WO2001043900A1 - Procede de moulage d'une ebauche crue pulverulente - Google Patents

Procede de moulage d'une ebauche crue pulverulente Download PDF

Info

Publication number
WO2001043900A1
WO2001043900A1 PCT/JP2000/008836 JP0008836W WO0143900A1 WO 2001043900 A1 WO2001043900 A1 WO 2001043900A1 JP 0008836 W JP0008836 W JP 0008836W WO 0143900 A1 WO0143900 A1 WO 0143900A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
pressure
mold
molding
fatty acid
Prior art date
Application number
PCT/JP2000/008836
Other languages
English (en)
French (fr)
Inventor
Mikio Kondo
Yoji Awano
Masatoshi Sawamura
Hiroshi Okajima
Shigehide Takemoto
Original Assignee
Kabushiki Kaisha Toyota Chuo Kenkyusho
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18439055&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001043900(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha filed Critical Kabushiki Kaisha Toyota Chuo Kenkyusho
Priority to CA002363557A priority Critical patent/CA2363557C/en
Priority to JP2001545020A priority patent/JP3309970B2/ja
Priority to EP00981701A priority patent/EP1170075B1/en
Priority to DE60030422T priority patent/DE60030422T8/de
Publication of WO2001043900A1 publication Critical patent/WO2001043900A1/ja
Priority to US09/927,323 priority patent/US7083760B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/026Mold wall lubrication or article surface lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature

Definitions

  • the present invention relates to a method for forming a powder compact.
  • the present invention relates to a method for forming a powder compact, which can obtain a high-density powder compact, and at the same time, reduce the extraction pressure when the powder compact is removed from a mold.
  • powder is compacted to form a powder compact (hereinafter abbreviated as “compact”), and the compact is sintered to produce a sintered compact.
  • compact powder compacted to form a powder compact
  • the compact is sintered to produce a sintered compact.
  • it is necessary to obtain a high-density compact in order to obtain a sinter with high dimensional accuracy and high density.
  • it is necessary to increase the molding pressure for molding the compact.
  • USP-4955778 discloses a warm forming method in which powder and a mold are heated to about 150 ° C or less. Then, in order to reduce the withdrawal pressure at the time of extracting the compact formed by pressure from the mold, a lubricant of metal stearate such as zinc stearate and lithium stearate is used as a lubricant to be mixed with the powder. It is disclosed that molding is performed using a Pex-based lubricant or the like. Also, Japanese Patent Application Laid-Open No. 05-27 17 No. 09, Japanese Patent Application Laid-Open No.
  • H11-140, No. 5, and Japanese Patent Publication No. H11-001, No. 0, Publication of raw powder containing lubricant for warm forming A method and a forming method using a raw material powder containing a lubricant for warm forming are disclosed. Further, Japanese Patent Application Laid-Open No. Hei 8-1000203 discloses a method of electrostatically applying a lubricant to a mold.
  • Iron-based sintered compacts are required to have higher density for higher strength and lighter weight, as well as higher precision and lower cost. Therefore, in order to obtain a high-density sintered body by only one molding and sintering, the pressure for compacting the powder must be increased. However, with the conventional method, the extraction pressure increased with the increase of the molding pressure, which deteriorated the surface of the molded body and caused the galling of the mold, causing a problem that the molding could not be continued. .
  • an object of the present invention is to provide a molding method of a powder molded body capable of obtaining a molded body with high density at a high molding pressure and at the same time, reducing the pressure for extracting from a mold. Disclosure of the invention
  • the present inventor applied lithium stearate, a higher fatty acid-based lubricant, to the inner surface of the mold and filled the mold heated to 150 ° C with iron powder heated to the same temperature.
  • the molding pressure at 686 MPa reduced the extraction pressure rather than the molding at 588 MPa. did.
  • the present researcher conducted further research, and applied lithium stearate to the inner surface of the mold and pressed the iron powder with a molding pressure of 98 IMP a. It was discovered that iron had adhered.
  • the present inventors have also determined that calcium and zinc stearate are When iron powder was pressed using a mold and iron powder heated to ° C, it was confirmed that a similar phenomenon was observed in which, when the pressure exceeded a certain level, the withdrawal pressure of the molded body decreased rather.
  • the metal stone film has a very strong bonding force with the metal powder, and exhibits lubrication performance higher than that of the higher fatty acid-based lubricant physically adsorbed on the inner surface of the mold. We thought that the coating would significantly reduce the frictional force between the mold and the compact.
  • the present inventor has proposed a coating step of applying a higher fatty acid-based lubricant to the inner surface of a heated mold, filling the mold with a metal powder, and the higher fatty acid-based lubricant being chemically mixed with the metal powder. And pressurizing the metal powder at a pressure at which the metal powder is bonded to the metal powder to form a metal lithographic coating.
  • the heated metal powder is filled into the mold, and the metal powder and the higher fatty acid-based lubricant are filled. If this metal powder is pressed under the pressure at which the lubricant is chemically bonded to form a metal lithographic film, it is assumed that a metal stone ⁇ film is formed on the inner surface of the mold. The frictional force between the powder compact and the mold is reduced, and the pressure required to remove the compact is reduced.
  • a higher fatty acid-based lubricant such as lithium stearate
  • the metal mold is pressurized while being heated, it is presumed that the chemical bond between the higher fatty acid-based lubricant and the metal powder is promoted to that extent, and a metal lithographic film is easily formed. Further, since the pressure is formed by the pressure at which the coating of the metal stone is generated, a high-density formed body can be formed.
  • the higher fatty acid-based lubricant includes both a lubricant composed of higher fatty acids and a lubricant composed of metal salts of higher fatty acids.
  • the inventor of the present invention has a coating step of coating a metal salt of a higher fatty acid on the inner surface of a mold heated to 100 ° C. or more, and filling the mold with iron powder. And a pressure forming step of press-forming the iron powder.
  • a mold heated to 100 ° C. or higher and having a metal salt of a higher fatty acid such as lithium stearate applied on the inner surface thereof is used.
  • the metal mold of the higher fatty acid is presumed to promote the chemical bonding with the iron powder because the mold is heated to 100 ° C or more.
  • a coating of an iron salt of a higher fatty acid such as a monomolecular film of iron stearate is formed on the surface of the molded body, and as a result, the frictional force between the molded body of the iron powder and the mold is reduced, and the molded body is formed. There is less pressure to extract the water.
  • a high-density molded body can be molded.
  • FIG. 1 is a diagram schematically showing a state in which a higher fatty acid-based lubricant is applied to the inner surface of a mold by a spray gun.
  • FIG. 2 is a diagram schematically showing a state in which a higher fatty acid-based lubricant is applied to the inner surface of a mold by a spray gun.
  • FIG. 3 is a photograph showing a state in which three types of lithium stearate having different particle diameters are adhered when applied to a mold heated to 150 ° C.
  • FIG. 4 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in the evaluation test 1.
  • FIG. 5 is a diagram showing the relationship between the molding pressure of the compact and the compact density in the evaluation test 1.
  • FIG. 6 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in the evaluation test 2.
  • FIG. 7 is a diagram showing the relationship between the molding pressure of the molded body and the molded body density in the evaluation test 2.
  • Figure 8 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in Evaluation Test 3. is there.
  • FIG. 9 is a diagram showing the relationship between the molding pressure of the compact and the compact density in Evaluation Test 3.
  • FIG. 10 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in the evaluation test 4.
  • FIG. 11 is a diagram showing the relationship between the molding pressure of the molded body and the molded body density in the evaluation test 4.
  • FIG. 12 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in the evaluation test 5.
  • FIG. 13 is a diagram showing the relationship between the molding pressure of the molded body and the molded body density in the evaluation test 5.
  • FIG. 14 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in the evaluation test 6.
  • FIG. 15 is a diagram showing the relationship between the molding pressure of the compact and the compact density in the evaluation test 6.
  • FIG. 16 is a diagram showing the relationship between the molding pressure of the molded body and the molded body density in the evaluation test 7.
  • FIG. 17 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in the evaluation test 8.
  • FIG. 18 is a diagram showing the relationship between the molding pressure of the molded body and the molded body density in the evaluation test 8.
  • FIG. 19 is a diagram showing the relationship between the molding pressure and the ejection pressure of the molded body in the evaluation test 9.
  • FIG. 20 is a diagram showing the results of TOF—SIMS. Embodiment of the Invention
  • molding method As appropriate, an embodiment of a method for molding a powder compact of the present invention (hereinafter, abbreviated as “molding method” as appropriate) will be described in detail.
  • a higher fatty acid-based lubricant is applied to the inner surface of the heated mold.
  • the application step is a step of applying a higher fatty acid-based lubricant to the inner surface of the heated mold.
  • the higher fatty acid-based lubricant used here includes both a lubricant composed of a higher fatty acid and a lubricant composed of a metal salt of a higher fatty acid as described above. For example, lithium stearate, calcium stearate, zinc stearate, barium stearate, lithium palmitate, lithium oleate, calcium normitate, calcium oleate and the like can be used.
  • the higher fatty acid-based lubricant is preferably a metal salt of a higher fatty acid.
  • the metal salt of a higher fatty acid easily and chemically binds to the metal powder at a predetermined temperature and a predetermined pressure to form a coating of the metal salt of a higher fatty acid. It is thought to form.
  • the metal salt of the higher fatty acid is more preferably a lithium salt, a calcium salt or a zinc salt of the higher fatty acid. The extraction pressure for extracting the formed compact by pressing the metal powder under pressure can be reduced.
  • the film is more easily chemically bonded to the metal powder to easily form a film of a metal salt of a higher fatty acid.
  • it forms a film of iron stearate by chemically bonding with iron powder, so that the withdrawal pressure can be reduced.
  • the higher fatty acid-based lubricant is preferably solid. When it is in a liquid state, the lubricant tends to flow downward, causing a problem that it is difficult to uniformly apply the lubricant to the inner surface of the mold. In addition, problems such as hardening of the metal powder occur.
  • the higher fatty acid-based lubricant is preferably dispersed in water. 10 o lubricant dispersed in water. When used in a mold heated above c, water evaporates instantaneously and a uniform lubricant film can be formed. In addition, since it is dispersed in water instead of an organic solvent, environmental problems can be avoided. Also, the particles of the higher fatty acid-based lubricant dispersed in water preferably have a maximum particle size of less than 30 zm. Particles of 30 ⁇ m or more make the lubricant film uneven, and when dispersed in water, the particles of higher fatty acid-based lubricant easily precipitate, making uniform coating difficult. .
  • the higher fatty acid-based lubricant dispersed in water having a maximum particle size of less than 30 m is as follows. Can be adjusted as follows. First, a surfactant is added to the water to which the higher fatty acid-based lubricant is added.
  • the surfactant examples include an alkylphenol-based surfactant, polyoxyethylene nonylphenyl ether (EO) 6, polyoxyethylene nonylphenyl ether (EO) 10 and anionic nonionic surfactant.
  • other known surfactants such as a boric acid ester-based emulsion T-80. One or more of these may be added in an appropriate amount as needed. For example, when lithium stearate is used as a higher fatty acid-based lubricant, polyoxyethylene nonylphenyl ether (EO) 6, polyoxyethylene nonylphenyl ether (EO) 10 and borate emalbon T-8 0 It is preferable to add the three surfactants simultaneously.
  • lithium stearate does not disperse in water when only borate emalbon T-180 is used.
  • Lithium stearate alone disperses in water with only polyoxyethylene nonylphenyl ether (E ⁇ ) 6 or (E O) 10, but does not disperse well when further diluted as described later. Therefore, it is preferable to appropriately add the three surfactants in this manner.
  • the total amount of the surfactant to be added is preferably 1.5 to 15% by volume with the total volume of the aqueous solution being 100% by volume.
  • the greater the amount of surfactant added the more lithium lithium stearate can be dispersed.However, the greater the amount of surfactant added, the higher the viscosity of the aqueous solution, and the greater the amount of surfactant added. It is difficult to make the particles fine.
  • an antifoaming agent for example, a silicon-based antifoaming agent can be added. This is because if the foaming is severe in the grinding of the lubricant, a uniform lubricant film is hardly formed when the lubricant is applied.
  • the amount of the defoaming agent to be added may be about 0.1 to 1% by volume with the volume of the aqueous solution being about 100% by volume.
  • the higher fatty acid-based lubricant powder is added to the aqueous solution to which the surfactant is added and dispersed.
  • the lithium stearate powder may be dispersed in 10 to 30 g per 100 cm 3 of the aqueous solution.
  • the aqueous solution in which the powder of the higher fatty acid-based lubricant is dispersed Ball mill-type pulverization may be performed using steel balls coated with Ron.
  • the ball may have a diameter of 5 to 10 mm. If the diameter of the ball is too large or too small, the grinding efficiency will be poor.
  • the volume of the ball is preferably substantially the same as the volume of the liquid to be treated.
  • the capacity of the container used for the ball mill type pulverization is preferably 1.5 to 2 times the sum of the volume of the liquid to be processed and the volume of the ball. Similarly, it is considered that this will result in the best grinding efficiency.
  • the time for the pulverization treatment is preferably about 50 to 100 hours. For example, this causes the lithium stearate powder to be pulverized to a maximum particle size of less than 30 / m and suspended and dispersed in a liquid.
  • the higher fatty acid-based lubricant is applied to the inner surface of the mold.
  • an aqueous solution that has been subjected to a ball mill-type pulverization treatment is applied by diluting it 10 to 20 times.
  • diluting the aqueous solution it is preferable that the total weight of the diluted aqueous solution is 100% by weight, and that the higher fatty acid-based lubricant contained therein is 0.1 to 5% by weight. More preferably, it is diluted to 0.5 to 2% by weight. By diluting in this manner, a thin and uniform lubricating film can be formed.
  • the diluted aqueous solution can be applied by, for example, spraying with a spray gun for coating.
  • the amount of the aqueous solution to be applied may be adjusted appropriately according to the size of the mold using a spray gun adjusted to an application amount of about 1 cm 3 / sec.
  • the higher fatty acid-based lubricant is lithium stearate
  • the lower punch 20 is previously set at a position lower than a predetermined position, a lubricant is spray-applied with a spray gun 10, and then the lower punch 20 is positioned at a predetermined position. You may push it up. Or as shown in Figure 2 Before spraying, pull the lower punch 20 out of the mold (die) 40, and then move the spray gun 10 below the mold (die) 40 to lubricate it from bottom to top. The agent may be applied by spraying.
  • the lubricant may be applied using an electrostatic application device such as an electrostatic gun.
  • a mold used in the present application step a mold generally used for forming a compact in powder metallurgy can be used.
  • a mold having excellent strength is desirable.
  • the inner surface of the mold is subjected to a Tin coating process or the like, and has a low surface roughness. As a result, friction is reduced, and the surface of the molded product is finished smoothly.
  • the mold used in this application step is heated.
  • the higher fatty acid-based lubricant applied to the mold and the metal powder in the vicinity thereof are both heated, and the higher fatty acid-based lubricant and the metal powder are pressed at a certain pressure. Under these conditions, it becomes easier to chemically bond and form a metal lithographic coating. Therefore, a low extraction pressure is required.
  • the water in which the higher fatty acid-based lubricant is dispersed evaporates instantaneously to form a uniform lubricant film on the inner surface of the mold. Can be done.
  • the mold may be heated by a usual method. For example, heating can be performed using an electric heating heater.
  • the temperature of the mold is preferably heated to 100 ° C. or more.
  • the temperature of the mold is preferably lower than the melting point of the higher fatty acid-based lubricant. If the temperature of the mold is higher than the melting point, the higher fatty acid-based lubricant melts and flows down easily on the inner surface of the mold. It is impossible to form a uniform lubricant film. In addition, problems such as hardening of the metal powder occur.
  • the heating temperature of the mold is preferably lower than 220 ° C., which is the melting point of lithium stearate.
  • the metal powder is filled into a heated mold, and the metal powder is pressure-molded at a pressure at which the higher fatty acid-based lubricant chemically bonds with the metal powder to form a metal lithographic film. It is a process.
  • the metal powder is filled into a mold to which the higher fatty acid-based lubricant has been applied.
  • the metal powder used here may be a metal powder such as iron powder, an intermetallic compound powder, a metal nonmetallic compound powder, or a mixed powder in which different types of metal powders are mixed. Further, a mixed powder of a metal powder and a non-metal powder may be used.
  • the iron powder includes not only so-called pure iron powder but also iron alloy powder containing iron as a main component. Accordingly, the metal powder used here may be, for example, a mixed powder of a steel powder and a graphite powder.
  • the metal powder an appropriate metal powder can be used, and a granulated powder or a coarse powder may be used.
  • a general metal powder for powder metallurgy having a particle size of 200 or less and an average particle size of about 100 m can be used.
  • the powder for addition (Gr (graphite), Cu)
  • a general powder having a particle size of 4 Ozm or less can be used.
  • the metal powder can be mixed using a commonly used mixer.
  • the metal powder is heated. Extraction pressure for extracting the molded body can be reduced. In other words, it is considered that the heated metal powder is also likely to chemically bond to the higher fatty acid-based lubricant and to form a metal stone coating easily.
  • the metal powder is preferably a metal powder containing iron powder. It is thought that it chemically forms with the higher fatty acid-based lubricant to form a film of the iron salt of the higher fatty acid. This iron salt coating has a strong bond with the iron powder, exhibits lubricating performance higher than that of the originally physically adsorbed lubricant, and significantly increases the frictional force between the mold and the compact. By reducing the pressure, it is possible to reduce the extraction pressure for extracting the molded body.
  • graphite powder is added to the metal powder. Withdrawal pressure Can be reduced.
  • the graphite powder itself has a lubricating effect, and the addition of the graphite powder reduces the contact area between the iron powder and the mold, thereby reducing the extraction pressure.
  • a higher fatty acid-based lubricant is preferably added to the metal powder used here.
  • lithium stearate, calcium stearate, zinc stearate and the like may be added to the metal powder.
  • the proportion of the higher fatty acid-based lubricant is preferably not less than 0.1% by weight and less than 0.6% by weight, based on 100% by weight of the whole metal powder.
  • the amount of the lubricant added is 0.1% by weight or more and less than 0.6% by weight, the fluidity of the metal powder is remarkably improved, and the packing density in the mold can be increased. This is advantageous for molding a molded article of the above.
  • the greater the amount of lubricant added the lower the density of the compact when molded at high pressure.
  • the molding pressure when press-molding the metal powder with a metal mold is the pressure at which the higher fatty acid-based lubricant chemically bonds with the metal powder to form a metal lithographic film. It is considered that the metal lithographic film is formed between the mold and the pressed body by performing the treatment under the pressure for forming the metal lithographic film.
  • This coating has a very strong bonding force with the metal powder, exhibits more lubricating performance than the original physically adsorbed lubricant coating, and reduces the frictional force between the mold and the compact. Can be significantly reduced.
  • the density of the molded body can be significantly increased as compared with room temperature molding.
  • the molding pressure may be determined according to the type of higher fatty acid-based lubricant used. .
  • pressure molding iron powder using a metal salt of a higher fatty acid such as lithium stearate as a higher fatty acid-based lubricant applied to the inner surface of the mold the temperature of the mold is heated to 100 ° C or more. Then, pressure molding can be performed at a pressure of 60 OMPa or more. That is, when pressure molding is performed at a pressure of 60 OMPa or more, the iron powder and the metal salt of the higher fatty acid are chemically bonded to form a film of the iron salt of the higher fatty acid between the molded body and the mold, Extraction pressure decreases. In addition, since the molding is performed at a high pressure of 60 OMPa or more, a compact having a high density can be obtained.
  • a metal salt of a higher fatty acid such as lithium stearate as a higher fatty acid-based lubricant applied to the inner surface of the mold
  • the temperature of the alloy mold is set to about 120 to 180 ° C.
  • the metal salt of the higher fatty acid and the iron powder are chemically bonded to each other to easily form a film of the iron salt of the higher fatty acid, and the pressure for removing the molded body is significantly reduced.
  • the metal salt of the higher fatty acid is more preferably a lithium salt, calcium salt or zinc salt of the higher fatty acid. This is because the extraction pressure for extracting the compact decreases.
  • the molded body thus formed may be extracted by a usual method. Since the coating of metal lithography is formed between the mold and the molded body, the molded body can be extracted with a reduced extraction pressure compared to the conventional method. In addition, since the molding is performed at a high molding pressure, a high-density molded body can be obtained. The extraction pressure can be extracted at a pressure of 3% or less of the press forming pressure.
  • the molding method of the present invention is listed as follows over time.
  • a dispersion of a metal salt of a higher fatty acid having a melting point higher than the mold temperature is finely dispersed and applied to the surface of the mold to form a film of the metal salt of the higher fatty acid on the surface of the mold.
  • the molded body is pulled out from the mold with a removal force of 3% or less of the pressing force during pressure molding, and the molded body is taken out.
  • the above-mentioned iron powder includes powder mainly composed of iron such as pure iron or alloy steel, and powder obtained by mixing pure iron or alloy steel with copper or graphite powder.
  • a higher fatty acid-based lubricant was prepared, and a powder compact was formed.
  • a powder compact was molded as a comparative example.
  • LiSt lithium stearate
  • Table 1 shows the conditions for dispersing lithium stearate powder in water. If the maximum particle size of lithium stearate dispersed in water is less than 3, No. 1 to 4, and the maximum particle size is 30 m or more Was designated No. 5. Here, the maximum particle size includes the one in which individual particles are aggregated.
  • polyoxyethylene nonylphenyl ether (E0) 6, (E ⁇ ) 10 and borate ester Emalbon T-80 were used as the surfactant.
  • a silicon-based defoaming agent As a defoaming agent, a silicon-based defoaming agent was used, and the volume of the aqueous solution was 100% by volume, and 0.3% by volume was added.
  • the lithium stearate powder was added to the aqueous solution containing the surfactant and dispersed.
  • the amount of lithium stearate powder dispersed in 100 cm 3 of the aqueous solution is as shown in Table 1.
  • an aqueous solution in which the lithium stearate powder was dispersed was subjected to a ball mill-type pulverizing treatment using a Teflon-coated steel ball.
  • the diameter of the steel ball was 10 mm.
  • the volume of the ball used was approximately the same as the volume of the treated aqueous solution.
  • the volume of the container used for performing the ball mill type grinding treatment is It was about twice as large.
  • Table 1 shows the time required for grinding.
  • the lithium stearate powder was in a state of being suspended and dispersed in the aqueous solution.
  • the aqueous solution in which the lithium stearate powder was suspended and dispersed was diluted with water. The dilution ratio is shown in Table 1.
  • the diluted aqueous solution was spray-coated on the inner surface of a mold heated to 150 ° C using a coating spray gun adjusted to a coating amount of about 1 cm 3 / sec.
  • Fig. 3 is a photograph showing the state of lithium stearate in No. 1, No. 4 and No. 5 when applied to a mold heated to 150 ° C.
  • No. 1 had fine particles uniformly attached.
  • No. 4 slightly coarse particles were found, but no particles with a particle size of 30 / m or more were found.
  • No. 5 coarse particles with a particle size of 3 m or more were observed.
  • the lithium stearate coating by spray coating is not uniform, but also lithium stearate particles precipitate in the aqueous solution, and the aqueous solution in which the lithium stearate powder is dispersed is constantly stirred. If not, the spray application itself with the spray gun was not successful.
  • the lubricants Nos. 1 to 4 described above were spray-coated on the inner surface of the mold heated to 150 ° C.
  • the mold used was a ⁇ 17 mm cemented carbide mold whose inner surface was subjected to TiN coating treatment and the surface roughness was finished to 0.4 Z with ten-point average roughness (JISB0601).
  • the metal powder heated to 150 ° C. was filled in the above-mentioned mold, and pressure-molded at a pressure of 785 MPa to produce a molded body.
  • the same metal powder was used in Examples 1 to 4 as the metal powder.
  • Metal powder obtained by adding graphite powder and lithium stearate powder as an internal lubricant to KIP 103 V alloy steel powder (hereinafter abbreviated as “103 V” as appropriate) manufactured by Kawasaki Steel Co., Ltd. is there.
  • the addition amount of graphite powder and lithium stearate powder is 0.5% by weight of graphite powder, with the total weight of metal powder being 100% by weight.
  • the powder of lithium stearate was 0.3% by weight.
  • the composition of the KIP 103 V alloy steel powder manufactured by Kawasaki Steel Co., Ltd. was Fe-1% by weight Cr-0.3% by weight Mo-0.3% by weight V. Comparative Example 1
  • Comparative Example 2 No lubricant was applied to the inner surface of the mold.
  • the metal powder was molded at room temperature without heating the mold and the metal powder to produce a powder compact.
  • the same mold was used as in the example, and the molding pressure was also the same. This is referred to as Comparative Example 2. Comparative Example 3
  • Table 2 shows withdrawal pressures and compact densities of Examples 1 to 4 and Comparative Examples 1 to 3. [Table 2]
  • Example 1 the surface condition of the molded product was extremely good. On the other hand, in Comparative Example 1, the surface of the molded body was darkened. In Comparative Example 3, galling occurred on a part of the molded body, and the surface condition was poor.
  • the metal powder was molded at a pressure of 393MPa, 490MPa, 588MPa, 686MPa, 785MPa, 883MPa, 981MPa, etc., and the extraction pressure and compact density were measured at each molding pressure.
  • the same mold as that used in (Molding of powder compact) in [Example] was used.
  • the dies used in the following evaluation tests are all the same as the dies used for (molding of powder compact) in the above [Example]. That is, the inner surface is treated with TiN coating. This is a 0.017 mm cemented carbide die with a surface roughness of 0.4 Z with a ten-point average roughness (JIS B0601).
  • lithium stearate (Li St) prepared in the above (Example) (adjustment of higher fatty acid-based lubricant) was used.
  • this lithium stearate of N 0.2 was used as the lithium stearate applied to the inner surface of the mold.
  • the lubricant was applied to the inner surface of the mold by spray application to the mold heated to the molding temperature. The same applies to the following evaluation tests.
  • a metal mold heated to 150 ° C was filled in a mold heated to 150 ° C.
  • the temperature of the mold and the temperature of the metal powder to be filled are referred to as the molding temperature.
  • the metal powder the same metal powder as the metal powder used in the above-mentioned [Example] (Molding of powder compact) was used.
  • it is a metal powder obtained by adding graphite powder and lithium stearate powder as an internal lubricant to KIP 103 V alloy steel powder manufactured by Kawasaki Steel Corporation and rotating and mixing for 1 hour.
  • the amount of graphite powder and lithium stearate powder added was 0.5% by weight for graphite powder and 0.3% by weight for lithium stearate powder, with the total weight of metal powder being 100% by weight.
  • the amount of graphite powder and lithium stearate powder added was 0.5% by weight for graphite powder and 0.3% by weight for lithium stearate powder, with the total weight of metal powder being 100% by weight.
  • the U-NONS used in Comparative Example 1 described above was used as a lubricant applied to the inner surface of the mold.
  • the metal powder the same metal powder as the metal powder used in the example of (Powder Molding) was used.
  • Fig. 4 shows a case in which lithium stearate is applied to the inner surface of the mold and metal powder obtained by adding graphite powder and lithium stearate powder to the KIP 103 V alloy steel powder described above (L i St mold lubrication).
  • U-NONS is applied to the inner surface of the mold, and a metal powder obtained by adding graphite powder and lithium stearate powder to IP 103 V alloy steel powder is also used (U-NONS mold lubrication)
  • U-NONS mold lubrication a metal powder obtained by adding graphite powder and lithium stearate powder to IP 103 V alloy steel powder is also used (U-NONS mold lubrication)
  • the mold Without applying lubricant to the inner surface of
  • the relationship between the molding pressure and the extraction pressure when Densmix is used as the genus powder (Densmix powder) is shown.
  • Fig. 5 shows a case in which lithium stearate is applied to the inner surface of the mold and metal powder obtained by adding graphite powder and lithium stearate powder to the KIP 103 V alloy steel powder described above (L i St mold lubrication).
  • U-NONS is applied to the inner surface of the mold, and a metal powder obtained by adding graphite powder and lithium stearate powder to IP 103 V alloy steel powder is also used (U-NONS mold lubrication)
  • the mold The relationship between the molding pressure and the compact density when Densmix is used as the metal powder without applying lubricant to the inner surface (Den smix powder) is shown.
  • the density of the green body when molding at the above pressure is shown.
  • the metal powder pure iron powder ASC 100-29 manufactured by Höganäs was used. No internal lubricant was added. That is, the evaluation test was performed using only pure iron powder as the metal powder.
  • Metal powders were molded at molding pressures of 393MPa, 490MPa, 588MPa, 686MPa, 785MPa and 98IMPa, and the extraction pressure and compact density were measured at each molding pressure. However, at 150 ° C, molding was performed even at a pressure of 1176 MPa, and the extraction pressure and the density of the compact were measured.
  • Fig. 6 shows the relationship between the molding pressure and the ejection pressure at each temperature. At any of 105 ° C, 125 ° C and 150 ° C, the extraction pressure was the highest when molded at 586 MPa. With a molding pressure of 686 MPa or more, the withdrawal pressure decreased rather.
  • Figure 7 shows the relationship between the molding pressure and the compact density at each temperature. At any temperature of 105 ° (: 125 ° C and 150 ° C), increasing the molding pressure increased the compact density.
  • pure iron powder ASC 100-29 manufactured by Höganäs was used as the metal powder. No internal lubricant was added. That is, it was an evaluation test using pure iron powder alone as the metal powder.
  • Figure 8 shows the relationship between the molding pressure and the extraction pressure when using lithium stearate (LiSt), calcium stearate (CaSt) or zinc stearate (ZnSt).
  • LiSt lithium stearate
  • CaSt calcium stearate
  • ZnSt zinc stearate
  • the extraction pressure was the highest when molded at 588 MPa.
  • the value decreased above 686 MPa.
  • the extraction pressure of calcium stearate was the highest when molded at 490 MPa. Above 588MPa, the withdrawal pressure decreased.
  • Fig. 9 shows the relationship between the molding pressure and the compact density when using lithium stearate (LiSt), calcium stearate (CaSt), or zinc stearate (ZnSt). Regardless of which was used, the results were almost the same, and the density of the compact increased as the molding pressure increased.
  • Figure 10 shows the relationship between the molding pressure and the extraction pressure when using lithium stearate (LiSt) or calcium stearate (CaSt).
  • the extraction pressure of lithium stearate was the highest when molded at 588 MPa.
  • the extraction pressure decreased above 686 MPa.
  • the extraction pressure of calcium stearate was the maximum when molded at 49 OMPa. For 588 MPa and above, the withdrawal pressure decreased.
  • Fig. 11 shows the relationship between the molding pressure and the compact density when using lithium stearate or calcium stearate. Regardless of the type, the density was almost the same, and the density of the green body increased as the molding pressure increased.
  • the metal powder used in the evaluation test was iron powder ASC 100-2 manufactured by Heganes. 9, metal powder containing only iron powder, metal powder obtained by adding 0.5% by weight of graphite (C) to 100% by weight of the entire metal powder, and 1% by weight to this iron powder. Three types of metal powders to which graphite (C) was added were used. When molding was performed at a molding pressure of 588 MPa, 785 MPa, 981 MPa, etc., the extraction pressure and the molding density were measured for each molding pressure.
  • Figure 12 shows that the metal powder is iron powder only (Fe), iron powder containing 0.5% by weight of graphite (Fe-0.5% C), and iron powder containing 1% by weight of graphite (Fe- 1% C) shows the relationship between molding pressure and ejection pressure. In each case, the ejection pressure decreased even if the molding pressure increased. The extraction pressure was higher with iron powder alone than with graphite added. When graphite was added, the withdrawal pressure was lower when 1% by weight was added than when 0.5% by weight was added.
  • Figure 13 shows that the metal powder is iron powder only (Fe), iron powder containing 0.5% by weight of graphite (Fe-0.5% C), iron powder containing 1% by weight of graphite (Fe-1 % C) shows the relationship between molding pressure and compact density.
  • the compact density was higher in the case of iron powder alone than in the case of adding graphite.
  • graphite was added, the compact density was higher in the case where 0.5% by weight was added than in the case where 1% by weight was added. From the above, it can be seen that when a large amount of graphite is added to iron powder, the extraction pressure is greatly reduced, but the density of the compact is reduced. In addition, the apparent true density is reduced by the addition of graphite, so that the density ratio is almost the same.
  • the molding temperature is set to room temperature, the lubricant is not applied to the inner surface of the mold, and the relationship between the molding pressure and the ejection pressure when the internal lubricant is added to the metal powder, and the molding pressure and the density of the compact An evaluation test was conducted to examine the relationship between the two.
  • IP103V alloy steel powder manufactured by Kawasaki Steel Co., Ltd. was used as the iron powder, and 0.5% by weight of graphite (C) and 0.8% A metal powder (103V—0.5 C + 0.8% Lub.) To which a weight percent of an internal lubricant was added was used.
  • Internal lubricants are lithium stearate, stearic acid
  • the extraction pressure and molding pressure when molding at molding pressures such as 393MPa, 490MPa, 588MPa, 686MPa, 785MPa, 981MPa, etc.
  • the molding density was measured.
  • Figure 14 shows the relationship between the molding pressure and the ejection pressure when using lithium stearate (LiSt), zinc stearate (ZnSt), or calcium stearate (CaSt) as the internal lubricant.
  • LiSt lithium stearate
  • ZnSt zinc stearate
  • CaSt calcium stearate
  • the ejection pressure increased as the molding pressure increased.
  • the extraction pressure was maximum when the molding pressure was 686 MPa, and decreased at 785 MPa, but increased again at 98 IMPa. No remarkable decrease in extraction pressure was observed as in Evaluation Test 2, Evaluation Test 3, and Evaluation Test 4 in which lubricant was applied to the inner surface of the heated mold.
  • Calcium stearate also decreased slightly at 785 MPa, but increased again at 981 MPa.
  • FIG. 15 shows the relationship between molding pressure and compact density when using lithium stearate (LiSt), zinc stearate (ZnSt), or calcium stearate (CaSt) as the internal lubricant.
  • LiSt lithium stearate
  • ZnSt zinc stearate
  • CaSt calcium stearate
  • Fig. 16 shows the case where lithium stearate was applied as a lubricant to the inner surface of the mold (Densmix (0.2% Lub.) + LiSt mold lubrication) and the case where no lubricant was applied (Densmix ( The relationship between the molding pressure of 0.6% Lub.
  • the ejection pressure was significantly reduced when molding was performed at a pressure of 785 MPa, and was almost the same at 98 IMPa.
  • the ejection pressure was higher than in the above case where the lubricant was applied, and the ejection pressure increased with the increase in molding pressure, and decreased only slightly at 981 MPa.
  • Molding temperature 150 Set to C, apply the lithium stearate as a lubricant to the inner surface of the mold, and use various practical low alloy steel powders as high-strength sintering materials as metal powders. An evaluation test was conducted to determine the relationship between the pressure and the relationship between the molding pressure and the compact density.
  • the low alloy steel powders were atomized powders manufactured by Kawasaki Steel Corporation and had KIP 103V, 5MoS and 30CRV.
  • KIP 103V was Fe-1% by weight Cr-0.3% by weight Mo-0.3% by weight V.
  • 5MoS was Fe—0.6% by weight Mo—0.2% by weight Mi.
  • the composition of 30 CRV was Fe-3% by weight Cr-0.3% by weight Mo-0.3% by weight V.
  • the metal powder (103 V-0.3% C) is obtained by adding 0.3% by weight of graphite powder and 0.3% by weight of lithium stearate powder to KIP 103V, with the total weight of the metal powder being 100%. + 0.3% L i St) was adjusted.
  • Metal powder (5M0S-0.2% by weight) obtained by adding 0.2% by weight of graphite powder and 0.3% by weight of lithium stearate powder to 5MoS, with the total weight of the metal powder being 100%. C + 0.3% by weight Li St).
  • Fig. 17 shows the relationship between the molding pressure and the extraction pressure when these four types of metal powders are used
  • Fig. 18 shows the relationship between the molding pressure and the density of the compact when these four types of metal powders are used.
  • the metal powders having any composition showed almost the same tendency.
  • the extraction pressure was highest when the molding was performed at a molding pressure of 588 MPa, and the extraction pressure was reduced as the molding pressure was increased.
  • the density of the obtained compact the higher the molding pressure, the higher the density.
  • the molding pressure when using KIP 103V was 588MPa, 686MPa, 785MPa, 883MPa, 98IMPa, and the extraction pressure in each case was measured.
  • the molding pressure when using ASC 100-29 was 393MPa, 490MPa, 588MP, 686MPa, 785MPa, 883MP, 981MPa, and the extraction pressure in each case was measured.
  • Figure 19 shows the relationship between molding pressure and ejection pressure when using these two types of metal powders.
  • the withdrawal pressure was higher with KIP 103 V than with ASC I 00-29.
  • ASC 100-29 which is pure iron, required a lower extraction pressure than KIP 103 V to which iron, Mo, V, etc. were added. From this, it is estimated that the higher the proportion of iron contained in the metal powder, the greater the amount of iron in contact with the inner surface of the mold, and the easier it is to generate iron stearate.
  • the same mold as that used in (Molding of powder compact) in [Example] was used, and this mold was heated to 150 ° C. Then, No. 2 lithium stearate prepared in the above (adjustment of higher fatty acids) was spray-coated on the inner surface of this mold. KIP103V alloy steel powder manufactured by Kawasaki Steel Co., Ltd. was used as the metal powder. This alloy steel powder was heated to 150 ° C., filled in a mold, and molded under pressure with two types of 588 MPa and 981 MPa to form a compact.
  • lithium stearate was detected from the surface of the molded product molded at a molding pressure of 588 MPa, but almost no iron stearate was detected.
  • iron stearate was detected from the surface of the molded product molded at a molding pressure of 981 MPa.
  • the surface of the iron powder in the molded body molded at 588 MPa has lubricant ⁇
  • the lithium stearate is only physically adsorbed, it shows that iron stearate is chemically adsorbed on the surface of the iron powder in the compact formed at 98 IMPa.
  • This iron stearate is a metal stone, which is formed by lithium stearate by chemical bonding with iron.
  • the film chemically adsorbed in this way has a stronger lubricating action than the film of the lubricant physically adsorbed, and is considered to exhibit extremely excellent lubricating performance in high-pressure molding as in the present invention.
  • a high-density sintered body can be produced only by one molding and sintering.
  • the molding method of the present invention can reduce the extraction pressure when the molded body is extracted from the mold. As a result, the condition of the surface of the molded body becomes extremely good, and the dimensional accuracy of the molded body can be stably secured. In addition, since the metal powder is molded under high pressure, a high-density powder compact can be obtained.
  • the molded body can be extracted with a low extraction pressure of the mold, so that the wear of the mold can be significantly reduced, and the life of the mold is greatly improved, and the cost for the mold can be reduced. Can be reduced.
  • the lubricant can be uniformly applied to the inner surface of a mold heated to a temperature equal to or lower than its melting point. Also, since no organic solvent is used, there is no need to worry about environmental pollution.
  • the molding method of the present invention when the metal powder is heated, a high-density molded body can be molded.
  • the higher fatty acid-based lubricant when added to the metal powder in an amount of 0.1% by weight or more and less than 0.6% by weight, Improves the flowability of metal powder, The packing density of the powder can be increased.
  • the extraction pressure can be reduced and the compact density can be increased.
  • the metal salt of the higher fatty acid is a lithium salt, calcium salt or zinc salt of the higher fatty acid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Materials For Medical Uses (AREA)

Description

明 細 書 粉末成形体の成形方法 技術分野
本発明は粉末成形体の成形方法に関する。 特に高密度の粉末成形体を得ると同 時に、 粉末成形体を金型から抜出する際の抜出圧力を低くすることができる粉末 成形体の成形方法に関する。 背景技術
粉末冶金においては、 粉末を加圧成形して粉末成形体 (以下適宜 「成形体」 と 略す) を成形し、 この成形体を焼結して焼結体を製造する。 この粉末冶金におい て、 寸法精度が高く高密度の焼結体を得るために高密度の成形体を得ておく必要 がある。 そしてそのためには成形体を成形するための成形圧力を高くする必要が める。
高密度の焼結体を製造する方法として、 従来より 2回成形して、 2回焼結する 方法や粉末鍛造法が行われてきたが、 これらの方法においても、 やはり高密度の 焼結体を得るためには高密度の成形体を得る必要があり、 そのため粉末を成形す るための成形圧力を高くする必要があった。
しかし成形圧力を高くした場合には、 加圧成形された成形体を金型から抜き出 すための抜出圧力が必然的に高くなる。 そして抜出圧力が高くなると成形体にわ れやひび等が発生したり、 金型にかじりが生じたりするという問題が生じた。 そ こで従来より抜出圧力が高くならない技術が求められてきた。
例えば潤滑剤を用いて成形体を抜き出すときの成形体と金型との摩擦を軽減す る手法がある。 U S P— 4 9 5 5 7 9 8には粉末と金型を 1 5 0 °C程度以下に加 熱する温間成形法が開示されている。 そして、 加圧成形された成形体を金型から 抜き出す際の抜出圧力を減少させるために、 粉末に混合する潤滑剤としてステア リン酸亜鉛、 ステアリン酸リチウム等の金属ステアリン酸塩の潤滑剤ゃヮックス 系潤滑剤等を用いて成形することが開示されている。 また特開平 0 5— 2 7 1 7 0 9号公報、 特開平 1 1一 1 4 0 5 0 5号公報、 特閧平 1 1一 1 0 0 6 0 2号公 報等には温間成形用の潤滑剤を含む原料粉末の製造方法や温間成形用の潤滑剤を 含む原料粉末を用いた成形方法が開示されている。 更に特開平 8— 1 0 0 2 0 3 号公報には金型に潤滑剤を静電塗布する方法が開示されている。
またステアリン酸リチウムを潤滑剤として用いた場合成形温度が高くなると抜 出圧力が高くなるとする研究論文 (" INFLUENCE OF TEMPERATURE ON PROPERTIES OF LITHIUM STEARATE LUBRICANT" , Powder Metallurgy & Particulate Materials, voll,1997) も発表されている。
鉄系の焼結体については、 高強度化、 軽量化のために高密度化が要求されると 共に、 高精度化と低コスト化も要求されている。 そのため一回の成形と焼結だけ で高密度の焼結体を得ようとすると粉末を加圧成形する圧力を高くしなければな らない。 しかし従来の手法では成形圧力の増加に伴い、 抜出圧力が高くなり、 成 形体の表面を劣化させかつ金型にかじりが生じて、 成形を続行することができな いという問題も生じていた。
そこで本発明の目的は、 高い成形圧力で高密度の成形体を得ることができると 同時に、 金型からの抜出圧力を減少することができる粉末成形体の成形方法を提 供することにある。 発明の開示
本発明者は研究の結果、 金型の内面に高級脂肪酸系潤滑剤であるステアリン酸 リチウムを塗布して、 1 5 0 °Cに加熱した金型に同一の温度に加熱した鉄粉末を 充填して、 この鉄粉末を加圧成形する場合、 成形圧力を 6 8 6 M P aで加圧成形 した方が 5 8 8 M P aで加圧成形するよりも却って抜出圧力が減少することを発 見した。 これは従来の高圧力で粉末を成形体に成形した場合には、 この成形体を 抜出する圧力には高い圧力を必要とする従来の考えを覆す発見であった。 そこで 本研究者は更に研究を重ね、 金型の内面にステアリン酸リチウムを塗布して、 9 8 I MP aの成形圧力で加圧成形した鉄粉末の成形体について、 成形体の表面に ステアリン酸鉄が付着していることを発見した。
更に本発明者はステアリン酸カルシウムとステアリン酸亜鉛についても 1 0 5 °Cに加熱した金型及び鉄粉末を用いて鉄粉末を加圧成形したところ、 一定の圧力 を越えると却って成形体の抜出圧力が減少するという同様な現象が見られること を確認した。
これらの現象について本発明者は研究を重ねた結果、 次のように推測するに至 つた。 つまりステアリン酸リチウムのような高級脂肪酸系潤滑剤を加熱した金型 の内面表面に塗布すると、 金型の内面表面に薄い潤滑剤の被膜が存在することに なる。 この状態で加熱した金属粉末を金型に充填して、 ある一定の圧力以上で加 圧成形すると、 詳細は明らかではないが、 金属粉末と高級脂肪酸系潤滑剤との間 に所謂メカノケミカル反応が生じ、 このメカノケミカル反応によって金属粉末と 高級脂肪酸系潤滑剤とが化学的に結合して金属石験の被膜が形成されると考える に至った。 そしてこの金属石鹼の被膜は金属粉末との結合力が非常に強固であり、 物理的に金型の内面表面に吸着していた高級脂肪酸系潤滑剤以上の潤滑性能が発 揮されて、 この被膜によって金型と成形体の間の摩擦力が著しく減少されること になると考えた。
そこで本発明者は、 加熱された金型の内面に高級脂肪酸系潤滑剤を塗布する塗 布工程と、 前記金型に金属粉末を充填し、 前記高級脂肪酸系潤滑剤が該金属粉末 と化学的に結合して金属石験の被膜を生成する圧力で該金属粉末を加圧成形する 加圧成形工程とを含むことを特徴とする粉末成形体の成形方法を発明した。
即ち加熱され、 内面にステアリン酸リチウムのような高級脂肪酸系潤滑剤が塗 布された金型を用いて、 この金型に加熱された金属粉末を充填して、 この金属粉 末と高級脂肪酸系潤滑剤とが化学的に結合して金属石験の被膜が生成される圧力 でこの金属粉末を加圧成形すると、 金属石鹼の被膜が金型の内面表面に生じると 推測され、 その結果金属粉末の成形体と金型との間の摩擦力が減少し、 成形体を 抜出する圧力が少なくて済む。 また金型が加熱された状態で加圧成形されるので それだけ高級脂肪酸系潤滑剤と金属粉末との化学的結合が促進されていると推測 され、 金属石験の被膜が形成しやすくなる。 更に金属石鹼の被膜が生成される圧 力で加圧成形するので、 高密度の成形体を成形することができる。 なおここで高 級脂肪酸系潤滑剤とは高級脂肪酸からなる潤滑剤及び高級脂肪酸の金属塩からな る潤滑剤の双方を含む。 また本発明者は、 1 0 o °c以上に加熱された金型の内面に高級脂肪酸の金属塩 を塗布する塗布工程と、 前記金型に鉄粉末を充填し、 6 0 0 M P a以上で該鉄粉 末を加圧成形する加圧成形工程とを含むことを特徴とする粉末成形体の成形方法 を発明した。
即ち 1 0 0 °C以上に加熱され、 内面に例えばステアリン酸リチウムのような高 級脂肪酸の金属塩が塗布された金型を用い
て、 鉄粉末を 6 0 0 M P a以上で加圧すると金型が 1 0 0 °C以上に加熱されてい るので、 高級脂肪酸の金属塩が鉄粉末と化学的結合が促進されると推測され、 例 えばステアリン酸鉄の単分子膜のような高級脂肪酸の鉄塩の被膜が成形体の表面 に生じ、 その結果鉄粉末の成形体と金型との間の摩擦力が減少し、 成形体を抜出 する圧力が少なくて済む。 また 6 0 0 M P a以上という高圧力で加圧成形するの で、 高密度の成形体を成形することができる。 図面の簡単な説明
図 1は、 スプレーガンで金型の内面に高級脂肪酸系潤滑剤を塗布する様子を概 略的に示した図である。
図 2は、 スプレーガンで金型の内面に高級脂肪酸系潤滑剤を塗布する様子を概 略的に示した図である。
図 3は、 3種類の粒径の異なるステアリン酸リチウムが 1 5 0 °Cに加熱された 金型に塗布された時の付着した状態を示す写真である。
図 4は、 評価試験 1における成形体の成形圧力と抜出圧力の関係を示した図で ある。
図 5は、 評価試験 1における成形体の成形圧力と成形体密度の関係を示した図 である。
図 6は、 評価試験 2における成形体の成形圧力と抜出圧力の関係を示した図で ある。
図 7は、 評価試験 2における成形体の成形圧力と成形体密度の関係を示した図 である。
図 8は、 評価試験 3における成形体の成形圧力と抜出圧力の関係を示した図で ある。
図 9は、 評価試験 3における成形体の成形圧力と成形体密度の関係を示した図 である。
図 1 0は、 評価試験 4における成形体の成形圧力と抜出圧力の関係を示した図 である。
図 1 1は、 評価試験 4における成形体の成形圧力と成形体密度の関係を示した 図である。
図 1 2は、 評価試験 5における成形体の成形圧力と抜出圧力の関係を示した図 である。
図 1 3は、 評価試験 5における成形体の成形圧力と成形体密度の関係を示した 図である。
図 1 4は、 評価試験 6における成形体の成形圧力と抜出圧力の関係を示した図 である。
図 1 5は、 評価試験 6における成形体の成形圧力と成形体密度の関係を示した 図である。
図 1 6は、 評価試験 7における成形体の成形圧力と成形体密度の関係を示した 図である。
図 1 7は、 評価試験 8における成形体の成形圧力と抜出圧力の関係を示した図 である。
図 1 8は、 評価試験 8における成形体の成形圧力と成形体密度の関係を示した 図である。
図 1 9は、 評価試験 9における成形体の成形圧力と抜出圧力の関係を示した図 である。
図 2 0は、 T O F— S I M Sの結果を示す図である。 発明の実施の形態
以下詳細に本発明の粉末成形体の成形方法 (以下適宜 「成形方法」 と略す) の 実施の形態について説明する。
本発明の成形方法は、 加熱された金型の内面に高級脂肪酸系潤滑剤を塗布する 塗布工程と、 この金型に金属粉末を充填し、 高級脂肪酸系潤滑剤が金属粉末と化 学的に結合して金属石験の被膜を生成する圧力で金属粉末を加圧成形する加圧成 形工程とを含む。 即ち本発明の成形方法は塗布工程と加圧成形工程とを含む。 塗布工程は加熱された金型の内面に高級脂肪酸系潤滑剤を塗布する工程である。 ここで用いられる高級脂肪酸系潤滑剤は上述したように高級脂肪酸からなる潤 滑剤と高級脂肪酸の金属塩からなる潤滑剤の双方を含む。 例えばステアリン酸リ チウム、 ステアリン酸カルシウム、 ステアリン酸亜鉛、 ステアリン酸バリウム、 パルミチン酸リチウム、 ォレイン酸リチウム、 ノ ルミチン酸カルシウム、 ォレイ ン酸カルシウム等を用いることができる。
なお高級脂肪酸系潤滑剤は高級脂肪酸の金属塩であることが好ましい。 高級脂 肪酸の金属塩の潤滑剤であれば、 所定の温度及び所定の圧力の下で高級脂肪酸の 金属塩が金属粉末とそれだけ容易に化学的に結合し、 高級脂肪酸の金属塩の被膜 を形成すると考えられる。 更にこの高級脂肪酸の金属塩は高級脂肪酸のリチウム 塩、 カルシウム塩又は亜鉛塩であるのがより好ましい。 金属粉末を加圧成形して、 成形された成形体を抜き出す抜出圧力が少なくて済む。 即ちより容易に金属粉末 と化学的に結合して高級脂肪酸の金属塩の被膜を容易に形成すると考えられる。 例えば鉄粉末と化学的に結合してステアリン酸鉄の被膜を形成して、 抜出圧力が 少なくて済む。
なお高級脂肪酸系潤滑剤は固体であることが好ましい。 液状であると潤滑剤が 下方向に流れ落ち易くなり、 金型内面に潤滑剤を均一に塗布することが困難であ るという問題が生じる。 また金属粉末が固まる等の問題が生じる。
更に高級脂肪酸系潤滑剤は水に分散されているのが好ましい。 水に分散されて いる潤滑剤を 1 0 o。c以上に加熱された金型に用いると水が瞬時に蒸発して、 均 一な潤滑剤の被膜を形成することができる。 また有機溶媒ではなく水に分散され ているので環境上の問題を避けることができる。 また水に分散された高級脂肪酸 系潤滑剤の粒子は最大粒径が 3 0 z m未満であることが好ましい。 3 0〃m以上 の粒子があると潤滑剤の被膜が不均一になり、 また水に分散した場合に高級脂肪 酸系潤滑剤の粒子が容易に沈殿してしまい、 均一な塗布が困難になる。
なお最大粒径が 3 0 m未満である水に分散された高級脂肪酸系潤滑剤は次の ように調整することができる。 まず高級脂肪酸系潤滑剤を加える水に界面活性剤 を添加しておく。
界面活性剤は例えばアルキルフエノ一ル系の界面活性剤、 ポリオキシエチレン ノニルフエ二ルェ一テル (E O ) 6、 ポリオキシエチレンノニルフエ二ルェ一テ ル (E O ) 1 0、 ァニオン性非イオン型界面活性剤、 ホウ酸エステル系エマルポ ンド T— 8 0等その他公知の界面活性剤を用いることができる。 これらのうち適 切なものを 1種類、 或いは 2種以上を必要に応じて適切な量添加すればよい。 例えば高級脂肪酸系潤滑剤としてステアリン酸リチウムを用いる場合、 ポリォ キシエチレンノニルフエ二ルェ一テル (E O ) 6、 ポリオキシエチレンノニルフ ェニルエーテル (E O ) 1 0及びホウ酸エステルエマルボン T— 8 0の 3種類の 界面活性剤を同時に添加することが好ましい。 ホウ酸エステルエマルボン T一 8 0のみであるとステアリン酸リチウムは水に分散しないからである。 またポリオ キシエチレンノニルフエニルエーテル (E〇) 6或いは (E O ) 1 0のみではス テアリン酸リチウムは水に分散するが、 これを後述するように更に希釈したとき にうまく分散しないからである。 そこでこのように 3種類の界面活性剤を適切に 複合添加するのが好ましい。
添加する界面活性剤の全体量は水溶液の全体の体積を 1 0 0体積%として 1 . 5〜 1 5体積%が好ましい。 界面活性剤の添加量が多いほどステアリン酸リチウ ムを多量に分散させることができるが、 添加量が多くなればそれだけ水溶液の粘 度が高くなり、 後述する潤滑剤の粉砕処理においてステアリン酸リチウムの粒子 を微細にすることが困難になる。
なおこのほかに少量の消泡剤、 例えばシリコン系の消泡剤等を添加することが できる。 潤滑剤の粉碎処理において泡立ちが激しいと潤滑剤を塗布した際に均一 な潤滑剤の被膜が形成されにくいからである。 消泡剤の添加量は概ね水溶液の体 積を 1 0 0体積%として 0 . 1〜1体積%であればよい。
次にこのように界面活性剤が添加された水溶液に高級脂肪酸系潤滑剤の粉末を 加えて分散させる。 例えばステアリン酸リチウムの粉末を水溶液に分散させる場 合ステアリン酸リチウムの粉末は水溶液 1 0 0 c m3に対して 1 0〜3 0 g分散 させればよい。 そしてこの高級脂肪酸系潤滑剤の粉末が分散された水溶液をテフ ロンコートした鋼球を用いてボールミル式粉砕処理を施せばよい。 ボールの直径 は 5〜1 0 mmであればよい。 ボールの直径が大きすぎても小さすぎても粉碎効 率が悪くなるからである。 ボールの体積は処理する液体の体積とほぼ同じ体積が 好ましい。 このようにすると粉砕効率が最もよくなると考えられる。 なおボール ミル式粉砕処理に用いる容器の容量は処理する液体の体積とボールの体積の合計 の 1 . 5〜 2倍が好ましい。 同様にこのようにすると粉碎効率が最もよくなると 考えられる。
なお粉碎処理時間は概ね 5 0〜 1 0 0時間が好ましい。 例えばこれによりステ ァリン酸リチウムの粉末が最大粒径が 3 0 / m未満に粉砕されて液体中に浮遊分 散した状態になる。
高級脂肪酸系潤滑剤は金型の内面に塗布される。 高級脂肪酸系潤滑剤を金型の 内面に塗布する場合ボールミル式粉砕処理を施された水溶液を 1 0〜2 0倍に希 釈したものを用いて塗布する。 水溶液を希釈する場合、 希釈された水溶液全体の 重量を 1 0 0重量%として、 そこに含まれている高級脂肪酸系潤滑剤が 0 . 1〜 5重量%となるように希釈するのが好ましい。 更に好ましくは 0 . 5〜2重量% に希釈するのがよい。 このように希釈することによって薄くて均一な潤滑膜を形 成することができる。
このように希釈された水溶液を例えば塗装用のスプレーガンで吹き付けて、 塗 布することができる。 塗布する水溶液の量はおよそ 1 c m3/秒程度の塗布量に 調整したスプレーガンを用いて、 金型の大きさに合わせて適宜調整して行えばよ い。 例えば高級脂肪酸系潤滑剤がステアリン酸リチウムの場合には成形体の重量 1 0 0部に対して 0 . 0 5重量部のステアリン酸リチウムが金型の内面に付着す る程度が好ましい。 スプレーした塗布量と抜出圧力の関係を調べた実験からこの 程度の量を塗布するのが妥当と推定される。
なお金型の内面に潤滑剤を均一にスプレー塗布する場合、 所定の位置に下パン チをセットして、 そのままスプレー塗布するとパンチ付近に付着しない部分が生 じるという問題がある。 この場合図 1に示すように予め下パンチ 2 0を所定の位 置より下げた位置にしておき、 スプレーガン 1 0で潤滑剤をスプレー塗布し、 そ の後所定の位置に下パンチ 2 0を押し上げてもよい。 あるいは図 2に示すように スプレー塗布する前に下パンチ 2 0を金型 (ダイス) 4 0の外へ引き出し、 つい てスプレーガン 1 0を金型 (ダイス) 4 0の下方へ移動させて、 下から上に向け て潤滑剤をスプレー塗布してもよい。 このように下から上に向けて潤滑剤をスプ レ一塗布した場合には金型 (ダイス) 4 0に付着しなかった潤滑剤が上方へ飛散 するのを防ぐ目的で、 余剰の潤滑剤を回収する構造にすればよい。 金型 (ダイス) 4 0をこのような構造にすることで、 金型 (ダイス) 4 0の内面には常に均一な 潤滑剤の被膜 3 0が形成でき、 潤滑剤の塗布不良による焼き付きを防ぐことがで きる。 さらに作業環境を悪化させることもなくなる。
なお高級脂肪酸系潤滑剤を金型の内面に塗布する方法としてはスプレーガンで スプレー塗布する方法の他に、 例えば静電ガン等の静電塗布装置を用いて塗布し てもよい。
本塗布工程に用いられる金型は粉末冶金において成形体を成形するために通常 用いられる金型を用いることができる。 なお高い圧力で加圧成形するので強度に 優れた金型が望ましい。 また金型の内面は T i Nコート処理等が施され、 表面の 粗さが低いのが好ましい。 それだけで摩擦が少なくなり、 また成形体の表面も滑 らかに仕上がる。
本塗布工程で用いられる金型は加熱されている。 金型が加熱されることによつ て、 金型に塗布された高級脂肪酸系潤滑剤とその近傍の金属粉末とが共に加熱さ れて、 高級脂肪酸系潤滑剤と金属粉末とが一定の圧力の下で化学的に結合し易く なり、 金属石験の被膜を形成し易くなる。 従って抜出圧力が少なくて済む。 また 金型が 1 0 0 °C以上に加熱されているので、 高級脂肪酸系潤滑剤が分散されてい る水が瞬時に蒸発して、 金型の内面に均一な潤滑剤の被膜を形成することができ る。 金型を加熱するには通常の方法で行えばよい。 例えば電熱ヒー夕一を用いて 加熱することができる。
なおこの場合金型の温度は 1 0 0 °C以上に加熱されているのが好ましい。 即ち 金属粉末と高級脂肪酸系潤滑剤とが一定の圧力下で化学的に結合し易くなり、 金 属石鹼の被膜を形成し易くなると推測される。 更に金型の温度は高級脂肪酸系潤 滑剤の融点未満であることが好ましい。 金型の温度が融点以上であると高級脂肪 酸系潤滑剤が溶融して、 金型内面を下方向に流れ落ち易くなり、 金型の内面に均 一な潤滑剤の被膜を形成することができなくなる。 また金属粉末が固まる等の問 題が生じる。 例えば高級脂肪酸系潤滑剤としてステアリン酸リチウムを用いた場 合には金型の加熱温度はステアリン酸リチウムの融点である 2 2 0 °C未満が好ま しい。
加圧成形工程は、 加熱した金型に金属粉末を充填し、 高級脂肪酸系潤滑剤が金 属粉末と化学的に結合して金属石験の被膜を生成する圧力で金属粉末を加圧成形 する工程である。
塗布工程において高級脂肪酸系潤滑剤が塗布された金型に金属粉末を充填する。 ここで用いられる金属粉末は鉄粉末等の金属粉末の他、 金属間化合物粉末、 金属 非金属間化合物粉末でもよく、 異なった種類の金属粉末が混合された混合粉末で もよい。 更に金属粉末と非金属粉末との混合粉末でもよい。 なおここで鉄粉末と は所謂純鉄の粉末の他、 鉄を主成分とする鉄合金の粉末をも含むものとする。 従 つてここで用いられる金属粉末は例えば鋼粉末と黒鉛粉末との混合粉末でもよい。 金属粉末は適切な金属粉末を用いることができ、 造粒粉を用いてもよいし、 粗 粒粉を用いてもよい。 従って粒径が 2 0 0 以下で、 平均粒径が 1 0 0 m前 後である一般的な粉末冶金用の金属粉末を用いることができる。 また添加用の粉 末 (G r (黒鉛) 、 C u ) として粒径が 4 O z m以下の一般的な粉末を用いるこ とができる。 なお金属粉末は通常用いられている混合機を用いて混合することが できる。
なお金属粉末は加熱されているのが好ましい。 成形体を抜き出す抜出圧力が減 少することができる。 即ち金属粉末も加熱されていることにより、 高級脂肪酸系 潤滑剤と化学的に結合し易くなり、 金属石鹼の被膜を形成しやすくなると考えら れる。
また金属粉末は鉄粉末を含む金属粉末であることが好ましい。 高級脂肪酸系潤 滑剤と化学的に結合して高級脂肪酸の鉄塩の被膜を形成すると考えられる。 この 鉄塩の被膜は鉄粉末との結びつきが強固であり、 もとの物理的に吸着していた潤 滑剤以上の潤滑性能を発揮して、 金型と成形体との間の摩擦力を著しく減少させ て、 成形体を抜き出す抜出圧力を減少させることができる。
なお金属粉末には黒鉛粉末が添加されているのが好ましい。 それだけ抜出圧力 が減少することができる。 黒鉛粉末自体に潤滑作用があり、 黒鉛粉末を添加する ことによつて鉄粉末と金型との接触面積が減少して、 抜出圧力が減少する。
更にここで用いられる金属粉末には高級脂肪酸系潤滑剤が添加されているのが 好ましい。 例えばステアリン酸リチウム、 ステアリン酸カルシウム、 ステアリン 酸亜鉛等を金属粉末に添加してもよい。 高級脂肪酸系潤滑剤の添加の割合は金属 粉末全体を 1 0 0重量%として、 0 . 1重量%以上で 0 . 6重量%未満が好まし い。 潤滑剤の添加量が、 0 . 1重量%以上で 0 . 6重量%未満であると、 金属粉 末の流動性が著しく向上して金型への充填密度を高くすることができ、 高密度の 成形体を成形するのに有利である。 但し潤滑剤の添加量が多くなるほど高圧力で 成形したときの成形体の到達密度が低くなる。
金属粉末を金型で加圧成形するときの成形圧力は高級脂肪酸系潤滑剤が金属粉 末と化学的に結合して金属石験の被膜を生成する圧力で行う。 このように金属石 験の被膜を生成する圧力で行うことにより、 金型と加圧成形された成形体との間 に金属石験の被膜が形成されると考えられる。 この被膜は金属粉末との結合力が 非常に強固であり、 もとの物理的に吸着していた潤滑剤の被膜以上の潤滑性能を 発揮し、 金型と成形体との間の摩擦力を著しく減少することができる。 また温間 で高い成形圧力で成形されるので成形体の密度を室温成形に比べて大幅に高くす ることができる。
金型に塗布される高級脂肪酸系潤滑剤の種類によって金属石鹼の被膜が生成し 形成する圧力が異なるので、 用いられる高級脂肪酸系潤滑剤の種類に応じて成形 圧力を定めて成形すればよい。
例えば金型の内面に塗布する高級脂肪酸系潤滑剤としてステアリン酸リチウム 等の高級脂肪酸の金属塩を用いて鉄粉末を加圧成形する場合には金型の温度は 1 0 0 °C以上に加熱して、 6 0 O M P a以上の圧力で加圧成形することができる。 即ち 6 0 O M P a以上の圧力で加圧成形すると、 鉄粉末と高級脂肪酸の金属塩と が化学的に結合して高級脂肪酸の鉄塩の被膜が成形体と金型との間に形成され、 抜出圧力が減少する。 また 6 0 O M P a以上の高圧力で成形しているので、 高密 度の成形体を得ることができる。
なおこの場合 7 8 5 M P a以上の加圧成形するのが更に好ましい。 またこの場 合金型の温度は 1 2 0〜 1 8 0 °C程度の設定しておくのが更に好ましい。 この温 度であれば高級脂肪酸の金属塩と鉄粉末とが化学的に結合して、 高級脂肪酸の鉄 塩の被膜を形成し易くなり、 成形体の抜出圧力が著しく減少するからである。 更にこの場合高級脂肪酸の金属塩は高級脂肪酸のリチウム塩、 カルシゥム塩又 は亜鉛塩であることが更に好ましい。 成形体を抜き出す抜出圧力が減少するから である。
なおこのように成形された成形体は通常の方法で抜き出せばよい。 金属石験の 被膜が金型と成形体の間に形成されているので、 従来と比較して減少した抜出圧 力で成形体を抜き出すことができる。 また高い成形圧力で成形されているので、 高密度の成形体を得ることができる。 抜出圧力は加圧成形圧力の 3 %以下の圧力 で抜き出すことができる。
本発明の成形方法を経時的に列挙すると次のようになる。
①金型を 1 0 0 °C以上の所定金型温度に加熱しておく。
②金型温度より高い融点をもつ高級脂肪酸の金属塩が微細に分散した分散液を金 型表面に塗布し、 金型表面に高級脂肪酸の金属塩の皮膜を形成する。
③金型に鉄粉末を充填し、 6 0 O M P a以上の成形圧力で加圧成形する。 これに より金型と当接している表面に金属石鹼の皮膜をもつ成形体を得る。
④その後、 金属石験の皮膜の潤滑特性により加圧成形時の加圧力の 3 %以下の抜 出力で成形体を金型より引き抜き成形体を取り出す。
なお、 上記鉄粉末には、 純鉄や合金綱などの鉄を主体とする粉末、 および純鉄 や合金綱に銅や黒鉛粉などを混合した粉末も含まれる。 実施例
実施例として高級脂肪酸系潤滑剤を調整し、 粉末成形体を成形した。 また比較 のため比較例として粉末成形体を成形した。
(高級脂肪酸系潤滑剤の調整)
①高級脂肪酸系潤滑剤として融点が約 2 2 5 °Cであるステアリン酸リチウム ( L i S t ) の粉末を用意し、 このステアリン酸リチウムの粉末を水に分散させ た。
表 1は水にステアリン酸リチウムの粉末を分散させる条件を示し、 水に分散さ れたステアリン酸リチウムの最大粒径が 3 未満のものを No. 1〜4とし、 最大粒径が 30 m以上のものを No. 5とした。 なおここで最大粒径には個々 の粒子が凝集したものも含む。
【表 1】
Figure imgf000015_0001
②ステアリン酸リチウムを分散させるのに際して、 まず水に界面活性剤と消泡 剤を添加して、 界面活性剤と消泡剤が添加されている水溶液を作製した。
界面活性剤としてはポリオキシエチレンノニルフエニルエーテル (E0) 6、 (E〇) 10及びホウ酸エステルエマルボン T— 80を用いた。
表 1の界面活性剤添加量の欄に、 水溶液の体積を 100体積%として No. 1 〜 5におけるこれら 3種類の界面活性剤全体の添加量を示す。 (E0) 6、 (E 0) 10及びホウ酸エステルエマルボン T一 80の体積比は (E 0) 6 : (E0) 10 :ホウ酸エステルエマルボン T— 80 = 1 : 1 : 1であった。
消泡剤はシリコン系の消泡剤を用い、 水溶液の体積を 100体積%として 0. 3体積%添加した。
③界面活性剤を添加した水溶液にステアリン酸リチウムの粉末を加えて分散し た。 水溶液 100 cm3に対して分散させるステアリン酸リチウムの粉末の量は 表 1に示した通りである。
次にこのステアリン酸リチウムの粉末を分散した水溶液をテフロンコートした 鋼球を用いてボールミル式粉砕処理を施した。 鋼球の直径は 10mmであった。 用いられたボールの体積は処理された水溶液の体積とほぼ同一の体積であった。 ボールミル式粉碎処理を施すために用いた容器の容量は水溶液とボールの体積に 対して約 2倍であった。 粉砕処理に要した時間は表 1に示した。 この粉砕処理に よってステアリン酸リチウムの粉末が水溶液中に浮遊分散した状態となった。 更にこのステアリン酸リチウムの粉末が浮遊分散した水溶液を水で希釈した。 希釈倍率は表 1に示した。
④ 1 cm3/秒程度の塗布量に調整した塗装用スプレーガンを用いて、 この希 釈した水溶液を 150°Cに加熱した金型の内面にスプレー塗布を行った。
⑤図 3は No. 1、 No. 4及び No. 5におけるステアリン酸リチウムが 1 50°Cに加熱された金型に塗布された時の付着した状態を示す写真である。 No. 1は細かな粒子が均一に付着していた。 No. 4ではわずかに粗い粒子が見られ たが、 粒径が 30 / m以上のものは見られなかった。 No. 5では粒径が 3 m以上の粗い粒子が認められた。 なお No. 5ではスプレー塗布によるステアリ ン酸リチウムの被膜が不均一であるばかりでなく、 ステアリン酸リチウムの粒子 が水溶液中に沈殿してしまい、 常時ステアリン酸リチウムの粉末を分散した水溶 液を攪拌していなければスプレーガンによるスプレー塗布自体がうまくいかなか つた。
(粉末成形体の成形)
実施例 1〜4
実施例 1から 4として上述の (高級脂肪酸系潤滑剤の調整) で作製した No. 1から 4の潤滑剤を用いて粉末成形体を成形した。
上述した No. 1〜4の潤滑剤を 150°Cに加熱した金型の内面にスプレー塗 布した。 金型は内面に T iNコート処理を施して表面粗さを十点平均粗さ (J I S B 0601 ) で 0. 4 Zに仕上げた ø 17mmの超硬金型を用いた。
次に 150°Cに加熱した金属粉末を上記金型に充填し、 圧力 785MPaで加 圧成形して成形体を作製した。 金属粉末は実施例 1から 4まで同一の金属粉末を 用いた。 川崎製鉄 (株) 製 K I P 103 V合金鋼粉 (以下適宜 「 103 V」 と略 す) に黒鉛粉と内部潤滑剤としてステアリン酸リチウムの粉末とを添加して、 1 時間回転混合した金属粉末である。 黒鉛粉及びステアリン酸リチウムの粉末の添 加の量は、 金属粉末全体の重量を 100重量%として、 黒鉛粉は 0. 5重量%で あり、 ステアリン酸リチウムの粉末は 0. 3重量%であった。 なお川崎製鉄 (株) 製 K I P 103 V合金鋼粉の組成は、 Fe— 1重量%Cr— 0. 3重量%Mo— 0. 3重量%Vであった。 比較例 1
金型に塗布した潤滑剤の比較のために、 日本バルカ一工業社製のスプレータイ プ潤滑剤乾性フッ素樹脂 U— NONS (以下適宜 「U— NONS] と略す) を金 型の内面に塗布した。 後は実施例と同様の条件で粉末成形体を成形した。 これを 比較例 1とする。 比較例 2
金属粉末に添加した内部潤滑剤の比較のために、 内部潤滑剤として添加された 0. 3重量%のステアリン酸リチウムの粉末の代わりに、 0. 8重量%のステア リン酸リチウムの粉末を添加した金属粉末を用いた。
なお金型の内面には潤滑剤を塗布しなかった。 金型及び金属粉末を加熱せずに 室温で金属粉末を成形して粉末成形体を作製した。 なお金型は実施例と同一のも のを用い、 成形圧力も同一とした。 これを比較例 2とする。 比較例 3
同様に金属粉末に添加した内部潤滑剤の比較のため、 内部潤滑剤として添加さ れた 0. 3重量%のステアリン酸リチウムの粉末の代わりに、 0. 8重量%のス テアリン酸亜鉛 (ZnSt) の粉末を添加した金属粉末を用いた。
なお金型の内面には潤滑剤を塗布しなかった。 金型及び金属粉末を加熱せずに 室温で金属粉末を成形して粉末成形体を作製した。 金型は実施例と同一のものを 用い、 成形圧力も同一とした。 これを比較例 3とする。
実施例 1〜 4及び比較例 1〜 3の抜出圧力及び成形体密度を表 2に示す。 【表 2】
Figure imgf000018_0001
表 2から明らかなように室温で成形した比較例 2と比較例 3に比較して、 実施 例 1から 4まですベて抜出圧力が著しく低く、 また成形体密度が高かった。 また 市販の潤滑剤 (U— NONS) を金型の内面に塗布して成形した比較例 1と比較 しても、 実施例 1から 4は抜出圧力が著しく低かつた。
また実施例 1から 4は成形体の表面状態が極めて良好であつた。 これに対して 比較例 1では成形体の表面が黒っぽくなつた。 また比較例 3ではかじりが成形体 の一部に発生し、 また表面状態も悪かった。
[評価試験]
成形圧力と抜出圧力との関係、 成形圧力と成形体密度の関係を調べるため以下 の評価試験を行った。
(評価試験 1 )
成形圧力と抜出圧力の関係及び成形圧力と成形体密度との関係を評価するため の評価試験を行った。 393MPa、 490MPa、 588 MPa、 686 MP a、 785 MPa、 883 MPa、 981 M P a等の圧力で金属粉末を成形し、 それぞれの成形圧力毎の抜出圧力、 成形体密度を測定した。
金型は上述の [実施例] の (粉末成形体の成形) で用いたのと同一の金型を用 いた。 なお以下の評価試験において用いた金型はすべて上述の [実施例] の (粉 末成形体の成形) で用いた金型と同一である。 即ち内面に T iNコート処理を施 して表面粗さを十点平均粗さ (J I S B0601) で 0. 4 Zに仕上げた 01 7 mmの超硬金型である。
金型の内面に塗布する潤滑剤として上述の [実施例] の (高級脂肪酸系潤滑剤 の調整) で作製した No、 2のステアリン酸リチウム (Li St) を用いた。 な お以下の評価試験において金型の内面に塗布するステアリン酸リチウムはこの N 0. 2のステアリン酸リチウムを用いた。 なお金型の内面への潤滑剤の塗布は成 形温度に加熱された金型にスプレ一塗布することによって行った。 なお以下の評 価試験においても同様である。
150°Cに加熱した金型に 150°Cに加熱した金属粉末を充填した。 なお以下 の記載において金型の温度及び充填される金属粉末の温度を成形温度という。 金属粉末は上述の [実施例] の (粉末成形体の成形) の実施例で用いた金属粉 末と同一の金属粉末を用いた。 即ち川崎製鉄 (株) 製の K I P 103 V合金鋼粉 に黒鉛粉末と内部潤滑剤としてステアリン酸リチウムの粉末とを添加して、 1時 間回転混合した金属粉末である。 黒鉛粉末及びステアリン酸リチウムの粉末の添 加の量は、 金属粉末全体の重量を 100重量%として、 黒鉛粉末は 0. 5重量% であり、 ステアリン酸リチウムの粉末は 0. 3重量%であった。
比較のために金型の内面に塗布する潤滑剤として上述の (粉末成形体の成形) の比較例 1で用いた U— NONSを用いた。 金属粉末については、 同様に (粉末 成形体の成形) の実施例で用いた金属粉末と同一の金属粉末を用いた。
更に比較のため金属粉末として、 金属粉末全体の重量を 100重量%として A s t al oy85Moに 0. 8重量%の黒鉛 (C) と 0. 6重量%の潤滑剤とが 添加されたへガネス社製の温間成形用粉末である D e n s mi xを用いた。 この 金属粉末には潤滑剤が含まれているため、 金型の内面には潤滑剤を塗布しなかつ た。
図 4に金型の内面にステアリン酸リチウムを塗布し、 上述した K I P 103 V 合金鋼粉に黒鉛粉末とステアリン酸リチウムの粉末を添加した金属粉末を用いた 場合 (L i S t金型潤滑) 、 金型の内面に U— NONSを塗布し、 同様に I P 103 V合金鋼粉に黒鉛粉末とステアリン酸リチウムの粉末を添加した金属粉末 を用いた場合 (U— NONS金型潤滑) 、 金型の内面には潤滑剤を塗布せずに金 属粉末として Den smixを用いた場合 (Densmix粉末) の成形圧力と 抜出圧力との関係を示す。 金型の内面にステアリン酸リチウムを塗布した場合は 上記圧力で成形した場合の抜出圧力を示すが、 U— N ON Sを塗布した場合は 3 92MPa、 588MP a, 785 MPa、 981 MP aで成形した場合の抜出 圧力を示し、 金属粉末として Densmixを用いた場合は 392 MPa、 58 8MPa、 686MPa、 785 MPa、 981 MP aで成形した場合の抜出圧 力を示す。
金属粉末として D e n s mi xを用いた場合には抜出圧力は成形圧力の増加と 共に高くなつた。 金型の内面に U— N 0 N Sを塗布した場合も Densmixを 用いた場合と比較するとその値は小さくなるが、 成形圧力の増加と共に抜出圧力 は高くなつた。
これに対して金型の内面にステアリン酸リチウムを塗布した場合には、 成形圧 力が 588 MP aまでは抜出圧力は増加したが、 686 MP a以上の成形圧力に なると逆に抜出圧力が低下し、 U— N 0 N Sを塗布した場合及び金属粉末として Densmixを用いた場合よりも抜出圧力が著しく低下している。 これは本発 明の粉末成形体の成形方法の最大の特徴である。
なおデ一夕には示していないが、 金型の内面にステアリン酸リチウムを塗布し た場合には成形体の表面状態は極めて良好であった。 これに対して金属粉末とし て D e n smi Xを用いた場合、 金型の内面に U— N 0 N Sを塗布した場合には 成形体の表面にかじり等が発生して、 良好な表面の成形体を得ることができなか つた。
図 5に金型の内面にステアリン酸リチウムを塗布し、 上述した K I P 103 V 合金鋼粉に黒鉛粉末とステアリン酸リチウムの粉末を添加した金属粉末を用いた 場合 (L i S t金型潤滑) 、 金型の内面に U— NONSを塗布し、 同様に I P 103 V合金鋼粉に黒鉛粉末とステアリン酸リチウムの粉末を添加した金属粉末 を用いた場合 (U— NONS金型潤滑) 、 金型の内面には潤滑剤を塗布せずに金 属粉末として Den smixを用いた場合 (Den smix粉末) の成形圧力と 成形体密度との関係を示す。 ステアリン酸リチウムを塗布した場合については上 記圧力で成形した場合の成形体密度を示すが、 U— NONSを塗布した場合につ いては 392 MPa、 588 MP a, 785 M P a、 の圧力で成形した場合の成 形体密度を示し、 金属粉末として D e n s mi xを用いた場合については 392 MP a, 490 MP a, 588 MP a, 686 MP a, 785 MP a, 98 1 M P aの圧力で成形した場合の成形体密度を示す。
成形体密度は成形圧力が高いほど高い値が得られる。 ステアリン酸リチウム又 は U— NONSを金型の内面に塗布した場合は概ね同じ値が得られ、 7. 4 g/ cm3以上の高い値となった。 但し金属粉末として D e n s m i xを用いた場合 には 7. 3 g/cm3以上にはならなかった。
(評価試験 2)
成形温度を 105°C、 125°C、 1 50°Cと設定し、 金型の内面に潤滑剤とし てステアリン酸リチウムを塗布した場合の成形圧力と抜出圧力の関係及び成形圧 力と成形体密度の関係を調べるために評価試験を行った。
金属粉末としては、 へガネス社製の純鉄粉末 AS C 100— 29を用いた。 ま た内部潤滑剤は添加しなかった。 即ち金属粉末として純鉄粉末のみを用いた場合 の評価試験であった。
393MP a、 490 MP a, 588 MP a, 686 MP a, 785 MP a, 98 IMP aの成形圧力で金属粉末を成形し、 それそれの成形圧力毎の抜出圧力 と成形体密度を測定した。 但し 1 50°Cについては 1 176 MP aの圧力でも成 形し、 抜出圧力と成形体密度を測定した。
図 6にそれぞれの温度における成形圧力と抜出圧力の関係を示す。 1 05°C、 125°C及び 1 50°Cのいずれの温度においても 586 MP aで成形した場合に 抜出圧力が最大であった。 686 MP a以上の成形圧力ではむしろ抜出圧力が減 少した。
図 7にそれそれの温度における成形圧力と成形体密度の関係を示す。 105° (:、 125°C及び 1 50°Cのいずれの温度においても成形圧力が増大すると成形体密 度が増大した。
図 6と図 7からステアリン酸リチウムを金型に塗布する潤滑剤として用いて、 成形体を成形した場合には、 686 MP a以上の圧力で成形すると抜出圧力が減 少すると共に高密度の成形体を得ることができることが分かる。
(評価試験 3)
成形温度を 105°Cに設定し、 金型の内面に潤滑剤としてステアリン酸リチウ ム、 ステアリン酸カルシウム又はステアリン酸亜鉛を塗布した場合の成形圧力と 抜出圧力との関係及び成形圧力と成形体密度との関係を調べるために評価試験を 行つた。
ステアリン酸カルシウムとステアリン酸亜鉛は上述の [実施例] の (高級脂肪 酸系潤滑剤の調整) の No. 2と同様の方法で作製したものを用いた。 なお以下 の評価試験において金型の内面に塗布されるステアリン酸カルシウムとステアリ ン酸亜鉛についても同様である。
金属粉末としては、 へガネス社製の純鉄粉末 ASC 100— 29を用いた。 ま た内部潤滑剤は添加しなかった。 即ち金属粉末として純鉄粉末のみを用いた評価 試験であった。
393 MPa、 490 MP a, 588 MP a, 686 MPa、 785 MP a, 98 IMP a等の成形圧力で成形した場合の成形圧力毎の抜出圧力及び成形密度 を測定した。
図 8にステアリン酸リチウム (L i S t) 、 ステアリン酸カルシウム (CaS t ) 又はステアリン酸亜鉛 (ZnSt) を用いた場合におけるそれそれの成形圧 力と抜出圧力の関係を示す。 ステアリン酸リチウムとステアリン酸亜鉛について は 588 MP aで成形したときに抜出圧力が最大であった。 686 MP a以上に ついては減少した。 ステアリン酸カルシウムについては 490 MP aで成形した ときに抜出圧力が最大であった。 588MP a以上では抜出圧力は減少した。 図 9にステアリン酸リチウム (L i St) 、 ステアリン酸カルシウム (CaS t ) 又はステアリン酸亜鉛 (ZnSt) を用いた場合におけるそれそれの成形圧 力と成形体密度の関係を示す。 いずれを用いても概ね同一であり、 成形圧力が増 大すると成形体密度が増大した。
(評価試験 4) 成形温度を 125°Cに設定し、 金型の内面に潤滑剤としてステアリン酸リチウ ム、 ステアリン酸カルシウム等を塗布した場合の成形圧力と抜出圧力との関係及 び成形圧力と成形体密度との関係を調べるための評価試験を行った。
ステアリン酸リチウム、 ステアリン酸カルシウムについては評価試験 3と同一 のものを用いた。 また金属粉末は、 評価試験 3と同様に、 へガネス社製の純鉄粉 末 ASC 100 - 29を用いた。 また内部潤滑剤は添加しなかった。 即ち金属粉 末として純鉄粉末のみを用いた評価試験であった。
393MPa、 490MPa、 588 MPa、 686 MP a, 785 MP a, 98 IMP a等の成形圧力で成形した場合の成形圧力毎の抜出圧力及び成形密度 を測定した。
図 10にステアリン酸リチウム (L i S t) 又はステアリン酸カルシウム (C aSt) を用いた場合におけるそれそれの成形圧力と抜出圧力の関係を示す。 ス テアリン酸リチウムは 588 MP aで成形したときに抜出圧力が最大であった。 686 MP a以上については抜出圧力は減少した。 ステアリン酸カルシウムは 4 9 OMP aで成形したときに抜出圧力が最大であった。 588 MPa以上につい ては抜出圧力は減少した。
図 11にステアリン酸リチウム又はステァリン酸カルシウムを用いた場合にお けるそれそれの成形圧力と成形体密度との関係を示す。 いずれを用いても概ね同 一であり、 成形圧力が増大すると成形体密度が増大した。
評価試験 3、 評価試験 4から、 ステアリン酸リチウム、 ステアリン酸カルシゥ ム、 ステアリン酸亜鉛のいずれを金型の内面に塗布する潤滑剤として用いても、 一定の成形温度で一定の圧力以上で成形すると抜出圧力が減少し、 また成形体密 度の高い成形体が得られることが分かる。
(評価試験 5)
成形温度を 150°Cに設定し、 金型の内面に潤滑剤としてステアリン酸リチウ ムを塗布し、 鉄粉末に黒鉛を添加した場合の成形圧力と抜出圧力との関係及び成 形圧力と成形体の密度との関係を調べるために評価試験を行った。
この評価試験に用いた金属粉末は鉄粉末としてへガネス社製 AS C 100-2 9を用い、 この鉄粉末のみの金属粉末、 金属粉末全体の重量を 100重量%とし てこの鉄粉末に 0. 5重量%の黒鉛 (C) を添加した金属粉末、 この鉄粉末に 1 重量%の黒鉛 (C) を添加した金属粉末の三種類を用いた。 588MPa、 78 5MPa、 981 MP a等の成形圧力で成形した場合の成形圧力毎の抜出圧力及 び成形密度を測定した。
図 12に金属粉末が鉄粉末のみ (F e) 、 0. 5重量%の黒鉛を添加した鉄粉 末 (Fe— 0. 5%C) 及び 1重量%の黒鉛を添加した鉄粉末 (Fe— 1%C) の場合の成形圧力と抜出圧力の関係を示す。 いずれの場合も成形圧力が増大して も抜出圧力は減少した。 鉄粉末のみの場合の方が黒鉛が添加されている場合と比 較して抜出圧力が高かった。 黒鉛が添加されている場合は 1重量%添加されてぃ る方が 0. 5重量%添加されている場合よりも拔出圧力は減少した。
図 13に金属粉末が鉄粉末のみ (Fe) 、 0. 5重量%の黒鉛を添加した鉄粉 末 (Fe— 0. 5%C) 、 1重量%の黒鉛を添加した鉄粉末 (Fe— 1%C) の 場合の成形圧力と成形体密度の関係を示す。 いずれの場合も成形圧力が増大する と成形体密度も増大した。 鉄粉末のみの場合の方が黒鉛が添加されている場合と 比較して成形体密度が高かった。 黒鉛が添加されている場合は 0. 5重量%添加 されている方が 1重量%添加されている場合によりも成形体密度が高かった。 以上のことから鉄粉末に黒鉛を多く添加すると抜出圧力は多く減少するが、 成 形体密度は低下することが分かる。 また黒鉛の添加によって、 見かけ上の真密度 が低下するため、 密度比で表すとほぼ同じ値となる。
(評価試験 6)
成形温度を室温に設定し、 金型の内面には潤滑剤を塗布しないで、 金属粉末に 内部潤滑剤を添加した場合の成形圧力と抜出圧力との関係及び成形圧力と成形体 の密度との関係を調べるために評価試験を行った。
金属粉末は鉄粉末として川崎製鉄 (株) 製の I P 103 V合金鋼粉末を用い、 金属粉末全体の重量を 100重量%としてこの鉄粉末に 0. 5重量%の黒鉛 (C) 及び 0. 8重量%の内部潤滑剤を添加した金属粉末 ( 103V— 0. 5 C + 0. 8%Lub. ) を用いた。 内部潤滑剤は、 ステアリン酸リチウム、 ステアリン酸
2Z 亜鉛又はステアリン酸カルシウムを用いた。
これら 3種類の内部潤滑剤を用いた場合について、 それそれ 393MPa、 4 90MPa、 588 MPa、 686 MP a, 785 MP a, 981MPa等の成 形圧力で成形した場合の成形圧力毎の抜出圧力及び成形密度を測定した。
図 14に内部潤滑剤としてステアリン酸リチウム (L iSt) 、 ステアリン酸 亜鉛 (ZnSt) 又はステアリン酸カルシウム (CaSt) を用いた場合の成形 圧力と抜出圧力の関係を示す。 ステアリン酸亜鉛の場合は成形圧力が増大すると 抜出圧力も増大した。 ステアリン酸リチウムの場合は成形圧力が 686 MPaの ときに抜出圧力が最大であり、 785 MP aのときに抜出圧力は減少したが、 9 8 IMP aでは再び増大した。 加熱した金型の内面に潤滑剤を塗布した評価試験 2、 評価試験 3、 評価試験 4等のような抜出圧力の著しい減少は見られなかった。 ステアリン酸カルシウムについても 785 MP aでやや減少したが、 981 MP aでは再び増大した。 やはり加熱した金型の内面に潤滑剤を塗布した評価試験 2、 評価試験 3、 評価試験 4等のような抜出圧力の著しい減少は見られなかつた。 図 15に内部潤滑剤としてステアリン酸リチウム (LiSt) 、 ステアリン酸 亜鉛 (ZnSt) 又はステアリン酸カルシウム (CaSt) を用いた場合の成形 圧力と成形体密度の関係を示す。 いずれの場合も成形圧力の増大すると成形体密 度も増大した。 但し評価試験 2、 評価試験 3、 評価試験 4の場合と比較すると成 形体密度は低かった。 成形体密度を高めようとするには内部潤滑剤の添加量を減 らして加熱した方がよいと推測される。
(評価試験 7)
成形温度を 150°Cに設定し、 金型の内面に潤滑剤を塗布しない場合と金型の 内面にステアリン酸リチウムを塗布した場合とで、 金属粉末を成形した場合の成 形圧力と抜出圧力との関係を調べるために評価試験を行った。
金型の内面に潤滑剤を塗布しない場合は A s t a 10 y 85 M oに金属粉末全 体の重量を 100重量%として 0. 8重量%の黒鉛と 0. 6重量%の潤滑剤とが 添加されたへガネス社製の温間成形用粉末である Densmixを用いた。 金型 にステアリン酸リチウムが塗布された場合は、 金属粉末全体の重量を 100重量 %として As t al oy85Moに 0· 8重量%の黒鉛と 0. 2重量%の潤滑剤 が添加されたへガネス社製の温間成形用粉末である D e n smi Xを用いた。 4 90MPa、 588 MPa、 686 MP a, 785 MP a 981MPa等の成 形圧力で成形した場合の成形圧力毎の抜出圧力を測定した。
図 16に金型の内面に潤滑剤としてステアリン酸リチウムを塗布した場合 (D ens mix (0. 2%Lub. ) +L i St金型潤滑) と潤滑剤を塗布しなか つた場合 (Densmix (0. 6 %Lub. ) ) の成形圧力と抜出圧力の関係 を示す。
金型の内面にステアリン酸リチウムを塗布した場合は 785 MP aの圧力で成 形した場合に著しく抜出圧力が減少し、 98 IMP aではほぼ同じであった。 金 型の内面に潤滑剤を塗布しなかった場合は塗布した上述の場合よりも抜出圧力は 高く、 かつ成形圧力の増加と共に抜出圧力も増加し、 981MPaでやや減少し たにすぎない。
(評価試験 8)
成形温度を 150。Cに設定し、 金型の内面に潤滑剤としてステアリン酸リチウ ムを塗布し、 金属粉末として高強度焼結材料として実用性の高い各種低合金鋼粉 末を用いた場合の成形圧力と抜出圧力の関係、 成形圧力と成形体密度の関係を調 ベるための評価試験を行った。
金属粉末は 4種類用意した。 いずれも低合金鋼粉末に黒鉛の粉末と内部潤滑剤 としてステアリン酸リチウムの粉末を添加した。 低合金鋼粉末はいずれも川崎製 鉄 (株) 製のアトマイズ粉末であって、 KIP 103V、 5MoS、 30CRV であった。 KIP 103Vの組成は Fe— 1重量%Cr— 0. 3重量%Mo— 0. 3重量%Vであった。 5Mo Sの組成は F e— 0. 6重量%Mo— 0. 2重量% Miであった。 30 CRVの組成は Fe— 3重量%Cr— 0. 3重量%Mo— 0. 3重量%Vであった。
この KIP 103Vに、 金属粉末全体の重量を 100%として、 0. 3重量% の黒鉛の粉末と 0. 3重量%のステアリン酸リチウムの粉末を添加した金属粉末 ( 103 V-0. 3%C + 0. 3%L i S t ) を調整した。
2A 同じくこの K I P 103 Vに、 金属粉末全体の重量を 100%として、 0. 5 重量%の黒鉛の粉末と 0. 3重量%のステアリン酸リチウムの粉末を添加した金 属粉末 (103V— 0. 5%C + 0. 3%L i S t ) を調整した。
また 5MoSに、 金属粉末全体の重量を 100%として、 0. 2重量%の黒鉛 の粉末と 0. 3重量%のステアリン酸リチウムの粉末を添加した金属粉末 (5M 0 S-0. 2重量%C + 0, 3重量%Li St) を調整した。
更に 30CRVに、 金属粉末全体の重量を 100%として、 1重量%の黒鉛の 粉末と 0. 3重量%のステアリン酸リチウムの粉末を添加した金属粉末 (30C RV- l%C + 0. 3%L i S t ) を調整した。
これら 4種類の金属粉末をそれそれ 588MP a、 686 MP a, 785 MP a、 98 IMP a等の成形圧力で成形した場合の成形圧力毎の抜出圧力及び成形 密度を測定した。
図 17にこれら 4種類の金属粉末を用いた場合の成形圧力と抜出圧力の関係を 示し、 図 18にこれら 4種類の金属粉末を用いた場合の成形圧力と成形体密度の 関係を示す。
これらの図から理解できるように、 いずれの組成の金属粉末においても概ね同 じ傾向を示した。 即ちいずれの金属粉末においても 588MP aの成形圧力で成 形した場合に最も抜出圧力が高くなり、 成形圧力が高くなるほど、 抜出圧力が減 少した。 また得られる成形体密度については、 成形圧力が高いほど高密度となつ た。
これらの結果から、 本発明の粉末成形体の成形方法で成形することによって、 実用的な低合金鋼粉末を高密度にしかも低い抜出圧力で成形できることが明らか になつ/こ。
(評価試験 9)
成形温度を 150°Cに設定し、 金型の内面に潤滑剤としてステアリン酸リチウ ムを塗布し、 2種類の金属粉末をそれぞれ成形した場合の成形圧力と抜出圧力の 関係の関係を調べるための評価試験を行った。 また成形体の表面にステアリン酸 鉄の被膜が生成しているかを調べた。 金属粉末は川崎製鉄 (株) 製の I P 103 Vとへガネス社製の AS C 100 一 29を用いた。 上述したように KI P 103 Vは、 全体を 100重量%として 鉄粉末に Cr粉末が 1重量%、 Mo粉末が0. 3重量%、 V粉末が 0. 3重量% 添加された合金綱 (F e— 1重量%C r— 0. 3重量%Mo— 0. 3重量%V) であった。 これに対して AS C 100 - 29は純鉄 (F e) であった。
KIP 103Vを用いた場合の成形圧力は 588MPa、 686 MPa、 78 5MPa、 883MPa、 98 IMP aで行い、 それそれの場合の抜出圧力を測 定した。 ASC 100— 29を用いた場合の成形圧力は 393MPa、 490M Pa、 588MP , 686 MP a, 785 MP a, 883 MP , 981 MP aで行い、 それそれの場合の抜出圧力を測定した。
図 19にこれら 2種類の金属粉末を用いた場合の成形圧力と抜出圧力の関係を 示す。 この図から理解できるように K I P 103 Vを用いた方が、 ASC I 00 - 29を用いた場合よりも抜出圧力が高かった。 即ち純鉄である AS C 100— 29の方が鉄に〇 、 Mo、 V等が添加されている K I P 103 Vよりも抜出圧 力が少なくて済んだことが分かる。 ここから金属粉末に含まれている鉄の割合が 多い方が金型の内面に接触する鉄の量が多くなり、 それだけステアリン酸鉄を生 成しやすいと推定される。
そこで K I P 103 V及び AS C 100 - 29の両者について 588 MP aで 成形した場合また 98 IMP aで成形した場合に成形体の表面にステアリン酸鉄 の被膜が生成しているかを調べた。 ステアリン酸鉄の被膜の検出は後述する [抜 出圧力低下減少の解析] と同様に TOF— S IMSで分析することによって行つ た。
KIP 103 Vを成形した場合には 588 MP aの成形圧力では成形体の表面 からステアリン酸鉄の被膜は検出されなかったが、 98 IMPaの成形圧力にお いてはステアリン酸鉄の被 Ji莫が検出された。 即ち 98 IMP aの成形圧力におい てステアリン酸鉄の被膜が生成していたことが確認された。 一方 ASC 100- 29を成形した場合には 588 MP a及び 98 IMP aの成形圧力において共に ステアリン酸鉄の被膜が成形体の表面から検出された。 即ち成形体の表面にステ アリン酸鉄の被膜が生成したことが分かる。 588 MP aの成形圧力では純鉄で ある ASC 100— 29ではステアリン酸鉄が生成されたが、 鉄合金である K I P 103 Vではステアリン酸鉄が生成されなかった結果と AS C 100— 29の 方が KIP 103Vよりも抜出圧力が少なく済むということを考慮すると、 ステ ァリン酸鉄の被膜の存在が抜出圧力を減少させていると考えられる。
なお同じ条件で、 金型の表面にステアリン酸リチウムの代わりにステアリン酸 亜鉛を塗布して K IP 103 V、 AS C 100 - 29をそれそれ成形したところ、 98 IMP aにおいて共にステアリン酸鉄が検出された。 またステアリン酸カル シゥムを塗布した場合にも同様に 981 MP aにおいて K I P 103 V、 AS C 100 - 29の両者ともステアリン酸鉄が検出された。 このことからステアリン 酸カルシウム、 ステアリン酸亜鉛等を金型の内面に塗布しても抜出圧力を減少さ せる効果があると考えられる。
[抜出圧力低下現象の解析]
更に潤滑剤としてステアリン酸リチウムを金型の内面に塗布して成形体を成形 した場合に成形圧力が高くなると却って成形体の抜出圧力が低下する現象を解析 するために以下の解析試験を行つた。
金型としては、 上述の [実施例] の (粉末成形体の成形) で用いたのと同一の 金型を用い、 この金型を 150°Cまで加熱した。 そして上述の (高級脂肪酸の調 整) で作製した No. 2のステアリン酸リチウムをこの金型の内面にスプレー塗 布した。 金属粉末として川崎製鉄 (株) 製 K I P 103 V合金鋼粉末を用いた。 この合金鋼粉末を 150°Cにまで加熱して、 金型に充填し、 588 MP aと 98 1 M P aの 2種類で加圧成形して成形体を成形した。
2種類の成形圧力で成形された成形体の表面を T 0 F _ S I M Sで分析した。 分析結果を図 20に示す。
図 20から分かるように 588MP aの成形圧力で成形された成形体の表面か らはステアリン酸リチウムが検出されたが、 ステアリン酸鉄はほとんど検出され なかった。 一方 981 MP aの成形圧力で成形された成形体の表面からはステア リン酸鉄が検出された。
このことは 588 MP aで成形された成形体では鉄粉の表面に潤滑剤であるス τι テアリン酸リチウムが物理的に吸着しているだけであるが、 9 8 I M P aで成形 された成形体では鉄粉の表面にステアリン酸鉄が化学吸着していることを示して いる。 このステアリン酸鉄は金属石鹼であって、 ステアリン酸リチウムが鉄との 化学結合により生じたものである。
このように化学吸着した被膜は物理吸着した潤滑剤の被膜よりも強い潤滑作用 があり、 本発明のように高圧力の成形においては、 極めて優れた潤滑性能を示す と考えられる。 発明の効果
本発明の成形方法は、 一回の成形と焼結だけで高密度の焼結体を製造すること ができる。
本発明の成形方法は成形体を金型から抜き出すときの抜出圧力を減少すること ができる。 その結果として成形体の表面の状態が極めて良好となり、 成形体の寸 法精度も安定して確保できる。 また高圧力で金属粉末を成形するので高密度の粉 末成形体を得ることができる。
本発明の成形方法は金型の低い抜出圧力で成形体を抜き出すことができるので、 金型の摩耗を著しく減少することができ、 また金型の寿命が大幅に向上して金型 に対するコストを減少することができる。
本発明の成形方法において、 水に分散された高級脂肪酸系潤滑剤を用いる場合 には、 潤滑剤をその融点以下の温度に加熱された金型の内面に均一に塗布できる。 また有機溶媒を使用しないので環境汚染の心配もない。
本発明の成形方法において、 金型の温度が高級脂肪酸系潤滑剤の融点未満の場 合には、 高級脂肪酸系潤滑剤が液状となることによる金属粉末の固化等の問題が 生じない。
本発明の成形方法において、 金属粉末が加熱されている場合には、 高密度の成 形体を成形することができる。 また粉末成形体の抜出圧力を減少することができ 本発明の成形方法において、 金属粉末に高級脂肪酸系潤滑剤が 0 . 1重量%以 上で 0 . 6重量%未満添加されている場合には金属粉末の流動性が向上し、 金属 粉末の充填密度を高くすることができる。
1 0 o °c以上に加熱された金型の内面に高級脂肪酸の金属塩を塗布する塗布ェ 程と、 金型に鉄粉末を充填し、 6 0 O M P a以上で該鉄粉末を加圧成形する加圧 成形工程とを含む粉末成形体の成形方法の場合には、 抜出圧力を減少することが でき、 また成形体密度を高くすることができる。 また高級脂肪酸の金属塩が高級 脂肪酸のリチウム塩、 カルシウム塩又は亜鉛塩である場合も同様である。

Claims

請 求 の 範 囲
I . 加熱された金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、 前記金型に金属粉末を充填し、 前記高級脂肪酸系潤滑剤が該金属粉末と化学的 に結合して金属石験の被膜を生成する圧力で該金属粉末を加圧成形する加圧成形 工程と
を含むことを特徴とする粉末成形体の成形方法。
2 . 前記高級脂肪酸系潤滑剤は高級脂肪酸の金属塩である請求項 1記載の粉 末成形体の成形方法。
3 . 前記高級脂肪酸の金属塩は高級脂肪酸のリチウム塩、 カルシウム塩又は 亜鉛塩である請求項 2記載の粉末成形体の成形方法。
4 . 前記高級脂肪酸系潤滑剤は水に分散されている請求項 1記載の粉末成形 体の成形方法。
5 . 前記高級脂肪酸系潤滑剤は界面活性剤を含む水に分散されている請求項 4記載の粉末成形体の成形方法。
6 . 前記高級脂肪酸系潤滑剤は最大粒径が 3 O ^m未満である請求項 5記載 の粉末成形体の成形方法。
7 . 加熱された前記金型の温度は 1 0 0 C以上である請求項 1記載の粉末成 形体の成形方法。
8 . 加熱された前記金型の温度は前記高級脂肪酸系潤滑剤の融点未満である 請求項 7記載の粉末成形体の成形方法。
9 . 前記金属粉末は加熱されている請求項 1記載の粉末成形体の成形方法。
1 0 . 前記金属粉末は鉄粉末を含む金属粉末である請求項 1記載の粉末成形 体の成形方法。
I I . 前記金属粉末は前記高級脂肪酸系潤滑剤が添加されている請求項 1又 は 1 0記載の粉末成形体の成形方法。
1 2 . 前記金属粉末は前記高級脂肪酸系潤滑剤が 0 . 1重量%以上添加され ている請求項 1 1記載の粉末成形体の成形方法。
1 3 . 1 0 0 C以上に加熱された金型の内面に高級脂肪酸の金属塩を塗布す る塗布工程と、 前記金型に鉄粉末を充填し、 60 OMP a以上で該鉄粉末を加圧成形する加圧 成形工程と
を含むことを特徴とする粉末成形体の成形方法。
14. 前記高級脂肪酸の金属塩は高級脂肪酸のリチウム塩、 カルシウム塩又 は亜鉛塩である請求項 13記載の粉末成形体の成形方法。
1 5. 785 MP a以上で前記鉄粉末を加圧成形する請求項 13記載の粉末 成形体の成形方法。
1 6 100°C以上の所定金型温度に加熱された金型の内面に該金型温度より 高い融点をもつ高級脂肪酸の金属塩が微細に分散した分散液を塗布し該高級脂肪 酸の金属塩の皮膜を形成する塗布工程と、
前記金型に鉄粉末を充填し、 60 OMP a以上の成形圧力で該鉄粉末を加圧成 形し該金型と当接している表面に金属石鹼の皮膜をもつ成形体を得る加圧成形ェ 程と、
該成形体を該金型より引き抜き該成形体を取り出す抜出工程と、
を含むことを特徴とする粉末成形体の成形方法。
17. 100°C以上の所定金型温度に加熱された金型の内面に該金型温度よ り高い融点をもつ高級脂肪酸の金属塩が微細に分散した分散液を塗布し該高級脂 肪酸の金属塩の皮膜を形成する塗布工程と、
前記金型に鉄粉末を充填し、 60 OMP a以上の成形圧力で該鉄粉末を加圧成 形し該金型と当接している表面に金属石験の皮膜をもつ成形体を得る加圧成形ェ 程と、
該金属石鹼の皮膜の潤滑特性により該加圧成形の加圧力の 3 %以下の抜出圧力 で該成形体を該金型より引き抜き該成形体を取り出す抜出工程と、
を含むことを特徴とする粉末成形体の成形方法。
18. 前記成形圧力は 686 MP a以上であり前記抜出圧力は 8 MP a以下 である請求項 16記載の粉末成形体の成形方法。
19. 前記成形圧力は 70 OMP a以上であり前記抜出圧力は 15MPa以 下である請求項 16記載の粉末成形体の成形方法。
20. 前記成形圧力は 700 MP a以上であり前記抜出圧力は 13 MP a以 下である請求項 16記載の粉末成形体の成形方法。
2 1. 前記成形圧力は 700 MP a以上であり前記抜出圧力は 1 OMPa以 下である請求項 16記載の粉末成形体の成形方法。
22. 前記分散液に分散している前記金属塩の最大粒径は 30 zm以下であ る請求項 16記載の粉末成形体の成形方法。
PCT/JP2000/008836 1999-12-14 2000-12-13 Procede de moulage d'une ebauche crue pulverulente WO2001043900A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002363557A CA2363557C (en) 1999-12-14 2000-12-13 Method of forming a powder compact
JP2001545020A JP3309970B2 (ja) 1999-12-14 2000-12-13 粉末成形体の成形方法
EP00981701A EP1170075B1 (en) 1999-12-14 2000-12-13 Powder green body forming method
DE60030422T DE60030422T8 (de) 1999-12-14 2000-12-13 Herstellungsverfahren für pulvergrünkörper
US09/927,323 US7083760B2 (en) 1999-12-14 2001-08-13 Method of forming a powder compact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/354660 1999-12-14
JP35466099 1999-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/927,323 Continuation-In-Part US7083760B2 (en) 1999-12-14 2001-08-13 Method of forming a powder compact

Publications (1)

Publication Number Publication Date
WO2001043900A1 true WO2001043900A1 (fr) 2001-06-21

Family

ID=18439055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008836 WO2001043900A1 (fr) 1999-12-14 2000-12-13 Procede de moulage d'une ebauche crue pulverulente

Country Status (8)

Country Link
US (1) US7083760B2 (ja)
EP (1) EP1170075B1 (ja)
JP (1) JP3309970B2 (ja)
AT (1) ATE337872T1 (ja)
CA (1) CA2363557C (ja)
DE (1) DE60030422T8 (ja)
ES (1) ES2270884T3 (ja)
WO (1) WO2001043900A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045841A1 (ja) * 2002-11-21 2004-06-03 Mitsubishi Materials Corporation 粉末成形体の成形方法及び粉末成形金型装置
WO2004087407A1 (ja) * 2003-03-28 2004-10-14 Mitsubishi Materials Corporation 粉末成形金型装置及び粉末成形体の成形方法
JP2010188407A (ja) * 2009-02-20 2010-09-02 Japan Atomic Energy Agency ペレット成型機のダイ壁面潤滑方法
US8153053B2 (en) 2002-11-21 2012-04-10 Diamet Corporation Method for forming compact from powder and sintered product
JP2012248619A (ja) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd 圧粉成形体の成形方法
WO2013183488A1 (ja) 2012-06-08 2013-12-12 株式会社豊田中央研究所 アルミニウム合金粉末成形方法およびアルミニウム合金部材
JP2014220373A (ja) * 2013-05-08 2014-11-20 信越化学工業株式会社 希土類焼結磁石の製造方法
US9017601B2 (en) 2004-04-23 2015-04-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Iron-based sintered alloy, iron-based sintered-alloy member and production process for them

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4060101B2 (ja) * 2002-03-20 2008-03-12 株式会社豊田中央研究所 絶縁皮膜、磁心用粉末および圧粉磁心並びにそれらの製造方法
AU2003231451A1 (en) * 2002-05-10 2003-11-11 Tokyo Electron Limited Substrate processing device
JP3945455B2 (ja) * 2002-07-17 2007-07-18 株式会社豊田中央研究所 粉末成形体、粉末成形方法、金属焼結体およびその製造方法
US20070081913A1 (en) * 2003-06-27 2007-04-12 Mitsubishi Materials Corporation Iron base sintered alloy having highly densified and hardened surface, and producing method thereof
JP2005154828A (ja) * 2003-11-25 2005-06-16 Mitsubishi Materials Corp 温間成形用原料粉末及び温間成形方法
JP4582497B2 (ja) * 2004-02-27 2010-11-17 株式会社ダイヤメット 粉末成形体の成形方法
US7456715B2 (en) * 2004-05-12 2008-11-25 Ntn Corporation Magnetic encoder and wheel support bearing assembly utilizing the same
JP5535576B2 (ja) * 2008-11-10 2014-07-02 株式会社豊田中央研究所 鉄基焼結合金およびその製造方法並びに鉄基焼結合金部材
JP5976284B2 (ja) 2010-07-23 2016-08-23 株式会社豊田中央研究所 圧粉磁心の製造方法および磁心用粉末の製造方法
JP2012230948A (ja) 2011-04-25 2012-11-22 Toyota Central R&D Labs Inc 磁心用粉末、圧粉磁心およびその製造方法
BR112015003454A2 (pt) * 2012-08-14 2017-07-04 Nanogestion Inc técnicas de uso de composto lubrificante para fabricação de partes de metal em pó
JP5942922B2 (ja) * 2013-05-08 2016-06-29 信越化学工業株式会社 希土類焼結磁石の製造方法
WO2016039267A1 (ja) 2014-09-08 2016-03-17 トヨタ自動車株式会社 圧粉磁心、磁心用粉末およびそれらの製造方法
JP6232359B2 (ja) 2014-09-08 2017-11-15 株式会社豊田中央研究所 圧粉磁心、磁心用粉末およびそれらの製造方法
JP6378156B2 (ja) 2015-10-14 2018-08-22 トヨタ自動車株式会社 圧粉磁心、圧粉磁心用粉末、および圧粉磁心の製造方法
JP6556780B2 (ja) 2017-04-03 2019-08-07 株式会社豊田中央研究所 圧粉磁心、磁心用粉末およびそれらの製造方法
US11679437B2 (en) 2017-10-17 2023-06-20 Denso Corporation Compressed powder magnetic core, powder for magnetic core, and production methods therefor
JP2022145105A (ja) 2021-03-19 2022-10-03 愛知製鋼株式会社 磁心用粉末とその製造方法および圧粉磁心
AT526261B1 (de) 2022-07-05 2024-03-15 Miba Sinter Austria Gmbh Verfahren zur Herstellung eines Bauteils aus einem Sinterpulver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109902A (ja) * 1985-11-08 1987-05-21 Kobe Steel Ltd 鉄系粉末成形体の焼結方法
JPS62294102A (ja) * 1986-06-12 1987-12-21 Komatsu Ltd 焼結材用金属粉末材料
JPH09104902A (ja) * 1995-10-05 1997-04-22 Shin Etsu Chem Co Ltd 粉末成形方法
WO1998041347A1 (fr) * 1997-03-19 1998-09-24 Kawasaki Steel Corporation Melange pulverise a base de fer destine a la metallurgie des poudres, dote d'excellentes caracteristiques de fluidite et d'aptitude au moulage, procede de production correspondant et procede de production d'article moule utilisant ledit melange pulverise a base de fer
JPH11193404A (ja) * 1997-12-26 1999-07-21 Hitachi Powdered Metals Co Ltd 金属粉末成形用潤滑剤
JP2000273502A (ja) * 1999-03-24 2000-10-03 Nof Corp 粉末冶金用脂肪酸金属塩

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955798B1 (en) 1988-10-28 1999-03-30 Nuova Merisinter S P A Process for pretreating metal powder in preparation for compacting operations
US5468401A (en) * 1989-06-16 1995-11-21 Chem-Trend, Incorporated Carrier-free metalworking lubricant and method of making and using same
US5191098A (en) * 1989-07-26 1993-03-02 Henkel Corporation Continuous process for preparation of aqueous dispersions of metal soaps
US5154881A (en) 1992-02-14 1992-10-13 Hoeganaes Corporation Method of making a sintered metal component
EP0698435B1 (en) * 1994-08-24 2000-04-19 Quebec Metal Powders Ltd. Powder metallurgy apparatus and process using electrostatic die wall lubrication
US5782954A (en) * 1995-06-07 1998-07-21 Hoeganaes Corporation Iron-based metallurgical compositions containing flow agents and methods for using same
JPH1046202A (ja) * 1996-08-06 1998-02-17 Nitto Kasei Kogyo Kk 粉末冶金用の粉末潤滑剤
US6013225A (en) * 1996-10-15 2000-01-11 Zenith Sintered Products, Inc. Surface densification of machine components made by powder metallurgy
US5767426A (en) * 1997-03-14 1998-06-16 Hoeganaes Corp. Ferromagnetic powder compositions formulated with thermoplastic materials and fluoric resins and compacted articles made from the same
JP3509540B2 (ja) 1997-03-19 2004-03-22 Jfeスチール株式会社 流動性と成形性に優れた粉末冶金用鉄基粉末混合物、その製造方法および成形体の製造方法
WO1998045072A1 (en) * 1997-04-09 1998-10-15 Zenith Sintered Products, Inc. Dry die wall lubrication
JP3445112B2 (ja) 1997-09-25 2003-09-08 日立粉末冶金株式会社 粉末冶金における粉末成形方法,成形用金型および押型の潤滑方法
JP3462378B2 (ja) 1997-11-07 2003-11-05 日立粉末冶金株式会社 粉末冶金における粉末成形方法
SE9704494D0 (sv) * 1997-12-02 1997-12-02 Hoeganaes Ab Lubricant for metallurgical powder compositions
JPH11271709A (ja) 1998-03-20 1999-10-08 Toshiba Corp 表示装置
JP2000199002A (ja) 1998-11-05 2000-07-18 Kobe Steel Ltd 粉末冶金用粉末の圧縮成形法
CA2287783C (en) * 1998-11-05 2005-09-20 Kabushiki Kaisha Kobe Seiko Sho Method for the compaction of powders for powder metallurgy
WO2001032337A1 (fr) * 1999-10-29 2001-05-10 Kawasaki Steel Corporation Agent lubrifiant pour moulage a haute temperature, composition de poudre a base de fer pour compactage a haute temperature avec un moule lubrifie et produit forme de haute densite realise a partir de ladite composition, et procede de production d'un produit compact fritte de densite elevee a base de fer
US6395687B1 (en) * 2000-05-31 2002-05-28 Hoeganaes Corporation Method of lubricating a die cavity and method of making metal-based components using an external lubricant
US6261514B1 (en) * 2000-05-31 2001-07-17 Höganäs Ab Method of preparing sintered products having high tensile strength and high impact strength

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109902A (ja) * 1985-11-08 1987-05-21 Kobe Steel Ltd 鉄系粉末成形体の焼結方法
JPS62294102A (ja) * 1986-06-12 1987-12-21 Komatsu Ltd 焼結材用金属粉末材料
JPH09104902A (ja) * 1995-10-05 1997-04-22 Shin Etsu Chem Co Ltd 粉末成形方法
WO1998041347A1 (fr) * 1997-03-19 1998-09-24 Kawasaki Steel Corporation Melange pulverise a base de fer destine a la metallurgie des poudres, dote d'excellentes caracteristiques de fluidite et d'aptitude au moulage, procede de production correspondant et procede de production d'article moule utilisant ledit melange pulverise a base de fer
JPH11193404A (ja) * 1997-12-26 1999-07-21 Hitachi Powdered Metals Co Ltd 金属粉末成形用潤滑剤
JP2000273502A (ja) * 1999-03-24 2000-10-03 Nof Corp 粉末冶金用脂肪酸金属塩

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045841A1 (ja) * 2002-11-21 2004-06-03 Mitsubishi Materials Corporation 粉末成形体の成形方法及び粉末成形金型装置
US8153053B2 (en) 2002-11-21 2012-04-10 Diamet Corporation Method for forming compact from powder and sintered product
WO2004087407A1 (ja) * 2003-03-28 2004-10-14 Mitsubishi Materials Corporation 粉末成形金型装置及び粉末成形体の成形方法
US7585165B2 (en) 2003-03-28 2009-09-08 Mitsubishi Materials Pmg Corporation Powder molding die apparatus and method of molding for obtaining powder molding product
US9017601B2 (en) 2004-04-23 2015-04-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Iron-based sintered alloy, iron-based sintered-alloy member and production process for them
JP2010188407A (ja) * 2009-02-20 2010-09-02 Japan Atomic Energy Agency ペレット成型機のダイ壁面潤滑方法
JP2012248619A (ja) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd 圧粉成形体の成形方法
WO2013183488A1 (ja) 2012-06-08 2013-12-12 株式会社豊田中央研究所 アルミニウム合金粉末成形方法およびアルミニウム合金部材
JP2014220373A (ja) * 2013-05-08 2014-11-20 信越化学工業株式会社 希土類焼結磁石の製造方法

Also Published As

Publication number Publication date
ES2270884T3 (es) 2007-04-16
US7083760B2 (en) 2006-08-01
DE60030422T8 (de) 2007-05-10
DE60030422T2 (de) 2007-01-11
ATE337872T1 (de) 2006-09-15
EP1170075B1 (en) 2006-08-30
EP1170075A1 (en) 2002-01-09
DE60030422D1 (de) 2006-10-12
EP1170075A4 (en) 2004-05-12
JP3309970B2 (ja) 2002-07-29
CA2363557C (en) 2006-07-11
US20020034453A1 (en) 2002-03-21
CA2363557A1 (en) 2001-06-21

Similar Documents

Publication Publication Date Title
WO2001043900A1 (fr) Procede de moulage d'une ebauche crue pulverulente
TWI413685B (zh) 用於粉末冶金組合物的潤滑劑
JP2010265454A (ja) 潤滑剤複合物及びその製造方法
KR101362294B1 (ko) 금속 야금학적 분말 조성물
JPH08504233A (ja) 潤滑性冶金粉末組成物の作製方法
EP2842664A1 (en) Device for high-density molding and method for high-density molding of mixed powder, and high-density three-layer-structured powder compact
KR100808333B1 (ko) 결합제와 윤활제의 조합물을 포함하는 철계 분말 조성물 및상기 조성물의 제조 방법
WO2005102566A1 (en) Method for making compacted products and iron-based powder comprising lubricant
WO2001032337A1 (fr) Agent lubrifiant pour moulage a haute temperature, composition de poudre a base de fer pour compactage a haute temperature avec un moule lubrifie et produit forme de haute densite realise a partir de ladite composition, et procede de production d'un produit compact fritte de densite elevee a base de fer
EP1758700A1 (en) Lubricants for insulated soft magnetic iron-based powder compositions
JPH08245949A (ja) 乾式摩擦材とその製造方法
CN1705533B (zh) 通过高压压制制备铁基部件的方法及制备该铁基部件的完全合金化钢粉
EP0011981B1 (en) Method of manufacturing powder compacts
KR102364527B1 (ko) 분말 야금용 분말 혼합물 및 그 제조 방법
US5951737A (en) Lubricated aluminum powder compositions
JP2001294902A (ja) 温間金型潤滑成形用鉄基粉末混合物、高密度鉄基粉末成形体および高密度鉄基焼結体の製造方法
JP2024017984A (ja) 粉末冶金用鉄基混合粉、鉄基焼結体、および焼結機械部品
JP6648779B2 (ja) 粉末冶金用粉末混合物およびその製造方法
JP2010031349A (ja) 粉末冶金用鉄基混合粉末
St-Laurent et al. Design of high efficiency lubricants for challenging PM applications
WO2018230568A1 (ja) 粉末冶金用粉末混合物およびその製造方法
Aufmuth The practice of powder metallurgy
Vidarsson et al. Performance and capabilities of powder mixes during warm compaction
JPH1053833A (ja) Fe−Al−Si系焼結合金の製造方法
Vidarsson et al. Powder Pressing: Performance and Capabilities of Powder Mixes during Warm Compaction

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 545020

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000981701

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2363557

Country of ref document: CA

Ref country code: CA

Ref document number: 2363557

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09927323

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000981701

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000981701

Country of ref document: EP