EP1365131B1 - Verfahren zur Steuerung eines NOx-Speicherkatalysators - Google Patents

Verfahren zur Steuerung eines NOx-Speicherkatalysators Download PDF

Info

Publication number
EP1365131B1
EP1365131B1 EP03090075A EP03090075A EP1365131B1 EP 1365131 B1 EP1365131 B1 EP 1365131B1 EP 03090075 A EP03090075 A EP 03090075A EP 03090075 A EP03090075 A EP 03090075A EP 1365131 B1 EP1365131 B1 EP 1365131B1
Authority
EP
European Patent Office
Prior art keywords
regeneration
catalyst
storage catalyst
storage
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03090075A
Other languages
English (en)
French (fr)
Other versions
EP1365131A2 (de
EP1365131A3 (de
Inventor
Hermann Dr. Hahn
Sören HINZE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1365131A2 publication Critical patent/EP1365131A2/de
Publication of EP1365131A3 publication Critical patent/EP1365131A3/de
Application granted granted Critical
Publication of EP1365131B1 publication Critical patent/EP1365131B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount

Definitions

  • the invention relates to a method for controlling a NO x storage catalytic converter with the features mentioned in the preamble of claim 1.
  • the exhaust gas is passed over at least one catalyst, which performs a conversion of one or more pollutant components of the exhaust gas.
  • catalysts Different types of catalysts are known. Oxidation catalysts promote the oxidation of unburned hydrocarbons (HC) and carbon monoxide (CO), while reduction catalysts promote the reduction of nitrogen oxides (NO x ) of the exhaust gas.
  • 3-way catalysts are used to simultaneously catalyze the conversion of the three aforementioned components (HC, CO, NO X ).
  • NO x storage catalysts are used which, in addition to a catalytic component, contain an NO x reservoir which stores NO x in the form of nitrate in the lean operating phases.
  • intermediate fat regeneration phases at ⁇ ⁇ 1 where HC and CO are formed, which act as reducing agents, the nitrates are reduced to nitrogen N 2 .
  • the NO x storage catalytic converter is still a catalyst, for example, a 3-way catalyst upstream.
  • a regeneration period is fixed by means of a rich exhaust gas atmosphere.
  • the actual load state of the NO x storage catalytic converter and a current regeneration rate of the same can disadvantageously not be taken into account.
  • Such The procedure therefore involves the risk that the regeneration period is too short or too long, in the first case, an incomplete regeneration of the memory and in the second case unnecessary fuel consumption and emission of environmentally harmful reducing agents (HC and CO) is accepted.
  • the regeneration profile is monitored by means of a sensor system arranged downstream of the NO x storage catalytic converter in the form of a NO x sensor or a lambda probe which measures an oxygen content of the exhaust gas.
  • a decreasing proportion of oxygen in the exhaust gas indicates a reduced reduction agent conversion at the NO x reservoir and thus increasing proportions of the reducing agent in the exhaust gas.
  • the NO x regeneration is stopped, that is, the internal combustion engine is switched back to a lean operating mode as soon as the measured oxygen content falls below a predetermined limit value or a sensor voltage exceeds a corresponding limit voltage.
  • This method has the disadvantage that the sensor can only react if a certain reductant breakthrough already occurs.
  • the pipe between engine and catalyst at the end of the regeneration when the engine leaves the regeneration mode, still filled with rich exhaust gas. This contributes significantly to an increase in reductant breakdown at the regeneration end.
  • Various methods are known for initiating the regeneration of the NO x storage catalytic converter, which are usually based on stored behavior models of the NO x storage catalytic converter or on emission profiles measured, for example, by means of an NO x sensor. Especially in the latter case, it may be that the initiation of a regeneration is carried out exclusively on demand with a corresponding NO x breakthrough.
  • the NO x regenerations are performed such that the regeneration is terminated as soon as the signal of the downstream oxygen-sensitive sensor system reaches a certain threshold value or a behavioral model for the catalytic converter has determined the time of its complete emptying. Both methods are usually designed so that there is only a small breakthrough of reducing agent at the end of regeneration. In exceptional cases, a small excess of reducing agent can be tolerated for various reasons.
  • Nitrate storage phase proceeds with reduced efficiency, increasing fuel consumption and emission of pollutants.
  • the invention is therefore based on the object to provide a method for controlling a NO x storage catalyst available, which is optimized with respect to the lowest possible reducing agent emission compared to the prior art and which is too high saturation and thus a poorer regenerability of NO X - Storage catalyst avoids.
  • the first process step according to the invention which takes place at the beginning of a regeneration phase, ensures that the rich exhaust gases located at the end of a regeneration phase upstream of the NO x storage catalytic converter are optimal due to the definition of a combustion lambda which takes into account the diffusion rate of the oxygen-containing components of the catalyst coating
  • Regeneration of the NO x storage catalyst can be used, so that a reducing agent breakthrough is advantageously reduced.
  • the engine operating point, the exhaust gas mass flow and / or the catalyst state which can be determined by known methods, for example by means of a conversion factor, can be used to determine the combustion lambda.
  • the air-fuel mixture (combustion lambda) supplied for regeneration is not only determined at the beginning of the regeneration, but also varies during the regeneration, since the conditions for determining the combustion lambda may be variable after the regeneration begins. This variation can be carried out by known methods.
  • the predetermined threshold value for the saturation state of the NO x storage catalytic converter is determined in advance by suitable tests. This gives information about up to which load of the NO X storage catalytic converter the NO x regeneration with normal execution still leads to a sufficient conversion of all stored nitrogen oxides.
  • the current load value for the NO X storage catalyst is determined by balancing the NO X M levels before and after the NO X storage catalyst.
  • the signal of the NO x -sensitive measuring device for example, the signal of a second NO X -sensitive measuring device located in front of the NO x * storage catalytic converter or a corresponding modeling in the engine control unit can be used.
  • the threshold value may additionally be dependent on further factors, for example catalyst / exhaust gas temperature, exhaust gas mass flow, NO X mass flow, HC content of the lean exhaust gas and the like, which may have to be taken into account as correction values of the threshold value.
  • At least one next NO x regeneration can be explicitly extended.
  • An increased reductant breakthrough due to the more intensive regeneration is accepted.
  • the achievement of the threshold value can be used to deactivate the diagnosis of the catalytic converter or other functionalities evaluating the current storage capacity of the catalytic converter in the following period.
  • the withdrawal of this deactivation may, for example, be made dependent on a certain cumulative amount of reducing agent or a predetermined minimum number of regeneration processes.
  • the NO X -sensitive measuring device is a NOx sensor, which also provides an oxygen-dependent signal which can be used to monitor the regeration of the NO X storage catalytic converter. Otherwise, however, an additional oxygen-sensitive measuring device such as a lambda broadband or jump probe can be used to monitor the regeneration phase.
  • the internal combustion engine 10 shown in Figure 1 is downstream of an exhaust system 12.
  • the exhaust system 12 has an exhaust gas channel 14, in which a pre-catalyst arranged close to the engine 16 and a large-volume NO x storage 18 are located.
  • the exhaust gas channel 14 usually has various gas and / or temperature sensors (not shown here) for regulating the internal combustion engine 10.
  • an NO x sensor 20 is shown, which is arranged downstream of the NO x storage catalytic converter 18 and which supplies a signal U NOX for the proportion of NO x in the exhaust gas.
  • the NO x sensor 20 is equipped with a Lambdamessfunktion, so that in addition a dependent of an oxygen content of the exhaust gas signal U ⁇ is provided.
  • the signals U NOX and U ⁇ are transmitted to an engine control unit 22 in which they are digitized and further processed. Further, the operating state of the internal combustion engine 10 information related also found in the engine control unit 22.
  • a control unit 24 is also integrated. By means of the engine control unit 22 and the control unit 24, at least one operating parameter of the internal combustion engine 10, in particular an air-fuel mixture (combustion lambda) to be supplied, is influenced as a function of the signals U NOX and U ⁇ of the NO x sensor 20.
  • FIG. 2 shows the time profile of various parameters of the internal combustion engine 10 and of the exhaust system 12 during a NO x regeneration of the NO x storage catalytic converter 18, which takes place according to the prior art.
  • the internal combustion engine 10 is in a lean mode of operation in which it is supplied with an oxygen-rich air-fuel mixture with ⁇ M »1 (graph 100).
  • the exhaust gas contains an excess of nitrogen oxides NO x , which can not be completely converted by the precatalyst 16.
  • NO x is therefore stored in the NO x storage catalytic converter 18, whose NO x charge increases continuously to saturation NO XMAX (graph 102). Based on a suitable criterion, a NO x regeneration need is recognized at a time t A.
  • This may be, for example, a NO x breakthrough detected by the NO x sensor 20.
  • the internal combustion engine 10 is switched by influencing the engine control unit 22 in a rich operating mode with ⁇ F ⁇ 1. Due to the now increased mass flow the reducing agent CO and HC in the exhaust gas is desorbed in the NO x storage 18 stored NO X and reduced to nitrogen. A decrease in the NO x charge of the storage catalytic converter 18 (graph 102), however, is recorded only after a certain time delay after switching the internal combustion engine 10, since at time t A of the exhaust duct 14 is still filled with lean exhaust gas, which initially still the storage catalytic converter 18 must happen before the reducing agents reach it.
  • the course of the NO x regeneration is in the meantime tracked with the aid of the signal U ⁇ provided by the NO x sensor 20.
  • the signal U ⁇ (graph 104) behaves inversely proportional to an oxygen concentration of the exhaust gas downstream of the storage catalytic converter 18. As the reducing agents are consumed to an increasing extent as regeneration progresses, the signal U ⁇ of the NO X sensor 20 increases slowly. At a time t E , the signal U ⁇ reaches a predetermined threshold value U SE , whereupon the internal combustion engine 10 is usually switched back into a lean operating mode with ⁇ M »1.
  • the approach shown in Figure 3 is pursued according to the invention, wherein the time course of the same parameters as in Figure 2 and in addition the course of the signal U NOX (graph 108) of the NOx sensor 20 is shown for the NO X emissions.
  • the NO x emission increases sharply with increasing loading of the NO x storage catalytic converter 18, wherein at the time t A upon reaching a predetermined threshold value NO XSE , which is determined by balancing the NO x quantities before and after the NO x storage catalytic converter 18 and which is in relation to the saturation of the NO x storage 18, the regeneration of the NO x storage 18 is initiated.
  • the threshold NO XSE is determined experimentally in advance and gives the point at the NO X storage loading, in which a complete emptying of the NO X storage catalytic converter is still possible in a subsequent regeneration phase. After initiation of the regeneration, the NO x emission drops steeply and remains at a constantly low level.
  • the course of the NO x charge of the NO x storage catalytic converter 18-represented by graph 102- substantially corresponds to the course according to FIG. 2, since the loading and the discharge are subject to the same mechanisms. However, the graph 102 is at a lower level since the emptying begins at a lower loading condition and ends only at complete emptying.
  • the temperature of the storage catalytic converter 18 is determined at time t A and transmitted to the engine control unit 22, which subsequently the internal combustion engine 10 of a lean mode with ⁇ M »1 in a rich mode with ⁇ F ⁇ 1 switched, the determined catalyst temperature is used to establish an optimized combustion lambda.
  • a combustion lambda ⁇ F is set, which may be higher ( ⁇ FT1 ), lower ( ⁇ FT2 ) or equal to the combustion lambda ⁇ FT0 , without the evaluation of the temperature of the NO x Storage Catalyst 18 would have been adjusted.
  • a combustion lambda ⁇ F which takes into account at least the temperature of the NO x storage 18 as a relevant factor, it is ensured that at the time t E at the end of a regeneration phase before the NO x storage catalytic converter 18 fat exhaust gases are still for regeneration of the NO x storage 18 can be used. A reducing agent breakthrough can thus be significantly reduced. Comparing the graph of graph 106 with that in FIG. 2, which illustrates the concentrations of carbon monoxide CO and unburned hydrocarbons HC downstream of NO x storage catalyst 18, shows a large reduction in pollutant emission due to regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung eines NOX-Speicherkatalysators mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.
  • Zur Nachbehandlung von Abgasen von Verbrennungskraftmaschinen ist es allgemein üblich, das Abgas katalytisch zu reinigen. Dazu wird das Abgas über mindestens einen Katalysator geleitet, der eine Konvertierung einer oder mehrerer Schadstoffkomponenten des Abgases vornimmt. Es sind unterschiedliche Arten von Katalysatoren bekannt. Oxidationskatalysatoren fördern die Oxidation von unverbrannten Kohlenwasserstoffen (HC) und Kohlenmonoxid (CO), während Reduktionskatalysatoren eine Reduzierung von Stickoxiden (NOX) des Abgases unterstützen. Ferner werden 3-Wege-Katalysatoren verwendet, um die Konvertierung der drei vorgenannten Komponenten (HC, CO, NOX) gleichzeitig zu katalysieren. Die Verwendung eines 3-Wege-Katalysators ist jedoch nur möglich, wenn ein streng stöchiometrisches Luft-Kraftstoff-Verhältnis bei λ = 1 vorliegt.
  • Zur Optimierung des Verbrauchs von Kraftfahrzeugen werden unter anderem magerlauffähige Verbrennungskraftmaschinen eingesetzt. In einem verbrauchsgünstigen Magerbetrieb, bei dem die Verbrennungskraftmaschine mit Sauerstoffüberschuss, das heißt mit λ > 1, gefahren wird, ist eine vollständige 3-wege-katalytische Umsetzung von NOX nicht möglich. Bei derartigen Verbrennungskraftmaschinen werden daher NOX-Speicherkatalysatoren eingesetzt, die neben einer katalytischen Komponente einen NOX-Speicher enthalten, der in den mageren Betriebsphasen NOX in Form von Nitrat speichert. In zwischengeschalteten fetten Regenerationsphasen bei λ < 1, bei denen HC und CO gebildet werden, die als Reduktionsmittel wirken, werden die Nitrate zu Stickstoff N2 reduziert. Häufig ist dem NOX-Speicherkatalysator noch ein Katalysator, beispielsweise ein 3-Wege-Katalysator, vorgeschaltet.
  • In einfachen Verfahren zur Steuerung des NOX-Speicherkatalysators wird eine Regenerationsdauer mittels einer fetten Abgasatmosphäre fest vorgegeben. Dabei kann nachteilhafterweise der tatsächliche Beladungszustand des NOX-Speicherkatalysators und eine aktuelle Regenerationsrate desselben nicht berücksichtigt werden. Eine solche Vorgehensweise birgt daher die Gefahr, dass die Regenerationsdauer zu kurz oder zu lang gewählt wird, wobei im ersten Fall eine unvollständige Regeneration des Speichers und im zweiten Fall ein unnötiger Kraftstoffmehrverbrauch sowie eine Emission umweltschädlicher Reduktionsmittel (HC und CO) in Kauf genommen wird.
  • Weiterhin sind Verfahren bekannt, bei denen mit Hilfe einer stromab des NOX-Speicherkatalysators angeordneten Sensorik in Form eines NOX-Sensors oder einer Lambda-Sonde, die einen Sauerstoffanteil des Abgases misst, der Regenerationsverlauf überwacht wird. Dabei zeigt ein sinkender Sauerstoffanteil im Abgas einen verminderten Reduktionsmittelumsatz am NOX-Speicher und somit steigende Anteile der Reduktionsmittel im Abgas an. Um Reduktionsmitteldurchbrüche zu vermeiden, wird die NOX-Regeneration abgebrochen, das heißt die Verbrennungskraftmaschine wieder in einen mageren Betriebsmodus umgeschaltet, sobald der gemessene Sauerstoffanteil einen vorgegebenen Grenzwert unterschreitet beziehungsweise eine Sensorspannung eine entsprechende Grenzspannung überschreitet. Dieses Verfahren ist mit dem Nachteil verbunden, dass der Sensor erst reagieren kann, wenn bereits ein gewisser Reduktionsmitteldurchbruch auftritt. Zudem ist bei diesen Verfahren das Rohr zwischen Motor und Katalysator am Ende der Regeneration, wenn der Motor den Regenerationsbetrieb verlässt, noch mit fettem Abgas gefüllt. Dies trägt deutlich zu einer Erhöhung des Reduktionsmitteldurchbruches am Regenerationsende bei.
  • Zur Einleitung der Regeneration des NOX-Speicherkatalysators sind verschiedene Verfahren bekannt, die üblicherweise auf abgelegten Verhaltensmodellen des NOX-Speicherkatalysators oder auf zum Beispiel mittels eines NOX-Sensors gemessenen Emissionsverläufen beruhen. Besonders im letztgenannten Fall kann es sein, dass die Einleitung einer Regeneration ausschließlich bedarfsgerecht bei entsprechendem NOX-Durchbruch durchgeführt wird. Wie bereits oben ausgeführt, werden die NOX-Regenerationen so durchgeführt, dass die Regeneration beendet wird, sobald das Signal der nachgeschalteten sauerstoffsensitiven Sensorik einen gewissen Schwellwert erreicht oder ein Verhaltensmodell für den Katalysator den Zeitpunkt seiner kompletten Leerung ermittelt hat. Beide Verfahren werden üblicherweise so ausgelegt, dass es nur zu einem geringen Durchbruch von Reduktionsmittel bei Regenerationsende kommt. In Ausnahmefällen kann ein kleiner Überschuss an Reduktionsmittel aus verschiedenen Gründen toleriert werden.
  • Bei dieser Verfahrensweise kann jedoch ein Speicherkatalysator mit sehr hohem Sättigungsgrad nicht vollständig geleert werden. Es verbleibt ein gewisser Restanteil an gespeicherten Nitraten in der Beschichtung. Die der Regenerationsphase nachfolgende Einspeicherphase von Nitraten läuft dann mit verringerter Effektivität ab, wodurch sich der Kraftstoffverbrauch und die Emission an Schadstoffen erhöht.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Steuerung eines NOX-Speicherkatalysators zur Verfügung zu stellen, welches hinsichtlich einer möglichst geringen Reduktionsmittelemission gegenüber dem Stand der Technik optimiert ist und welches eine zu hohe Sättigung und damit eine schlechtere Regenerierbarkeit des NOX-Speicherkatalysators vermeidet.
  • Diese Aufgabe wird durch ein Verfahren mit den im Anspruch 1 genannten Merkmalen gelöst.
  • Das erfindungsgemäße Verfahren zur Steuerung eines NOX-Speicherkatalysators einer Brennkraftmaschine mit einer stromab des NOX-Speicherkatalysators angeordneten NOX-sensitiven Messeinrichtung sowie mit einer Motorsteuerungseinheit sieht vor, dass
    • (a) zu Beginn der Regeneration des NOX-Speicherkatalysators das aktuelle Katalysatorverhalten hinsichtlich einer Sauerstoffausspeicherung der sauerstoffhaltigen Komponenten in der Katalysatorbeschichtung auf der Basis der Katalysatortemperatur bewertet wird, wobei das zur Regeneration der Verbrennungskraftmaschine zugeführte Luft-Kraftstoff-Gemisch (Verbrennungslambda) in Abhängigkeit dieser Bewertung grundsätzlich festgelegt wird, und/oder
    • (b) bei Erreichen eines vorgegebenen Schwellwertes für den Sättigungszustand des NOX-Speicherkatalysators die Regeneration des NOX-Speicherkatalysators eingeleitet wird oder
    • (c) bei Überschreiten des vorgegebenen Schwellwertes für den Sättigungszustand des NOX-Speicherkatalysators mindestens die sich anschließende Regeneration unter Vernachlässigung eines Reduktionsmitteldurchbruches verlängert wird.
  • Durch den ersten erfindungsgemäßen Verfahrensschritt, der zu Beginn einer Regenerationsphase erfolgt, wird gewährleistet, dass die am Ende einer Regenerationsphase vor dem NOX-Speicherkatalysator befindlichen fetten Abgase, aufgrund der Festlegung eines Verbrennungslambdas, das die Diffusionsgeschwindigkeit der sauerstoffhaltigen Komponenten der Katalysatorbeschichtung berücksichtigt, optimal zur
  • Regeneration des NOX-Speicherkatalysators genutzt werden, so dass ein Reduktionsmitteldurchbruch vorteilhafterweise verringert wird. Weiterhin können der Motorbetriebspunkt, der Abgasmassenstrom und/oder der Katalysatorzustand, der über bekannte Verfahren, zum Beispiel mittels eines Konvertierungsfaktors, ermittelbar ist, zur Festlegung des Verbrennungslambdas herangezogen werden. Zur Bestimmung des Beginns einer Regenerationsphase wird vorzugsweise das NOX-Signal des NOX-Sensors und kein Zeitschema verwendet.
  • Nach einer besonders bevorzugten Ausführungsform des Verfahrens wird das zur Regeneration zugeführte Luft-Kraftstoff-Gemisch (Verbrennungslambda) nicht nur zu Beginn der Regeneration festgelegt, sondern auch während der Regeneration variiert, da die Bedingungen zur Festlegung des Verbrennungslambdas nach Beginn der Regeneration veränderlich sein können. Diese Variation kann mittels bekannter Verfahren durchgeführt werden.
  • Durch die beiden weiteren Verfahrensschritte des Hauptanspruchs, die alternativ durchgeführt werden, wird eine Sättigung des NOX-Speicherkatalysators vermieden beziehungsweise werden deren Auswirkungen durch erfinderische Maßnahmen kompensiert. Daher kann in der Regel der NOX-Speicherkatalysator während der Regenerationsphase vollständig entladen werden.
  • Der vorgegebene Schwellwert für den Sättigungszustand des NOX-Speicherkatalysators wird vorab durch geeignete Versuche ermittelt. Dieser gibt Auskunft darüber, bis zu welcher Beladung des NOX-Speicherkatalysators die NOX-Regeneration mit normaler Durchführung noch zu einer hinreichenden Umsetzung aller gespeicherten Stickoxide führt.
  • Der aktuelle Wert für die Beladung des NOX-Speicherkatalysators wird durch Bilanzierung der NOXM-engen vor und nach dem NOX-Speicherkatalysator ermittelt. Dazu kann neben dem Signal der NOX-sensitiven Messeinrichtung beispielsweise das Signal einer zweiten, vor dem NOX*Speicherkatalysator befindlichen NOX-sensitiven Messeinrichtung oder eine entsprechende Modellierung in der Motorsteuerungseinheit herangezogen werden. Der Schwellwert kann zusätzlich von weiteren Faktoren abhängig sein, zum Beispiel Katalysator-/Abgastemperatur, Abgasmassenstrom, NOX-Rohmassenstrom, HC-Gehalt des mageren Abgases und dergleichen, die gegebenenfalls als Korrekturgrößen des Schwellwertes zu berücksichtigen sind.
  • Wird nun im Fahrbetrieb ein zu diesem Schwellwert in Relation stehender Wert erreicht, so kann als vorbeugende Maßnahme eine Regeneration eingeleitet werden, obwohl dies von der Konvertierungsleistung her noch nicht erforderlich wäre. Auf diese Weise wird eine Sättigung des NOX-Speicherkatalysators verhindert.
  • Alternativ kann mindestens eine nächste NOX-Regeneration explizit verlängert werden. Dabei wird ein erhöhter Reduktionsmitteldurchbruch aufgrund der intensiveren Regeneration in Kauf genommen.
  • Des Weiteren kann das Erreichen des Schwellwertes dazu genutzt werden, die Diagnose des Katalysators oder sonstige die aktuelle Speicherfähigkeit des Katalysators bewertende Funktionalitäten im folgenden Zeitraum zu deaktivieren. Die Rücknahme dieser Deaktivierung kann zum Beispiel abhängig gemacht werden von einer gewissen kumulierten Reduktionsmittelmenge oder einer vorgegebenen Mindestanzahl von Regenerationsvorgängen.
  • Vorteilhafterweise ist die NOX-sensitive Messeinrichtung ein NOX-Sensor, der auch ein sauerstoffabhängiges Signal liefert, das zur Überwachung der Regeration des NOX-Speicherkatalysators verwendet werden kann. Ansonsten kann aber auch eine zusätzliche sauerstoffsensitive Messeinrichtung wie eine Lambda-Breitband- oder -Sprungsonde eingesetzt werden, um die Regenerationsphase zu überwachen.
  • Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
  • Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    eine Prinzipdarstellung einer Verbrennungskraftmaschine mit einer Abgasanlage;
    Figur 2
    zeitliche Verläufe verschiedener Abgasparameter während einer herkömmlichen NOX-Regeneration;
    Figur 3
    zeitliche Verläufe verschiedener Abgasparameter während einer NOX-Regeneration im Anschluss an eine erfindungsgemäße Einleitung der Regeneration zur Verhinderung der Sättigung des Katalysators und
    Figur 4
    zeitliche Verläufe verschiedener Abgasparameter während einer NOX-Regeneration gemäß der vorliegenden Erfindung nach Festlegung eines Verbrennungslambdas zu Beginn der NOX-Regeneration .
  • Der in Figur 1 dargestellten Verbrennungskraftmaschine 10 ist eine Abgasanlage 12 nachgeordnet. Die Abgasanlage 12 weist einen Abgaskanal 14 auf, in dem ein motornah angeordneter Vorkatalysator 16 sowie ein großvolumiger NOX-Speicherkatalysator 18 befindlich sind. Neben dem Vorkatalysator 16 und dem NOX-Speicherkatalysator 18 weist der Abgaskanal 14 üblicherweise verschiedene, hier jedoch nicht dargestellte Gas- und/oder Temperatursensoren zur Regelung der Verbrennungskraftmaschine 10 auf. Dargestellt ist in Figur 1 lediglich ein NOX-Sensor 20, der stromab des NOX-Speicherkatalysators 18 angeordnet ist und der ein Signal UNOX für den Anteil von NOX im Abgas liefert. Der NOX-Sensor 20 ist mit einer Lambdamessfunktion ausgestattet, so dass zusätzlich ein von einem Sauerstoffanteil des Abgases abhängiges Signal Uλ bereitgestellt wird. Die Signale UNOX und Uλ werden an ein Motorsteuergerät 22 übermittelt, in welchem diese digitalisiert und weiterverarbeitet werden. Weitere, den Betriebszustand der Verbrennungskraftmaschine 10 betreffende Informationen finden ebenfalls Eingang in das Motorsteuergerät 22. In dem Motorsteuergerät 22 ist zudem eine Steuereinheit 24 integriert. Mittels des Motorsteuergeräts 22 und der Steuereinheit 24 wird mindestens ein Betriebsparameter der Verbrennungskraftmaschine 10, insbesondere ein zuzuführendes Luft-Kraftstoff-Gemisch (Verbrennungslambda), in Abhängigkeit der Signale UNOX und Uλ des NOX-Sensors 20 beeinflusst.
  • Figur 2 zeigt den zeitlichen Verlauf verschiedener Parameter der Verbrennungskraftmaschine 10 sowie der Abgasanlage 12 während einer NOX-Regeneration des NOX-Speicherkatalysators 18, die nach dem Stand der Technik erfolgt. Zunächst befindet sich die Verbrennungskraftmaschine 10 in einem mageren Betriebsmodus, in dem ihr ein sauerstoffreiches Luft-Kraftstoff-Gemisch mit λM » 1 zugeführt wird (Graph 100). In dieser Phase enthält das Abgas einen Überschuss an Stickoxiden NOX, die durch den Vorkatalysator 16 nicht vollständig konvertiert werden können. NOX wird daher in den NOX-Speicherkatalysator 18 eingelagert, dessen NOX-Beladung dabei kontinuierlich bis zur Sättigung NOXMAX zunimmt (Graph 102). Anhand eines geeigneten Kriteriums wird zu einem Zeitpunkt tA eine NOX-Regenerationsnotwendigkeit erkannt. Dies kann beispielsweise ein, durch den NOX-Sensor 20 detektierter NOX-Durchbruch sein. Infolgedessen wird die Verbrennungskraftmaschine 10 durch Einflussnahme des Motorsteuergerätes 22 in einen fetten Betriebsmodus umgeschaltet mit λF < 1. Infolge des nunmehr erhöhten Massenstroms der Reduktionsmittel CO und HC im Abgas wird das im NOX-Speicherkatalysator 18 eingelagerte NOX desorbiert und zu Stickstoff reduziert. Eine Abnahme der NOX-Beladung des Speicherkatalysators 18 (Graph 102) ist jedoch erst nach einer gewissen zeitlichen Verzögerung nach Umschaltung der Verbrennungskraftmaschine 10 zu verzeichnen, da zum Zeitpunkt tA der Abgaskanal 14 noch mit magerem Abgas gefüllt ist, welches zunächst noch den Speicherkatalysator 18 passieren muss, ehe die Reduktionsmittel diesen erreichen. Der Verlauf der NOX-Regeneration wird währenddessen mit Hilfe des von dem NOX-Sensor 20 bereitgestellten Signals Uλ verfolgt. Das Signal Uλ (Graph 104) verhält sich umgekehrt proportional zu einer Sauerstoffkonzentration des Abgases stromab des Speicherkatalysators 18. Da mit fortschreitender Regeneration die Reduktionsmittel in immer geringerem Ausmaß verbraucht werden, steigt das Signal Uλ des NOX-Sensors 20 langsam an. Zu einem Zeitpunkt tE erreicht das Signal Uλ einen vorgegebenen Schwellwert USE, woraufhin die Verbrennungskraftmaschine 10 üblicherweise wieder in einen mageren Betriebsmodus mit λM » 1 umgeschaltet wird. Zum Zeitpunkt des Regenerationsendes tE befindet sich jedoch noch Abgas mit einem hohen Reduktionsmittelanteil in dem Abgaskanal 14 zwischen der Verbrennungskraftmaschine 10 und dem Speicherkatalysator 18. Dieses durchströmt den Speicherkatalysator 18, der bis auf einen gewissen Restanteil gespeicherter Nitrate geleert ist, und gelangt unkonvertiert in die Umwelt. Der Verlauf der stromab des Katalysators gemessenen Konzentration von Kohlenmonoxid CO und unverbrannten Kohlenwasserstoffen HC (Graph 106) zeigt daher nach Regenerationsende tE noch einen unerwünscht hohen Anstieg. Der Graph 102 zeigt, dass nach der Regeneration im NOX-Speicherkatalysator 18 ein Rest an Nitraten verbleibt, so dass der Wert NOXMIN für die vollständige Entladung des NOX-Speicherkatalysators 18 nicht erreicht wird. Dies führt zu einer Verringerung der Effektivität der nachfolgenden Einlagerung von NOX, was wiederum einen erhöhten Kraftstoffverbrauch beziehungsweise eine höhere Emission von Schadstoffen bedingt.
  • Um die Sättigung des NOX-Speicherkatalysators und die damit verbundene unvollständige Auslagerung der Nitrate in der Regenerationsphase zu verhindern, wird erfindungsgemäß der in Figur 3 dargestellte Ansatz verfolgt, wobei der zeitliche Verlauf der gleichen Parameter wie in Figur 2 und zusätzlich der Verlauf des Signals UNOX (Graph 108) des NOX-Sensors 20 für die NOX-Emission dargestellt ist. Die NOX-Emission steigt mit zunehmender Beladung des NOX-Speicherkatalysators 18 steil an, wobei zum Zeitpunkt tA bei Erreichen eines vorgegebenen Schwellwertes NOXSE, der durch Bilanzierung der NOX-Mengen vor und nach dem NOX-Speicherkatalysator 18 ermittelt wird und der in Relation zur Sättigung des NOX-Speicherkatalysators 18 steht, die Regeneration des NOX-Speicherkatalysators 18 eingeleitet wird. Der Schwellwert NOXSEwird vorab experimentell ermittelt und gibt den Punkt bei der NOX-Speicherbeladung an, bei dem bei einer nachfolgenden Regenerationsphase eine vollständige Entleerung des NOX-Speicherkatalysators noch möglich ist. Nach Einleitung der Regeneration fällt die NOX-Emission steil ab und verbleibt währenddessen auf konstant niedrigem Niveau. Der Verlauf der NOX-Beladung des NOX-Speicherkatalysators 18 - dargestellt durch Graph 102 - entspricht im Wesentlichen dem Verlauf gemäß Figur 2, da die Beladung und die Entleerung den gleichen Mechanismen unterliegen. Allerdings liegt der Graph 102 auf einem niedrigeren Niveau, da die Entleerung bei einem niedrigeren Beladungszustand beginnt und erst bei der vollständigen Entleerung endet.
  • Auch in Figur 4 werden zur Darstellung des erfindungsgemäßen Verfahrens die gleichen Parameter berücksichtigt wie bei der Figur 2. Zur Einleitung der Regeneration des NOX-Speicherkatalysators 18 wird zum Zeitpunkt tA die Temperatur des Speicherkatalysators 18 ermittelt und an das Motorsteuergerät 22 übermittelt, das anschließend die Verbrennungskraftmaschine 10 von einem mageren Betriebsmodus mit λM » 1 in einen fetten Modus mit λF < 1 umgeschaltet, wobei die ermittelte Katalysatortemperatur zur Festlegung eines optimierten Verbrennungslambdas herangezogen wird. In Abhängigkeit von der ermittelten Temperatur des NOX-Speicherkatalysators 18 wird ein Verbrennungslambda λF eingestellt, das höher (λFT1), niedriger (λFT2) oder gleich mit dem Verbrennungslambda λFT0 sein kann, das ohne die Bewertung der Temperatur des NOX-Speicherkatalysators 18 eingestellt worden wäre. Durch die Einstellung eines Verbrennungslambdas λF, das zumindest die Temperatur des NOX-Speicherkatalysators 18 als einen maßgeblichen Faktor berücksichtigt, wird gewährleistet, dass die zum Zeitpunkt tE am Ende einer Regenerationsphase vor dem NOX-Speicherkatalysator 18 befindlichen fetten Abgase noch zur Regeneration des NOX-Speicherkatalysators 18 genutzt werden können. Ein Reduktionsmitteldurchbruch kann somit deutlich verringert werden. Der Vergleich des Verlaufs des Graphen 106 mit dem in Figur 2, die die Konzentrationen von Kohlenmonoxid CO und unverbrannten Kohlenwasserstoffen HC stromab des NOX-Speicherkatalysators 18 darstellen, zeigt eine starke Verringerung der regenerationsbedingten Schadstoffemission.
  • BEZUGSZEICHENLISTE
  • 10
    Verbrennungskraftmaschine
    12
    Abgasanlage
    14
    Abgaskanal
    16
    Vorkatalysator
    18
    NOX-Speicherkatalysator
    20
    NOX-Sensor
    22
    Motorsteuergerät
    24
    Steuereinheit
    100
    Verbrennungslambda
    102
    NOX-Beladung des NOX-Speicherkatalysators
    104
    Signalverlauf (Uλ) der Lambdafunktion des NOX-Sensors
    106
    Reduktionsmittelgehalt im Abgas
    108
    Signalverlauf (UNOX) der Lambdafunktion des NOX-Sensors
    NOXMAX
    Sättigungswert der NOX-Beladung des NOX-Speicherkatalysators
    NOXMIN
    Wert für vollständige Entladung des NOX-Speicherkatalysators
    NOXSE
    Schwellwert zur Einleitung der NOX-Regeneration
    tA
    Regenerationsbeginn
    tE
    Regenerationsende
    UNOX
    Signal des NOX-Sensors
    Uλ
    Signal der Lambdamessfunktion des NOX-Sensors
    UλSE
    Schwellwert zur Beendigung der NOX-Regeneration
    λM
    Lambdamagerwert
    λF, λFT0, λFT1, λFT2
    Lambdafettwert

Claims (10)

  1. Verfahren zur Steuerung einer NOX-Regeneration eines einer Brennkraftmaschine (10) nachgeordneten NOX-Speicherkatalysators (18) mit einer stromab des NOX-Speicherkatalysators (18) angeordneten NOX-sensitiven Messeinrichtung (20) sowie mit einer Motorsteuerungseinheit (24), wobei bei Erreichen eines vorgegebenen Schwellwertes (NOXSE) für den Sättigungszustand des NOX-Speicherkatalysators (18) die Regeneration des NOX-Speicherkatalysators (18) durch Einstellen eines fetten Luft-Kraftstoff-Gemischs (λF) der Brennkraftmaschine (10) eingeleitet wird, dadurch gekennzeichnet, dass zu Beginn (tA) der Regeneration des NOX-Speicherkatalysators (18) ein aktuelles Sauerstoffausspeicherverhalten der sauerstoffhaltigen Komponenten in einer Katalysatorbeschichtung des NOX-Speicherkatalysators (18) auf der Basis der Katalysatortemperatur bewertet wird und das zur Regeneration der Verbrennungskraftmaschine (10) zugeführte fette Luft-Kraftstoff-Gemisch (λF) in Abhängigkeit zumindest dieser Bewertung festgelegt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zu Beginn. (tA) der Regeneration des NOX-Speicherkatalysators (18) zusätzlich der Abgasmassenstrom, der Motorbetriebspunkt und/oder der Katalysatorzustand bewertet werden und dass in Abhängigkeit dieser Bewertung das fette Luft-Kraftstoff-Gemisch (λF) festgelegt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das zur Regeneration zugeführte fette Luft-Kraftstoff-Gemisch (λF) zusätzlich während der Regeneration des NOX-Speicherkatalysators (18) variiert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als NOX-sensitive Messeinrichtung (20) ein NOX-Sensor verwendet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass neben der NOX-sensitiven Messeinrichtung (20) auch eine sauerstoffsensitive Messeinrichtung verwendet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als sauerstoffsensitive Messeinrichtung eine Lambda-Breitband- oder -Sprungsonde verwendet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Katalysator-/Abgastemperatur, Abgasmassenstrom, NOX-Rohmassenstrom, HC-Gehalt des mageren Abgases als Korrekturgrößen des Schwellwertes (NOXSE) berücksichtigt werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Erreichen des Schwellwertes (NOXSE) zur Deaktivierung der die aktuelle Speicherfähigkeit des NOX-Speicherkatalysators (18) bewertenden Funktionalitäten führt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Rücknahme der Deaktivierung abhängig ist von einer definierten Reduktionsmittelmenge und/oder einer definierten Mindestanzahl von Regenerationsvorgängen.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der vorgegebene Schwellwert (NOXSE) für den Sättigungszustand des NOX-Speicherkatalysators (18) so bemessen wird, dass die Regeneration zu einer Umsetzung aller gespeicherten Stickoxide führt.
EP03090075A 2002-05-08 2003-03-20 Verfahren zur Steuerung eines NOx-Speicherkatalysators Expired - Lifetime EP1365131B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10221568 2002-05-08
DE10221568A DE10221568A1 (de) 2002-05-08 2002-05-08 Verfahren zur Steuerung eines NO¶x¶-Speicherkatalysators

Publications (3)

Publication Number Publication Date
EP1365131A2 EP1365131A2 (de) 2003-11-26
EP1365131A3 EP1365131A3 (de) 2004-04-07
EP1365131B1 true EP1365131B1 (de) 2006-08-16

Family

ID=29285423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03090075A Expired - Lifetime EP1365131B1 (de) 2002-05-08 2003-03-20 Verfahren zur Steuerung eines NOx-Speicherkatalysators

Country Status (3)

Country Link
EP (1) EP1365131B1 (de)
AT (1) ATE336650T1 (de)
DE (2) DE10221568A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360072A1 (de) * 2003-12-20 2005-07-14 Audi Ag Abgasanlage für eine Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges
DE102004022814B4 (de) * 2004-05-08 2010-06-10 Audi Ag Verfahren zum Betreiben einer magerlauffähigen Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940570B1 (de) * 1998-01-09 2001-08-22 Ford Global Technologies, Inc. Verfahren zur Regeneration einer Stickoxidfalle im Abgasesystem eines Verbrennungsmotors unter Berücksichtigung des Abgasmassenstromes
DE19851564C2 (de) * 1998-11-09 2000-08-24 Siemens Ag Verfahren zum Betreiben und Überprüfen eines NOx-Speicherreduktionskatalysators einer Mager-Brennkraftmaschine
DE19929292A1 (de) * 1999-06-25 2000-12-28 Volkswagen Ag Verfahren zur Steuerung eines Arbeitsmodus einer Verbrennungskraftmaschine
DE19933712A1 (de) * 1999-07-19 2001-05-17 Volkswagen Ag Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine

Also Published As

Publication number Publication date
EP1365131A2 (de) 2003-11-26
DE10221568A1 (de) 2003-12-04
DE50304630D1 (de) 2006-09-28
EP1365131A3 (de) 2004-04-07
ATE336650T1 (de) 2006-09-15

Similar Documents

Publication Publication Date Title
EP1250524B1 (de) VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS
EP1311748B1 (de) Verfahren und modell zur modellierung einer ausspeicherphase eines stickoxid-speicherkatalysators
DE10226187B4 (de) Verfahren und Vorrichtung zur Quantifizierung von in einer Emissionsbegrenzungseinrichtung gespeichertem Sauerstoff
EP1336037A1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
DE10036453A1 (de) Verfahren und Steuergerät zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators
DE102016209566A1 (de) Steuern einer Stickoxidemission im Abgas einer Brennkraftmaschine
EP1192343B1 (de) VERFAHREN ZUR INITIIERUNG UND ÜBERWACHUNG EINER ENTSCHWELFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
DE10039709A1 (de) Verfahren und Steuergerät zum Bestimmen des Zustands eines Stickoxid (NOx)-Speicherkatalysators
DE102017115399A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE10361286B4 (de) Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators
EP1203144B1 (de) Verfahren zur regelung eines arbeitsmodus einer verbrennungskraftmaschine
EP1365131B1 (de) Verfahren zur Steuerung eines NOx-Speicherkatalysators
DE10125759B4 (de) Verfahren zur Ermittlung eines Beladungszustandes eines NOx-Speicherkatalysators
EP1209332B1 (de) Verfahren und Vorrichtungen zur Regeneration eines NOx-Speicherkatalysators
DE19926148A1 (de) Verfahren zur Erhöhung der NOx-Umsatzrate von geschädigten NOx-Speicherkatalysatoren
DE10160704A1 (de) Verfahren zum Betrieb von Abgasreinigungsvorrichtungen
DE10057938A1 (de) Verfahren und Vorrichtung zur Regeneration eines NOx-Speicherkatalysators
DE10102132B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE10330367A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Katalysators
EP1160425B1 (de) Verfahren und Vorrichtung zur Durchführung einer Regeneration eines NOx-Speicherkatalysators
DE102004060125B4 (de) Verfahren zur Steuerung der Be- und Entladung des Sauerstoffspeichers eines Abgaskatalysators
DE102016216062B4 (de) Optimierte LNT-Diagnose
DE10036390B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
EP1188915B1 (de) Verfahren zur Regelung einer NOx-Regeneration eines NOx-Speicherkatalysators
DE10249609B4 (de) Verfahren zur Steuerung eines NOx-Speicherkatalysators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041007

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20041122

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAHN, HERMANN DR.

Inventor name: HINZE, SOEREN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAHN, HERMANN DR.

Inventor name: HINZE, SOEREN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060816

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50304630

Country of ref document: DE

Date of ref document: 20060928

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061127

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070116

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070518

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304630

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50304630

Country of ref document: DE

Effective date: 20121026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170331

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304630

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320