WO2001044630A2 - VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS - Google Patents

VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS Download PDF

Info

Publication number
WO2001044630A2
WO2001044630A2 PCT/EP2000/012210 EP0012210W WO0144630A2 WO 2001044630 A2 WO2001044630 A2 WO 2001044630A2 EP 0012210 W EP0012210 W EP 0012210W WO 0144630 A2 WO0144630 A2 WO 0144630A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic converter
storage catalytic
lambda
desulfurization
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2000/012210
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2001044630A3 (de
Inventor
Ekkehard Pott
Hermann Hahn
Jürgen Höhne
Ulrich Göbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMC2 Degussa Metals Catalysts Cerdec AG
Umicore AG and Co KG
Volkswagen AG
Original Assignee
DMC2 Degussa Metals Catalysts Cerdec AG
Umicore AG and Co KG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMC2 Degussa Metals Catalysts Cerdec AG, Umicore AG and Co KG, Volkswagen AG filed Critical DMC2 Degussa Metals Catalysts Cerdec AG
Priority to DE50013067T priority Critical patent/DE50013067D1/de
Priority to AU26718/01A priority patent/AU2671801A/en
Priority to EP00989947A priority patent/EP1250524B1/de
Priority to JP2001545697A priority patent/JP4615808B2/ja
Priority to US10/168,157 priority patent/US6941748B2/en
Publication of WO2001044630A2 publication Critical patent/WO2001044630A2/de
Publication of WO2001044630A3 publication Critical patent/WO2001044630A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0811NOx storage efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus

Definitions

  • the invention relates to a method for desulfurizing a NO x storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine.
  • the internal combustion engine is preferably operated in a lean mode, in which the lambda value is greater than 1, that is to say there is an excess of oxygen with respect to the amount of fuel in the air / fuel mixture.
  • environmentally harmful exhaust gas components such as carbon monoxide CO and incompletely burned hydrocarbons HC, are produced in a relatively small proportion and can be completely converted into less environmentally relevant compounds thanks to the excess of oxygen.
  • the nitrogen oxides NO x which are relatively strong in lean mode, cannot be completely reduced and are stored as nitrates in the NO x storage catalytic converter.
  • Regeneration of the NO x absorber takes place at regular intervals, in which the internal combustion engine is operated in a rich mode with ⁇ ⁇ 1, and the reducing agents CO, HC and H2 are formed to a sufficient extent so that the stored nitrogen oxides can be converted quantitatively to nitrogen ,
  • the release of the nitrogen oxides from the NO x storage catalytic converter is supported in the rich mode by elevated temperatures on the catalytic converter.
  • the desulfurization is preferably not carried out in constant rich operation of the internal combustion engine with a rich lambda value, but with alternating exposure of the NO x storage catalyst to rich and lean exhaust gas.
  • the release of toxic and unpleasant-smelling hydrogen sulfide H2S the formation of which is kinetically inhibited compared to the desired sulfur dioxide formation SO2, can be suppressed almost completely
  • Detection of a desulfurization requirement is detected on the basis of a decreasing NO x storage activity or a NO x breakthrough in the lean exhaust gas, for example by means of NO x sensors.
  • a dip in the NO x storage activity is detected by the measured NO x throughput with a measured or modeled NO x throughput character of a regenerated NO x storage catalytic converter.
  • the success of a desulfurization process can only be detected on the basis of NO x concentrations upstream and downstream of the catalytic converter, by only detecting a recovery of the NO x activity.
  • a conclusion is drawn about a remaining amount of sulfur, by the measured NO x throughput is compared with the state of a regenerated NO x storage catalyst.
  • the disadvantage of this method is that no progress monitoring is possible during the desulfurization itself, but its success can only be assessed after the desulfurization has been completed.
  • the NO x storage catalyst first has to be cooled back to the working temperature of about 200 ° C to 500 ° C and, if the desulfurization is unsuccessful, it may have to be re-heated to the desulfurization temperature of over 600 ° C, this method is associated with increased fuel consumption Excessively long desulfurization processes can cause thermal damage to the NO x storage catalyst
  • the invention has for its object to provide a method for desulfurization of a NO x arranged in an exhaust gas duct of an internal combustion engine.
  • the formation of h ⁇ S is to be suppressed and, on the other hand, the desulfurization time is to be coordinated with the actual loading state of the NO x storage catalytic converter, so that fuel consumption is kept low and excessive thermal damage to the NO x storage catalytic converter can be avoided.
  • this object is achieved by a method for desulfurization with the features mentioned in independent claims 1 and 9. It was found that due to the decreasing amount of stored sulfates in the course of desulfurization, increasingly smaller amounts of reducing agent are consumed during the rich operating phases. In connection with this, shorter and shorter intervals are observed, in which a significant sulfate reduction takes place. According to the invention, this makes it possible to monitor the progress of the desulfurization on the basis of a course of a size of intervals during the desulfurization process, the interval lasting from the beginning of a rich operating phase to falling below a predeterminable lambda threshold value downstream of the NO x storage catalytic converter.
  • the threshold value is chosen to be less than 1 and greater than a predetermined lambda value upstream of the NO x storage catalytic converter.
  • n-th interval a previous (n-i) -th interval, where i means an integer positive number. If the difference falls below a predeterminable difference limit value at least once, the desulfurization is ended. It is particularly preferred here to calculate a difference between the nth interval and an immediately preceding (n-1) th interval.
  • An advantageous embodiment of the method provides that the size of an interval corresponds to its length in time. An nth interval can thus be recorded by measuring the start and end of the time.
  • An embodiment of the method according to the invention provides that an exhaust gas mass which is passed through the NO x storage catalytic converter for the duration of an interval determines the size of the interval. This can be determined, for example, by means of an air mass meter known per se. According to a further preferred embodiment, an even higher accuracy can be achieved in that the size of an interval is determined on the basis of a mass of reducing agent which has passed through the NO x catalyst during the duration of the interval. The mass of reducing agent passed through can be calculated in a known manner from the measured mass of exhaust gas passed through and the lambda value present in front of the NO x storage catalytic converter.
  • the progress of the desulfurization process can also be monitored on the basis of a time profile of a lambda probe voltage downstream of the NO x storage catalytic converter, which is determined after a predeterminable interval after the start of an n-th rich operating phase, since using conventional step response lambda probes and constant rich operating phases, the lambda probe voltage measured behind the NO x storage catalytic converter assumes steadily higher values as desulfurization proceeds. This is in turn due to the decreasing amount of stored sulfates, which causes the lambda value behind the NO x storage catalytic converter to drop earlier and earlier during a rich operating phase.
  • the course of the desulfurization is assessed by measuring the lambda probe voltage behind the NO x storage catalytic converter after a predeterminable period of time after the start of each rich operating phase and following its course over the duration of the desulfurization.
  • the lambda probe voltage is measured after a predeterminable mass of reducing agent or exhaust gas mass has passed after the start of each rich operating phase and its course is tracked.
  • the predeterminable interval regardless of whether this corresponds to a period of time, an exhaust gas mass or a reducing agent mass, corresponds to the length of the rich operating phases.
  • the maximum lambda probe voltage behind the NO x storage catalytic converter is determined at the end of each rich operating phase.
  • Figure 1 shows an arrangement of a catalyst system in an exhaust duct of an internal combustion engine
  • FIG. 2 shows a course of a lambda value measured in front of and behind a NO x storage catalytic converter during desulfurization
  • FIG. 3 shows a course of the time intervals as a function of the number of rich operating intervals
  • FIG. 5 shows a curve of a lambda probe voltage behind the NO x .
  • FIG. 10 An arrangement of a catalytic converter system 10 in an exhaust gas duct 12 of an internal combustion engine 14 is shown schematically in FIG.
  • the catalytic converter system 10 comprises a NO x storage catalytic converter 16, a pre-catalytic converter 18 and various temperature sensors 22.
  • gas sensors 19, 20, 21 are arranged at different positions of the exhaust gas duct 12. These gas sensors are used for the detection of at least one gas component of an exhaust gas of the internal combustion engine 14 and provide a signal to the engine control unit 24 in accordance with the content of the measured gas component.
  • gas sensors 19, 20, 21 are known and can be, for example, lambda sensors or NO x sensors.
  • All of the signals provided by the temperature sensors 22 and the gas sensors 19, 20, 21 are forwarded to an engine control unit 24.
  • an operating mode of the internal combustion engine 14 can be are regulated by the engine control unit 24. If, for example, a working mode with ⁇ ⁇ 1, that is to say a rich atmosphere, is required, an oxygen concentration in an intake manifold 26 upstream of the internal combustion engine 14 is reduced in that the engine control unit 24, for example, reduces a volume flow of intake air by means of a throttle valve 28 and / or low-oxygen exhaust gas leads back into the intake manifold 26 via an exhaust gas reflux valve 30. In this way, the proportions of reducing gas components CO, HC, H2 in the exhaust gas increase relative to a proportion of oxygen.
  • the throttle valve 28 is opened. Under these conditions, in which there is a deficit of reducing gas components in the exhaust gas, these can be converted almost completely in the pre-catalytic converter 18, that is to say oxidized. However, are in excess of existing nitrogen oxides NO x, but also SO 2 in NOx - storage catalyst absorbs 16th At recurring intervals, depending on a NO x storage capacity, the catalytic converter is charged with a rich exhaust gas in order to regenerate it. The previously absorbed NO x is reduced on a catalytically active surface of the NO x storage catalytic converter 16. At the same time, SO2 stored in the form of sulfate in the NO x storage catalytic converter 16 is not removed in this regeneration process, since the reversibility of the SO 2 storage, in contrast to the storage of NO x, requires significantly higher temperatures.
  • a need for desulfurization can be determined, for example, on the basis of an NO x storage activity of the NO x storage catalytic converter 16.
  • a NO x breakthrough characteristic can be detected by means of a gas sensor 21, which detects a NO x concentration behind the NO x storage catalytic converter 16. By comparing this value with theoretical or empirical models or with a NO x concentration present in front of the NO x storage catalytic converter 16, which can be detected, for example, with at least one of the gas sensors 19 or 20, a sulfur loading of the NO x storage catalytic converter 16 can be concluded become.
  • the catalytic converter 16 is first brought to a temperature which corresponds to or exceeds a minimum desulfurization temperature.
  • the current temperature at the NO x storage catalytic converter 16 can be detected, for example, via the temperature sensors 22.
  • FIG. 2 shows an example of a simplified course of a lambda value in front of and behind the NO x storage catalytic converter 16 during a desulfurization procedure.
  • the solid line represents the predeterminable profile of the lambda value in front of the NO x storage catalytic converter 16, which can be detected by means of the gas sensor 20.
  • the dashed line indicates the profile of the lambda value measured with the gas sensor 21 behind the NO x storage catalytic converter 16 Determination of a need for desulfurization at time tn is first carried out in a heating phase T
  • the internal combustion engine 14 is controlled with the aid of the engine control unit 24 in such a way that a predeterminable lambda value V m , which is greater than 1, over the duration of a first lean phase T m -
  • a change in the operating mode of the internal combustion engine 14 is again initiated, as a result of which the second lean operating phase T m 2 begins.
  • a reaction of the lambda value after the NO x storage catalytic converter 16 to the changed operating conditions is again delayed due to volume , so that shortly after the start of the second lean phase T m 2, a minimum is passed which is below the threshold value Sf.
  • the slope of the lambda value in the area 50 the slope of which does not only depend on the position of the lambda specification V m , but also from an oxygen storage in this phase in the NO x storage catalytic converter 16
  • phase 46 ' the duration of phase 46 ', in which the reducing agents are fully converted, compared to phase 46 reduced.
  • the onset of a lambda drop in phase 48' in the direction of the lambda fat specification Vf at an earlier point in time after the start of the fat phase observed as in the first fat phase Tf 1 This trend continues in the following fat phases.
  • an area 46 "observed in the third fat phase Tf 3 is further shortened compared to the area 46 'and a drop in the lambda value below 1 in the area 48" observed earlier
  • FIG. 3 shows the course of the time intervals l n determined in the manner described as a function of the number n of the rich operating intervals. While the time intervals l n are still very long at the beginning of the desulfurization procedure, they initially decrease rapidly in the course below to approach a limit later A practically no longer changing interval l n indicates that the desulfurization has proceeded essentially completely. According to the invention, the course of the desulfurization procedure is checked by, for example, the difference between a time interval l n and a previous time interval l n . j is calculated. The difference between a time interval l n and an immediately preceding time interval l n _-1 is preferably determined.
  • a time interval l n can be determined, for example, by directly capturing the times of its start and end. This is done, for example, by the probe 20 forwarding the current lambda values to the engine control unit 24 in front of the NO x storage catalytic converter 16.
  • the point in time at which the lambda value in front of the NO x storage catalytic converter 16 falls below the threshold value Sf is recognized by the engine control unit 24 and registered as the beginning of an interval l n .
  • the point in time at which the lambda value measured by the gas probe 21 also reaches the threshold value Sf behind the NO x storage catalytic converter 16 is recognized by the engine control unit 24 as the end point of an interval l n .
  • the engine control unit 24 then calculates the length of the interval l n , the difference between the current interval l n and a previous interval l n , ni. If the engine control unit 24 determines that a predetermined termination criterion has been met, for example by falling below a difference limit value ⁇ IQ, then The engine control unit 24 ends the desulfurization procedure by regulating the operating conditions of the internal combustion engine 14 in accordance with normal operation through the actuating means of the throttle valve 28 and the exhaust gas reflux valve 30.
  • the length of a time interval l n can also be detected by determining a reducing agent mass R ec j ⁇ n or an exhaust gas mass r ⁇ iQ as n , which falls below the threshold value from the time the lambda value in front of the NO x storage catalytic converter 16 submerged Sf to flows through the exhaust system to submerge the lambda value behind the NO x storage catalytic converter 16 below the threshold value Sf.
  • n can be done in a manner known per se and not described here in more detail from a measured exhaust gas mass flow and a lambda value. Monitoring the desulphurization using established gas masses instead of time intervals has the advantage of increased insensitivity to fluctuating operating conditions.
  • the lambda value behind the NO x storage catalytic converter 16 falling below the threshold value Sf points E n in FIG. 2
  • the lambda curves upstream and downstream of the NO x storage catalytic converter 16 according to such a dynamically controlled desulfurization are shown in FIG. 4.
  • the lengths of the time intervals l n and the lengths of the corresponding fat phases Tf n correspond exactly to one another. Accordingly, the lengths of the fat phases Tf n decrease progressively in the course of the desulfurization process.
  • the advantage of this embodiment of the method is the successful suppression of the pollutant breakthrough, which is accompanied by a drop in the lambda value behind the NO x storage catalytic converter 16 below 1.
  • the design features described above apply not only to time-determined intervals, but also to intervals that are determined on the basis of exhaust gas or reducing agent mass.
  • the progress of the desulfurization process can also be followed on the basis of the time profile of a lambda probe voltage U n downstream of the NO x storage catalytic converter 16 during the rich operating phases Tf n . Due to the decreasing amount of sulfates stored in the NO x storage catalytic converter 16, an increasing decrease in the lambda value behind the NO x storage catalytic converter 16 below 1 is observed with constant lengths of the fat intervals Tf n (cf. FIG. 2). According to the method, the lambda probe voltage U n is detected after a constant, predeterminable interval after the start of an n-th rich operating phase Tf n .
  • the start of the rich operating phase Tf n can in turn advantageously be determined by a drop in the lambda value upstream of the NO x storage catalytic converter 16 below the lambda threshold value Sf, which has the above-mentioned definition.
  • the predeterminable interval can be a time span or one that is the NO x Storage catalytic converter 16 enforced, predetermined exhaust gas mass m as or reducing agent mass ⁇ iR eC j.
  • the predeterminable interval is advantageously selected in accordance with a length of a rich operating phase Tf n .
  • the lambda probe voltage U n is thus detected at the end of a rich operating phase Tf n .
  • the course of the lambda probe voltage behind the NO x storage catalytic converter 16 during the desulfurization is shown in FIG. 5. It can be seen here that the length of a time interval l n during a rich operating phase Tf n until the lambda probe voltage U ⁇ f corresponding to the lambda threshold value Sf progressively decreases with increasing desulfurization time. Associated with this is an ever increasing increase in the lambda probe voltage during the rich phases Tf n .
  • a suitable termination criterion for the desulfurization can be given, for example, again by the difference .DELTA.U nn .j of a lambda probe voltage U n and a previous lambda probe voltage U n . j falls below a predeterminable difference limit value ⁇ UQ.
  • the monitoring of the desulfurization process according to the invention was explained on the basis of a profile of the lambda value upstream of the NO x storage catalytic converter 16 in accordance with a predetermined rectangular profile.
  • the method according to the invention can be used with the same success if other courses of the lambda value upstream of the NO x storage catalytic converter 16 are used as a basis during the desulfurization, for example in the form of a triangular profile or also more complicated patterns.
  • the method according to the invention provides a sensitive instrument for monitoring the progress of desulfurization.
  • the duration of desulfurization can therefore be tailored to the actual need. In this way, fuel savings and thermal damage to the catalyst due to excessive desulfurization times can be avoided.
  • damage to the NO x storage catalytic converter 16 which is not caused by sulfur can be detected by using the method. If an expected NO x storage activity is not regained after the end of one of the desulfurization processes according to the invention, it can be concluded that the NO x storage catalytic converter 16 has not been caused by sulfur, for example thermal damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
PCT/EP2000/012210 1999-12-17 2000-12-05 VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS Ceased WO2001044630A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50013067T DE50013067D1 (de) 1999-12-17 2000-12-05 VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS
AU26718/01A AU2671801A (en) 1999-12-17 2000-12-05 Method for desulphurisation of an NOx accumulator-catalyst arranged in an exhaust system of an internal combustion engine
EP00989947A EP1250524B1 (de) 1999-12-17 2000-12-05 VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS
JP2001545697A JP4615808B2 (ja) 1999-12-17 2000-12-05 内燃機関の排気ガス経路内に配置されたnox貯蔵触媒を脱硫する方法
US10/168,157 US6941748B2 (en) 1999-12-17 2000-12-05 Method for desulfurization of an NOx storage accumulator-catalyst arranged in an exhaust system of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19961165A DE19961165A1 (de) 1999-12-17 1999-12-17 Verfahren zur Entschwefelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators
DE19961165.3 1999-12-17

Publications (2)

Publication Number Publication Date
WO2001044630A2 true WO2001044630A2 (de) 2001-06-21
WO2001044630A3 WO2001044630A3 (de) 2001-12-06

Family

ID=7933210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012210 Ceased WO2001044630A2 (de) 1999-12-17 2000-12-05 VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS

Country Status (7)

Country Link
US (1) US6941748B2 (enExample)
EP (1) EP1250524B1 (enExample)
JP (1) JP4615808B2 (enExample)
CN (1) CN1262742C (enExample)
AU (1) AU2671801A (enExample)
DE (2) DE19961165A1 (enExample)
WO (1) WO2001044630A2 (enExample)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002921A1 (de) * 2000-07-05 2002-01-10 Volkswagen Aktiengesellschaft Verfahren zur entschwefelung von wenigstens einem in einem abgaskanal einer verbrennungskraftmaschine angeordneten no x-speicherkatalysator
WO2002014666A1 (de) * 2000-08-11 2002-02-21 Robert Bosch Gmbh Verfahren zur entschwefelung eines speichermediums
FR2830772A1 (fr) * 2001-10-12 2003-04-18 Volkswagen Ag Procedes et dispositif de desulfuration d'un catalyseur a accumulation de nox, implante en aval d'un moteur diesel
JP2004124939A (ja) * 2002-10-05 2004-04-22 Robert Bosch Gmbh 内燃機関の運転方法および運転制御装置
WO2006069768A1 (de) * 2004-12-24 2006-07-06 Umicore Ag & Co. Kg Verfahren zur regeneration eines stickoxid-speicherkatalysators
FR2897102A1 (fr) * 2006-02-09 2007-08-10 Peugeot Citroen Automobiles Sa Systeme et procede d'elimination de sox (oxyde de soufre), et generateur de requetes pour ce systeme
CN100564823C (zh) * 2004-07-08 2009-12-02 万国引擎知识产权有限责任公司 柴油机排气系统中的NOx吸附剂催化剂的脱硫
CN110585896A (zh) * 2019-10-30 2019-12-20 苏州仕净环保科技股份有限公司 一种船舶废气干式脱硫系统
WO2019243065A3 (de) * 2018-06-20 2020-02-20 Daimler Ag Verfahren zum entschwefeln eines stickoxid-speicherkatalysators

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226873B4 (de) * 2002-06-12 2012-05-31 Volkswagen Ag Verfahren zur Steuerung der Betriebsartenwahl einer Verbrennungskraftmaschine
GB0220645D0 (en) * 2002-09-05 2002-10-16 Johnson Matthey Plc Exhaust system for a lean burn ic engine
DE10307724A1 (de) * 2003-02-05 2004-08-19 Volkswagen Ag Kraftfahrzeug mit einem Katalysatorsystem
JP3876874B2 (ja) * 2003-10-28 2007-02-07 トヨタ自動車株式会社 触媒再生方法
DE10353597B4 (de) * 2003-11-12 2012-02-23 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
US7018442B2 (en) * 2003-11-25 2006-03-28 Caterpillar Inc. Method and apparatus for regenerating NOx adsorbers
US7284368B2 (en) * 2003-12-02 2007-10-23 Ford Global Technologies Llc Computer device to control operation during catalyst desulfurization to preserve catalytic function
US7263433B2 (en) 2003-12-02 2007-08-28 Ford Global Technologies, Llc Computer device to calculate emission control device functionality
JP2005291100A (ja) * 2004-03-31 2005-10-20 Mitsubishi Fuso Truck & Bus Corp エンジンの排ガス浄化装置
US20050223698A1 (en) * 2004-03-31 2005-10-13 Mitsubishi Fuso Truck And Bus Corporation Exhaust gas cleaning device
JP4321332B2 (ja) 2004-04-01 2009-08-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP1831509B1 (de) * 2004-12-23 2010-04-21 Umicore AG & Co. KG Verfahren zur überwachung der stickoxid-speicherfähigkeit eines als startkatalysators eingesetzten stickoxid-speicherkatalysators
DE102005002289B4 (de) * 2005-01-17 2007-04-19 J. Eberspächer GmbH & Co. KG Abgasbehandlungssystem
US7481046B2 (en) 2005-02-28 2009-01-27 Ford Global Technologies, Llc Method of desulfating a NOx storage and conversion device
JP4572709B2 (ja) * 2005-03-18 2010-11-04 トヨタ自動車株式会社 内燃機関の排気浄化システム
DE102005029338A1 (de) * 2005-06-24 2007-02-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Partikelfalle sowie Vorrichtung zur Durchführung des Verfahrens
DE102005034344A1 (de) * 2005-07-22 2007-01-25 Umicore Ag & Co. Kg Verfahren zur Reaktivierung thermisch gealterter Stickoxid-Speicherkatalysatoren
DE102006048905A1 (de) * 2006-10-17 2008-04-30 Robert Bosch Gmbh Verfahren zur Entschwefelung eines Speicherkatalysators und Vorrichtung zur Durchführung des Verfahrens
US7654076B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. System for controlling absorber regeneration
US7654079B2 (en) 2006-11-07 2010-02-02 Cummins, Inc. Diesel oxidation catalyst filter heating system
US7707826B2 (en) 2006-11-07 2010-05-04 Cummins, Inc. System for controlling triggering of adsorber regeneration
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
US7594392B2 (en) * 2006-11-07 2009-09-29 Cummins, Inc. System for controlling adsorber regeneration
US8266897B2 (en) * 2006-12-28 2012-09-18 Caterpillar Inc. Low temperature emission system having turbocharger bypass
JP4803107B2 (ja) * 2007-05-15 2011-10-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102008058008B3 (de) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2010113278A1 (ja) * 2009-03-31 2010-10-07 トヨタ自動車株式会社 内燃機関の排気浄化システム
WO2010131374A1 (ja) * 2009-05-15 2010-11-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20110185708A1 (en) * 2010-01-29 2011-08-04 Eaton Corporation Adaptive Desulfation Control Algorithm
WO2014033838A1 (ja) * 2012-08-28 2014-03-06 トヨタ自動車株式会社 火花点火式内燃機関の排気浄化装置
US10920645B2 (en) 2018-08-02 2021-02-16 Ford Global Technologies, Llc Systems and methods for on-board monitoring of a passive NOx adsorption catalyst
CN110700955B (zh) * 2018-12-28 2020-12-08 长城汽车股份有限公司 汽油发动机催化器的过量空气系数控制方法及装置
US10954873B2 (en) * 2019-03-01 2021-03-23 Fca Us Llc Engine lambda dynamic control strategy for exhaust emission reduction

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342656C2 (de) * 1992-12-14 2003-07-31 Mazda Motor Luft-/Kraftstoff-Regelung für einen Verbrennungsmotor
JP3456058B2 (ja) * 1995-02-10 2003-10-14 株式会社デンソー 触媒の劣化検出装置及び排気浄化装置の異常検出装置
US5704339A (en) * 1996-04-26 1998-01-06 Ford Global Technologies, Inc. method and apparatus for improving vehicle fuel economy
JPH1071325A (ja) * 1996-06-21 1998-03-17 Ngk Insulators Ltd エンジン排ガス系の制御方法および触媒/吸着手段の劣化検出方法
US5771685A (en) 1996-10-16 1998-06-30 Ford Global Technologies, Inc. Method for monitoring the performance of a NOx trap
DE19705335C1 (de) * 1997-02-12 1998-09-17 Siemens Ag Verfahren zur Regeneration eines Speicherkatalysators
GB2324052A (en) 1997-04-11 1998-10-14 Ford Motor Co Heating of a storage trap
DE59807160D1 (de) * 1997-07-19 2003-03-20 Volkswagen Ag Verfahren und Vorrichtung zur Überwachung der De-Sulfatierung bei NOx-Speicherkatalysatoren
US5974788A (en) 1997-08-29 1999-11-02 Ford Global Technologies, Inc. Method and apparatus for desulfating a nox trap
DE19747222C1 (de) * 1997-10-25 1999-03-04 Daimler Benz Ag Verbrennungsmotoranlage mit Stickoxid-Speicherkatalysator und Betriebsverfahren hierfür
DE19800665C1 (de) * 1998-01-10 1999-07-01 Degussa Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators
DE19802631C1 (de) * 1998-01-24 1999-07-22 Daimler Chrysler Ag Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
DE19813654A1 (de) * 1998-03-27 1999-09-30 Degussa Verfahren zum Betreiben einer Abgasreinigungsanlage enthaltend eine Schwefelfalle und einen Stickoxid-Speicherkatalysator
DE19816175A1 (de) * 1998-04-14 1999-10-21 Degussa Verfahren zur Überprüfung der Funktionstüchtigkeit eines Stickoxid-Speicherkatalysators
JP3997599B2 (ja) * 1998-04-27 2007-10-24 株式会社デンソー 内燃機関の空燃比制御装置
SE514288C2 (sv) 1998-05-27 2001-02-05 Volvo Ab Anordning och förfarande för svavelregenerering av NOx- adsorberande katalysator
DE19827195A1 (de) * 1998-06-18 1999-12-23 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
US6497092B1 (en) * 1999-03-18 2002-12-24 Delphi Technologies, Inc. NOx absorber diagnostics and automotive exhaust control system utilizing the same
DE19918756A1 (de) 1999-04-24 2000-10-26 Volkswagen Ag Anordnung zur Reinigung eines Abgases einer Verbrennungsmaschine und Verfahren zum Betrieb einer solchen Anordnung

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002921A1 (de) * 2000-07-05 2002-01-10 Volkswagen Aktiengesellschaft Verfahren zur entschwefelung von wenigstens einem in einem abgaskanal einer verbrennungskraftmaschine angeordneten no x-speicherkatalysator
WO2002014666A1 (de) * 2000-08-11 2002-02-21 Robert Bosch Gmbh Verfahren zur entschwefelung eines speichermediums
US6854266B2 (en) 2000-08-11 2005-02-15 Robert Bosch GmbH Method for desulfurizing a storage medium
FR2830772A1 (fr) * 2001-10-12 2003-04-18 Volkswagen Ag Procedes et dispositif de desulfuration d'un catalyseur a accumulation de nox, implante en aval d'un moteur diesel
JP2004124939A (ja) * 2002-10-05 2004-04-22 Robert Bosch Gmbh 内燃機関の運転方法および運転制御装置
CN100564823C (zh) * 2004-07-08 2009-12-02 万国引擎知识产权有限责任公司 柴油机排气系统中的NOx吸附剂催化剂的脱硫
CN100534590C (zh) * 2004-12-24 2009-09-02 乌米科雷股份两合公司 用于再生氮氧化物储存催化剂的方法
WO2006069768A1 (de) * 2004-12-24 2006-07-06 Umicore Ag & Co. Kg Verfahren zur regeneration eines stickoxid-speicherkatalysators
US7832201B2 (en) 2004-12-24 2010-11-16 Umicore Ag & Co. Kg Method for regeneration a nitrogen oxide storage catalyst
KR101226896B1 (ko) * 2004-12-24 2013-01-29 우미코레 아게 운트 코 카게 질소 산화물 저장 촉매의 재생방법
WO2007090976A3 (fr) * 2006-02-09 2007-10-11 Peugeot Citroen Automobiles Sa SYSTEME ET PROCEDE D'ELIMINATION DE SOx (OXYDE DE SOUFRE), ET GENERATEUR DE REQUETES POUR CE SYSTEME
FR2897102A1 (fr) * 2006-02-09 2007-08-10 Peugeot Citroen Automobiles Sa Systeme et procede d'elimination de sox (oxyde de soufre), et generateur de requetes pour ce systeme
WO2019243065A3 (de) * 2018-06-20 2020-02-20 Daimler Ag Verfahren zum entschwefeln eines stickoxid-speicherkatalysators
US11286824B2 (en) 2018-06-20 2022-03-29 Daimler Ag Method for desulphurising a nitrogen oxide accumulator catalytic converter
CN110585896A (zh) * 2019-10-30 2019-12-20 苏州仕净环保科技股份有限公司 一种船舶废气干式脱硫系统
CN110585896B (zh) * 2019-10-30 2024-02-13 苏州仕净科技股份有限公司 一种船舶废气干式脱硫系统

Also Published As

Publication number Publication date
CN1262742C (zh) 2006-07-05
US20030131591A1 (en) 2003-07-17
WO2001044630A3 (de) 2001-12-06
JP2003518578A (ja) 2003-06-10
JP4615808B2 (ja) 2011-01-19
DE50013067D1 (de) 2006-08-03
US6941748B2 (en) 2005-09-13
AU2671801A (en) 2001-06-25
DE19961165A1 (de) 2001-08-02
CN1411533A (zh) 2003-04-16
EP1250524B1 (de) 2006-06-21
EP1250524A2 (de) 2002-10-23

Similar Documents

Publication Publication Date Title
EP1250524B1 (de) VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS
DE10040554B4 (de) Verfahren zum Betrieb einer Abgasreinigungsanlage mit Partikelfilter und Stickoxidspeicher
DE10238771B4 (de) Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators
EP1192343B1 (de) VERFAHREN ZUR INITIIERUNG UND ÜBERWACHUNG EINER ENTSCHWELFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
DE10160704B4 (de) Verfahren zum Betrieb von Abgasreinigungsvorrichtungen
DE10114456A1 (de) Vorrichtung und Verfahren zur Koordination von abgasrelevanten Maßnahmen
EP1190164B1 (de) VERFAHREN ZUR ERFASSUNG EINER SCHÄDIGUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSTOR
DE102004058680B4 (de) Speicherkatalysator-Regenerationsverfahren und- Steuergerät
DE10023060B4 (de) Verfahren zur Bestimmung des Alterungszustandes sowie zur Durchführung der NOx-Regeneration eines NOx-Speicherkatalysators
DE10115962B4 (de) Verfahren zur Entschwefelung eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
EP1160425B1 (de) Verfahren und Vorrichtung zur Durchführung einer Regeneration eines NOx-Speicherkatalysators
EP1209332B1 (de) Verfahren und Vorrichtungen zur Regeneration eines NOx-Speicherkatalysators
DE10023079B4 (de) Vorrichtung und Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE102006017300A1 (de) Verfahren zur Regeneration von zumindest einer oxidierend arbeitenden Abgasreinigungseinrichtung und zumindest einer reduzierend arbeitenden Abgasreinigungseinrichtung sowie Vorrichtung zum Durchführen des Verfahrens
DE10036390B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE19923498A1 (de) Verfahren zur Steuerung einer Regeneration eines NOx-Speicherkatalysators
DE10330367A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Katalysators
EP1391592B1 (de) Verfahren zum Betrieb eines magerlauffähigen Verbrennungsmotors mit einem Abgasreinigungssystem
DE102009045088B4 (de) Verfahren zur Steuerung eines Verbrennungsmotors in Verbindung mit einer exothermen Regeneration einer Abgasnachbehandlungkomponente
DE10057938A1 (de) Verfahren und Vorrichtung zur Regeneration eines NOx-Speicherkatalysators
EP1303690A1 (de) Verfahren zur adaption eines katalysatortemperatur-sollbereichs für einen no x?-speicherkatalysator
DE10102132A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE102016210897A1 (de) Steuerung einer Stickoxidemission in Betriebsphasen hoher Last
EP1365131B1 (de) Verfahren zur Steuerung eines NOx-Speicherkatalysators
DE19957185A1 (de) Verfahren und Vorrichtung zur Steuerung einer Aufheizphase zumindest eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Katalysators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CN CR CU CZ DM DZ EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CN CR CU CZ DM DZ EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000989947

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 545697

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 008172730

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000989947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10168157

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000989947

Country of ref document: EP