WO2001057932A1 - Flexibles metallisches substrat für cis-solarzellen und verfahren zu seiner herstellung - Google Patents

Flexibles metallisches substrat für cis-solarzellen und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2001057932A1
WO2001057932A1 PCT/EP2001/001313 EP0101313W WO0157932A1 WO 2001057932 A1 WO2001057932 A1 WO 2001057932A1 EP 0101313 W EP0101313 W EP 0101313W WO 0157932 A1 WO0157932 A1 WO 0157932A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
copper foil
layer
molybdenum
tungsten
Prior art date
Application number
PCT/EP2001/001313
Other languages
English (en)
French (fr)
Inventor
Klaus Kalberlah
Thomas Hoffmann
Klaus Jacobs
Original Assignee
Cis Solartechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10005680A external-priority patent/DE10005680B4/de
Priority claimed from DE10006823A external-priority patent/DE10006823C2/de
Application filed by Cis Solartechnik Gmbh filed Critical Cis Solartechnik Gmbh
Priority to EP01911618A priority Critical patent/EP1261990A1/de
Priority to AU2001240599A priority patent/AU2001240599A1/en
Publication of WO2001057932A1 publication Critical patent/WO2001057932A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a flexible metallic substrate for CIS solar cells and methods for the production thereof.
  • Thin-film solar modules represent the latest state of development.
  • layers of high-purity silicon, cadmium telluride or copper indium selenide / sulfur (abbreviated to CIS) of less than 1 ⁇ m thickness are usually vapor-deposited onto glass.
  • the CIS technology is particularly interesting because of its environmental compatibility and the lack of degradation (declining effectiveness due to aging).
  • the CIS layer is usually deposited on glass, which was usually only sputter-coated with molybdenum.
  • rolled copper tape is problematic in that it absorbs a number of contaminants through the smelting process. Although it is subjected to electrolytic refining, the purities of 99.99% which can be achieved must be regarded as "heavily contaminated" in the sense of solar semiconductor technology. Although oxygen-free qualities are available, they still contain an undetermined number of others, in the sense of Semiconductor technology with no minor additions.
  • the copper strip must be annealed during the rolling process after each rolling pass. Licher further contamination of the copper surface. Thinly rolled copper strip is therefore once relatively expensive and, secondly, contains impurities which prove to be disruptive when a CIS layer is applied.
  • a fundamental disadvantage of copper is also that the thermal expansion coefficient of the crystalline CIS layer is so different from that of the copper strip that it is easy to crack in the CIS during the heat treatment that is required after the application of the CIS layer. Layer comes, with which every photovoltaic function is destroyed.
  • molybdenum foil has about four times the price of copper tape. Its use, probably because of the impurities it contains, has not gone beyond laboratory tests.
  • Plastic films for CIS deposition have also become known.
  • the selection of sufficiently high-temperature-resistant materials causes considerable effort.
  • such foils naturally have to be made electrically conductive by ITO / TCO layers, which is usually done by vacuum deposition, which increases the costs considerably.
  • Chromium-nickel steel foil which has also already been proposed, is also unsuitable, since it tends to absorb hydrogen, which forms bubbles on the surface of the foil, which lead to “pin holes” when the CIS layer is deposited , which makes it easier to apply later transparent cover layer leads to short circuits, which make the solar cell unusable.
  • the invention has for its object to provide a metallic substrate for a flexible, ribbon-shaped solar cell and method for its production, which allow the galvanic application of the CIS layer and thus do not require vacuum technology with which the diffusion of ions of the substrate into the CIS layer is prevented, however.
  • the substrate should be insensitive to mechanical (bending of the cell) and thermal influences on the solar cell.
  • a ribbon-shaped copper foil is then used as the carrier material.
  • the substrate is created by applying a layer structure to the carrier material from a base layer made of chromium, nickel or nickel-iron and a contact layer made from molybdenum, tungsten or palladium or a nickel-molybdenum, nickel-tungsten or nickel-palladium alloy or only from a contact layer made of a nickel-molybdenum, nickel-tungsten or nickel-palladium alloy.
  • the layer sequence can be generated in the specified order by galvanic deposition.
  • the layer of molybdenum, tungsten or palladium or a nickel-molybdenum, nickel-tungsten or nickel-palladium alloy takes over the "mediation" between the very different thermal expansion coefficients of copper / nickel and CIS, while nickel or nickel Iron significantly increases the strength of the layer composite and represents a diffusion barrier against copper ions has a very low coefficient of thermal expansion similar to that of the CIS layer, on the other hand it has a high modulus of elasticity, which is able to absorb the stresses between the layers below and above it with different expansion.
  • a layer of tungsten behaves similarly, ie it shows high elasticity at low thermal expansion.
  • the layer structure thus represents a suitable substrate that can only be produced using the strip galvano-chemical process and that despite the high costs of molybdenum, tungsten and palladium or the nickel-molybdenum, nickel-tungsten or nickel -Palladium alloy is inexpensive overall because of the low layer thicknesses.
  • Copper foil has the advantage that it is flexible and cheaper than other metal foils.
  • the conductivity, which is also good, is not of great importance, since photovoltaically generated current has a low current density.
  • Copper alloys which have a lower conductivity but have other advantages can therefore also be used.
  • the heat resistance of pure copper is very low, so that without further measures, mechanical stresses during the subsequent annealing process can damage the thin CIS layer.
  • copper ions are extremely mobile, so that they would migrate into the CIS layer in an uncontrolled amount during the tempering process, but also at the temperature of use of the solar cells.
  • the thermal expansion coefficient of copper is so different from that of the crystalline CIS layer that under the influence of temperature, crack formation in the thin, overlying CIS absorber layer can be expected, which in turn nullifies any photovoltaic function.
  • a chromium, nickel or nickel-iron base layer is first applied, which serves as a diffusion barrier, as an adjustment with regard to the coefficient of expansion and as an adhesive layer for the subsequent layers.
  • the nickel-iron layer is known as the so-called KOVAR or INVAR alloy. Chromium, nickel or nickel-iron can be applied by electroplating.
  • the subsequent contact layer consists of molybdenum, palladium or tungsten or a nickel-molybdenum, nickel-tungsten or nickel-palladium alloy, which can also be applied by electroplating.
  • Another variant is the sole deposition of a nickel-palladium, nickel-molybdenum or nickel-tungsten alloy on the copper foil, which also serves as a diffusion barrier and as a mediation layer for the CIS layer.
  • the electroplating of a molybdenum layer is little known so far, but it is possible as an alloy deposit together with nickel, just like nickel-palladium or nickel-tungsten.
  • Layers of palladium, nickel-palladium, or tungsten or tungsten-palladium are in themselves a diffusion barrier against copper, but the expensive noble metals can be applied galvanically in a lower layer thickness and with better adhesion and without contamination of the baths by copper, if at least a thin layer of nickel is previously deposited on the copper foil.
  • Molybdenum is not able to act as a diffusion barrier for copper and therefore requires a nickel layer with a certain minimum thickness as a base.
  • the direct contact of a pure nickel layer with the CIS layer must be avoided because this would form CIS-nickel complexes, ie pure CIS would no longer be available for the crystalline structure.
  • the copper foil should have a surface roughness that is as low as possible, but in order to maximize the later light absorption, the surface area can be increased by bulges being introduced during the manufacturing process. As a result, the light absorption and thus the total output is increased in the case of diffuse radiation impinging on the solar cell.
  • the CIS layer can then be galvanically applied to the carrier material with the substrate layers in a known manner, so that no vacuum systems are required.
  • the CIS layer is then activated in a heat treatment process. Copper foil produced by electrolytic deposition is advantageously used as the carrier material.
  • Electrolytically deposited copper foil which has traditionally been used exclusively for the manufacture of printed circuit boards, has a number of advantages which have hitherto not been used in other applications or which are not in demand there and which prove to be relevant here.
  • Electrolytically deposited copper foil is namely produced with a certain roughness for the production of printed circuit boards.
  • Rolled copper strip also has a certain roughness. Such roughness is advantageous for further processing, namely for bonding, but would be disadvantageous for solar cells.
  • Electrolytically deposited copper foil on the other hand, can also be produced with very little roughness, which is a great advantage for solar cells.
  • the copper foil is produced as an endless strip by deposition from an electrolytic bath. Components can be added to the bath, the deposits of which in the copper foil increase the tensile strength and / or temperature resistance and / or reduce the coefficient of expansion of the copper foil, for example nickel. Additionally or alternatively, the copper foil can be provided with further metallic layers after the first deposition process by further galvanic treatment.
  • Suitable bath additives for simultaneous deposition are e.g. B. those that a deposition of nickel, zinc, tin and. effect.
  • Nickel in particular causes the tensile strength of the copper foil to increase, which would otherwise be lost in the subsequent heat treatment processes. Copper foil with a certain nickel content then has the effect that the following base layer can be made much thinner and adheres better.
  • a subsequent layer build-up by galvanic deposition can be, for example, copper foil / nickel or copper foil / (nickel iron).
  • electrolytically deposited copper foil for the construction of flexible CIS solar cells has various advantages.
  • the foil can also be produced in a high degree of purity, which, however, did not play a role for the previous application in printed circuit board manufacture and was not used there.
  • the price for electrodeposited, thin copper foils is no higher than for comparable rolled copper strips.
  • the copper foil In contrast to copper foil, which is used for the printed circuit board industry, the copper foil is manufactured with a low surface roughness. To maximize the later light absorption, the surface area can be increased by bulging during the deposition without any additional manufacturing effort. The dimension of these bulges is macroscopic. Such, e.g. B. hemispherical bulges in the order of about 2 mm can be realized by appropriate design of the separation drum. As a result, the light absorption and thus the cell Efficiency increased. In addition, the bulges reduce the longitudinal expansion of the copper under the influence of temperature and thus represent a desirable adaptation to the behavior of the CIS layer (avoidance of cracking).
  • the CIS layer can then also be galvanically applied to the carrier material in a known manner, so that overall there is a galvanic process and no vacuum systems are required within a band process of solar cell production.
  • Fig. 3 shows a third example of a layer structure with a nickel-palladium alloy
  • Fig. 4 schematically shows a system for depositing a copper foil from an electrolytic bath
  • Fig. 5 shows the copper foil thus deposited in cross section.
  • the flexible substrate consists of an electrodeposited copper foil 1 to which a nickel layer 3 and then a nickel-molybdenum layer 4 have been applied galvanochemically. Since molybdenum is not a particularly good diffusion barrier for copper ions, a relatively thick nickel layer, approximately 2 ⁇ m thick, must be applied in this case. Nickel then takes on the function of a diffusion barrier and at the same time increases the heat resistance of the copper foil 1. Finally, a CIS layer 5 can also be applied galvanically to the nickel-molybdenum layer 4 in a conventional manner.
  • an electrodeposited copper foil 1 is again used, onto which a nickel layer 2 was also electrodeposited, but here only with a thickness of approximately 0.2 ⁇ m.
  • a layer 6 made of nickel-palladium or nickel-tungsten follows. Palladium and tungsten represent better diffusion barriers than molybdenum, so that the nickel layer 2 is required here alone to promote adhesion.
  • the CIS layer follows again in a known manner.
  • a third variant is shown in FIG.
  • a nickel (20) -alladium (80) alloy layer 7 of medium thickness was applied to a copper foil 1 alone, as is available as a standard product in strip electroplating.
  • the CIS layer is then applied to this.
  • the 4 consists of a drum 8, which is rotatably mounted in a basin 9, in which an electrolyte 10 is located.
  • the drum 8 forms the cathode, the basin 9 the anode.
  • the basin 9 is provided with an inlet 11 for the electrolyte 10, while an outlet 12 at which the basin 9 enclosing container 15 is provided.
  • copper is deposited on the drum 8, which can be lifted off the drum 8 as a copper foil 13 with a width of approximately 35 mm and a thickness of approximately 0.2 mm and wound onto a reel 14 ,
  • a suitable nickel salt can be mixed into the electrolyte in such a concentration that the copper foil 13 is formed with an alloy composition of the desired type.
  • the otherwise greatly reduced tensile strength of the copper foil 13 is increased by the nickel content in the subsequent heat treatment.
  • the copper foil 13 has hemispherical bulges 19 which increase the light absorption in a finished solar module.
  • the photovoltaically effective CIS layer 20 is later applied to the convex side 16 of these bulges, which is kept as smooth as possible.
  • the other, concave side 21, however, can have a certain roughness.
  • the convex side 16 has only a slight roughness due to the polished surface of the drum 8.
  • a special edge design e.g. B. for subdivision of the carrier material into individual solar cells, can be provided, which can be introduced in the manufacturing process.
  • a bent edge strip 18 is used to support a next solar cell, while on the other edge side, which is contacted with an edge strip 18 of a next solar cell, curved contact points 17 are provided to improve the contact.
  • the edge strip serves to limit the actual cell area coated with the CIS layer 20. Except for the contact points 17, it can be coated with an insulating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Bisher bekannte Substrate für flexible CIS-Solarzellen haben eineReihe von Nachteilen. Das vorliegende Substrat ist gekennzeichnetdurch einen Schichtaufbau aus einer Grundschicht aus Chrom, Nickel oder Nickel-Eisen und einer Kontaktschicht aus Molybdän, Wolfram oder Palladium oder einer Nickel-Molybdän-, Nickel-Wolfram- oder Nickel-Palladium-Legierung oder nur aus einer Kontaktschicht aus einer Nickel-Molybdän-, Nickel-Wolfram- oder Nickel-Palladium-Legierung auf einer bandförmigen Kupferfolie besteht, wobei der Schichtaufbau galvanisch hergestellt ist. Vorteilhaft wird als Trägermaterial für CIS-Solarzellen galvanisch abgeschiedenes Kupferband verwendet.

Description

Flexibles metallisches Substrat für CIS - Solarzellen und
Verfahren zu seiner Herstellung
Beschreibung
Die Erfindung betrif ft ein flexibles metallisches Substrat für CIS-Solarzellen und Verfahren zu dessen Herstellung .
In dem Bemühen, Strom aus Sonnenlicht ohne Umweltbelastung zu erzeugen mit Kosten, die in der selben Größenordnung wie die Erzeugungskosten bei der Nutzung fossiler Energieträger liegen, werden große Anstrengungen zur Entwicklung kosten- günstiger Solarzellen gemacht . Dabei stellen Dünnschichtsolarmodule den jüngsten Entwicklungsstand dar. Hierbei werden Schichten aus hochreinem Silizium, Kadmium-Tellurid oder Kupfer-Indium-Selenid/Schwefel (abgekürzt CIS) von weniger als 1 μm Dicke, üblicherweise mit Hilfe von Vakuumtechniken, auf Glas aufgedampft .
Unter den drei genannten Dünnschicht-Technologien ist die CIS-Technologie wegen ihrer Umweltverträglichkeit und dem Fehlen von Degradation (nachlassende Wirksamkeit durch Al- tern) besonders interessant. Die CIS-Schicht wird üblicherweise auf Glas, das zumeist erst im Sputterverfahren mit Molybdän beschichtet wurde, abgeschieden.
Es sind wegen der Nachteile von Glas als Substrat jedoch verschiedene Anstrengungen unternommen worden, um auch flexible Materialien einsetzen zu können. In der Überlegung, daß die Verwendung von Kupfer als Trägermaterial das elektrochemische Abscheiden der CIS-Schicht erlauben würde und Kupfer selbst Bestandteil der CIS-Schicht ist, wurde mit der DE-A 196 34 580 vorgeschlagen, ein Kupferband als Trägermaterial zu verwenden. Zunächst wird auf dem Kupferband Indium elektrochemisch abgeschieden. In einem zweiten Schritt wird das Band aufgeheizt und auf die aufgeheizte Indium-Schicht in der Dampfphase vorliegendes Selen oder Schwefel aufgebracht, wobei Kupfer in die Indiumschicht eindiffundieren und dort zusammen mit dem Selen/Schwefel die CIS-Schicht bilden soll. Das Verfahren erfordert eine genaue Einhaltung des Temperaturbereiches und der Prozeßzeiten bei der Selenisierung bzw. Sulfudisierung. Außerdem bildet sich an der Oberfläche Kupferselenid bzw. Kupfersulfid, das die Reinheit der CIS-Schicht stören würde und deshalb ätztech- nisch wieder entfernt werden muß. Schließlich kann nicht ausgeschlossen werden, daß im Verlauf der Zeit weiteres Kupfer in die CIS-Schicht eindiffundiert und die für den photo- voltaischen Effekt nötige Zusammensetzung ändert und somit die Funktion der Solarzelle zunehmend vermindert. Aufgrund der Nutzung der Kupferunterlage für den gleichzeitigen Aufbau der CIS-Schicht ist hier keine Diffusionssperre vorhanden.
Die Verwendung von gewalztem Kupferband ist insofern proble- matisch, als daß dieses durch den Verhüttungsprozeß ein Reihe von Verunreinigungen aufnimmt. Zwar wird es einer elektrolytischen Raffination unterzogen, die erzielbaren Reinheiten von 99,99 % müssen jedoch im Sinn der solaren Halbleitertechnologie als „stark verunreinigt" gelten. Es sind zwar Sauerstoffreie Qualitäten lieferbar, sie enthalten jedoch noch eine nicht bestimmbare Anzahl anderer, im Sinne der Halbleitertechnologie nicht geringfügiger Beimengungen. Außerdem muß das Kupferband während des Walzprozesses nach jedem Walzgang zwischengeglüht werden. Hierbei entstehen mög- licherweise weitere Verunreinigungen der Kupferoberfläche . Dünn gewalztes Kupferband ist also einmal relativ teuer und enthält zum zweiten Verunreinigungen, die sich beim Aufbringen einer CIS-Schicht als störend erweisen.
Ein grundsätzlicher Nachteil von Kupfer ist darüber hinaus, daß der thermische Ausdehnungskoeffizient der kristallinen CIS-Schicht von dem des Kupferbandes derart verschieden ist, daß es bei der Wärmebehandlung, der nach dem Aufbringen der CIS-Schicht erforderlich ist, leicht zur Rißbildung in der CIS-Schicht kommt, womit jede photovoltaische Funktion zunichte gemacht wird.
Es wurde auch bereits vorgeschlagen, die CIS-Schicht auf eine handelsübliche flexible Molybdänfolie aufzubringen, wie sie beispielsweise für Durchführungen von elektrischen Anschlüssen in Halogenlampen verwendet wird. Molybdänfolie hat jedoch den etwa vierfachen Preis von Kupferband. Seine Verwendung ist, vermutlich wegen der darin enthaltenen Verunreinigungen, nicht über Laborversuche hinausgekommen.
Ebenfalls bekannt geworden sind Kunststoff-Folien zur CIS- Abscheidung. Die Auswahl genügend hochtemperaturfester Materialien bereitet jedoch erhebliche Mühe. Außerdem müssen derartige Folien naturgemäß erst durch ITO/TCO-Schichten e- lektrisch leitfähig gemacht werden, was üblicherweise wiederum durch Aufdampfen im Vakuum geschieht, das die Kosten erheblich steigen läßt .
Chrom-Nickel-Stahl-Folie, die auch bereits vorgeschlagen wurde, eignet sich ebenfalls wenig, da es dazu neigt, Wasserstoff aufzunehmen, das auf der Folienoberfläche Bläschen bildet, die bei der Abscheidung der CIS-Schicht zu „pin ho- les" führen, wodurch es beim späteren Aufbringen einer transparenten Deckschicht zu Kurzschlüssen kommt, welche die Solarzelle unbrauchbar machen.
Der Erfindung liegt die Aufgabe zugrunde, ein metallisches Substrat für eine flexible, bandförmige Solarzelle und Ver- fahren zu seiner Herstellung anzugeben, die das galvanische Aufbringen der CIS-Schicht erlauben und somit keine Vakuumtechnologie erfordern, mit denen das Eindiffundieren von Ionen des Substrats in die CIS-Schicht jedoch verhindert wird. Das Substrat soll unempfindlich sein gegenüber mechanischen (Biegen der Zelle) und thermischen Einflüssen auf die Solarzelle .
Die Aufgabe wird erfindungsgemäß gelöst durch die Merkmale der Ansprüche 1 bis 3 , 6 und 8. Zweckmäßige Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Danach wird als Trägermaterial eine bandförmige Kupferfolie verwendet. Das Substrat entsteht durch Aufbringen eines Schichtaufbaus auf das Trägermaterial aus einer Grundschicht aus Chrom, Nickel oder Nickel-Eisen und einer KontaktSchicht aus Molybdän, Wolfram oder Palladium oder einer Nickel- Molybdän-, Nickel-Wolfram- oder Nickel-Palladium-Legierung oder nur aus einer KontaktSchicht aus einer Nickel-Molybdän- , Nickel-Wolfram oder Nickel-Palladium- Legierung. Die Schichtfolge kann in der angegebenen Reihenfolge durch galvanisches Abscheiden erzeugt werden.
Die Schicht aus Molybdän, Wolfram oder Palladium bzw. einer Nickel-Molybdän- , Nickel-Wolfram- oder Nickel-Palladium- Legierung übernimmt die „Vermittlung" zwischen den sehr unterschiedlichen thermischen Ausdehnungskoeffizienten von Kupfer/Nickel und CIS, während Nickel bzw. Nickel-Eisen die Festigkeit des Schichtenverbundes erheblich erhöht und eine Diffusionsbarriere gegenüber Kupferionen darstellt. Molybdän hat einen sehr geringen, der CIS-Schicht ähnlichen thermischen Ausdehnungskoeffizienten, andererseits einen hohen E- lastizitätsmodul, der die Spannungen zwischen den darunter und daruberliegenden Schichten unterschiedlicher Ausdehnung aufzunehmen vermag. Eine Schicht aus Wolfram verhält sich ähnlich, d. h. sie zeigt bei niedriger Wärmeausdehnung eine hohe Elastizität.
Als Verbundsystem stellt der Schichtenaufbau somit ein ge- eignetes Substrat dar, das ausschließlich im bandgalvanoche- mischen Verfahren herstellbar ist und das trotz der an sich hohen Kosten von Molybdän, Wolfram und Palladium bzw. der Nickel-Molybdän- , Nickel-Wolfram- oder Nickel-Palladium- Legierung wegen der geringen Schichtdicken insgesamt preis- wert ist .
Als vorteilhaft hat sich erwiesen, die Kupferfolie nach dem Beschichten mit der Grundschicht und/oder KontaktSchicht einer Wärmebehandlung zu unterziehen, bevor die CIS-Schicht aufgebracht wird.
Kupferfolie hat den Vorteil, daß sie flexibel und preiswerter als andere Metallfolien ist. Die außerdem gute Leitfähigkeit ist nicht von allzu großer Bedeutung, da photovol- taisch erzeugter Strom eine geringe Stromdichte besitzt. Es können daher auch Kupferlegierungen, die eine geringere Leitfähigkeit aufweisen, jedoch andere Vorteile besitzen, verwendet werden .
Kupfer hat an sich allerdings für die Verwendung als Trägermaterial die bereits oben angedeuteten gravierenden Nachteile, die durch die Erfindung jedoch überwunden werden. Erstens ist die Warmfestigkeit von reinem Kupfer sehr gering, so daß ohne eine weitere Maßnahme mechanische Beanspruchungen während des nachfolgenden Temperprozesses zur Beschädigung der dünnen CIS-Schicht führen können. Zweiten sind Kupferionen, wie bereits gesagt, äußerst beweglich, so daß diese bei dem Temperprozeß, aber auch bereits bei der Gebrauchstemperatur der Solarzellen, in unkontrollierter Menge in die CIS-Schicht einwandern würden. Drittens ist der thermische Ausdehnungkoeffizient von Kupfer von dem der kristallinen CIS-Schicht derart verschieden, daß unter Tempera- tureinfluß mit einer Rißbildung in der dünnen, aufliegenden CIS-Absorberschicht zu rechnen ist, welches wiederum jede photovoltaische Funktion zunichte macht.
Mit dem erfindungsgemäßen Schichtaufbau wird, wie bereits beschrieben, zunächst eine Chrom, Nickel- oder Nickel-Eisen- Grundschicht aufgebracht, die als Diffusionsbarriere, als Anpassung hinsichtlich des Ausdehnungskoeffizienten und als Haftschicht für die nachfolgenden Schichten dient. Die Nickel-Eisen-Schicht ist als sogenannte KOVAR oder auch INVAR- Legierung bekannt. Chrom, Nickel oder Nickel-Eisen können galvanotechnisch aufgebracht werden. Die nachfolgende Kontaktschicht besteht aus Molybdän, Palladium oder Wolfram bzw. einer Nickel-Molybdän- , Nickel-Wolfram- oder Nickel- Palladium-Legierung, die sich ebenfalls galvanotechnisch aufbringen lassen.
Eine weitere Variante ist das alleinige Abscheiden einer Nickel-Palladium-, Nickel-Molybdän oder Nickel-Wolfram- Legierung auf der Kupferfolie, die gleichzeitig als Diffusi- onsbarriere und als Vermittlungschicht für die CIS-Schicht dient . Das galvanotechnische Aufbringen einer Molybdänschicht ist bisher wenig bekannt, ist als Legierungsabscheidung zusammen mit Nickel, ebenso wie Nickel-Palladium oder Nickel-Wolfram aber möglich.
Schichten aus Palladium, Nickel-Palladium oder Wolfram bzw. Wolfram-Palladium stellen an sich bereits eine Diffusionsbarriere gegen Kupfer dar, die teuren Edelmetalle können jedoch in geringerer Schichtstärke und mit besserer Haftung sowie ohne die Verunreinigung der Bäder durch Kupfer galva- nisch aufgebracht werden, wenn zuvor wenigstens eine dünne Nickelschicht auf die Kupferfolie abgeschieden wird.
Molybdän ist nicht in der Lage, als Diffusionsbarriere für Kupfer zu wirken und benötigt deshalb eine Nickelschicht mit bestimmter Mindestdicke als Unterlage. Andererseits muß der direkte Kontakt einer reinen Nickelschicht mit der CIS- Schicht vermieden werden, weil sich hierbei CIS-Nickel- Komplexe bilden würden, also reines CIS für den kristallinen Aufbau nicht mehr zur Verfügung stünde.
Die Kupferfolie soll eine möglichst geringe Oberflächenrauhigkeit aufweisen, kann zur Maximierung der späteren Licht- aufnähme jedoch oberflächenvergrößert sein, indem während des Herstellungsprozesses bereits Auswölbungen eingebracht werden. Hierdurch wird bei diffus auf die Solarzelle auf- treffender Strahlung die Lichtabsorption und damit die Ge- samt1eistung erhöht .
Auf das Trägermaterial mit den Substrat-Schichten kann die CIS-Schicht dann in bekannter Weise galvanisch aufgebracht werden, so daß keine Vakuumanlagen benötigt werden. Die CIS- Schicht wird anschließend in einem Wärmebhandlungsprozeß aktiviert . Vorteilhaft wird als Trägermaterial durch elektrolytisches Abscheiden hergestellte Kupferfolie verwendet.
Überraschend hat sich gezeigt, daß elektrolytisch abgeschiedene Kupferfolie, die bisher traditionell ausschließlich für die Leiterplattenfertigung benutzt wurde, eine Reihe von bisher bei anderen Anwendungen nicht genutzten bzw. dort nicht gefragten Vorteilen aufweist, die sich hier als relevant erweisen. Elektrolytisch abgeschiedene Kupferfolie wird nämlich für die Leiterplattenfertigung mit bestimmter Rauhigkeit hergestellt. Auch gewalztes Kupferband weist eine bestimmte Rauhigkeit auf. Solche Rauhigkeit ist für die Weiterverarbeitung, nämlich für eine Verklebung, von Vorteil, wäre für Solarzellen allerdings nachteilig. Elektrolytisch abgeschiedene Kupferfolie lässt sich dagegen auch mit sehr geringer Rauhigkeit herstellen, was für Solarzellen von großem Vorteil ist.
Die Kupferfolie wird als Endlosband durch Abscheiden aus einem elektrolytischen Bad hergestellt. Es können dem Bad Be- standteile zugesetzt werden, deren Abscheidungen in der Kupferfolie die Zugfestigkeit und/oder Temperaturbeständigkeit erhöhen und/oder den Ausdehnungkoeffizienten der Kupferfolie vermindern, beispielsweise Nickel. Zusätzlich oder alternativ dazu kann die Kupferfolie anschließend an den ersten Ab- scheideprozeß durch weitere galvanische Behandlung mit weiteren metallischen Schichten versehen werden.
Auch ein gleichzeitiges Abscheiden von Substanzen, die gezielt in kleinen Mengen in die CIS-Schicht eindiffundieren sollen ist möglich. Beispielsweise wandert Natrium später bei einer Wärmebehandlung, die zur Aktivierung der CIS- Schicht nötig ist, in gezielter Menge in die CIS-Schicht ein und begünstigt dort in der Art eines Flußmittels die Kristallisation. Geeignete Badzusätze zur gleichzeitigen Abscheidung sind z. B. solche, die ein Abscheiden von Nickel, Zink, Zinn u. ä. bewirken. Insbesondere Nickel bewirkt die Erhöhung der Zugfestigkeit der Kupferfolie, die ansonsten bei den folgenden Wärmebehandlungsprozessen verloren gehen würde. Kupferfolie mit einem gewissen Nickelgehalt hat dann den Effekt, daß die folgende Grundschicht sehr viel dünner ausgeführt werden kann und besser haftet .
Ein nachfolgender Schichtaufbau durch galvanische Abschei- düng kann beispielsweise die Folge Kupferfolie/Nickel oder Kupferfolie/ (Nickeleisen) sein.
Die Verwendung von elektrolytisch abgeschiedener Kupferfolie für den Aufbau flexibler CIS-Solarzellen hat verschiedenen Vorteile. Neben der angesprochenen Möglichkeit einer gezielten Legierungsbildung ist die Folie auch in großer Reinheit herstellbar, was für die bisherige Anwendung in der Leiterplattenfertigung allerdings kein Rolle spielte und dort nicht genutzt wurde. Der Preis für galvanisch abgeschiedene, dünne Kupferfolien liegt nicht höher als der für vergleichbares gewalztes Kupferband.
Die Kupferfolie wird im Gegensatz zu Kupferfolie, die für die Leiterplattenindustrie zum Einsatz kommt, mit geringer Oberflächenrauhigkeit hergestellt, kann zur Maximierung der späteren Lichtaufnahme zugleich oberflächenvergrößert sein, indem während des Abscheidens bereits Auswölbungen eingebracht werden, ohne daß dabei herstellungstechnisch ein besonderer Mehraufwand entsteht. Die Dimension dieser Auswöl- bungen ist makroskopisch. Solche, z. B. halbkugligen Auswölbungen in der Größenordnung von ca. 2 mm lassen sich durch entsprechende Gestaltung der Abscheidetrommel realisieren. Hierdurch wird bei diffus auf die Solarzelle auftreffender Strahlung die Lichtabsorption und damit der Zellen- Wirkungsgrad erhöht . Zudem vermindern die Aufwölbungen eine Längenausdehnung des Kupfers unter Temperatureinfluß und stellen somit eine wünschenswerte Anpassung an das Verhalten der CIS-Schicht (Vermeiden von Rißbildung) dar.
Schließlich können bei der galvanischen Abscheidung auch noch andere Forderungen bezüglich der Form ohne wesentlichen Mehraufwand realisiert werden, wie beispielsweise Abgrenzungen der eigentlichen Zellenflächen auf der Kupferfolie oder Nocken, die ähnlich den Kontaktflächen eines Relais bei der späteren Verschaltung der Solarzellen zu Solarzellenmodulen für die kontaktierende Stromführung vorteilhaft sind (sogenanntes „Schindeln") .
Auf das Trägermaterial kann die CIS-Schicht dann in bekann- ter Weise ebenfalls galvanisch aufgebracht werden, so daß insgesamt ein galvanischer Prozeß vorliegt und innerhalb eines Bandprozesses der Solarzellenherstellung keine Vakuumanlagen benötigt werden.
Die Erfindung soll nachstehend anhand von zwei Ausführungs- beispielen noch näher erklärt werden. In den Zeichnungen zeigen
Fig. 1 ein Beispiel für einen Schichtaufbau mit Molybdän auf einem flexiblen Trägermaterial,
Fig. 2 ein zweites Beispiel für einen Schichtaufbau mit Palladium/Wolfram,
Fig. 3 ein drittes Beispiel für einen Schichtaufbau mit einer Nickel-Palladium-Legierung, Fig. 4 schematisch eine Anlage zum Abscheiden einer Kupferfolie aus einem elektrolytischen Bad und
Fig. 5 die damit abgeschiedene Kupferfolie im Querschnitt . Gemäß Fig. 1 besteht das flexible Substrat aus einer galvanisch abgeschiedenen Kupferfolie 1, auf die galvanochemisch zunächst eine Nickelschicht 3 und dann eine Nickel- Molybdänschicht 4 aufgebracht wurde. Da Molybdän keine besonders gute Diffusionssperre für Kupferionen darstellt, muß in diesen Fall eine relativ dicke Nickelschicht, ca. in einer Dicke von 2 μm, aufgebracht werden. Nickel übernimmt dann die Funktion einer Diffusionssperre und erhöht gleichzeitig die Warmfestigkeit der Kupferfolie 1. Auf die Nickel- Molybdänschicht 4 kann schließlich in üblicher Weise eben- falls galvanisch eine CIS-Schicht 5 aufgebracht werden.
Nach dem in Fig. 2 dargestellten Beispiel wird wiederum eine galvanisch abgeschiedene Kupferfolie 1 verwendet, auf die galvanisch zunächst auch eine Nickelschicht 2 abgeschieden wurde, hier allerdings nur mit einer Dicke von ca. 0,2 μm. Erlaubt wird das durch den weiteren Schichtaufbau, nach dem eine Schicht 6 aus Nickel-Palladium oder Nickel-Wolfram folgt. Palladium und Wolfram stellen bessere Diffusionsbarrieren dar als Molybdän, so daß die Nickelschicht 2 hier al- lein zur Haftvermittlung benötigt wird. Schließlich folgt wieder die CIS-Schicht in bekannter Weise.
In Fig. 3 ist eine dritte Variante gezeigt. Hierbei wurde auf eine Kupferfolie 1 allein eine Nickel (20) -Palladium (80) - Legierungsschicht 7 mittlerer Dicke aufgebracht, wie sie als Standardprodukt in der Bandgalvanik zur Verfügung steht . Auf diese wird dann die CIS-Schicht aufgetragen.
Eine Elektrolyt-Anlage zur Herstellung von Kupferfolie be- steht gemäß Fig. 4 aus einer Trommel 8, die in einem Becken 9, in dem sich ein Elektrolyt 10 befindet, drehbar gelagert ist. Die Trommel 8 bildet die Kathode, das Becken 9 die Anode. Das Becken 9 ist mit einem Zulauf 11 für den Elektrolyten 10 versehen, während ein Ablauf 12 an dem das Becken 9 umschließenden Behälter 15 vorgesehen ist. Durch Drehen der Trommel 8 bei angelegter Spannung wird Kupfer auf der Trommel 8 abgeschieden, das als Kupferfolie 13 mit ca. 35 mm Breite und in einer Dicke von ca. 0,2 mm von der Trommel 8 abgehoben und auf eine Haspel 14 aufgewickelt werden kann.
Dem Elektrolyten kann ein geeignetes Nickelsalz in einer solchen Konzentration beigemischt werden, daß sich die Kupferfolie 13 mit einer LegierungsZusammensetzung gewünschter Art bildet. Durch den Nickelgehalt wird bei der nachfolgen- den Wärmebehandlung die ansonsten stark verminderte Zugfestigkeit der Kupferfolie 13 erhöht.
Fig. 5 zeigt einen Querschnitt durch eine solchermaßen hergestellte Kupferfolie 13 und eine später aufgebrachte CIS- Schicht 20. Durch die Strukturierung der Trommel 8 weist die Kupferfolie 13 halbkugelförmigen Aufwölbungen 19 auf, die bei einem fertigen Solarmodul die Lichtabsorption erhöhen. Auf die möglichst glatt gehaltenen konvexe Seite 16 dieser Aufwölbungen wird später die photovoltaisch wirksame CIS- Schicht 20 aufgebracht. Die andere, konkave Seite 21 kann degegen eine gewisse Rauhigkeit aufweisen. Die konvexe Seite 16 weist aufgrund der polierten Oberfläche der Trommel 8 nur eine geringe Rauhigkeit auf .
Zur Verschaltung von mehreren Solarzellen zu einem Solarmodul ist kann eine besondere Randgestaltung, z. B. zur Unterteilung des Trägermaterials in einzelne Solarzellen, vorgesehen sein, die sich im Herstellungsprozeß gleich mit einbringen läßt . Zur Auflage einer nächsten Solarzelle dient in dem hier gezeigten Ausführungsbeispiel ein abgebogener Randstreifen 18, während an der anderen Randseite, die mit einem Randstreifen 18 einer nächsten Solarzelle kontaktiert wird, zur Kontaktverbesserung aufgewölbte Kontaktpunkte 17 vorgesehen sind. Zugleich dient der Randstreifen zur Eingrenzung der eigentlichen, mit der CIS-Schicht 20 beschichteten Zellenfläche. Er kann, die Kontaktpunkte 17 ausgenommen, mit einem Isoliermaterial beschichtet sein.
Bezugszeichenliste
1. Kupferfolie
2. Nickelschicht 3. Nickelschicht
4. Nickel-Molybdänschicht
5. CIS-Schicht
6. Schicht aus Nickel-Palladium oder Nickel-Wolfram
7. Nickel (20) -Palladium (80) -Legierungsschicht 8. Trommel
9. Becken
10. Elektrolyt
11. Zulauf (für Elektrolyt)
12. Ablauf (für Elektrolyt) 13. Kupferfolie
14. Haspel
15. Behälter
16. Konvexe Seite (der Kupferfolie)
17. Kontaktpunkte 18. Randstreifen
19. Aufwölbungen
20. CIS-Schicht
21. Konkave Seite (der Kupferfolie)

Claims

Patentansprüche
1. Flexibles metallisches Substrat für CIS-Solarzellen, gekennzeichnet dadurch, daß es aus einem Schichtaufbaus aus einer Grundschicht aus Chrom, Nickel oder Nickel-Eisen und einer Kontaktschicht aus Molybdän, Wolfram oder Palladium oder einer Nickel- Molybdän-, Nickel-Wolfram- oder Nickel-Palladium- Legierung oder nur aus einer Kontaktschicht aus einer Nickel-Molybdän- , Nickel-Wolfram- oder Nickel-Palladium- Legierung auf einer bandförmigen Kupferfolie besteht, wobei der Schichtaufbau galvanisch hergestellt ist.
2. Verfahren zur Herstellung eines flexiblen metallischen Substrats für eine CIS-Solarzelle, gekennzeichnet dadurch, daß auf eine bandförmige Kupferfolie galvanisch zunächst eine Chrom, Nickel- oder Nickel-Eisen-Grundschicht und nachfolgend eine Kontaktschicht aus Molybdän, Wolfram oder Palladium oder einer Nickel-Molybdän- , Nickel- Wolfram- oder Nickel -Palladium-Legierung aufgebracht wird.
3. Verfahren zur Herstellung eines flexiblen metallischen Substrats für eine CIS-Solarzelle, gekennzeichnet dadurch, daß auf eine bandförmige Kupferfolie galvanisch eine Kontaktschicht aus Nickel-Molybdän- , Nickel-Wolfram- oder einer Nickel -Palladium-Legierung aufgebracht wird.
4. Verfahren nach Anspruch 2 oder 3 , gekennzeichnet dadurch, daß die Kupferfolie nach dem Beschichten mit der Grundschicht und/oder Kontaktschicht einer Wärmebehandlung unterzogen wird.
5. Verfahren nach Anspruch 2 , gekennzeichnet dadurch, daß die Nickelschicht aus einem Nickelelektrolyt mit Nickel - bromiden abgeschieden wird.
6. Bandförmige Kupferfolie als Trägermaterial für eine CIS- Solarzelle gekennzeichnet dadurch, daß sie durch elektrolytisches Abscheiden hergestellt ist.
7. Kupferfolie nach Anspruch 6, gekennzeichnet dadurch, daß ihre die Oberfläche durch Auswölbungen (19) vergrößert ist
8. Verfahren zur Herstellung bandförmiger Kupferfolie als Trägermaterial für eine CIS-Solarzelle, gekennzeichnet dadurch, daß die Kupferfolie als Endlosband durch Abscheiden aus einem elektrolytischen Bad hergestellt wird und daß dem Bad Legierungsbestandteile zugesetzt werden, die in der Kupferfolie die Zugfestigkeit und/oder Temperaturbeständigkeit erhöhen und/oder den Ausdehnungkoeffizienten vermindern .
. Verfahren nach Anspruch 8 , gekennzeichnet dadurch, daß als Legierungsbestandteil Nickel verwendet wird.
10. Verfahren nach Anspruch 8, gekennzeichnet dadurch, daß als Legierungsbestandteil Zink verwendet wird.
11. Verfahren nach Anspruch 8, gekennzeichnet dadurch, daß als Legierungsbestandteil Eisen verwendet wird.
12. Verfahren nach Anspruch 8, gekennzeichnet dadurch, daß dem Bad Substanzen zugesetzt werden, die später in die CIS-Schicht eindiffundieren sollen.
13. Verfahren nach Anspruch 12, gekennzeichnet dadurch, daß als zugesetzte Substanz eine Natrium-Verbindung verwendet wird.
14. Verfahren nach Anspruch 8 bis 13, gekennzeichnet dadurch, daß die Kupferfolie beim Abscheiden an einer oberflächen- strukturierten Trommel mit oberflächenvergrößernden Aus- wölbungen versehen wird.
15. Verfahren nach Anspruch 8 bis 14, gekennzeichnet dadurch, daß die Kupferfolie beim Abscheiden an einer oberflächenstrukturierten Trommel mit Strukturen versehen wird, die die Solarzelle begrenzen oder unterteilen.
16. Verfahren nach Anspruch 8 bis 15, gekennzeichnet dadurch, daß die Kupferfolie beim Abscheiden an einer oberflächen- strukturierten Trommel mit Kontaktnocken versehen wird.
PCT/EP2001/001313 2000-02-07 2001-02-07 Flexibles metallisches substrat für cis-solarzellen und verfahren zu seiner herstellung WO2001057932A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01911618A EP1261990A1 (de) 2000-02-07 2001-02-07 Flexibles metallisches substrat für cis-solarzellen und verfahren zu seiner herstellung
AU2001240599A AU2001240599A1 (en) 2000-02-07 2001-02-07 Flexible metal substrate for cis solar cells, and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10005680A DE10005680B4 (de) 2000-02-07 2000-02-07 Trägermaterial für eine flexible, bandförmige CIS-Solarzelle
DE10005680.6 2000-02-07
DE10006823A DE10006823C2 (de) 2000-02-08 2000-02-08 Verfahren zur Herstellung eines flexiblen metallischen Substrats für eine CIS-Solarzelle und CIS-Solarzelle
DE10006823.5 2000-02-08

Publications (1)

Publication Number Publication Date
WO2001057932A1 true WO2001057932A1 (de) 2001-08-09

Family

ID=26004249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/001313 WO2001057932A1 (de) 2000-02-07 2001-02-07 Flexibles metallisches substrat für cis-solarzellen und verfahren zu seiner herstellung

Country Status (3)

Country Link
EP (1) EP1261990A1 (de)
AU (1) AU2001240599A1 (de)
WO (1) WO2001057932A1 (de)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096395A1 (en) * 2004-03-30 2005-10-13 Hille & Müller GMBH Mo substrate for a photovoltaic solar cell
DE102009004966A1 (de) 2008-01-15 2009-07-23 Mol Katalysatortechnik Gmbh Verfahren zur Herstellung einer Solarzelle sowie Solarzelle
EP2087151A2 (de) * 2006-10-19 2009-08-12 SoloPower, Inc. Rolle-zu-rolle-galvanisierung zur herstellung von pv-folien
USD625695S1 (en) 2008-10-14 2010-10-19 Stion Corporation Patterned thin film photovoltaic module
USD627696S1 (en) 2009-07-01 2010-11-23 Stion Corporation Pin striped thin film solar module for recreational vehicle
USD628332S1 (en) 2009-06-12 2010-11-30 Stion Corporation Pin striped thin film solar module for street lamp
USD632415S1 (en) 2009-06-13 2011-02-08 Stion Corporation Pin striped thin film solar module for cluster lamp
US7919400B2 (en) 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
CN102270683A (zh) * 2010-06-03 2011-12-07 上海空间电源研究所 柔性薄膜太阳电池集成组件及其制备方法
USD652262S1 (en) 2009-06-23 2012-01-17 Stion Corporation Pin striped thin film solar module for cooler
US8101858B2 (en) 2006-03-14 2012-01-24 Corus Technology B.V. Chalcopyrite semiconductor based photovoltaic solar cell comprising a metal substrate, coated metal substrate for a photovoltaic solar cell and manufacturing method thereof
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
USD662041S1 (en) 2009-06-23 2012-06-19 Stion Corporation Pin striped thin film solar module for laptop personal computer
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8927392B2 (en) 2007-11-02 2015-01-06 Siva Power, Inc. Methods for forming crystalline thin-film photovoltaic structures
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1082695A (en) * 1966-10-13 1967-09-06 Ernest Herbert Lyons Improvements in the electroplating of precious metals on to articles made of baser metals
DE3809139A1 (de) * 1988-03-18 1989-09-28 Lpw Chemie Gmbh Verwendung einer palladium/nickel-legierungsschicht als zwischenschicht zwischen einem nichtkorrosionsbestaendigen oder wenig korrosionsbestaendigen metallischen grundmaterial und einer nach dem pvd-verfahren aufgebrachten beschichtung
US5366814A (en) * 1992-11-19 1994-11-22 Nikko Gould Foil Co., Ltd. Copper foil for printed circuits and process for producing the same
CA2105464A1 (en) * 1993-09-02 1995-03-03 Shaolin Shi Methods for the continuous deposition of semiconductor thin films
WO1998009337A1 (de) * 1996-08-27 1998-03-05 Ist-Institut Für Solartechnologien Gmbh Cis-bandsolarzelle-verfahren und vorrichtung zu ihrer herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1082695A (en) * 1966-10-13 1967-09-06 Ernest Herbert Lyons Improvements in the electroplating of precious metals on to articles made of baser metals
DE3809139A1 (de) * 1988-03-18 1989-09-28 Lpw Chemie Gmbh Verwendung einer palladium/nickel-legierungsschicht als zwischenschicht zwischen einem nichtkorrosionsbestaendigen oder wenig korrosionsbestaendigen metallischen grundmaterial und einer nach dem pvd-verfahren aufgebrachten beschichtung
US5366814A (en) * 1992-11-19 1994-11-22 Nikko Gould Foil Co., Ltd. Copper foil for printed circuits and process for producing the same
CA2105464A1 (en) * 1993-09-02 1995-03-03 Shaolin Shi Methods for the continuous deposition of semiconductor thin films
WO1998009337A1 (de) * 1996-08-27 1998-03-05 Ist-Institut Für Solartechnologien Gmbh Cis-bandsolarzelle-verfahren und vorrichtung zu ihrer herstellung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B.M. BASOL ET AL.: "Modules and flexible cells of CuInSe2", 23RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 10 May 1993 (1993-05-10) - 14 May 1993 (1993-05-14), LOUISVILLE, KY, USA, pages 426 - 430, XP002171164 *
BASOL B M ET AL: "COPPER INDIUM DISELENIDE THIN FILM SOLAR CELLS FABRICATED ON FLEXIBLE FOIL SUBSTRATES", SOLAR ENERGY MATERIALS AND SOLAR CELLS,NL,ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, vol. 29, no. 2, 1 March 1993 (1993-03-01), pages 163 - 173, XP000361960, ISSN: 0927-0248 *
GHOSH B ET AL: "A NOVEL BACK-CONTACTING TECHNOLOGY FOR CUINSE2 THIN FILMS", SEMICONDUCTOR SCIENCE AND TECHNOLOGY,GB,INSTITUTE OF PHYSICS. LONDON, vol. 11, no. 9, 1 September 1996 (1996-09-01), pages 1358 - 1362, XP000622035, ISSN: 0268-1242 *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096395A1 (en) * 2004-03-30 2005-10-13 Hille & Müller GMBH Mo substrate for a photovoltaic solar cell
US8101858B2 (en) 2006-03-14 2012-01-24 Corus Technology B.V. Chalcopyrite semiconductor based photovoltaic solar cell comprising a metal substrate, coated metal substrate for a photovoltaic solar cell and manufacturing method thereof
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US8314326B2 (en) 2006-05-15 2012-11-20 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
EP2087151A2 (de) * 2006-10-19 2009-08-12 SoloPower, Inc. Rolle-zu-rolle-galvanisierung zur herstellung von pv-folien
EP2087151A4 (de) * 2006-10-19 2012-03-28 Solopower Inc Rolle-zu-rolle-galvanisierung zur herstellung von pv-folien
US8871305B2 (en) 2007-06-29 2014-10-28 Stion Corporation Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US7919400B2 (en) 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8927392B2 (en) 2007-11-02 2015-01-06 Siva Power, Inc. Methods for forming crystalline thin-film photovoltaic structures
US8623677B2 (en) 2007-11-14 2014-01-07 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8512528B2 (en) 2007-11-14 2013-08-20 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
DE102009004966A1 (de) 2008-01-15 2009-07-23 Mol Katalysatortechnik Gmbh Verfahren zur Herstellung einer Solarzelle sowie Solarzelle
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8084291B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8088640B2 (en) 2008-09-30 2012-01-03 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8318531B2 (en) 2008-09-30 2012-11-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8071421B2 (en) 2008-09-30 2011-12-06 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8076176B2 (en) 2008-09-30 2011-12-13 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8084292B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
USD625695S1 (en) 2008-10-14 2010-10-19 Stion Corporation Patterned thin film photovoltaic module
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8557625B1 (en) 2008-10-17 2013-10-15 Stion Corporation Zinc oxide film method and structure for cigs cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
USD628332S1 (en) 2009-06-12 2010-11-30 Stion Corporation Pin striped thin film solar module for street lamp
USD632415S1 (en) 2009-06-13 2011-02-08 Stion Corporation Pin striped thin film solar module for cluster lamp
USD662041S1 (en) 2009-06-23 2012-06-19 Stion Corporation Pin striped thin film solar module for laptop personal computer
USD652262S1 (en) 2009-06-23 2012-01-17 Stion Corporation Pin striped thin film solar module for cooler
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
USD627696S1 (en) 2009-07-01 2010-11-23 Stion Corporation Pin striped thin film solar module for recreational vehicle
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
CN102270683A (zh) * 2010-06-03 2011-12-07 上海空间电源研究所 柔性薄膜太阳电池集成组件及其制备方法
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices

Also Published As

Publication number Publication date
AU2001240599A1 (en) 2001-08-14
EP1261990A1 (de) 2002-12-04

Similar Documents

Publication Publication Date Title
EP1261990A1 (de) Flexibles metallisches substrat für cis-solarzellen und verfahren zu seiner herstellung
DE69730337T2 (de) Photovoltaische folie und verfahren zu deren herstellung
DE4333407C1 (de) Solarzelle mit einer Chalkopyritabsorberschicht
DE69910751T2 (de) Herstellungsverfahren einer einen farbstoff enthaltenden solarzelle
DE69814751T2 (de) Herstellung einer dünnen Zinkoxidschicht
EP0922303B1 (de) Cis-bandsolarzelle-verfahren und vorrichtung zu ihrer herstellung
DE4433097C2 (de) Verfahren zum Herstellen einer lichtabsorbierenden Schicht einer Solarzelle
DE69513054T2 (de) Herstellungsverfahren einer elektrode für eine elektrochemische vorrichtung
DE10113782A1 (de) Solarzelle und Verfahren zu ihrer Herstellung
WO2009006988A1 (de) Kontakt-struktur für euin halbleiter-bauelement sowie verfahren zur herstellung desselben
DE3312053C2 (de) Verfahren zum Verhindern von Kurz- oder Nebenschlüssen in einer großflächigen Dünnschicht-Solarzelle
DE3113130A1 (de) Cadmiumsulfidphotoelement und verfahren zu seiner herstellung
DE102012216026B4 (de) Verfahren zur Herstellung einer flexiblen Photovoltaik-Dünnschichtzelle mit einer Eisendiffusionsbarriereschicht und flexible Photovoltaik-Dünnschichtzelle mit einer Eisendiffusionsbarriereschicht
DE10006823C2 (de) Verfahren zur Herstellung eines flexiblen metallischen Substrats für eine CIS-Solarzelle und CIS-Solarzelle
DE19917758C2 (de) Verfahren zur Herstellung einer CuInSe2(CIS)Solarzelle
DE2016211C3 (de) Verfahren zur Herstellung einer Halbleitervorrichtung
DE3317309A1 (de) Duennschicht-solarzellenanordnung
DE112016006557B4 (de) Verfahren zur Herstellung einer CdTe-Dünnschichtsolarzelle
DE10005680B4 (de) Trägermaterial für eine flexible, bandförmige CIS-Solarzelle
DE2160284A1 (de) Elektroplattierverfahren
DE102013219342A1 (de) Verfahren zur Strukturierung von Schichten oxidierbarer Materialien mittels Oxidation sowie Substrat mit strukturierter Beschichtung
DE19611996C1 (de) Solarzelle mit einer Chalkopyritabsorberschicht und Verfahren zu ihrer Herstellung
EP0133698A2 (de) Photovoltaische Zelle sowie Verfahren zum Herstellen dieser
DE102004042306B4 (de) Verfahren zur Herstellung eines Substrates für flexible Dünnschicht-Solarzellen nach der CIS-Technologie
DE10004733C2 (de) Dünnfilm-Halbleiterbauelement mit einer Chalkopyritschicht und Verfahren zu seiner Herstellung sowie Verwendung des Verfahrens zur Herstellung einer Dünnfilm-Solarzelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001911618

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001911618

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP