WO2001039277A1 - Diodenstruktur, insbesondere für dünnfilmsolarzellen - Google Patents
Diodenstruktur, insbesondere für dünnfilmsolarzellen Download PDFInfo
- Publication number
- WO2001039277A1 WO2001039277A1 PCT/EP2000/010265 EP0010265W WO0139277A1 WO 2001039277 A1 WO2001039277 A1 WO 2001039277A1 EP 0010265 W EP0010265 W EP 0010265W WO 0139277 A1 WO0139277 A1 WO 0139277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diode structure
- layer
- film solar
- thin film
- structure according
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 29
- 229910052951 chalcopyrite Inorganic materials 0.000 claims abstract description 20
- -1 chalcopyrite compound Chemical class 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 28
- 230000002787 reinforcement Effects 0.000 claims description 11
- 230000006978 adaptation Effects 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 240000002329 Inga feuillei Species 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 2
- 229910003087 TiOx Inorganic materials 0.000 description 13
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 13
- 230000004888 barrier function Effects 0.000 description 10
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 9
- 239000006096 absorbing agent Substances 0.000 description 8
- 230000036461 convulsion Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000002800 charge carrier Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0749—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0322—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Definitions
- the invention relates to a diode structure, in particular for use in thin-film solar cells.
- Thin-film solar cells based on polycrystalline semiconductors offer good opportunities to significantly reduce the costs of producing stable and highly efficient solar modules.
- Thin-film solar cells based on chalcopyrite semiconductors have so far had the highest efficiencies of all thin-film solar cells and are considered an interesting candidate for future solar power or photovoltaic systems with lower costs.
- Chalcopyrite compounds include compounds from the group Cu (InGa) (SSe) 2 and in particular copper indium diselenide (CuInSe2).
- FIG. 4a shows a typical layer structure of a chalcopyrite cell.
- a CdS layer forms a heterojunction on the p-conducting chalcopyrite semiconductor, the electrical field of which enables charge carrier separation.
- Front contact on top forms a ZnO layer and the back contact forms a molybdenum layer on an insulating substrate such as e.g. Glass.
- FIG. 4b shows the corresponding band diagram for the structure in FIG. 4a. It can be seen here that the ZnO window layer has a significantly larger band gap. This prevents photogenerated charge carriers from being absorbed directly on the surface of the solar cells and - due to the high defect density - recombine there again immediately. The heterostructure therefore leads to much greater depths of penetration and higher
- Known and tried-and-tested window layers are based on doped metal oxides such as ZnO, Sn ⁇ 2 or InSnCh (ITO), generalizing as Transparent Conductive
- TCO Designated oxides
- the object of the invention is therefore to create a diode structure for thin-film solar cells which enables the simplest possible construction of a thin-film solar cell with high efficiency and the use of materials which are as environmentally friendly as possible.
- a thin-film solar cell according to claims 10-19 can be constructed with such a diode structure.
- the diode structure according to the invention has a p-type layer consisting of a chalcopyrite compound and an n-type layer adjacent to the p-type layer and consisting of a compound containing titanium and oxygen. It has been found that a compound containing titanium and oxygen as the n-type layer enables a good adaptation to a p-type layer consisting of a chalcopyrite compound. In particular, a good adaptation in the conduction band can also be achieved, as a result of which the flow of electron current is improved.
- the titanium and oxygen-containing compound preferably consists of a compound from the group TiOx with 1.5 ⁇ x ⁇ 2.
- a criterion when selecting the compound from the group TiOx with regard to the one used Chalcopyrite compound could consist of achieving the best possible adaptation in the conduction band.
- the diode structure according to the invention can in itself be used as a pn junction in solar cells.
- a particular advantage of the invention is that the diode structure according to the invention can easily be supplemented by an n-type reinforcing layer, as a result of which the properties of the diode structure can be further improved.
- the n-type reinforcement layer adjoins the side of the n-le layer facing away from the p-type layer and has a larger band gap than the n-type layer.
- the n-type reinforcement layer consists of a transparent and conductive oxide, e.g. a doped metal oxide. ZnO, Sn ⁇ 2 or InSn ⁇ 2 have proven to be particularly favorable.
- n-type TiOx layer serves as a buffer layer for passivating the surface of the pn junction.
- cadmium-free buffer or window layers with a chalcopyrite compound as the absorber layer are known, in which ZnSe or ZnS are used as the buffer layer.
- ZnSe or ZnS are used as the buffer layer.
- the disadvantages of these known cadmium-free buffer layers are shown in the band diagram according to
- the ZnSe buffer layer leads to a barrier in the conduction band which hinders the flow of electrons from the absorber to the window layer, at least if the buffer layer is too thick.
- An explanation is the relatively low electron affinity of the
- the invention not only provides a particularly simple diode structure, but also enables a cadmium-free thin-layer structure with efficiencies in combination with a suitable n-conducting reinforcement layer, which previously could only be achieved with a CdS layer as a heterojunction.
- the superstrate design is characterized in that the n-type layer adjoins a substrate that faces the light entry side.
- the Superstrate configuration is more problematic than that
- One criterion for the selection of the layer thickness of the n-conducting layer is to minimize the layer thickness as much as possible so that TiO.electrodes can be produced as economically as possible. It should be noted in particular that the dependence of the
- Illumination conditions can result in different requirements for the sheet resistance of the n-type layer. For example, there are weaker lighting conditions in the interior area than in the outside area, so that lower area resistances can be used here, which allow a correspondingly reduced layer thickness of the TiOx electrode. Depending on the application, sheet resistances between 1 ⁇ 2 and 50 ⁇ s have been found to be favorable, the sheet resistance being defined by the ratio of specific resistance and layer thickness.
- a diode structure according to the invention which is reinforced with an n-type reinforcing layer
- the substrate design is in turn characterized in that the jerk electrode is adjacent to a substrate that faces away from the light entry side.
- the superstrate design in this case is characterized in that the n-type
- Reinforcement layer adjoins a substrate that faces the light entry side.
- the back electrode is made of molybdenum and that the substrate is made of glass.
- Fig. 4 Structure and band diagram of a conventional CIS thin film solar cell with a thin CdS buffer layer and
- FIG. 5 shows a band diagram of a conventional cadmium-free CIS thin-film solar cell with a ZnSe buffer layer.
- FIGS. 4 and 5 have already been referred to in the introduction to the description.
- 1 shows the layer structure of a thin film solar cell with a barrier layer according to the invention, which has a p-conducting
- Layer consisting of a chalcopyrite compound and an n-type layer adjacent to the p-type layer and consisting of a titanium and oxygen-containing layer
- Chaikopyrite layer (substrate design) and secondly the deposition of the chaikopyrite layer on an existing TiOx surface (superstrate design).
- Numerous deposition methods for TiOx thin layers are known from the literature and in principle all of them can be used for the application according to the invention.
- the permissible maximum temperature for the deposition of the TiOx layer which results from the temperature limits of the underlying layers. Otherwise undesirable interdiffusion effects, material degradation and / or substrate warping occur.
- Preferred deposition temperatures for the substrate design are therefore below 400 ° C.
- Fig. La shows a substrate 13 on which a jerk electrode 12 consisting of, for example, molybdenum is applied.
- a chaikopyrite layer 11 and a titanium oxide layer 10 are then applied in succession to the jerk electrode 12. This is a substrate design, so that the titanium oxide layer 10 faces the light entry side.
- Fig. Lb shows an analog layer structure as Fig. La according to the superstrate design. Accordingly, a titanium oxide layer is applied to the substrate 13, whereupon the chaikopyrite layer 11 and the jerk electrode 12 follow. The Accordingly, the incidence of light comes from the substrate side.
- TiOx electrode depending on the desired application. For example, a surface resistance of the front electrode of less than 20 ⁇ must be achieved for use as a terrestrial solar cell. Experience has shown that this can be achieved with a common module size with a TiOx conductivity of over 100 ( ⁇ cm) "1. The requirements for the conductivity of the front electrode are reduced under weaker lighting conditions (eg in the interior area), so that here, if necessary, also with lower surface resistances can be worked.
- the front electrode should preferably be reinforced by suitable transparent front electrode layers.
- suitable transparent front electrode layers Such a structure with an n-type reinforcement layer is shown in FIG. 2.
- TCO are suitable as reinforcement layers - layers (TCO for Transparent Conductive Oxide), such as ZnO, Sn ⁇ 2, InSnÜ2 (ITO) or other doped metal oxides.
- the layer structure according to FIG. 2a thus differs from the layer structure according to FIG additional TCO layer 20 is applied, since this is a substrate design, the incidence of light occurs via the additionally applied TCO layer.
- the TCO layer is first applied to the substrate according to FIG. 2b before it is made Fig. Lb known layer structure follows. The incidence of light again takes place via the substrate 13, as in FIG. 1b.
- FIG. 3 shows a band diagram of a barrier layer according to the invention with the layer structure according to FIG. 2.
- Chaikopyrit layer is followed by a TiOx layer, which is reinforced by a ZnO layer.
- the ZnO layer has an even larger band gap than the TiOx layer, which ensures that photogenerated charge carriers are not absorbed directly on the surface of the solar cells.
- the titanium oxide layer acts as a buffer layer between the ZnO layer and the chaikopyrite layer.
- FIG. 5 shows the particular advantage of the barrier layer structure according to the invention: due to the higher electron affinity of TiOx (approx. 4.3 eV) in comparison to the previously used buffer layer ZnSe according to FIG. 5, the energy barrier in the conduction band considerably reduced and the electron current flow thereby improved. There is no longer any need for thermal activation or tunnel-assisted transport for the electron flow from the absorber towards the front electrode.
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00972800A EP1153439B1 (de) | 1999-11-25 | 2000-10-18 | Diodenstruktur, insbesondere für Dünnfilmsolarzellen |
DE50015341T DE50015341D1 (de) | 1999-11-25 | 2000-10-18 | Diodenstruktur, insbesondere für Dünnfilmsolarzellen |
JP2001540846A JP5048901B2 (ja) | 1999-11-25 | 2000-10-18 | 殊に薄膜太陽光電池のためのダイオード構造体 |
US09/915,142 US6486391B2 (en) | 1999-11-25 | 2001-07-25 | Diode structure, especially for thin-film solar cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19956735.2 | 1999-11-25 | ||
DE19956735A DE19956735B4 (de) | 1999-11-25 | 1999-11-25 | Dünnfilmsolarzelle mit einer Chalkopyritverbindung und einer Titan und Sauerstoff enthaltenden Verbindung |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/915,142 Continuation US6486391B2 (en) | 1999-11-25 | 2001-07-25 | Diode structure, especially for thin-film solar cells |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001039277A1 true WO2001039277A1 (de) | 2001-05-31 |
Family
ID=7930288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2000/010265 WO2001039277A1 (de) | 1999-11-25 | 2000-10-18 | Diodenstruktur, insbesondere für dünnfilmsolarzellen |
Country Status (7)
Country | Link |
---|---|
US (1) | US6486391B2 (de) |
EP (1) | EP1153439B1 (de) |
JP (1) | JP5048901B2 (de) |
AT (1) | ATE407455T1 (de) |
DE (2) | DE19956735B4 (de) |
ES (1) | ES2312366T3 (de) |
WO (1) | WO2001039277A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1999795A2 (de) * | 2006-03-13 | 2008-12-10 | SoloPower, Inc. | Reparaturverfahren für vorläuferfilme und verbundschichten zur herstellung von dünnschichtsolarzellen und entsprechendes gerät |
US7713773B2 (en) | 2005-11-02 | 2010-05-11 | Solopower, Inc. | Contact layers for thin film solar cells employing group IBIIIAVIA compound absorbers |
US7736940B2 (en) | 2004-03-15 | 2010-06-15 | Solopower, Inc. | Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication |
JP2010192689A (ja) * | 2009-02-18 | 2010-09-02 | Tdk Corp | 太陽電池、及び太陽電池の製造方法 |
US8192594B2 (en) | 2004-03-15 | 2012-06-05 | Solopower, Inc. | Technique and apparatus for depositing thin layers of semiconductors for solar cell fabrication |
WO2011100084A3 (en) * | 2010-02-09 | 2012-10-26 | Dow Global Technologies Llc | Photovoltaic device with transparent, conductive barrier layer |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6881647B2 (en) * | 2001-09-20 | 2005-04-19 | Heliovolt Corporation | Synthesis of layers, coatings or films using templates |
US6944791B2 (en) * | 2002-07-18 | 2005-09-13 | Lsi Logic Corporation | Method of handling unreadable blocks during write of a RAID device |
TW568882B (en) * | 2002-12-20 | 2004-01-01 | Ind Tech Res Inst | Self-organized nano-interfacial structure applied to electric device |
JP2004311845A (ja) * | 2003-04-09 | 2004-11-04 | National Institute Of Advanced Industrial & Technology | 発電機能を有する可視光透過構造体 |
AU2003300775A1 (en) * | 2003-09-03 | 2005-04-21 | Midwest Research Institute | Zno/cu(inga)se2 solar cells prepared by vapor phase zn doping |
WO2005105944A1 (en) * | 2004-04-02 | 2005-11-10 | Midwest Research Institute | ZnS/Zn(O, OH)S-BASED BUFFER LAYER DEPOSITION FOR SOLAR CELLS |
US20050271827A1 (en) * | 2004-06-07 | 2005-12-08 | Malle Krunks | Solar cell based on CulnS2 absorber layer prepared by chemical spray pyrolysis |
EP1684362A3 (de) * | 2004-12-02 | 2006-08-02 | Technische Universiteit Delft | Verfahren zur Herstellung dünner Schichten, vorzugsweise für Solarzellen |
US20060211272A1 (en) * | 2005-03-17 | 2006-09-21 | The Regents Of The University Of California | Architecture for high efficiency polymer photovoltaic cells using an optical spacer |
US8084685B2 (en) * | 2006-01-12 | 2011-12-27 | Heliovolt Corporation | Apparatus for making controlled segregated phase domain structures |
US20070160763A1 (en) * | 2006-01-12 | 2007-07-12 | Stanbery Billy J | Methods of making controlled segregated phase domain structures |
US7767904B2 (en) * | 2006-01-12 | 2010-08-03 | Heliovolt Corporation | Compositions including controlled segregated phase domain structures |
US20090126779A1 (en) * | 2006-09-14 | 2009-05-21 | The Regents Of The University Of California | Photovoltaic devices in tandem architecture |
US20080216885A1 (en) * | 2007-03-06 | 2008-09-11 | Sergey Frolov | Spectrally adaptive multijunction photovoltaic thin film device and method of producing same |
US8034317B2 (en) * | 2007-06-18 | 2011-10-11 | Heliovolt Corporation | Assemblies of anisotropic nanoparticles |
US20090211622A1 (en) * | 2008-02-21 | 2009-08-27 | Sunlight Photonics Inc. | Multi-layered electro-optic devices |
US20090215215A1 (en) * | 2008-02-21 | 2009-08-27 | Sunlight Photonics Inc. | Method and apparatus for manufacturing multi-layered electro-optic devices |
US7842534B2 (en) | 2008-04-02 | 2010-11-30 | Sunlight Photonics Inc. | Method for forming a compound semi-conductor thin-film |
US10211353B2 (en) * | 2008-04-14 | 2019-02-19 | Sunlight Photonics Inc. | Aligned bifacial solar modules |
TWI373851B (en) * | 2008-11-25 | 2012-10-01 | Nexpower Technology Corp | Stacked-layered thin film solar cell and manufacturing method thereof |
US8110428B2 (en) * | 2008-11-25 | 2012-02-07 | Sunlight Photonics Inc. | Thin-film photovoltaic devices |
US8835748B2 (en) | 2009-01-06 | 2014-09-16 | Sunlight Photonics Inc. | Multi-junction PV module |
US20100258180A1 (en) * | 2009-02-04 | 2010-10-14 | Yuepeng Deng | Method of forming an indium-containing transparent conductive oxide film, metal targets used in the method and photovoltaic devices utilizing said films |
AU2010202792B2 (en) * | 2009-06-05 | 2012-10-04 | Heliovolt Corporation | Process for synthesizing a thin film or composition layer via non-contact pressure containment |
JPWO2011027745A1 (ja) * | 2009-09-01 | 2013-02-04 | ローム株式会社 | 光電変換装置および光電変換装置の製造方法 |
US8256621B2 (en) * | 2009-09-11 | 2012-09-04 | Pro-Pak Industries, Inc. | Load tray and method for unitizing a palletized load |
US7910396B2 (en) | 2009-10-21 | 2011-03-22 | Sunlight Photonics, Inc. | Three-stage formation of thin-films for photovoltaic devices |
US8012788B1 (en) | 2009-10-21 | 2011-09-06 | Sunlight Photonics Inc. | Multi-stage formation of thin-films for photovoltaic devices |
US8021641B2 (en) * | 2010-02-04 | 2011-09-20 | Alliance For Sustainable Energy, Llc | Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom |
US20110312160A1 (en) | 2010-05-21 | 2011-12-22 | Heliovolt Corp. | Liquid precursor for deposition of copper selenide and method of preparing the same |
WO2012023973A2 (en) | 2010-08-16 | 2012-02-23 | Heliovolt Corporation | Liquid precursor for deposition of indium selenide and method of preparing the same |
US9083121B2 (en) | 2010-12-17 | 2015-07-14 | Sunpower Corporation | Diode-included connector, photovoltaic laminate and photovoltaic assembly using same |
US9087954B2 (en) | 2011-03-10 | 2015-07-21 | Saint-Gobain Glass France | Method for producing the pentanary compound semiconductor CZTSSe, and thin-film solar cell |
US20130074933A1 (en) * | 2011-09-23 | 2013-03-28 | Bang-Yen Chou | Photovoltaic device and method for making the same |
WO2013106836A1 (en) * | 2012-01-13 | 2013-07-18 | The Regents Of The University Of California | Metal-chalcogenide photovoltaic device with metal-oxide nanoparticle window layer |
US9105797B2 (en) | 2012-05-31 | 2015-08-11 | Alliance For Sustainable Energy, Llc | Liquid precursor inks for deposition of In—Se, Ga—Se and In—Ga—Se |
ES2772449T3 (es) | 2012-06-20 | 2020-07-07 | Cnbm Bengbu Design & Res Institute For Glass Industry Co Ltd | Sistema de capas para células solares de película delgada con una capa de amortiguación de naxinisyclz |
ES2829970T3 (es) | 2012-06-20 | 2021-06-02 | Cnbm Bengbu Design & Res Institute For Glass Industry Co Ltd | Sistema de capas para células solares de capa delgada |
KR101698659B1 (ko) | 2012-06-20 | 2017-01-20 | 쌩-고벵 글래스 프랑스 | 박막 태양 전지를 위한 층 시스템 |
KR101849267B1 (ko) * | 2012-07-06 | 2018-04-17 | 한국전자통신연구원 | 박막 태양전지 및 그의 제조 방법 |
KR101768788B1 (ko) | 2012-12-20 | 2017-08-16 | 쌩-고벵 글래스 프랑스 | 화합물 반도체의 제조 방법 및 박막 태양 전지 |
EP3007236A4 (de) * | 2013-06-05 | 2017-01-18 | Jun, Young-kwon | Solarzelle und verfahren zur herstellung davon |
JP6147926B2 (ja) | 2013-06-27 | 2017-06-14 | サン−ゴバン グラス フランス | ナトリウムインジウム硫化物緩衝層を有する薄膜太陽電池のための層システム |
EP2887405A1 (de) | 2013-12-23 | 2015-06-24 | Saint-Gobain Glass France | Schichtsystem für Dünnschichtsolarzellen |
US9799792B2 (en) * | 2015-01-14 | 2017-10-24 | International Business Machines Corporation | Substrate-free thin-film flexible photovoltaic device and fabrication method |
WO2018192512A1 (en) | 2017-04-19 | 2018-10-25 | (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd | Method for producing layer structure for thin-film solar cells |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4703131A (en) * | 1985-11-18 | 1987-10-27 | The Boeing Company | CdS/CuInSe2 solar cells with titanium foil substrate |
US5626688A (en) * | 1994-12-01 | 1997-05-06 | Siemens Aktiengesellschaft | Solar cell with chalcopyrite absorber layer |
US5676766A (en) * | 1993-09-30 | 1997-10-14 | Siemens Aktiengesellschaft | Solar cell having a chalcopyrite absorber layer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4094751A (en) * | 1976-09-30 | 1978-06-13 | Allied Chemical Corporation | Photochemical diodes |
JP2815723B2 (ja) * | 1991-04-19 | 1998-10-27 | 株式会社富士電機総合研究所 | 薄膜太陽電池の製造方法 |
SE468372B (sv) * | 1991-04-24 | 1992-12-21 | Stiftelsen Im Inst Foer Mikroe | Foerfarande foer tillverkning av tunnfilmssolceller varvid deponering av skikt paa substrat sker i roterbar (cylindrisk) baeranordning |
JP3397213B2 (ja) * | 1993-07-22 | 2003-04-14 | 松下電器産業株式会社 | 太陽電池 |
JP2922796B2 (ja) * | 1994-10-28 | 1999-07-26 | 松下電器産業株式会社 | 太陽電池及びその製造方法 |
JPH08316507A (ja) * | 1995-05-12 | 1996-11-29 | Yazaki Corp | 薄膜太陽電池及びその製造方法 |
US6023020A (en) * | 1996-10-15 | 2000-02-08 | Matsushita Electric Industrial Co., Ltd. | Solar cell and method for manufacturing the same |
-
1999
- 1999-11-25 DE DE19956735A patent/DE19956735B4/de not_active Expired - Fee Related
-
2000
- 2000-10-18 EP EP00972800A patent/EP1153439B1/de not_active Expired - Lifetime
- 2000-10-18 DE DE50015341T patent/DE50015341D1/de not_active Expired - Lifetime
- 2000-10-18 JP JP2001540846A patent/JP5048901B2/ja not_active Expired - Fee Related
- 2000-10-18 AT AT00972800T patent/ATE407455T1/de not_active IP Right Cessation
- 2000-10-18 ES ES00972800T patent/ES2312366T3/es not_active Expired - Lifetime
- 2000-10-18 WO PCT/EP2000/010265 patent/WO2001039277A1/de active IP Right Grant
-
2001
- 2001-07-25 US US09/915,142 patent/US6486391B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4703131A (en) * | 1985-11-18 | 1987-10-27 | The Boeing Company | CdS/CuInSe2 solar cells with titanium foil substrate |
US5676766A (en) * | 1993-09-30 | 1997-10-14 | Siemens Aktiengesellschaft | Solar cell having a chalcopyrite absorber layer |
US5626688A (en) * | 1994-12-01 | 1997-05-06 | Siemens Aktiengesellschaft | Solar cell with chalcopyrite absorber layer |
Non-Patent Citations (3)
Title |
---|
GUILLEN C ET AL: "CATHODIC ELECTRODEPOSITION OF CUINSE2 THIN FILMS", THIN SOLID FILMS,CH,ELSEVIER-SEQUOIA S.A. LAUSANNE, vol. 195, no. 1 / 02, 1991, pages 137 - 146, XP000177084, ISSN: 0040-6090 * |
KRISHNA K M ET AL: "Investigation of solid state Pb doped TiO2 solar cell", SOLAR ENERGY MATERIALS AND SOLAR CELLS,NL,ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, vol. 48, no. 1-4, 1 November 1997 (1997-11-01), pages 123 - 130, XP004111841, ISSN: 0927-0248 * |
MD MOSADDEQ-UR-RAHMAN ET AL: "NOVEL LOW-COST SOLID-STATE HETEROJUNCTION SOLAR CELL BASED ON TIO2 AND ITS MODIFICATION FOR IMPROVED EFFICIENCY", JAPANESE JOURNAL OF APPLIED PHYSICS,JP,PUBLICATION OFFICE JAPANESE JOURNAL OF APPLIED PHYSICS. TOKYO, vol. 35, no. 6A, 1 June 1996 (1996-06-01), pages 3334 - 3342, XP000735503, ISSN: 0021-4922 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7736940B2 (en) | 2004-03-15 | 2010-06-15 | Solopower, Inc. | Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication |
US8192594B2 (en) | 2004-03-15 | 2012-06-05 | Solopower, Inc. | Technique and apparatus for depositing thin layers of semiconductors for solar cell fabrication |
US7713773B2 (en) | 2005-11-02 | 2010-05-11 | Solopower, Inc. | Contact layers for thin film solar cells employing group IBIIIAVIA compound absorbers |
EP1999795A2 (de) * | 2006-03-13 | 2008-12-10 | SoloPower, Inc. | Reparaturverfahren für vorläuferfilme und verbundschichten zur herstellung von dünnschichtsolarzellen und entsprechendes gerät |
EP1999795A4 (de) * | 2006-03-13 | 2010-01-20 | Solopower Inc | Reparaturverfahren für vorläuferfilme und verbundschichten zur herstellung von dünnschichtsolarzellen und entsprechendes gerät |
JP2010192689A (ja) * | 2009-02-18 | 2010-09-02 | Tdk Corp | 太陽電池、及び太陽電池の製造方法 |
WO2011100084A3 (en) * | 2010-02-09 | 2012-10-26 | Dow Global Technologies Llc | Photovoltaic device with transparent, conductive barrier layer |
US8604336B2 (en) | 2010-02-09 | 2013-12-10 | Dow Global Technologies Llc | Photovoltaic device with transparent, conductive barrier layer |
Also Published As
Publication number | Publication date |
---|---|
ES2312366T3 (es) | 2009-03-01 |
JP2003515934A (ja) | 2003-05-07 |
ATE407455T1 (de) | 2008-09-15 |
US6486391B2 (en) | 2002-11-26 |
EP1153439A1 (de) | 2001-11-14 |
US20020043279A1 (en) | 2002-04-18 |
DE50015341D1 (de) | 2008-10-16 |
DE19956735A1 (de) | 2001-06-07 |
EP1153439B1 (de) | 2008-09-03 |
JP5048901B2 (ja) | 2012-10-17 |
DE19956735B4 (de) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1153439B1 (de) | Diodenstruktur, insbesondere für Dünnfilmsolarzellen | |
EP0219763B1 (de) | Solarzelle | |
EP2758993B1 (de) | Dünnschichtsolarmodul mit serienverschaltung und verfahren zur serienverschaltung von dünnschichtsolarzellen | |
DE3031907A1 (de) | Solarzelle und solarzellenverbund sowie verfahren zu ihrer herstellung. | |
EP0468094A1 (de) | Verfahren zur Herstellung einer Chalkopyrit-Solarzelle | |
DE112009002518T5 (de) | Verfahren und Struktur für Dünnschicht-Photovoltaikzelle unter Verwenden eines Übergangs aus ähnlichem Material | |
DE112006002716T5 (de) | Solarzelle und Verfahren zu deren Herstellung | |
DE102013104232A1 (de) | Solarzelle | |
DE112009002039T5 (de) | Vierpoliges fotovoltaisches Dünnschichtbauelement mit mehreren Sperrschichten und Verfahren dafür | |
DE102012216026B4 (de) | Verfahren zur Herstellung einer flexiblen Photovoltaik-Dünnschichtzelle mit einer Eisendiffusionsbarriereschicht und flexible Photovoltaik-Dünnschichtzelle mit einer Eisendiffusionsbarriereschicht | |
DE102011055912A1 (de) | Solarzelle und Verfahren zum Herstellen einer Solarzelle | |
DE102011008269B4 (de) | Dünnschicht-Solarzellen mit diffusionshemmender Schicht | |
DE102012104197A1 (de) | Verfahren für das Ausbilden einer Verbindung in einer Solarzelle | |
EP0798786B1 (de) | Solarzelle mit einer Chalkopyrit-Absorberschicht | |
WO2012022312A2 (de) | Solarzellenmodul und herstellungsverfahren hierfür | |
DE102011054794A1 (de) | Gemischte Sputtertargets und ihre Verwendung in Cadmiumsulfidschichten von Cadmiumtelluriddünnschichtphotovoltaikeinrichtungen | |
EP2769418A1 (de) | Solarmodul mit flachbandleiter, sowie verfahren zu dessen herstellung | |
WO2010142684A2 (de) | Solarzelle mit kontaktstruktur mit geringen rekombinationsverlusten sowie herstellungsverfahren für solche solarzellen | |
WO2013113638A1 (de) | Photovoltaische solarzelle und verfahren zum herstellen einer photovoltaischen solarzelle | |
DE102012204676B4 (de) | Chalkopyrit-Dünnschicht-Solarzelle mit Zn(S,O)-Pufferschicht und dazugehöriges Herstellungsverfahren | |
DE102009033357B4 (de) | Beschichtungssystem | |
DE10127255A1 (de) | Konditionierung von Glasoberflächen für den Transfer von CIGS-Solarzellen auf flexible Kunstoffsubstrate | |
DE102023107348A1 (de) | Verfahren zum fertigen einer dünnschichtsolarzelle, insbesondere perowskitsolarzelle, sowie dünnschichtsolarzelle und tandemsolarzelle | |
DE102020108334A1 (de) | Stapelsolarzellenmodul und Verfahren zur Herstellung des Stapelsolarzellenmoduls | |
DE102016110965B4 (de) | Halbleiter-Bauelement mit vorder- und rückseitiger Elektrode und Verfahren zu dessen Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 540846 Kind code of ref document: A Format of ref document f/p: F |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09915142 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000972800 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000972800 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000972800 Country of ref document: EP |