WO2001048854A2 - Membran-elektroden-einheit für eine brennstoffzelle und herstellungsverfahren dazu - Google Patents

Membran-elektroden-einheit für eine brennstoffzelle und herstellungsverfahren dazu Download PDF

Info

Publication number
WO2001048854A2
WO2001048854A2 PCT/DE2000/004595 DE0004595W WO0148854A2 WO 2001048854 A2 WO2001048854 A2 WO 2001048854A2 DE 0004595 W DE0004595 W DE 0004595W WO 0148854 A2 WO0148854 A2 WO 0148854A2
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
concentration
electrode
noble metal
electrocatalyst layer
Prior art date
Application number
PCT/DE2000/004595
Other languages
English (en)
French (fr)
Other versions
WO2001048854A3 (de
Inventor
Ulrich Gebhardt
Arno Mattejat
Igor Mehltretter
Manfred Waidhas
Original Assignee
Siemens Aktiengesellschaft
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Siemens Aktiengesellschaft
Priority to JP2001548468A priority Critical patent/JP2003518724A/ja
Priority to CA002395542A priority patent/CA2395542A1/en
Priority to EP00990572A priority patent/EP1252681A2/de
Publication of WO2001048854A2 publication Critical patent/WO2001048854A2/de
Publication of WO2001048854A3 publication Critical patent/WO2001048854A3/de
Priority to US10/178,414 priority patent/US20020192533A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a membrane electrode assembly for a fuel cell, in particular a PEM fuel cell, and a manufacturing method therefor.
  • MEA Membrane Electrode Assembly
  • catalytically active electrode coatings are applied directly to the membrane.
  • the general property of electrodes manufactured in this and a similar way is that they are coated with a homogeneous thickness and a constant concentration of active material. Since the conversion of the process gases takes place at the so-called 3-phase boundary layer (catalyst, gas, electrolyte), a large part of the catalyst in each electrode is unused for the electrochemical reaction.
  • the object of the invention is therefore to provide a membrane electrode assembly for a fuel cell and a manufacturing method for this, in which flexibility in the thickness of the electrocatalyst layer is ensured.
  • the object is achieved with respect to the membrane electrode unit by the entirety of the features of patent claim 1. Developments are specified in the dependent claims. Suitable processes for the production of such rather membrane electrode units are the subject of the method claims.
  • the invention relates to a membrane-electrode unit for a fuel cell in which the electrocatalyst layer and / or the noble metal concentration is asymmetrical, the distribution of the electrocatalyst layer and / or the noble metal concentration being adapted to the requirements of the respective membrane area.
  • the invention also relates to a method for producing a membrane-electrode unit, in which the membrane is rolled onto and / or sprayed onto the electrode.
  • a low concentration of catalyst powder and / or precious metal is necessary in the areas of the active cell area where there is high process gas with a high proportion of reactant and high temperature (e.g. at the gas inlet). In the poorly flowed areas of the active cell area, however, a higher degree of coverage of the membrane with catalyst powder and / or noble metal is advisable in order to achieve a uniform reaction over the entire area, if possible.
  • an asymmetrical, solid support for the catalyst powder lies on the membrane, which promotes the asymmetrical distribution of the catalyst powder and / or the noble metal.
  • the asymmetry of the layer of catalyst powder and / or noble metal coating and / or the carrier relates to the thickness and / or height of the layer and / or the carrier and / or to the concentration of the noble metal in the layer, so that a layer with a uniform thickness but different concentrations of precious metal also fall under the term "asymmetrical 1 " used here.
  • the electrode has no solid support, but the membrane is coated asymmetrically with catalyst paste or catalyst ink, in accordance with the rate of conversion of the area.
  • the coating can be done by rolling or spraying.
  • the electrode also connects directly to the membrane without a solid support, the asymmetry of the noble metal concentration being introduced in the electrode when producing the catalyst paste and / or catalyst ink.
  • FIG. 1 shows the section through the upper half of a membrane electrode assembly with the coating of an electrocatalyst powder
  • FIG. 2 shows the top view of a membrane electrode assembly.
  • MEA Membrane Electrode Assembly
  • PEM Polymer Electrode Membrane
  • Such membranes are commercially available under the protective name Nafion, only the upper part being shown in FIG. 1.
  • an electrode for example a cathode of the MEA
  • catalyst powder on the one hand and carbon particles as carriers for the catalyst particles are applied to the membrane.
  • a thin catalyst layer results directly on the surface of the membrane, and depending on the distance from the membrane surface, the concentration of the catalyst can be reduced as required.
  • Individual soot particles are indicated in FIG. 1, on the surfaces of which the much more finely divided catalyst particles 3 are attached. Areas with a three-phase boundary are formed from the surface of the membrane 1 and areas of the soot grains 2 and catalyst particles 3, which is indicated by 5.
  • An MEA is designated by 10 in FIG.
  • a rectangular surface with dimensions a and b results.
  • Three separate areas are defined in the area, namely an area E near the inlet, an area M in the middle and an area A near the outlet.
  • Practical experience from the relationship between reactant concentration in the process gas and catalyst occupancy has shown that there is less need for catalyst in the inlet area E of the electrode area than in the outlet area A where the process gas is depleted of reactant to be converted.
  • Another exemplary embodiment for asymmetrical catalytic converter occupancy is useful when using additional catalytic converter materials.
  • the high proportion of CO which is known as a catalyst poison in platinum
  • a catalyst such as e.g. Ruthenium, which has an increased catalytic activity for CO oxidation, specifically converts the CO in the inlet area. Pure platinum is then available in the outlet area for converting the reaction gas.
  • An asymmetrical structure of the catalyst layer is also advantageous for optimized thermal management, in particular in the selective autothermal heating of the cell or the stack by direct recombination of the reactants in the cell.
  • An analog, but external heating process is described in the other context.
  • the (electro) catalyst powder, paste, ink and / or general electrocatalyst layer is the catalytically active coating, depending on the stage of manufacture, which causes the controlled detonating gas reaction to take place in the fuel cell unit.
  • the finished Elektrokata ⁇ lysator für on the membrane is referred to as electrode and contains noble metal in a concentration sufficient that acti ⁇ be archived on the layer incident Listegasteilchen.
  • a typical example of a catalyst powder is platinum powder.
  • the membrane any type of membrane and / or matrix designated ⁇ net, which is a polymeric electrolyte in the fuel cell.
  • a membrane lies on the hot roller with which an electrode is coated.
  • the membrane is sprayed onto the electrode.
  • the membrane is approximately half the thickness of the finished membrane.
  • the two electrodes are coated separately with a membrane, so that one half of the membrane electrode unit is formed.
  • the membrane-electrode assembly is then created by applying the two membrane halves to one another.
  • the finished membrane electrode assembly is only created by assembling the fuel cell stack, because only then does the membrane halves meet when the two coated electrodes meet and the actual membrane electrolyte is produced in the required thickness.
  • Membrane halves can be combined, can advantageously be used to ensure that additional layers, such as another ca Talysator GmbH, electrolyte powder or other materials can be incorporated in the middle of the membrane.
  • the manufacturing process is characterized in that the electrodes are coated with a membrane for the first time and not - as in the prior art - the electrode coating is applied to the membrane.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Eine Membran-Elektroden-Einheit für eine Brennstoffzelle, insbesondere eine PEM-Brennstoffzelle, und ein Herstellungsverfahren dazu. Dabei wird eine asymmetrische Verteilung des teuren Edelmetalls (3) auf der Membran (1), entsprechend dem Bedarf des jeweiligen Bereichs realisiert. Das Herstellungsverfahren zeichnet sich dadurch aus, dass erstmals die Elektroden mit Membran beschichtet werden und nicht umgekehrt.

Description

Beschreibung
Membran-Elektroden-Einheit für eine Brennstoffzelle und Herstellungsverfahren dazu
Die Erfindung betrifft eine Membran-Elektroden-Einheit für eine Brennstoffzelle, insbesondere eine PEM-Brennstoffzelle, und ein Herstellungsverfahren dazu.
Mit der älteren, nicht vorveröffentlichten DE 198 50 119 AI wird eine Membran-Elektroden-Einheit (MEA = Membrane Electro- de Assembly) vorgeschlagen, bei der katalytisch wirkende Elektrodenbeschichtungen direkt auf der Membran aufgebracht sind. Generelle Eigenschaft so und in ähnlicher Weise herge- stellter Elektroden ist, dass sie homogen dick mit einer gleichbleibenden Konzentration an aktivem Material beschichtet sind. Da die Umsetzung der Prozessgase an der sogenannten 3-Phasengrenzschicht (Katalysator, Gas , Elektrolyt) stattfindet, ist in jeder Elektrode ein Großteil des Katalysators für die elektrochemische Reaktion ungenutzt.
Bei der Einführung der BrennstoffZellentechnologie in die Praxis, beispielsweise zur mobilen Anwendung bei Kraftfahrzeugen, spielt die Kostenminimierung eine entscheidende Rol- le, so dass der Bedarf besteht, die Dicke der Beschichtung flexibel und somit für jeden Bereich der Membran optimiert zu gestalten.
Aufgabe der Erfindung ist es daher, eine Membran-Elektroden- Einheit für eine Brennstoffzelle und ein Herstellungsverfahren dazu zu schaffen, bei denen Flexibilität in der Dicke der Elektrokatalysatorschicht gewährleistet .
Die Aufgabe ist erfindungsgemäß bezüglich der Membran-Elek- trodeneinheit durch die Gesamtheit der Merkmale des Patentanspruches 1 gelöst. Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Geeignete Verfahren zur Herstellung sol- eher Membran-Elektrodeneinheiten sind Gegenstand der Verfahrensansprüche .
Gegenstand der Erfindung ist eine Membran-Elektroden-Einheit für eine Brennstoffzelle, bei der die Elektrokatalysator- schicht und/oder die Edelmetallkonzentration asymmetrisch ist, wobei die Verteilung der Elektrokatalysatorschicht und/oder der Edelmetallkonzentration dem Bedarf des jeweiligen Membranbereichs angepasst ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Herstellung einer Membran- Elektroden-Einheit, bei dem die Membran auf die Elektrode aufgewalzt und/oder aufgesprüht wird.
Es hat sich herausgestellt, dass auf der aktiven Zellfläche, wo die Umsetzung der Prozessgase stattfindet, nicht überall der gleiche Partialdruck an Reaktanden im Prozessgas und/oder die gleiche Temperatur herrscht. Je nach Partialdruck und/ oder Temperatur der Prozessgase steigt oder sinkt die Umsetzungsrate und damit die Zahl der Gasteilchen, die pro Zeit- einheit auf die Katalysatorschicht mit Edelmetall auftreffen, wo sie für ihre Umsetzung an der Grenzfläche zur Membran aktiviert werden.
In den Bereichen der aktiven Zellfläche, auf denen hoher Pro- zessgas mit hohem Anteil an Reaktand und hohe Temperatur herrschen (z.B. am Gaseinlass) ist eine niedere Konzentration an Katalysatorpulver und/oder Edelmetall notwendig. An den schlechter umströmten Bereichen der aktiven Zellfläche ist jedoch ein höherer Belegungsgrad der Membran mit Katalysator- pulver und/oder Edelmetall sinnvoll, um möglichst auf der gesamten Fläche eine einheitliche Reaktion zu erzielen.
Nach einer Ausführungsform der Membran-Elektroden-Einheit liegt auf der Membran ein asymmetrischer, fester Träger für das Katalysatorpulver, wie ein Metallvlies und/oder ein Kohlegewebe, auf, der die asymmetrische Verteilung des Katalysatorpulvers und/oder des Edelmetalls fördert. Die Asymmetrie der Schicht an Katalysatorpulver und/oder Edelmetallbelegung und/oder des Trägers bezieht sich auf die Dicke und/oder Höhe der Schicht und/oder des Trägers und/oder auf die Konzentration des Edelmetalls in der Schicht, so dass eine Schicht mit gleichmäßiger Dicke aber unterschiedlichen Konzentrationen an Edelmetall auch unter den hier gebrauchten Begriff „asymmetrisch1" fällt.
Nach einer bevorzugten Ausführungsform der Membran-Elektroden-Einheit hat die Elektrode keinen festen Träger, sondern die Membran ist mit Katalysatorpaste oder Katalysatortinte asymmetrisch, entsprechend der Umsetzungsrate des Bereichs, beschichtet. Die Beschichtung kann durch Aufwalzen oder Be- sprühen erfolgen.
Nach letzterer Ausführungsform schließt die Elektrode auch ohne festen Träger direkt an die Membran an, wobei die Asymmetrie der Edelmetallkonzetration in der Elektrode beim Her- stellen der Katalysatorpaste und/oder Katalysatortinte eingeführt wurde .
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen. Es zeigen
Figur 1 den Schnitt durch die obere Hälfte einer Membran- Elektroden-Einheit mit der Beschichtung eines Elek- trokatalysatorpulvers und Figur 2 die Draufsicht auf eine Membran-Elektroden-Einheit.
In der Figur 1 ist eine Polymer-Membran, die Kernstück einer Membran-Elektroden-Einheit (MEA = Membrane Electrode As- sembly) einer PEM (Polymer Electrode Membrane) -Brennstoff- zelle ist, mit 1 bezeichnet. Solche Membranen sind handelsüblich unter der Schutzbezeichnung Nafion erhältlich, wobei in Figur 1 nur der obere Teil dargestellt ist. Auf die Membran werden zur Definition einer Elektrode, beispielsweise einer Kathode der MEA, Katalysatorpulver einerseits und Kohlenstoffpartikel als Träger für die Katalysator- partikel andererseits aufgebracht. Im Einzelnen ergibt sich eine dünne Katalysatorschicht unmittelbar auf der Oberfläche der Membran, wobei in Abhängigkeit vom Abstand der Membranoberfläche die Konzentration des Katalysators entsprechend dem Bedarf verringert werden kann. In der Figur 1 sind ein- zelne Rußpartikel angedeutet, an deren Oberflächen die wesentlich feinteiligeren Katalysatorpartikel 3 angelagert sind. Es werden von der Oberfläche der Membran 1 sowie Bereichen der Rußkörner 2 und Katalysatorpartikel 3 jeweils Bereiche mit einer Dreiphasengrenze gebildet, was mit 5 angedeutet ist.
Es kann zweckmäßig sein, auf der Membran 1 eine weitestgehend geschlossene, dünne Schicht von Katalysatorpartikeln vorzusehen, so dass sich hier eine hohe Konzentration von Katalysa- tor ergibt. Im Abstand zur Membranoberfläche sind nur noch einzelne Katalysatorpartikel an den Rußkörnern angelagert, wobei zur Außenfläche der Elektrode, bei der ein Elektrodenträger vorhanden sein kann, kein Katalysatormaterial mehr vorhanden ist. Es liegt also ein Gradient in der Katalysator- konzentration vor, da außen kein Katalysatorpulver, das aus teurem Edelmetall besteht, mehr benötigt wird. Damit lassen sich erhebliche Kosteneinsparungen für den praktischen Gebrauch erzielen.
In der Figur 2 ist eine MEA mit 10 bezeichnet. In der Draufsicht auf die Elektrodenfläche ergibt sich eine rechteckige Fläche mit den Abmaßen a und b. Es ist ein Einlass 11 für Prozessgas und ein Auslass 12 für Prozessgas vorhanden. In der Fläche sind drei separate Bereiche definiert, und zwar ein Bereich E in der Nähe des Einlasses, ein Bereich M in der Mitte und ein Bereich A in der Nähe des Auslasses. Praktische Erfahrungen aus dem Zusammenhang von Konzentration Reaktand im Prozessgas und Katalysatorbelegung haben gezeigt, dass im Einlassbereich E der Elektrodenfläche ein geringerer Bedarf an Katalysator besteht als im Auslassbereich A wo das Prozessgas an umzusetzenden Reaktand verarmt ist.
Genauso wie in Figur 1 die Asymmetrie in Abstandsrichtung von der Membran realisiert wird, lässt sich nunmehr auch errei¬ chen, dass in bestimmten Membranbereichen der Fläche eine ho- he Edelmetallkonzentration vorliegt und in anderen Bereichen der Membran-Elektroden-Einheit nur eine geringe Edelmetallkonzentration. Im Allgemeinen gilt für die Konzentration c am Katalysator längs der Elektrodenfläche:
CE ≠ CM ≠ cA (1)
Insbesondere ist dabei: cE < cA. (2)
Auch durch die Maßnahmen der Konzentrationsanpassung ergeben sich erhebliche Einsparungen. Davon abgesehen wird die elektrochemische Reaktion über die Fläche vergleichmäßigt.
Ein weiteres Ausführungsbeispiel für eine asymmetrische Kata- lysatorbelegung ist beim Einsatz zusätzlicher Katalysatormaterialien sinnvoll. So kann beim Einsatz ungereinigter Reformergase der hohe Anteil von CO, das bei Platin als Katalysa- torgift bekannt ist, durch Verwendung eines Katalysators wie z.B. Ruthenium, der eine erhöhte katalytische Aktivität zur CO-Oxidation aufweist, im Einlassbereich gezielt das CO umsetzen. Im Auslassbereich steht dann reines Platin zur Umsetzung des Reaktionsgases zur Verfügung.
Ein asymmetrischer Aufbau der Katalysatorschicht ist auch vorteilhaft für ein optimiertes thermisches Management, insbesondere beim selektiven autothermen Aufheizen der Zelle bzw. des Stacks durch direkte Rekombination der Reaktanden in der Zelle. Ein analoges, jedoch externes Aufheizverfahren wird im anderen Zusammenhang beschrieben.
Als (Elektro) Katalysatorpulver, -paste, -tinte und/oder all- gemein Elektrokatalysatorschicht wird der katalytisch aktive Belag, je nach Stadium der Herstellung, bezeichnet, der bewirkt, dass die kontrollierte Knallgasreaktion in der Brennstoffzelleneinheit stattfinden kann. Die fertige Elektrokata¬ lysatorschicht auf der Membran wird als Elektrode bezeichnet und enthält Edelmetall in einer Konzentration, die ausreicht, dass auf der Schicht auftreffende Prozessgasteilchen akti¬ viert werden. Ein typisches Beispiel eines Katalysatorpulvers ist Platinpulver.
Als Membran wird jede Art an Membran und/oder Matrix bezeich¬ net, die einen polymeren Elektrolyten innerhalb der Brennstoffzelle darstellt.
Beim Verfahren zur Herstellung der beschriebenen Me bran- Elektroden-Einheit liegt nach einer Ausführungsform eine Membran auf der heißen Walze, mit der eine Elektrode beschichtet wird. Nach einer anderen Ausführungsform des Verfahrens wird die Membran auf die Elektrode aufgesprüht. Die Membran hat ungefähr die halbe Dicke der fertigen Membran. Die beiden Elektroden werden getrennt mit Membran beschichtet, so dass jeweils eine Hälfte der Membran-Elektroden-Einheit entsteht. Die Membran-Elektroden-Einheit entsteht dann durch Aufbringen der beiden Membranhälften aufeinander.
Nach letzterer Vorgehensweise entsteht erst durch die Montage des Brennstoffzellenstapels die fertige Membran-Elektroden- Einheit, weil dann erst durch das Aufeinandertreffen der beiden beschichteten Elektroden die Membranhälften aufeinandertreffen und der eigentliche Membran-Elektrolyt in der erfor- derlichen Dicke entsteht. Der Arbeitsschritt, bei dem die
Membranhälften vereint werden, kann vorteilhafterweise dazu genutzt werden, dass weitere Schichten, wie eine weitere Ka- talysatorschicht, Elektrolytpulver oder sonstige Materialien in die Membran mittig eingearbeitet werden können.
Mit der Erfindung wird eine asymmetrische Verteilung des teu- ren Katalysatorpulvers und/oder Edelmetalls auf der Membran, entsprechend dem Bedarf des jeweiligen Me branbereichs realisiert. Das Herstellungsverfahren zeichnet sich dadurch aus, dass erstmals die Elektroden mit Membran beschichtet werden und nicht - wie beim Stand der Technik - die Elektrodenbe- Schichtung auf die Membran aufgebracht wir.

Claims

Patentansprüche
1. Membran-Elektroden-Einheit für eine Brennstoffzelle, bei der die Elektrokatalysatorschicht und/oder die Edelmetallkon- zentration asymmetrisch ist, wobei die Verteilung der Elektrokatalysatorschicht und/oder der Edelmetallkonzentration dem Bedarf des jeweiligen Membranbereichs angepasst ist.
2. Membran-Elektroden-Einheit nach Anspruch 1, d a - d u r c h g e k e n n z e i c h n e t , dass die Konzentration (c) der Elektrodenschicht und/oder die Edelmetallkonzentration mit der Dicke (d) der Schicht abnimmt.
3. Membran-Elektroden-Einheit nach Anspruch 1, d a - d u r c h g e k e n n z e i c h n e t , dass die Konzentration (cE) der Elektrokatalysatorschicht und/oder die Edelmetallkonzentration im Eingangsbereich (E) des Prozessgases ungleich der Konzentration (cA) der Elektrokatalysatorschicht und/oder die Edelmetallkonzentration im Ausgangsbereich (A) des Prozessgases ist.
4. Membran-Elektroden-Einheit nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass gilt: cE ≠ cM ≠ CA , (1) wobei CE die Konzentration (c) der Elektrokatalysatorschicht und/oder die Edelmetallkonzentration im Eingangsbereich (E) des Prozessgases , CE die Konzentration (c) der Elektrokatalysatorschicht und/oder die Edelmetallkonzentration im Mittenbereich (M) der Anordnung und CE die Konzentration (c) der Elektrokatalysatorschicht und/oder die Edelmetallkonzentration Ausgangsbereich (A) des Prozessgases bedeuten.
5. Membran-Elektroden-Einheit nach Anspruch 4 und Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass die Kon- zentration (cE) der Elektrokatalysatorschicht und/oder die
Edelmetallkonzentration im Eingangsbereich (E) des Prozessgases kleiner ist als die Konzentration (cA) der Elektrokataly- satorschicht und/oder die Edelmetallkonzentration im Ausgangsbereich (A) des Prozessgases ist.
6. Membran-Elektroden-Einheit nach Anspruch 1, d a - d u r c h g e k e n n z e i c h n e t , dass die Elektrokatalysatorschicht einen festen Träger hat.
7. Membran-Elektroden-Einheit nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Elek- trokatalysatorschicht direkt auf die Membran aufgebracht ist.
8. Verfahren zur Herstellung einer Membran-Elektroden-Einheit nach Anspruch 1 oder einem der Ansprüche 2 bis 7, wobei die Membran auf die Elektrode aufgewalzt und/oder aus einer Mem- bran mit beidseitiger Behältern zusammengefügt werden aufgesprüht wird.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass jeweils eine Hälfte der Membran- Elektroden-Einheit hergestellt wird, wobei die Membran mit zwei Hälften getrennt voneinander auf eine Elektrode aufgewalzt und/oder aufgesprüht werden.
PCT/DE2000/004595 1999-12-23 2000-12-22 Membran-elektroden-einheit für eine brennstoffzelle und herstellungsverfahren dazu WO2001048854A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001548468A JP2003518724A (ja) 1999-12-23 2000-12-22 燃料電池の膜電極ユニットとその製造方法
CA002395542A CA2395542A1 (en) 1999-12-23 2000-12-22 Membrane electrode assembly for a fuel cell and a method for producing the same
EP00990572A EP1252681A2 (de) 1999-12-23 2000-12-22 Membran-elektroden-einheit für eine brennstoffzelle und herstellungsverfahren dazu
US10/178,414 US20020192533A1 (en) 1999-12-23 2002-06-24 Membrane electrode assembly for a fuel cell and a method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19962686A DE19962686A1 (de) 1999-12-23 1999-12-23 Membran-Elektroden-Einheit für eine Brennstoffzelle und Herstellungsverfahren dazu
DE19962686.3 1999-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/178,414 Continuation US20020192533A1 (en) 1999-12-23 2002-06-24 Membrane electrode assembly for a fuel cell and a method for producing the same

Publications (2)

Publication Number Publication Date
WO2001048854A2 true WO2001048854A2 (de) 2001-07-05
WO2001048854A3 WO2001048854A3 (de) 2002-03-28

Family

ID=7934283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004595 WO2001048854A2 (de) 1999-12-23 2000-12-22 Membran-elektroden-einheit für eine brennstoffzelle und herstellungsverfahren dazu

Country Status (7)

Country Link
US (1) US20020192533A1 (de)
EP (1) EP1252681A2 (de)
JP (1) JP2003518724A (de)
CN (1) CN1425207A (de)
CA (1) CA2395542A1 (de)
DE (1) DE19962686A1 (de)
WO (1) WO2001048854A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512736A (ja) * 2002-12-30 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー 耐食性・腐食保護カソード触媒層を有する燃料電池
CN112219302A (zh) * 2018-05-30 2021-01-12 原子能和替代能源委员会 限制co中毒的燃料电池和中毒诊断方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056537A1 (de) * 2000-11-15 2002-06-20 Mtu Friedrichshafen Gmbh Brennstoffzelle und Verfahren zu deren Herstellung
DE10112232A1 (de) * 2001-03-07 2002-09-19 Deutsch Zentr Luft & Raumfahrt Verfahren zur Herstellung einer mehrschichtigen Elektrode oder Elektrodenverbundeinheit und Gasdiffusionselektrode
TWI265654B (en) 2001-11-21 2006-11-01 Polyfuel Inc Catalyst agglomerates for membrane electrode assemblies
JP2003173785A (ja) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp 固体高分子型燃料電池用触媒層の形成方法及びその形成装置
DE10254114B4 (de) * 2002-11-20 2007-09-27 Ballard Power Systems Inc., Burnaby Gasdiffusionselektrode, Polymerelektrolytmembran-Brennstoffzelle und Polymerelektrolytmembran-Brennstoffzellenstapel
JP4493954B2 (ja) * 2003-09-01 2010-06-30 パナソニック株式会社 高分子電解質膜−電極接合体およびこれを用いた高分子電解質型燃料電池
US20050095494A1 (en) * 2003-11-03 2005-05-05 Fuss Robert L. Variable catalyst loading based on flow field geometry
JP5124900B2 (ja) * 2003-11-06 2013-01-23 トヨタ自動車株式会社 スタック構造を有する燃料電池
JP4917737B2 (ja) * 2003-11-12 2012-04-18 日産自動車株式会社 燃料電池用電解質膜および燃料電池
JP4967220B2 (ja) * 2004-03-30 2012-07-04 日産自動車株式会社 燃料電池
GB0411733D0 (en) * 2004-05-26 2004-06-30 Johnson Matthey Plc Anode structure
JP2006012476A (ja) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd 燃料電池用膜−電極接合体
FR2894076B1 (fr) * 2005-11-30 2014-07-11 Centre Nat Rech Scient Procede de fabrication, par depot sur un support, d'electrode pour pile a combustible
JP5034252B2 (ja) * 2006-02-07 2012-09-26 凸版印刷株式会社 固体高分子型燃料電池用電極触媒層およびその製造方法
US8815468B2 (en) * 2009-06-24 2014-08-26 Ford Global Technologies, Llc Layered electrodes and membrane electrode assemblies employing the same
US9325017B2 (en) 2009-07-28 2016-04-26 GM Global Technology Operations LLC Method for controlling ionomer and platinum distribution in a fuel cell electrode
JP5178673B2 (ja) * 2009-09-24 2013-04-10 本田技研工業株式会社 固体高分子型燃料電池
DE102019104561A1 (de) 2019-02-22 2020-08-27 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Verfahren zur Herstellung einer Kompositschicht, elektrochemische Einheit und Verwendung der Kompositschicht
CN114204041B (zh) * 2021-11-12 2023-12-05 广东泰极动力科技有限公司 一种燃料电池催化层结构及其制作工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804592A (en) * 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
EP0560295A1 (de) * 1992-03-09 1993-09-15 Hitachi, Ltd. Wasserstoff-Sauerstoff-Brennstoffzelle mit polymeren Elektrolyten
WO1994014203A1 (de) * 1992-12-07 1994-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrodenmembran
EP0654837A1 (de) * 1993-11-23 1995-05-24 Johnson Matthey Public Limited Company Herstellungsverfahren von Elektroden
US5521020A (en) * 1994-10-14 1996-05-28 Bcs Technology, Inc. Method for catalyzing a gas diffusion electrode
EP0736921A1 (de) * 1995-04-05 1996-10-09 Johnson Matthey Public Limited Company Elektrode mit zwei Elektrokatalysatoren
US5607785A (en) * 1995-10-11 1997-03-04 Tanaka Kikinzoku Kogyo K.K. Polymer electrolyte electrochemical cell and process of preparing same
WO1997023919A1 (de) * 1995-12-22 1997-07-03 Hoechst Research & Technology Deutschland Gmbh & Co.Kg Kontinuierliches verfahren zur herstellung von menbran-elektroden-verbunden (mea)
US5998057A (en) * 1995-11-28 1999-12-07 Magnet-Motor Gesellschaft fur Magnetmotorische Technik GmbH Gas diffusion electrode for polymer electrolyte membrane fuel cells
WO2000052775A1 (de) * 1999-02-27 2000-09-08 Forschungszentrum Jülich GmbH Brennstoffzellen-elektrode
WO2001022516A1 (de) * 1999-09-23 2001-03-29 Siemens Aktiengesellschaft Brennstoffzelle mit internem reformer und verfahren zu deren betrieb

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1426321A (en) * 1972-01-05 1976-02-25 Nat Res Dev Membrane electrodes
IN170542B (de) * 1986-12-19 1992-04-11 Dow Chemical Co
US4851377A (en) * 1987-06-16 1989-07-25 International Fuel Cells Corporation Fuel cell, a fuel cell electrode, and a method for making a fuel cell electrode
DE3784348T2 (de) * 1987-09-01 1993-06-09 Dow Chemical Co Mit einer feststoffpolymer-membran verbundener stromkollektor.
JPH03245463A (ja) * 1990-02-22 1991-11-01 Fuji Electric Co Ltd 燃料電池
DE19513292C1 (de) * 1995-04-07 1996-08-22 Siemens Ag Brennstoffzelle
DE19519847C1 (de) * 1995-05-31 1997-01-23 Forschungszentrum Juelich Gmbh Anodensubstrat für eine Hochtemperatur-Brennstoffzelle
JPH0935723A (ja) * 1995-07-20 1997-02-07 Toyota Motor Corp 電極用合金触媒および燃料電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804592A (en) * 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
EP0560295A1 (de) * 1992-03-09 1993-09-15 Hitachi, Ltd. Wasserstoff-Sauerstoff-Brennstoffzelle mit polymeren Elektrolyten
WO1994014203A1 (de) * 1992-12-07 1994-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrodenmembran
EP0654837A1 (de) * 1993-11-23 1995-05-24 Johnson Matthey Public Limited Company Herstellungsverfahren von Elektroden
US5521020A (en) * 1994-10-14 1996-05-28 Bcs Technology, Inc. Method for catalyzing a gas diffusion electrode
EP0736921A1 (de) * 1995-04-05 1996-10-09 Johnson Matthey Public Limited Company Elektrode mit zwei Elektrokatalysatoren
US5607785A (en) * 1995-10-11 1997-03-04 Tanaka Kikinzoku Kogyo K.K. Polymer electrolyte electrochemical cell and process of preparing same
US5998057A (en) * 1995-11-28 1999-12-07 Magnet-Motor Gesellschaft fur Magnetmotorische Technik GmbH Gas diffusion electrode for polymer electrolyte membrane fuel cells
WO1997023919A1 (de) * 1995-12-22 1997-07-03 Hoechst Research & Technology Deutschland Gmbh & Co.Kg Kontinuierliches verfahren zur herstellung von menbran-elektroden-verbunden (mea)
WO2000052775A1 (de) * 1999-02-27 2000-09-08 Forschungszentrum Jülich GmbH Brennstoffzellen-elektrode
WO2001022516A1 (de) * 1999-09-23 2001-03-29 Siemens Aktiengesellschaft Brennstoffzelle mit internem reformer und verfahren zu deren betrieb

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 037 (E-1160), 29. Januar 1992 (1992-01-29) -& JP 03 245463 A (FUJI ELECTRIC CO LTD), 1. November 1991 (1991-11-01) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 06, 30. Juni 1997 (1997-06-30) -& JP 09 035723 A (TOYOTA MOTOR CORP), 7. Februar 1997 (1997-02-07) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512736A (ja) * 2002-12-30 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー 耐食性・腐食保護カソード触媒層を有する燃料電池
CN112219302A (zh) * 2018-05-30 2021-01-12 原子能和替代能源委员会 限制co中毒的燃料电池和中毒诊断方法

Also Published As

Publication number Publication date
JP2003518724A (ja) 2003-06-10
US20020192533A1 (en) 2002-12-19
CA2395542A1 (en) 2001-07-05
EP1252681A2 (de) 2002-10-30
WO2001048854A3 (de) 2002-03-28
CN1425207A (zh) 2003-06-18
DE19962686A1 (de) 2001-07-26

Similar Documents

Publication Publication Date Title
WO2001048854A2 (de) Membran-elektroden-einheit für eine brennstoffzelle und herstellungsverfahren dazu
EP1037295B1 (de) Verfahren zum Aufbringen von Elektrodenschichten auf eine bandförmige Polymerelektrolytmembran für Brennstoffzellen
DE112005001378B4 (de) Membranelektrodenanordnung
EP0934606B1 (de) Elektroden-elektrolyt-einheit für eine brennstoffzelle
DE60118884T2 (de) Verfahren zur herstellung einer anoden-tragenden elektrolyt enthaltende anordnung und solche anordnung enthaltende keramische zelle
WO1997023919A1 (de) Kontinuierliches verfahren zur herstellung von menbran-elektroden-verbunden (mea)
EP1396039A2 (de) Brennstoffzelle und verfahren zur herstellung einer solchen brennstoffzelle
DE112004002665T5 (de) Haltbares, mit einem Katalysator einer Membranelektrodenanordnung beschichtetes Diffusionsmedium ohne Laminierung an die Membran
DE102021206035A1 (de) Strukturierte katalysatorschichten in brennstoffzellen
DE112005000891T5 (de) Kathode für eine Brennstoffzelle und Verfahren derselben
EP1051768B1 (de) Brennstoffzelle mit einem protonenleitfähigen elektrolyten
DE19908591B4 (de) Brennstoffzellen-Elektrode
DE102013206789A1 (de) Bipolarplatte für eine Brennstoffzelle, Verfahren zu ihrer Herstellung sowie Brennstoffzelle mit einer solchen Bipolarplatte
DE112006001746B4 (de) Elektrolytmembran und Verfahren zu ihrer Herstellung
WO2020030355A1 (de) Schichtaufbau für eine brennstoffzelle und verfahren zur herstellung eines solchen schichtaufbaus
EP2399312B1 (de) Katalysatorschicht für den einsatz in einer brennstoffzelle sowie verfahren zu deren herstellung
WO2003031053A1 (de) Verteilerstruktur für betriebsmittel, verfahren zu ihrer herstellung und ihre verwendung
EP1070362A1 (de) Bipolare platte mit poröser wand eines brennstoffzellenstapels
WO2017025557A1 (de) Membran-elektroden-einheit für eine brennstoffzelle sowie brennstoffzelle
EP3915162B1 (de) Verfahren zur herstellung einer elektrode und elektrode für eine brennstoffzelle
DE19744028C2 (de) Elektrode mit aufgebrachten, kohlenmonoxidempfindlichen Katalysatorpartikeln sowie deren Verwendung
DE102018204602A1 (de) Gasverteilerstruktur für eine Brennstoffzelle
DE60302932T2 (de) Verfahren zur kontinuierlichen Herstellung von Gasdiffusionsschichten für Brennstoffzellen
WO2024115026A1 (de) Bipolarplatte, verfahren zum herstellen einer bipolarplatte, zelle sowie elektrochemischer energiewandler
DE102022132905A1 (de) Verfahren zur Herstellung eines Trägermaterials, Katalysatormaterial und elektrochemische Zelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000990572

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 548468

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2395542

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10178414

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 008184690

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000990572

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000990572

Country of ref document: EP