S 8) 。 この 押圧力 Pを変化させる状態の経過時間 t ' が所定の時間 T 3を経過した か否かを第 3比較器にて判断し (S 8, S 9) 、 この経過時間 t' が t ' ≥T 3となると (S 1 0, Ye s) . 第 3比較器は、 その旨の信号を 第 2 旨令部 86 aに出力する。 そして、 第 2 旨令部 86 bは、 再度、 押 圧力 Pを初期値 P 1に設定する信号を押圧力制御装置 8 1に出力し (S 2へ移行) 、 装置の運転が継続される。
この方式においても、押圧力を変化させるパターンは、 第 3図に示し た如き V字状又は U字状等の他の形態でもよく、 又、 押圧力を変化させ る操作の期間 (T 3 ) 内において、 第 4図に示した方式と同様に圧力を 微小時間 Δ ΐ毎のパルス状に変化させる操作を複数回行う様にしてもよ い事はいうまでもない。 更に、 押圧力を変化させる操作の開始は、 本例 では、 オゾン水の濃度が X mに達した事を検出して行っている。 しかし 、 この押圧力を変化させる操作の開始は、 電流, 電圧或いは原水の供給 量 (オゾン水濃度が低下すると、 原水供給量を減少させて濃度の回復を 図る方式がある) を検出し、 その値が所定の値に達した時点で行うこと も可能である。
次に、 第 7図は、 本発明の他の実施例を示す運転タイムチャートであ る。 前記第 1図〜第 5図の方式と異なる点は、 電解質膜の押圧力 Pを変 化させる操作にある。 即ち、 第 1図, 第 3〜 5図の方式では、押圧力 P の変化は、 押圧力 Pを減少させる方向の変化である。 これに対して、 本 実施例では、押圧力 Pを上昇させる方向に変化させる場合の例を示して いる。 即ち、 第 7図において、 オゾン水の濃度を所定の値 X sに維持す る様に運転を行っていると、 電流値 Aが次第に増加してくる事は前述の 通りである。 該電流値 Aが装置の許容上限値 A eに至る前の適当な時期 ( t 41 ) に、 前記電極の電解質膜に対する押圧力を初期値 P 1から、 よ り高圧の P 6に昇圧し、 この状態を時間 t 42までの一定時間 (T 4 ) 保 持させて電解質膜の再生を行う。 この場合には、 両電極と電解質膜との 接触抵抗が小さくなるので、 電流値 Aは上限値の A eにまで上昇し、 電 圧は逆に低圧の V 1に低下し、 オゾン水濃度は、 短時間僅かながら上昇 する。 しかし、 一定時間 (T 4 ) が経過して前記押圧力を初期値 P 1に 戻すと、 電流値 A, 電圧値 V及びオゾン水濃度 Xは、 夫々初期値に戻る 。 この操作を所定周期で繰り返し行う事になる。
尚、 同図において、 時間 t 45の時点では、 第 1図の場合と同様に押圧 力 Pを初期値 P 1から低圧の P 4に低下させ、 この圧力を所定時間 (T 4 ) 保持した後、 時間 t 46で再度 P 1に昇圧させる方式を示している。 この様に、 押圧力を変化させる操作は、 初期圧 P 1から低圧 P 4に減少 させる方式と、 高圧の P 6に増加させる方式と、 これらを適宜組み合わ せた方式とがあり、 この選択は任意である。 又、 押圧力を変化させる操 作の具体的な方式も、 第 3図に示した様に種々のパターン或いは第 4図 に示したパルス状の圧力変化を与える等、 種々のバリエ一ションがあり 、 これらのパターンを単一或いは糸且合せで使用する事も可能である。 次に、 上記押圧力を変化させる操作を繰り返し行いつつ長期連続運転 を行った結果、 係る押圧力を変化させる操作での性能の回復が限界に達 した場合について説明する。
第 8図は、 第 1図に示した方式による押圧力を変化させる操作を繰り 返しつつ運転を継続した場合の運転タイムチャートである。 第 8図にお いて、 図中 (a ) の区間は、 通常の運転時の状態を示しており、 前述の 通り一定の周期で押圧力を初期値 P 1から低圧 P 4に減少させ、 その値 を一定時間 (T 1 ) 保持させた後、 初期値 P 1に復帰させる操作を繰り 返す状態を示している。 オゾン水の濃度 Xは常に目標値 X sに維持され ている。 ところがこの運転を長期間継続していると、 次第に電解質膜の 性能の回復能力が低下し、 図中 (b ) に示した様に、 電流値 Aは、 押圧 力を減少させる操作を行う時間 t 64に至るまでに装置の許容上限値 A e に達する様になる。 更に、 この状態が続くと、 図中 (c ) に示した様に 、 電流値は時間 t 65の時点で上限値 A eに達し、 この時点からオゾン水 の濃度も低下を開始し、 押圧力 Pを変化させる操作後も電解質膜の機能 回復は不十分となる。 従って電流値 Aは上限値 A eから低下せず、 この ためオゾン水の濃度の低下傾向は続き、遂に時間 166の時点でオゾン水 の濃度は下限値 Xeに達する。 これ以上の押圧力 Pを変化させる操作に よる電解質膜の再生操作の継続は無意味となる。
本発明では、 この時点で取るべき方策として 3つの方策がある。 第一 の方策は装置の運転を停止し、 装置を分解して電解質膜の交換を行う方 策であり、 第二の方策は、 前記特開平 1 1— 1 7 24 8 2号に示された 方式、 即ち、 装置の運転を停止して電解質膜を休止させて膜機能の回復 を待つ方策であり、 第三の方策は、 PCT/J P 9 8/5 5 76号に示 した様に、 電解質膜への押圧力を高めて膜の活性化を行う方策である。 ここで、 第一の方策は、 電解質膜の交換であるので、 詳細説明は省略し 、 第二及び第三の方策について説明する。
先ず、 第二の方策について第 9図を用いて説明する。 S 1〜S 6は、 第 6図の場合と同様であるので説明を省略する。 第 8図の (b) の状態 では (S 5 ) 、 電流値 Aは、押圧力の変化周期の途中で上限値に達して いる (A = Ae) ので (S 5, Ye s) . この場合には、 第 2比較器 8 8 bから第 1比較器 8 8 aに判断が移行し、 ここでオゾン水の濃度 Xが 下限値 Xeに達していないかどうか判断される (S 7) 。 そして、 電流 値 Aは上限値 A eには達しているが、 オゾン水の濃度 Xが未だ下限値 X eに達していなければ (S 7, Ye s ) 、 第 3比較器 8 8 cで押圧力 P の変化の繰り返し周期 Tcに達しているか否かを判断する (S 8) 。 S 8において、 t≥Tcになると (S 8, Ye s) 、 第 2図に示す S 7と 同様に押圧力 Pを低圧の P 4に変更し (S 9 ) 、 第 2図に示す S 8と同 様にタイマー 8 7で押圧力 Pの変化の開始後の経過時間 t' の計測を開 始する (S 1 0) 。 そして第 2図に示す S 9と同様に、 この状態を予め 言^されている所定時間 (T 1 ) の間これを保持し (S 1 1 ) 、 t' ≥ T 1に達すると ( S 1 1 , Y e s ) 、 再度、 押圧力 Pを初期値 P 1に復 帰させて運転を継続する (S 2へ移行) 。
次に、 第 8図の (c ) の状態に至ると (S 5) 、 電流値 Aは上限値 A eに達した後、 オゾン水の濃度 Xは次第に低下していく。 そして、 ォゾ ン水の濃度 Xが下限値 Xeを下回る事になると (S 7, No) 、 第 1比 較器 86 aからの信号は第 3指令部 86 cに送られる。 ここでは、 電源 は〇FFとなし、 原料水の供給も停止し (第 8図の dの区間) 、 前記第 20図に示した如く、 陽極電極 3及び陰極電極 4を電解質膜 5から離反 させて装置の運転を停止する (S 1 2) 。 この停止工程は、 前述の特開 平 1 1— 1 7 2 4 8 2号公報に記載されている方式に則り、 電解質膜 5 を休止させて該電解質膜 5の膜機能の回復を行う膜再生工程に相当する 。 この運転を停止する回数 Nを停止回 mi十数部 9 0で計数しておき (S 1 3) 、 所定の回数 Neに達しているか否かを第 4比較器 8 8 dで判別 する。 所定の回数 N eに達していない場合には (S 1 4 , No) 、 停止 時間 tが所定の停止期間 T rを経過するまで第 3比較器 88 cで比較演 算を続ける (S 1 6 , No) 。 所定の停止期間 T rが経過すると (S 1 6, Ye s) 、 その旨を伝える信号が第 3指令部 86 cに送信されて装 置の運転が開始される (第 8図の eの区間, S 1へ移行) 。
上記の装置停止期間 T rでは、 電解質膜の押圧力は完全に解放された 状態であり、 この間に押圧力により該電解質膜に蓄積した不純物等を放 出して膜の再生を行うものであるので、 この期間 Trは、 少なくとも 3 0分以上、 好ましくは 3〜 1 2時間程度が必要である。 この休止期間中 に電解質膜の膜機能の再生が完了すると、 第 8図の区間 (e) に示した 通り、 時間 t 67から電解質膜を初期値 P 1で両電極によって再度押圧し 、 通水, 通電を再開する。 初期設定の通りの運転条件で運転の再開を行 うと、 前述の第 1図の場合と同様に、 電流値 Aは初期値 AOからス夕一 トし、 オゾン水の濃度 Xは速やかに所定の値 X sとなる。 以後は、 第 1 図に示した通りの押圧力を変化させる操作を繰り返しながら運転を継続 する。 そして、 電解質膜が再びその性能の低下を起こして所定のオゾン 水の濃度が得られなくなると、 上述の通り再度運転の停止と電解質膜に 対する押圧力の開放による膜機能の回復操作を行う事になる。 以後も同 様であり、 係る操作を繰り返し行うと最終的には膜機能の回復が望めな くなる。 そこで、前記停止回数計数部 9 0にて計数したそれまでの停止 回数 (装置の運転停止による電解質膜の再生回数) Nが所定の回数 N e に至ると (S 1 4 , Y e s ) . これを第 4比較器 8 8 dで判別し、 従来 通り電解質膜の交換を行い (S 1 7 ) 、 前記停止した回数 Nをゼロ (N = 0 ) にリセッ 卜する事になる (S 1 8 ) 。
次に、 上記第三の方策について第 1 0図により説明する。 第 1 0図も 前記第 1図の押圧力を変化させる操作を行って運転を行う場合の例であ る。 図中 (c ) の区間は、 前記第 8図の区間 (c ) と同一であって、押 圧力を変化させる操作を行っても膜機能が回復せず、 時間 t 66において 、 オゾン水の濃度 Xが下限値 X eに達している。 この第三の方式では、 このオゾン水の濃度 Xが下限値 X eに達すると、 これを検知して押圧力 Pを初期値 P 1から、 より高圧の P 7に上昇させて、 新たな押圧条件で の運転に移行する (区間 f ) 。 この押圧力 Pの上昇により、 両電極と電 解質膜との接触面積が大きくなり、 接触抵抗は小さくなると共に膜の機 能面積が増大して膜能力が増大する事になる。 この結果、次第にオゾン 水の濃度 Xも回復して所定の値 X sに戻り、 一方電流値 Aも次第に元の 値 A Oに戻ってくる。 以後は、 第 1図の場合と同様に、 時間 t 71の時点 で押圧力 Pを所定値 P 7から低圧値 P 4に低下させ、 この低圧値に時間 T 1保持させた後、 時間 t 72で再度押圧力を所定の値 P 7に復帰させる 操作を周期的に繰り返す事になる。 この押圧力 P 7の条件での運転が継続され、 区間 (g ) に示している 様に、 膜機能の低下が押圧力 Pを変化させる操作では充分に回復できず 、 オゾン水の濃度 Xが下限値 X eに至ると (期間 t 75) 、 これを検知し て前記押圧力 Pを P 7から更に高い P 8に再設定する。 押圧力が P 7か ら更に高い P 8に再設定されると、 それ以後は前記 ( f ) の区間で説明 したと同様に、 膜機能が回復して所定濃度のオゾン水の製造が継続され る。 以後も同様に、 押圧力が所定の最高値に達するまで順次同様の操作 が継続される。
押圧力が設定された最高値に達した後のォゾン水の濃度の低下に対し ては、 前述の第 8図に示した様に装置の運転を停止し、 両電極を電解質 膜から離反させて膜に蓄積したストレスを開放して膜の再生処理を施す 。 その後、 押圧力 P 1の条件で運転を再開するか電解質膜の交換を行う 事になる。
以上の説明では、 第 1図の押圧力を変化させる操作のパターンを例に して説明したが、 この押圧力を変化させる操作のパターンは、 前述の第 3図〜第 5図, 第 7図に示した如きパターンであってもよい事は言うま でもない。
以上の通り、 本発明は、 電解質膜に対する電極の押圧力 Pを変化させ 且つその変化後の状態を所定時間保持させる事により、 電解質膜の再生 を行うものであるが、 その原理は明確ではない。 しかし、 次の仮説が考 えられる。 第一の仮説は、 電解質膜内に時間の経過と共に蓄積して膜性 能を劣化させたイオン及びイオンクラスタ (イオンの集合体) を、 押圧 力の変ィヒによつて状態破壊を生じさせ、 これによつて膜機能の回復が図 られるとの考えである。 即ち、 この考えでは、 電解質膜内で固定電荷と イオンが作るイオン対は電気的双極子として働くが、 正電荷に比べ負電 荷の分布幅が大きくなり、 イオンクラスタ表面に有効な双極子層が形成 される。 正電荷に比べ負電荷の分布幅が大きくなるのは、 高分子鎖の配 置エネルギーにより負の固定電荷間に非対象な力が作用するためである
。 イオンがクラスタ間をホッピングにより移る際には、 前記双極子層が 作るポテンシャル障壁を越さねばならない。 このポテンシャル障壁はク ラスタの大きさや数と共に大きくなり、 一方電解質膜内のイオンクラス 夕の数や大きさは時間の経過と共に大きくなる。 このため、 時間の経過 と共にイオンの透過障壁が大きくなるものと考える。 特に、 オゾン水製 造に使用する水道水や井戸水には多くの不純物が含有されているので、 これを電気分解すると様々なポテンシャルのイオンが膜内を透過する事 になる。 透過し易いイオンや透過し難いイオンが、 同時に電解質膜に作 用する結果、 全体から見ると膜内にイオンクラスタが蓄積され、 時間の 経過と共に次第に透過可能領域が狭まるものと考えられる。 この状態の 膜に対し、 押圧力の変化による物理的ショックを与える事によって、 ィ オンクラスタの平衡状態が破壊される結果、 膜機能が復活するものと考 えられる。
一方、 第二の仮説は、 分極作用によるイオンの透過抵抗の増大した電 解質膜に押圧力の変化を与える事によって分極状態の解消を図るとの考 えである。 即ち、 この考えでは、 水の電気分解を行うと陰極側に水素ィ オンが透過してくるが、 水素イオンは難溶性であるためイオンが結合し て水素分子を生成し、 気体状態となる。 水素イオンが透過してくる部位 は極めて小さいため、 生成した気体も極めて微細な気泡となる。 この微 細な気泡の水素が膜と電極との接触部に付着してあたかも水素膜を形成 した如き状態が生成するものと考えられる。 この現象は電池の分野で分 極作用と称せられている現象に類似するものである。 この水素の微細な 気泡は水流等の物理的衝撃では剥離困難であるので、 次第に抵抗が大き くなり、 膜性能が低下する事になる。 この状態を、 押圧力を変化させる 操作により、 水素の微細な気泡が除去されて膜性能が回復するものと考 えられる。
尚、 この押圧力を変化させる操作は、減圧方向への押圧力の変化の方 が好ましい事が確認されている。 本発明者等による実験の結果では、押 圧力を増加させる方向に変化させる場合に比べて押圧力を減少させる方 向への変化の方が、 変化後の保持時間が短時間で電解質膜の機能回復が 認められているためである。
又、 本発明者らは、 第 1図の如き押圧力を変化させる操作を運転中に 繰り返す事により、 従来は不可能とされていた 1月以上の長期連続運転 の実現に成功している。 この事実は、 運転と停止が繰り返され、 実質稼 働率は約 5 0 %と言われていた電解式オゾン水製造装置の稼働率を、 事 実上 1 0 0 %に近い理想的な稼働率にまで高める事ができた事を意味し 、 オゾン水の原単位を半減させる画期的な方法と言える。
次に、 本発明の第二の方式について説明する。 前 i己第一の方式は、 電 解質膜に対する電極の押圧力を変化させる事により膜機能の再生を行う 方式である。 これに対して、 第二の方式は、 押圧力の変化に代えて電流 値或いは電圧値を変化させる操作を行うものである。
第 1 1図は、 この第二の方式を示す運転タイムチャートである。 ォゾ ン水の濃度 Xが所定の目標値 X sに維持される様に電流制御して装置の 運転を行うと、 前述の通り電流値 Aは次第に上昇する。 そこで、 電流値 Aが装置の許容上限値 A eに至る前の適当な時期 (時間 t 51 ) に、 電流 値 Aを、 前記許容最大値 A eと低電流値 A 2との間で大小にパルス状に 変化させる操作を、 時間 t 52までの所定時間 (T 5 ) 行うものである。 この場合、 電圧 Vは、 電流 Aの変化に応じて電流 Aの変化とは逆に低電 圧値 V 2と装置の許容最高電圧値 V eとの間でパルス状に変化する。 一 方、 オゾン水の濃度 Xは僅かな変化が生じるのみで、 大きな変化は生じ ない。 このパルス状の電流変化は、 所定時間 (T 5 ) 内で複数回繰り返 され、 その最大値 A e及び最小値 A 2は、 夫々微小時間 (A t ) 保持さ れる。
この方式においては、 前記電解質膜 5は、 所定の押圧力 P 1で押圧さ れ続ける事により、 前述の通り膜内に蓄積した各種ィォン又はィオンク ラスタ或いは膜と電極の間に形成された水素の微細な気泡が、 電気ショ ックにより崩壊して膜機能が回復するものと推定される。
尚、 電流を変化させる操作には、 第 1 1図に示した方式、 即ち所定時 間 T 5内にパルス状に電流の変化を行う方式と、 電流値を小電流値に変 化させてその状態を一定時間保持させ、 続いて大電流値に変化させて、 その ^犬態を一定時間保持させる方式、 又は、 この逆に、 電流値を大電流 値に変化させてその状態を一定時間保持させ、 続いて小電流値に変化さ せて、 その状態を一定時間保持させる方式とがある。 前記電流を変化さ せる操作については、 これらのうち、 いずれの方式を採用するかは任意 である。 又、 波形の変化についても、 前記押圧力を変化させる操作の例 である第 1図, 第 3〜 5図, 第 7図に示した如きパターン等の波形があ り、 その選択は任意である。
又、 上記説明は、 電流値を操作して変化させた場合の説明であるが、 電圧側を操作してこれを変化させても結果は同様である事はいうまでも ない。
又、 この第二の方式においても、 電解質膜 5に対する電極の押圧力 P を変化させる方式と併用する事も可能である。 第 1 1図の方式において 、 電流を変化させる操作の期間 T 5に押圧力 Pを初期値 P 1から低圧の P 4に変化させると、 前述の第一の方式の実施例である第 1図の方式と 同様のタイムチヤ一トとなる。
又、 この第二の方式においても、 電流 A又は電圧 Vの高低変化による 電解質膜 5の再生が限界に達すると、 以下に示す種々の方式を採用でき ることはいうまでもない。 即ち、
(1)装置を停止して電解質膜を交換する方式
(2湔記第 8図において説明した方式、 即ち、 装置を停止して電解質膜に 対する電極 3, 4の押圧力 Pを開放して膜の再生を図った後に運転を再 開する方式
(3)第 1 0図において説明した方式、 即ち、 電解質膜の機能が低下する度 に該電解質膜に対する押圧力 Pを段階的に上昇させて膜機能の活性化を 図る方式
等の採用が可能である。
以上説明した通り、 第一の方式において使用するオゾン水製造装置は 、 電解質膜 5に対して陽極電極 3或いは陰極電極 4或いはその両方が進 退可能に構成されている事が必須である。 第一の方式において使用する オゾン水製造装置の例として第 2 1図の装置を例示しているが、 本発明 で使用する装置は、 これに限定されるものではない。 従って、 電極が進 退する機構を備えた他の任意のォゾン 7K製造装置も使用できる。 以下、 電極が進退する機構を備えたオゾン水製造装置の他の実施例について説 明する。
第 1 2図は、 電極が進退する機構を備えたオゾン水製造装置の他の例 を示す要部断面図である。 電解質膜 5力 オゾンに対して耐蝕性を有す る陽極側ケーシング 1と陰極側ケ一シング 2との間に配置され、 陽極側 ケ一シング 1と陰極側ケ一シング 2が陽極室 6と陰極室 7とに画成され る。 前記電解質膜 5の陽極室 6側の面には、 オゾンを生成させる触媒機 能を有する貴金属 1 6を備えた陽極電極 3が押圧されて接触している。 又、 該電解質膜 5の他方の陰極室 7側の面には、 貴金属 2 0の接触面を 有する陰極電極 4が押圧されて接触している。 該陽極室 6と陰極室 7の 夫々には、 原料水の流入口 8, 9と流出口 1 0, 1 1が形成され、 両電 極 3 , 4間には直流電源 2 4と通電部材 3 5 , 3 6とによって、 直流電 圧が印加される。 又、 陽極電極 3の電極プレート 1 8の背面と陽極側ケ 一シング 1の間には伸縮自在なゴム膜 3 1が配置され、 陽極室 6が気密 に構成されている。 一方、 陰極電極 4の背面と陰極側ケ一シング 2の間 にも、 伸縮自在なゴム膜 3 2が配置され、 陰 7も気密に構成されて いる。 これら陽 6及び陰極室 7には、 貫通孔 3 3 , 3 4に接続され た配管 3 7, 3 8によって圧力供給源 4 1からの空圧或いは水圧が供給 可能になっている。
圧力供給源 4 1からの空圧或いは水圧が、 切替弁 3 9及び配管 3 7を 介して陽極室 6に供給され、 陰極室 7には配管 3 8を経て空圧或いは水 圧が供給されると陽極電極 3及び陰極電極 4は夫々空圧或いは水圧の圧 力で前記電解質膜 5に向かって前進し、 該電解質膜 5を両面から押圧す る。 この電解質膜 5に対する両電極 3 , 4の押圧力を下げる場合には、 前記切替弁 3 9を操作してベント管 4 0と配管 3 7, 3 8を連通させ、 陽極室 6内及び陰極室 7内の空圧或いは水圧を前記ベント管 4 0から放 出させる事により両室 6 , 7内の圧力を低下させて前記押圧力を低下さ せる。 尚、 第 2 1図の装置と同一部品は同一符号を付して詳細説明を省 略する。
次に、 第 1 3図は、 本発明で使用する電極が進退する機構を備えたォ ゾン水製造装置の他の例を示す要部断面図である。 前記第 1 2図に示す 装置は空気圧縮機を用いた例であるが、 この第 1 3図に示すオゾン水製 造装置は、 原料水を利用した水圧機を用いた場合の例である。 この第 1 3図に示すオゾン水製造装置は、 第 1 2図に示す圧力供給源 4 1に代え て水圧機 5 1を用いている以外は基本的には第 1 2図に示す装置と同一 であるので、 同一構成は同一符号を付して重複説明は省略する。 第 1 3図に示す水圧機 5 1において、 大径ビストン 5 2のシリンダ室 5 3の正圧側には原料水配管から分岐された配管 5 5が接続され、 該配 管には電磁弁 5 4が配置されている。 一方、 背圧側には、 同様に電磁弁 5 6を配した配管 5 7が原料水配管から分岐されている。 又、 前記電磁 弁 5 4 , 5 6と水圧機 5 1 との間に電磁弁 5 8 , 5 9を介して排水路 6 0に通じる排水管 6 1が設けられている。 更に、 小径ビストン 6 2のシ リンダ室 6 3の正圧側には、 陽極室 6及び陰 7の貫通孔 3 3 , 3 4 とを連通する配管 6 5 a , 6 5 b力 逆止弁 6 4を介して接続されると 共に、 該逆止弁 6 4のバイパス回路 6 7には電磁弁 6 6が配置されてい る。
次に、 この装置の運転について説明する。 先ず、 電磁弁 5 4 , 5 9を 開き、 電磁弁 5 6 , 5 8, 6 6を閉じた状態で原料水の供給を行うと、 電磁弁 5 4及び配管 5 5を経て、 前記水圧機 5 1の大径ビストン 5 2の 正圧側に原料水が供給される。 そして、 大径シリンダ室 5 3の背圧側の 水を電磁弁 5 9及び配管 6 1を経て排水しつつ、 大径ピストン 5 2が前 進し、 小径シリンダ室 6 3内の圧力媒体 (好ましくは水) を増圧して逆 止弁 6 4を経て配管 6 5 a , 6 5 b力、ら前記陽極室 6及び陰 7内に 供給される。 両電極は、 背圧によって前進し、 電解質膜 5を両面から押 圧する。 この押圧力は電磁弁 5 4の開度調整により行われる。 この状態 で、 原料水は、 原料水の流入口 8 , 9よりラス網 1 7 , 2 1で構成され た流水路を経て流出口 1 0, 1 1から装置外に排出されている。 そこで 、 直流電源 2 4から両電極 3 , 4に通電すると、 水の電解によって陽極 側にオゾン水が生成し、 流出口 1 0からオゾン水が流出する。 所定時間 が経過すると、 電磁弁 5 4を閉じ、 電磁弁 5 8を開くと、 原料水による 大径シリンダ室 5 3への水圧が開放される。 該大径室シリンダ室 5 3は 配管 5 5 , 電磁弁 5 8を介して排水路 6 0に開放される結果、 小径シリ ンダ室 6 3の圧力も開放されて、 陽極室 6及び陰 7に作用する圧力 も低下して、 陽極電極 3及び陰極電極 4による電解質膜 5への押圧力も 低下する。 この状態で一定時間経過後、 前記電磁弁 5 4を開き、 電磁弁 5 8を閉じると、 前述の通り、 再度電解質膜 5は両電極 3, 4により押 圧される。 この電磁弁の操作を所要回繰り返す事によって、 前述の押圧 力を変化させる操作が行われる。
尚、 本発明においては、 前記両電極の進退機構は如何なる形式, 構造 のものでも良く上述の例示したものに限定されるものではない事はいう までもない。 又、 電極の形状, 構造も、 図示のものに限定されるもので はない。 例えば、 第 1 4図に示した如く、 陽極電極 3の幅を陰極電極 4 の幅よりも小さくすると共に、 それに合わせて陽 g¾ 6の幅を陰極室 7 の幅よりも狭く形成することによって、 陽極電極 3側の電流密度を陰極 電極 4よりも高め、 オゾン水の生成効率を高める事も可能である。 又、 第 2 4図に示す様に、 陽極電極 3のみ進退可能にした構造や、 第 2 5図に示す様に、 陰極電極 4のみ進退可能にした構造でもよい。 尚、 第 1 4図, 第 2 4図, 第 2 5図において、 上述の装置と同一構成につい は同一符号を付して詳細説明は省略する。
以上説明した如く、 本発明で使用する装置の構造は、 電極が電解質膜 に対して進退自在に構成され、 これにより電極の電解質膜に対する押圧 力を調整自在となっておれば、 如何なる形^!犬構造であってもよい。 従つ て、 本発明は上記実施例に示した装置を用いるものに限定されるもので はない。
又、 本発明による電解質膜の再生方法は、 燃料電池の電解質膜の再生 方法として適用できる事は明らかである。 これは、 本発明で使用する上 記電解式ォゾン水製造装置の構成は、 燃料電池の構成と基本的に同一で めるからである。 (実施例)
以下に本発明の具体的な実施例について説明する。 第 1 2図に示した 如く空圧或いは水圧によつて陽極電極と陰極電極とを電解質膜に対して 押圧可能な構成とした電解式ォゾン水製造装置を用いてォゾン水の連続 製造試験を行った。 尚、 試験に用いた電解質膜は、 パ一フロロカーボン 陽イオン交換膜であり、 陽極電極と陰極電極は、 共に 1 5 O cm2 の平板 電極である。 電解質膜との接触面にはォゾンを生成させる触媒機能を有 する白金金網が装着され、 その背面にはチタン製のラス網が配置されて いる。 原料水は該ラス網部を流通する。 装置の運転条件は、 第 1図に示 した方式により次の運転条件で運転した。
〔運転条件〕
①設定された目標オゾン水濃度: 1 O p p m ( m g / ^ )
②電解質膜への押圧力の初期値: P 1 = 4 kgf/cra2
③電解質膜への押圧力の低圧値: P 4 = 0 kgf/cmz
讀圧力を変化させる操作の周期: T c = 1 5分
⑤低圧の押圧力を保持する時間: T 1 = 2秒
⑥オゾン水の流量:約 8 /分
この運転過程において、 電流値 A , オゾン水の濃度 X , 電圧値 V及び オゾン水の流量 Qを測定し、 その結果を第 1 5図に示す。
同図から明らかな様に、 1 5分周期で押圧力を 4 kgf /cm2 から 0に変 化させ、 その状態を 2秒間保持しても、 オゾン水の濃度には殆ど変化が なく、 通常のバラツキの範囲におさまつている事がわかる。 しかも、 運 転初期の装置の立ち上げの時点以外は、 電流 A, 電圧 V , オゾン水の濃 度 X , ォゾン水の流量 Qのどれをとつても殆ど全ての値が略一定の値を 示しており、 安定した運転が行われている事が分かる。
因みに、 同図において、 電流, 電圧, 流量, オゾン水の濃度の各値に 微小なバラツキが認められるが、 この理由は、 オゾン水生成装置を一般 事務所建屋内の一角に設置し、 原料水を水道の蛇口から取つた事による 。 即ち、 事務所内における水道水の使用状況の変化の影響を受けて原料 水供給量 (オゾン水流量) が変化したため、 この変動に応じてオゾン水 の濃度を一定に保つ様に、 電流, 電圧等が変化するからである。 従って 、 流量が一定になる様な制御を行えば、 この微小なバラツキは解消でき る事はいうまでもない。 又、 この試験運転では、 前述の第 8図に示した 如き膜劣化による運転休止を行う事なく、 昼夜連続して 1月間の連続運 転を行った力、 その安定性には全く変化が認められなかった。 1月経過 ί¾1転を停止したが、 更に引き続き連続運転が可能な事は、 この試験結 果からも明らかである。
(比較例)
上記実施例に用いた同一装置にて、 押圧力を変化させる操作を施す以 外は上記実施例と同一条件で第 2 2図に示した方式により従来法で運転 を行った。 その結果を第 1 6図に示す。 同図から明らかな様に、 運転開 始後約 3時間経過して時点から電流値の上昇が現れ、 約 5時間経過した 時点で電流値 Αは装置の上限値 1 8 O A近傍に達している。 この時点で は未だオゾン水の濃度は所定の 1 0 p p mを維持しているので、 更なる 運転の継続は可能であった。 しかし、 間もなく上限値に達すると判断さ れたので、 一旦装置の運転を停止し、 陽極電極及び陰極電極を電解質膜 から離反させて 1時間 1 0分程度、 その状態で放置し、 電解質膜の機能 回復 (再生) を行った。 その後、 再度所期の運転条件で運転を再開した ところ、 同様に約 5時間経過して時点で電流値が装置の上限値近傍に達 している。 因みに同図において、 1 2時 2 0分頃から 1 3時 1 0分頃に かけて電流, 電圧, 流量の全てが急激な低下を示している (オゾン水濃 度は略一定) 。 これは前述の通り、 原料水を事務所建屋に付随した水道 の蛇口から取っている関係上、 昼休みの水道水の使用増加に伴い、 本装 置への給水量が低下したため, オゾン水の濃度を一定に保つように電流 , 電圧が下がるからである。 従って、 流量を一定化させる制御を行えば 、 係る低下現象が解消する事は前述の通りである。
上記本発明の実施例と従来法による比較例との対比から明らかな様に
、 本発明では 1月以上の連続運転が可能であるのに対し、 従来法 (本発 明者等による改善前の方法) では 6時間に 1時間の割合で運転休止期間 が必要である。 この例からも本発明の方法は、 真の意味での長期連続運 転を可能とする方法である事が理解されよう。 因みに電解質膜の寿命は 原料水の水質に依存する面もあり、 第 1 6図に示した例からも明らかな 様に、 5時間程度で膜劣化が生じるオゾン水製造にとつては比較的性状 の悪い水 (ミネラル分を比較的多く含む神戸のおいしい水) であるにも 拘らず、 本発明の方法によると、 1月以上の連続運転が可能になってい る事実は、 何にも増して特筆に値すると言わざるを得ない。
以上説明した如く、 本発明の第一の方式に係るオゾン水製造方法によ れば、 電解質膜を電極によつて押圧した状態で水の電解を行つてォゾン 水を製造しつつ、 その製造を停止する事なく該電解質膜に対する電極の 押圧力を変化させる操作を適宜実施する事により、 劣化過程に或る電解 質膜の再生を行うものである。 又、 第二の方式によると、 オゾン水を製 造しつつ電流値又は電圧値を急、速に高低に変化させる事によって、 劣化 過程にある電解質膜の再生を行うものである。 このため、 いずれの方式 においても、 従来不可能とされ、 当業者にとって念願とも言える電解式 ォゾン水製造装置の長期連続運転が可能となる。
特に、 実施例からも明らかな様に、 1月以上 (何時まで連続運転可能 かは未試験) の安定した連続運転が可能となり、 当業者の念願ともいえ る無休止連,^!転を可能にした事は、 筆舌に尽くし難い効果と言っても 過言ではない。
更に、 上記電解質膜に対する押圧力を変化させる操作或し、は電流又は 電圧を強制的に変化させる操作によっても、 電解質膜の再生が限界に達 すると、 一旦装置を止めて電極を電解質膜から離反させる事により電解 質膜の再生を行った後に再度運転を再開させる様にすれば、 電解質膜の 寿命を飛躍的に延ばす事が可能となり、 どれだけ膜寿命が延びるかは想 像すら付かない。
又、 上記電解質膜に対する押圧力を変化させる操作或 L、は電流又は電 圧を強制的に変化させる操作によって電解質膜の再生が限界に達した後 は、 予め設定されている高い押圧力に変化させてオゾン水の製造を継続 する方法を採用すれば、 オゾン水製造の連続運転時間を、 従来法とは比 較にならなレ、程、 飛躍的に延ばす事が可能となる。
この結果、 オゾン水の単価も大幅に低減させる事が可能となる。 電解 オゾン水製造装置の稼働率が、 従来の 5 0 %禾1^から 1 0 0 %に近い驚 異的な稼働率が可能となるためである。 更に、 高価な電解質膜の寿命も 飛躍的に向上させる事が可能となるので、 この面からも装置の運転コス トの低減が可能となり、 ォゾン水生産コストを著しく低減させる事が可 育 έとなる。
又、 ユーザ一にとつても扱い易い設備となり、 オゾン水製造装置の一 層の普及が可能となる。 装置の長期連続運転が可能となる結果、 電解質 膜の交換等の装置メンテナンス費用も低減し、 オゾン生産コストの低減 のみならず、 メンテナンスの煩雑さから解放されるためである。
以上の如く、 オゾン水の製造原価が安くなり、 且つオゾン水製造装置 が、 設備に素人のユーザ一であっても扱い易くなる結果、 オゾン水によ る殺菌や洗浄その他のオゾン水の用途が飛躍的に高まり、 国民の環境衛 生面からも大きな向上効果が期待され、 その社会的波及効果は図り知れ ないものがある。
産業上の利用可能性
以上詳述した通り、 本発明に係る電解式オゾン水製造方法及びその装 置は、 長時間連続運転が可能となるので、 オゾン水による各種洗浄, 殺 菌の分野で極めて有用である。 又、 固体高分子電解質膜の再生方法は、 固体高分子電解質膜を用し、るあらゆる分野の装置に適用可能な技術であ り、 特に、 上記電解式オゾン水製造装置の連続運転には極めて有用な技 である。

Claims

請 求 の 範 囲
1. 固体高分子電解質膜 ( 5 ) の片面にオゾンを生成させる触媒機能 を備えた陽極電極 ( 3 ) を、 該固体高分子電解質膜 ( 5 ) の他面に陰極 電極 ( 4 ) を、 それぞれ配置し、 両電極 (3, 4) の少なくとも一方或 いは両方を、 前記固体高分子電解質膜 (5) に対して進退可能とする進 退機構を設け、 両電極 (3, 4) を前記固体高分子電解質膜 ( 5 ) に押 圧した状態で、 該両電極 (3, 4) 間に直流電圧を印加し、 前記固体高 分子電解質膜 (5) の両面に水を流通させて該流通水の電気分解によつ て前記陽極電極 (3)側にオゾン水を製造する電解式オゾン水製造方法 であって、
前記陽極電極 ( 3 ) 又は陰極電極 ( 4 ) 或いはこれら両電極 (3, 4 ) の前記固体高分子電解質膜 (5) に対する押圧力を、 予め設定された 条件に従つて変化させた後に元の押圧力に復帰させる押圧力変化操作を 行う事により、 オゾン水製造を継続しつつ前記固体高分子電解質膜の再 生処理を行う事を特徴とする電解式ォゾン水製造方法
2. 前記押圧力変化操作は、 前記電極による該固体高分子電解質膜に 対する押圧力を、 減少或いは増加又はこれらの組合せにより変化させる ものである請求の範囲 1に記載の電解式オゾン水製造方法
3. 前記押圧力変化操作は、 予め設定された押圧力以下に減少された 状態又は予め設定された押圧力以上に昇圧された状態が所定時間以上継 続する様な圧力変化のパターンを有するものである請求の範囲 1又は 2 に記載の電解式オゾン水製造方法
4. 前記押圧力変化操作を、 所定の周期で繰り返す様にしてなる請求 の範囲 1乃至 3のいずれかに記載の電解式オゾン水製造方法
5. 前記オゾン水製造時における生成されたオゾン水の濃度 (X) , 両極間に流れる電流値 (A) . 前記両極間の電圧値 (V)或いは生成さ れたオゾン水量の少なくとも 1つを監視し、 オゾン水の濃度或いはその 製造能力が所定の値以下に低下した事を検知して前記固体高分子電解質 膜 ( 5 ) に対する押圧力変化操作を 1回以上行う様にしてなる請求の範 囲 1乃至 3のいずれかに記載の電解式オゾン水製造方法
6. 前記固体高分子電解質膜 ( 5 ) に対する押圧力変化操作による該 固体高分子電解質膜 (5) の再生が不充分な状態に至ると、 オゾン水の 製造を停止して、 前記両電極 (3, 4) の少なくとも一方、 或いは両方 を前記固体高分子電解質膜 (5) から離反させ、 この状態を所定時間保 持して該固体高分子電解質膜 (5) の再生を行った後、 再度所定の運転 条件でオゾン水の製造を再開する様にしてなる請求の範囲 1乃至 5のい ずれかに記載の電解式オゾン水製造方法
7. 前記固体高分子電解質膜 ( 5 ) に対する押圧力変化操作による該 固体高分子電解質膜 (5) の再生が不充分な状態に至ると、 該固体高分 子電解質膜 ( 5 ) に対する前記電極 (3, 4) の押圧力を予め設定され ている高い押圧力 (P 7, P 8) に変化させてオゾン水の製造を継続す る様にしてなる請求の範囲 1乃至 5のいずれかに記載の電解式オゾン水 製造方法
8. 固体高分子電解質膜 ( 5 ) の片面にオゾンを生成させる触媒機能 を備えた陽極電極 ( 3 ) を、 該固体高分子電解質膜 ( 5 ) の他面に陰極 電極 ( 4 ) を、 それぞれ配置し、 両電極(3, 4) を前記固体高分子電 解質膜 (5) に接触させた状態で該両電極間に直流電圧を印加し、 該固 体高分子電解質膜 (5) の両面に水を流通させて該流通水の電気分解に よって前記陽極電極 (3)側にオゾン水を生成させる電解式オゾン水製 造方法であって、
前記直流電源の電流値 (A)又は電圧値 (V) を、 予め設定された条 件に基づいて急速に変化させた後に元の値又はその近傍の値に復帰させ る電流又は電圧変化操作を行う事により、 オゾン水製造を継続しつつ前 記固体高分子電解質膜の再生処理を行う事を特徴とする電解式ォゾン水 製造方法
9 . 前記電流又は電圧変化操作は、 当該操作の開始時点の値から 0又 はその近傍の最小値と当該オゾン水製造装置の最大許容値との間で変化 させると共に、 前記最小値及び最大許容値の状態をそれぞれ所定時間保 持させた後に元の値又はその近傍の値に変化させるものである請求の範 囲 8に記載の電解式オゾン水製造方法
1 0 . 前記電流又は電圧変化操作を、 所定周期で繰り返す様にしてな る請求の範囲 8又は 9に記載の電解式オゾン水製造方法
1 1 . 前記オゾン水製造時における生成されたオゾン水の濃度 (X) , 両電極間に流れる電流値 (A) , 前記両極間の電圧値 (V ) 或いは生 成されたオゾン水量の少なくとも 1つを監視し、 オゾン水の^或いは その生成能力が所定の値以下に低下した事を検知して前記電流又は電圧 を変化させる操作を 1回以上行う様にしてなる請求の範囲 8又は 9に記 載の電解式ォゾン水製造方法
1 2 . 前記両電極 ( 3 , 4 ) の少なくとも一方或いは両方を前記固体 高分子電解質膜 ( 5 ) に押圧してオゾン水の製造を行うと共に、 前記電 流又は電圧の変化による該固体高分子電解質膜 ( 5 ) の再生が不充分な 状態に至ると、 オゾン水の製造を停止して前記両電極 ( 3 , 4 ) の少な くとも一方或いは両方を該固体高分子電解質膜 ( 5 ) から離反させ、 こ の状態を所定時間保持して該固体高分子電解質膜の再生を行った後、 再 度所定の運転条件でオゾン水の製造を再開する様にしてなる請求の範囲 8乃至 1 1のいずれかに記載の電解式オゾン水製造方法
1 3 . 前記両電極 (3 , 4 ) を前記固体高分子電解質膜 ( 5 ) に押圧 してオゾン水の製造を行うと共に、 前記電流又は電圧の変化による該固 体高分子電解質膜 ( 5 ) の再生が不充分な状態に至ると、 前記固体高分 子電解質膜 ( 5 ) に対する前記両電極 (3 , 4 ) の押圧力を予め設定さ れている高い押圧力 (P 7 , P 8 ) に変化させてオゾン水の製造を継続 する様にしてなる請求の範囲 8乃至 1 1のいずれかに記載の電解式ォゾ ン水製造方法
1 4. 固体高分子電解質膜 ( 5 ) の片面にオゾンを生成させる触媒機 能を備えた陽極電極 (3 ) を、 該固体高分子電解質膜 ( 5 ) の他面に陰 極電極 ( 4 ) を、 それぞれ配置し、 両電極 ( 3 , 4 ) の少なくとも一方 或いは両方を、 前記固体高分子電解質膜 ( 5 ) に対して進退可能とする 進退機構を設け、 両電極 ( 3 , 4 ) を前記固体高分子電解質膜 ( 5 ) に 押圧した状態で、 該両電極 ( 3 , 4 ) 間に直流電圧を印加し、 前記固体 高分子電解質膜 (5 ) の両面に水を流通させて該流通水の電気分解によ つて前記陽極電極 ( 3 ) 側にオゾン水を製造する電解式オゾン水製造装 置であって、
前記両電極 ( 3 , 4 ) の前記固体高分子電解質膜 ( 5 ) に対する押圧 力の初期値を設定す押圧力設定手段 (8 2 ) と、
生成された前記オゾン水濃度 (X) を検出するオゾン水濃度検出手段 ( 8 4 ) と、
該オゾン水濃度検出手段 ( 8 4 ) で検出されたオゾン水濃度 (X) を 予め設定された所定の値 (X s ) と比較する第 1比較手段 (8 8 a) と 該第 1比較手段 (8 8 a) からの比較信号に基づいて、 前記両電極 ( 3 , 4 ) 間に供給される電流値 (A) を前記オゾン水濃度 (X) が所定 の値 (X s ) に近付く様に設定する第 1指令手段 ( 8 6 a) と、 装置の運転中の経過時間 (t ) が予め設定された所定の値 (Tc) に 達した事を検知して、 或いは、 前記オゾン水の濃度 (X) が予め設定さ れた制御開始濃度 (Xm) に達した事を検知して、 前記固体高分子電解 質膜 ( 5) に対する前記両電極 ( 3, 4 ) の押圧力を、 予め言^された 値に変化させると共に、 所定時間経過後に前記押圧力を初期値に復帰さ せる第 2指令手段 (8 6 b) と、
を備えてなる事を特徴とする電解式ォゾン 7K製造装置
1 5. 固体高分子電解質膜 ( 5 ) の片面にオゾンを生成させる触媒機 能を備えた陽極電極 ( 3 ) を、 該固体高分子電解質膜 ( 5 ) の他面に陰 極電極 ( 4 ) を、 それぞれ配置し、 両電極 (3, 4 ) の少なくとも一方 或いは両方を、 前記固体高分子電解質膜 ( 5 ) に対して進退可能とする 進退機構を設け、 両電極 ( 3, 4 ) を前記固体高分子電解質膜 ( 5 ) に 押圧した状態で、 該両電極 ( 3 , 4 ) 間に直流電圧を印加し、 前記固体 高分子電解質膜 (5 ) の両面に水を流通させて該流通水の電気分解によ つて前記陽極電極 ( 3) 側にオゾン水を製造する電解式オゾン水製造装 ifi ό、あって、
前記両電極 ( 3, 4 ) の前記固体高分子電解質膜 ( 5 ) に対する押圧 力の初期値を設定する押圧力設定手段 (8 2 ) と、
生成された前記オゾン水濃度 (X) を検出するオゾン水濃度検出手段 (84 ) と、
該オゾン水濃度検出手段 (84 ) で検出されたオゾン水濃度 (X) を 予め言^された所定の値 (X s ) と比較する第 1比較手段 (88 a) と 該第 1比較手段 (8 8 a) からの比較信号に基づいて、 前記両電極 ( 3, 4 ) 間に供給される電流値 (A) を前記オゾン水濃度 (X) 力所定 の値 (Xs) に近付く様に設定する第 1指令手段 ( 8 6 a) と、 装置の運転中の経過時間 (t ) が予め設定された所定の値 (Tc) に 達した事を検知して、 或いはオゾン水濃度 (X) が予め言^された制御 開始濃度 (Xm) に達した事を検知して、 前記固体高分子電解質膜 (5 ) に対する前記両電極の押圧力を変化させると共に、 所定時間経過後に 前記押圧力を初期値に復帰させる第 1 手段 (86 b) と、
前記電流値 (A) が、 装置の所定の上限値 (Ae) に達した事を判定 する第 2比較手段 (8 8 b) と、
該第 2比較手段 (8 8 b) により前記電流値が所定の上限値 ( A e ) に達した事を検出し、 且つ前記オゾン水濃度 (X) が所定の下限値 (X e) に達した事を検知すると、 装置の運転を停止すると共に、前記両電 極( 3 , 4 ) の一方或いは両方による前記固体高分子電解質膜 ( 5 ) へ の押圧力を開放させて、 所定時間経過後に装置を再稼働させる第 3 手段 (86 c) と、
を備えてなる事を特徴とする電解式ォゾン水製造装置
1 6. 固体高分子電解質膜 ( 5 ) の片面にオゾンを生成させる触媒機 能を備えた陽極電極 ( 3) を、 該固体高分子電解質膜 ( 5) の他面に陰 極電極 ( 4 ) を、 それぞれ配置し、 両電極 ( 3, 4 ) の少なくとも一方 或いは両方を、 前記固体高分子電解質膜 ( 5 ) に対して 可能とする 腿機構を設け、 両電極 ( 3 , 4 ) を前記固体高分子電解質膜 ( 5 ) に 押圧した状態で、 該両電極 ( 3 , 4 ) 間に直流電圧を印加し、 前記固体 高分子電解質膜 (5 ) の両面に水を流通させて該流通水の電気分解によ つて前記陽極電極 ( 3 ) 側にオゾン水を製造する電解式オゾン水製造方 法において、 オゾン水製造中に性能の低下した前記固体高分子電解質膜 ( 5) の生能を再生するに当り、
前記陽極電極 ( 3 ) 又は陰極電極 ( 4 ) 或いはこれら両電極( 3 , 4 ) の前記固体高分子電解質膜 ( 5) に対する押圧力を、 予め設定された 条件に従って変化させた後に元の押圧力に復帰させる押圧力変化操作を 施す事により、 前記固体高分子電解質膜の性能を回復させる事を特徴と する電解ォゾン水製造装置における固体高分子電解質膜の再生方法
1 7 . 前記押圧力変化操作は、 予め設定された押圧力以下に減少され た状態又は予め言^された押圧力以上に昇圧された状態が所定時間以上 継続する様な圧力変化パターンを有するものである請求の範囲 1 6に記 載の固体高分子電解質膜の再生方法
1 8 . 固体高分子電解質膜 ( 5 ) の片面にオゾンを生成させる触媒機 能を備えた陽極電極 ( 3 ) を、 該固体高分子電解質膜 ( 5 ) の他面に陰 極電極 ( 4 ) を、 それぞれ配置し、 両電極 ( 3 , 4 ) を前記固体高分子 電解質膜 ( 5 ) に接触させた状態で該両電極間に直流電圧を印加し、 該 固体高分子電解質膜 ( 5 ) の両面に水を流通させて該流通水の電気分解 によって前記陽極電極 ( 3 ) 側にオゾン水を生成させるオゾン水製造方 法であって、 オゾン水製造中に性能の低下した前記固体高分子電解質膜
( 5 ) の性能を再生するに当り、
前記電流値 (A) 又は電圧値 ( V ) を、 予め設定された条件に基づい て急速に変化させた後に元の値又はその近傍の値に復帰させる電流又は 電圧変化操作を施す事によつて、 前記固体高分子電解質膜の性能を回復 させる事を特徴とする電解ォゾン水製造装置における固体高分子電解質 膜の再生方法
1 9 . 前記電流又は電圧変化操作は、 当該操作の開始時点の値から 0 又はその近傍の最小値と当該ォゾン水製造装置の最大許容値の間で変化 させると共に、 前記最小値及び最大許容値の状態を、 夫々所定時間保持 させた後に元の値又はその近傍の値に変化させるものである請求の範囲 1 8に記載の固体高分子電解質膜の再生方法
2 0 . 固体高分子電解質膜 ( 5 ) の両側に陽極電極 ( 3 ) と陰極電極 ( 4 ) とを配置し、 少なくとも一方の電極を前記固体高分子電解質膜 ( 5) に押圧した状態で電気化学反応を行わせつつ、 該反応過程で '注能の 低下した前記固体高分子電解質膜 (5) を再生する固体高分子電解質膜 の再生方法であって、
前記陽極電極 ( 3 ) 又は陰極電極 ( 4 ) 或いはこれら両電極 (3, 4 ) の前記固体高分子電解質膜 (5) に対する押圧条件を、 予め設定され た条件に従って変化させた後に元の押 件に復帰させる押圧力変化操 作を施す事により、 該固体高分子電解質膜の性能を回復させる事を特徴 とする固体高分子電解質膜の再生方法
2 1. 固体高分子電解質膜 ( 5 ) の両側に陽極電極 ( 3 ) と陰極電極 (4) とを配置し、 両電極を前記固体高分子電解質膜 (5) に接触させ て電気化学反応を行わせつつ、 該反応過程で性能の低下した前記固体高 分子電解質膜 (5) を再生する固体高分子電解質膜の再生方法であって 前記両電極 (3, 4) 間の電流値 (A)又は電圧値 (V) を、 予め設 定された条件に基づいて急速に変化させた後に元の値又はその近傍の値 に復帰させる電流又は電圧変化操作を施す事によって、 前記固体高分子 電解質膜の性能を回復させる事を特徴とする固体高分子電解質膜の再生 方法
PCT/JP2001/000779 2000-02-17 2001-02-02 Procede et dispositif de production d'eau ozonee par electrolyse et procede de regeneration de membrane d'electrolyte a polymere solide WO2001061074A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001559907A JP3680096B2 (ja) 2000-02-17 2001-02-02 電解式オゾン水製造方法及びその装置並びに固体高分子電解質膜の再生方法
EP01904320A EP1193329A4 (en) 2000-02-17 2001-02-02 ELECTROLYTIC OZONE WATER PRODUCTION PROCESS, CORRESPONDING PREPARATION APPARATUS AND REGENERATION METHOD OF SOLID POLYMER ELECTROLYT MEMBRANES
KR1020017013219A KR100744009B1 (ko) 2000-02-17 2001-02-02 전해식 오존수 제조방법 및 그 장치 및 고체고분자전해질막의 재생방법
AU32229/01A AU3222901A (en) 2000-02-17 2001-02-02 Electrolytic ozone water production method and device therefor and solid polymerelectrolyte membrane regenerating method
US09/926,344 US6787020B2 (en) 2000-02-17 2001-02-02 Electrolytic ozone water production method and device therefor and solid polymer electrolyte membrane regenerating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000045148 2000-02-17
JP2000-45148 2000-02-17

Publications (1)

Publication Number Publication Date
WO2001061074A1 true WO2001061074A1 (fr) 2001-08-23

Family

ID=18567782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000779 WO2001061074A1 (fr) 2000-02-17 2001-02-02 Procede et dispositif de production d'eau ozonee par electrolyse et procede de regeneration de membrane d'electrolyte a polymere solide

Country Status (6)

Country Link
US (1) US6787020B2 (ja)
EP (1) EP1193329A4 (ja)
JP (1) JP3680096B2 (ja)
KR (1) KR100744009B1 (ja)
AU (1) AU3222901A (ja)
WO (1) WO2001061074A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365026B1 (en) 2000-06-20 2002-04-02 Lynntech, Inc. Limited use components for an electrochemical device and method
US6860976B2 (en) 2000-06-20 2005-03-01 Lynntech International, Ltd. Electrochemical apparatus with retractable electrode
JP2010168608A (ja) * 2009-01-21 2010-08-05 Panasonic Corp 水素生成装置、並びにそれを用いた水素生成方法及びエネルギーシステム
WO2022191082A1 (ja) * 2021-03-08 2022-09-15 旭化成株式会社 運転支援装置、運転支援システム、運転支援方法および運転支援プログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437956A (en) * 2006-04-11 2007-11-14 Dyson Technology Ltd Production of hydrogen peroxide
DE102007042171A1 (de) * 2007-09-05 2009-03-12 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Elektrolysezelle mit hoher Stromkapazität zur Herstellung eines Ozon-Sauerstoffgemisches
TWI383130B (zh) * 2009-07-13 2013-01-21 Univ Nat Taiwan 電容式壓力感測器裝置及其製造方法
CN101988205A (zh) * 2010-10-23 2011-03-23 徐伟钧 一种保持电解式臭氧机开机瞬间提供高浓度臭氧的方法
US10648091B2 (en) 2016-05-03 2020-05-12 Opus 12 Inc. Reactor with advanced architecture for the electrochemical reaction of CO2, CO, and other chemical compounds
KR101940668B1 (ko) * 2017-05-24 2019-01-22 한국과학기술연구원 음이온 교환막 기반 수전해 셀의 활성화 방법
US11512403B2 (en) 2018-01-22 2022-11-29 Twelve Benefit Corporation System and method for carbon dioxide reactor control
CN113227457A (zh) 2018-11-28 2021-08-06 欧普斯12股份有限公司 电解装置及使用方法
US11417901B2 (en) 2018-12-18 2022-08-16 Twelve Benefit Corporation Electrolyzer and method of use
JP2023505051A (ja) 2019-11-25 2023-02-08 トゥエルブ ベネフィット コーポレーション COx還元用の膜電極接合体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186972U (ja) * 1986-05-19 1987-11-27
WO1999029929A1 (fr) * 1997-12-10 1999-06-17 Shinko Plant Construction Co., Ltd. Generateur d'eau ozonee et procede de production d'eau ozonee utilisant ce generateur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186972A (ja) 1986-02-10 1987-08-15 Daido Steel Co Ltd パイプ内面被覆層形成方法
US5989407A (en) * 1997-03-31 1999-11-23 Lynntech, Inc. Generation and delivery device for ozone gas and ozone dissolved in water
US6458257B1 (en) * 1999-02-09 2002-10-01 Lynntech International Ltd Microorganism control of point-of-use potable water sources

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186972U (ja) * 1986-05-19 1987-11-27
WO1999029929A1 (fr) * 1997-12-10 1999-06-17 Shinko Plant Construction Co., Ltd. Generateur d'eau ozonee et procede de production d'eau ozonee utilisant ce generateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1193329A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365026B1 (en) 2000-06-20 2002-04-02 Lynntech, Inc. Limited use components for an electrochemical device and method
US6733638B2 (en) 2000-06-20 2004-05-11 Lynntech, Inc. Limited use components for an electrochemical device
US6860976B2 (en) 2000-06-20 2005-03-01 Lynntech International, Ltd. Electrochemical apparatus with retractable electrode
JP2010168608A (ja) * 2009-01-21 2010-08-05 Panasonic Corp 水素生成装置、並びにそれを用いた水素生成方法及びエネルギーシステム
WO2022191082A1 (ja) * 2021-03-08 2022-09-15 旭化成株式会社 運転支援装置、運転支援システム、運転支援方法および運転支援プログラム
JP7541612B2 (ja) 2021-03-08 2024-08-28 旭化成株式会社 運転支援装置、運転支援システム、運転支援方法および運転支援プログラム

Also Published As

Publication number Publication date
US20020139690A1 (en) 2002-10-03
EP1193329A4 (en) 2006-02-01
EP1193329A1 (en) 2002-04-03
US6787020B2 (en) 2004-09-07
KR100744009B1 (ko) 2007-07-30
AU3222901A (en) 2001-08-27
JP3680096B2 (ja) 2005-08-10
KR20010110771A (ko) 2001-12-13

Similar Documents

Publication Publication Date Title
WO2001061074A1 (fr) Procede et dispositif de production d'eau ozonee par electrolyse et procede de regeneration de membrane d'electrolyte a polymere solide
EP1038993B1 (en) Apparatus for producing ozone water and method of producing ozone water by using the same apparatus
EP2771284B1 (en) Ion removal using a capacitive deionization system
JP3273718B2 (ja) 電気脱イオン法による被処理水の処理方法及びその方法に使用する装置
US8961770B2 (en) Controller and method of operation of a capacitive deionization system
EP2344423B1 (en) Capacitive deionization cell with balanced electrodes
EP2206686B1 (en) Deionization apparatus
US8685255B2 (en) Method of regenerating a capacitive deionization cell
JP4464387B2 (ja) オゾン水生成方法
US9695070B2 (en) Regeneration of a capacitive deionization system
US20100065439A1 (en) Method of Operating a Capacitive Deionization Cell Using a Relatively Slow Discharge Flow Rate
JP2001198574A (ja) オゾン水製造装置
JP2013255899A (ja) オゾン水生成装置のリフレッシュ洗浄方法
JP2001327968A (ja) 電解水生成装置
JP3319851B2 (ja) イオン水生成器
JP5421876B2 (ja) 水電解システム及びその脱圧方法
JP2012036453A (ja) 水電解システム及びその運転方法
KR100725658B1 (ko) 음용수의 은 전해 살균시스템
JP2004313977A (ja) 水改質装置
JPH0985245A (ja) 電解水生成器
JP3601011B2 (ja) 電解水生成装置
CN118140012A (zh) 加压电解槽
JPH06343963A (ja) アルカリイオン整水器
WO2004083127A1 (ja) アルカリイオン整水器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR NZ SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2001 559907

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017013219

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09926344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001904320

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001904320

Country of ref document: EP