WO2001020590A1 - Afficheur et son procede d'excitation - Google Patents

Afficheur et son procede d'excitation Download PDF

Info

Publication number
WO2001020590A1
WO2001020590A1 PCT/JP2000/005989 JP0005989W WO0120590A1 WO 2001020590 A1 WO2001020590 A1 WO 2001020590A1 JP 0005989 W JP0005989 W JP 0005989W WO 0120590 A1 WO0120590 A1 WO 0120590A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
electron source
image display
substrate
Prior art date
Application number
PCT/JP2000/005989
Other languages
English (en)
French (fr)
Inventor
Mutsumi Suzuki
Toshiaki Kusunoki
Makoto Okai
Masakazu Sagawa
Akitoshi Ishizaka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to US10/031,377 priority Critical patent/US7116291B1/en
Publication of WO2001020590A1 publication Critical patent/WO2001020590A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Definitions

  • Image display device and driving method of image display device are Image display device and driving method of image display device
  • the present invention relates to an image display device and a driving method of the image display device, and in particular, is applied to an image display device having a structure of an electrode, an insulator, and an electrode and using a thin film type electron source that emits electrons in a vacuum. And effective technology. Background art
  • a thin-film electron source is an electron-emitting device that uses a hot electron generated by applying a high electric field to an insulator.
  • an MIM (Metal-Insulator-Metal) type electron source having a three-layer thin film structure consisting of an upper electrode, an insulating layer and a lower electrode will be described.
  • FIG. 13 is a diagram for explaining the operation principle of a MIM type electron source, which is a typical example of a thin film type electron source.
  • the current caused by the electrons flowing from the lower electrode 13 to the upper electrode 11 is called the diode current (Id), and the current caused by the electrons emitted in the vacuum 10 is called the emission current (Ie).
  • I e / I d) is 1 Z 1 0 3 ⁇ : a L 1 0 5 about.
  • the MIM type thin film electron source is described in, for example, Japanese Patent Application Laid-Open No. Hei 9-320456.
  • a thin film type electron source is formed in a matrix at an arbitrary position. Since an electron beam can be generated from the electron beam, it can be used as an electron source of an image display device. That is, a thin-film electron source element is arranged for each pixel, the emitted electrons from the element are accelerated in a vacuum, and then the phosphor is irradiated, and the irradiated part of the phosphor emits light to produce a desired image.
  • a planar image display device for displaying can be configured.
  • Thin-film electron sources have excellent features as electron-emitting devices for image display devices, such as being capable of realizing a high-definition display device because of the excellent straightness of the emitted electron beam, and being easy to handle because they are not easily affected by surface contamination. are doing.
  • the thin-film electron source includes a MIM (Metal Insulator—Semiconductor) type lower electrode in addition to the above-mentioned MIM type electron source.
  • MIM Metal Insulator—Semiconductor
  • An image display device using a thin-film electron source matrix does not use a shadow mask unlike a cathode ray tube (CRT) and does not have a beam deflection circuit. Slightly smaller or comparable to Ding.
  • the power consumption of the thin-film electron source matrix by the conventional driving method in the image display device using the thin-film electron source matrix is estimated.
  • FIG. 14 is a diagram showing a schematic configuration of a conventional thin-film electron source matrix.
  • a thin-film electron source element 301 is formed at each intersection of the row electrode (lower electrode) 310 and the column electrode (upper electrode) 310.
  • FIG. 14 shows the case of 3 rows ⁇ 3 columns, in actuality, the number of pixels constituting a display device or the number of sub-pixels in the case of a color display device are thin-film type.
  • the electron source element 301 is arranged.
  • one pixel is formed by combining the red, blue, and green sub-pixels (sub-pixe l). Those that correspond to sub-pixels are also referred to as “pixels”. In this specification, a pixel or a sub-pixel is also referred to as a “dot”.
  • FIG. 15 is a timing chart for explaining a driving method of a conventional image display device.
  • a negative polarity pulse (scanning pulse) of amplitude (Vr.w) is applied to one of the row electrodes 310 (selected row electrode) from the row electrode drive circuit 41, and at the same time, the column electrode
  • a positive polarity pulse (data pulse) of amplitude (V CC) 1 ) is applied from the drive circuit 42 to some of the column electrodes 3 11 (selected column electrodes).
  • the row electrode 310 to be selected that is, the row electrode 310 to which the scan pulse is applied is sequentially selected, and the data pulse applied to the column electrode 311 is also changed corresponding to the row.
  • the thin-film electron source element 301 can be operated stably.
  • the conventional driving is performed when the capacitance per one thin-film type electron source element 301 is Ce, the number of column electrodes 311 is M, and the number of row electrodes 310 is N.
  • the reactive power consumption of the drive circuit by the method.
  • Reactive power consumption is the power consumed to charge and discharge the capacitance of the element to be driven, and does not contribute to light emission.
  • Vr is the voltage amplitude of the inversion pulse applied to the row electrode 310.
  • Pulses are applied N times to the column electrodes during the period of rewriting the screen once (one field period). ⁇ , Extra ⁇ is multiplied. In addition, when a pulse voltage is applied to m of the three column electrodes 311, M is replaced by m in the above equation (4).
  • the power consumption of the thin-film type electron source device itself is about 1.6 [W], so the total power consumption is about 44 [W]. This is power consumption that is practically acceptable.
  • a feature of an image display device using a thin-film electron source is that a thin image display device can be realized.
  • Such a thin display device is used as a portable image display device. In this case, it is desirable that the power consumption be further reduced. Disclosure of the invention
  • the present invention has been made to solve the problems of the related art, and an object of the present invention is to provide a technology capable of reducing power consumption in a thin film electron source matrix in an image display device.
  • Another object of the present invention is to provide a technique capable of reducing power consumption in a thin film electron source matrix in a method of driving an image display device.
  • a row electrode 310 in a non-selected state or a row electrode 310 and a column electrode 311 in a non-selected state are connected to a high impedance. It is characterized by setting to the state.
  • the row electrode 310 or the column electrode 311 To set the row electrode 310 or the column electrode 311 to the high impedance state, for example, in the row electrode drive circuit 41 or the column electrode drive circuit 42, the row electrode 310 or the column electrode There is a method such as making the output signal line connected to 311 a floating state.
  • FIG. 2 is a diagram showing an equivalent circuit when 11 is fixed to a ground potential.
  • the non-selected row electrode 310 and non-selected The circuit network via the selected column electrode 3 1 1 must also be considered.
  • the capacitance d (m) between one selected row electrode 310 and m selected column electrodes 311 is represented by the following equation (5).
  • Ci (m) ⁇ m H: C e
  • Figure 3 is a graph showing how d (m) changes with m.
  • the vertical axis represents the output capacitance of all the column electrodes 311 in units of the capacitance C e per pixel.
  • the symbol ⁇ indicates the case of the conventional driving method
  • the reference symbol indicates the case of the driving method of the present invention.
  • Ci (m) becomes maximum at ⁇ ⁇ ⁇ 2, but it is still 1 Z4, which is the maximum value in the case of the conventional driving method.
  • the reactive power ( ⁇ ⁇ ) associated with the application of the data pulse can be reduced to 1/4 by the driving method of the present invention.
  • the column electrode 3 1 1 in the non-selected state was also set to the high impedance state. Consider the case.
  • FIG. 4 shows one row electrode (selected scan line in Fig. 4) 310 selected, and the remaining (N- 1) row electrodes (non-selected scan line in Fig. 4) 310 raised.
  • select m column electrodes selected data lines in Fig. 4) 3 1 1 and select (Mm) unselected column electrodes (non-selected data lines in Fig. 4)
  • FIG. 3 is a diagram showing an equivalent circuit when 3 1 1 is in a high impedance state.
  • Figure 5 is a graph showing how C 2 (m) changes with m.
  • the vertical axis represents the output capacitance of all the column electrodes 311 in units of the capacitance C e per pixel.
  • indicates C 2 (m)
  • the reference symbol indicates that only the non-selected scanning electrode is high for comparison. This is the case (d (m)) in the impedance state.
  • C 2 (m) is further reduced to 110 or less than d (m).
  • the reactive power ( Pc) associated with the application of the data pulse can be reduced to 1/100 or less of the conventional case.
  • a certain electrode is prevented from being in a high impedance state.
  • the present inventors have found that the occurrence of crosstalk due to the introduction of the high impedance state is caused by the fact that the electrode in the high impedance state has an indefinite voltage value and the number of lit dots around the electrode (that is, the display image) ) And changes in the voltage of adjacent electrodes.
  • a thin-film electron source does not emit electrons unless a sufficient current is supplied from an external circuit, that is, it has an aspect as a current driving element. This is the focus.
  • the mechanism of electron emission from a thin-film electron source uses a tunnel current generated by an electric field in a tunnel insulating layer as a hot electron, and is voltage-driven in this regard.
  • the emission current (I e) is at the range of about 1 0 3 tunneling current, to obtain a desired emission current, it must be supplied the 1 0 3 times the current from external circuitry. For this reason, it has an aspect as a current drive element.
  • a plurality of electron sources that have a structure in which a lower electrode, an insulating layer, and an upper electrode are stacked in this order, and that emit electrons from the surface of the upper electrode when a positive voltage is applied to the upper electrode.
  • An element and the plurality of electrons A plurality of first electrodes for applying a driving voltage to a lower electrode of the electron source element in a row (or column) direction in the source element; and a column (or row) direction in the plurality of electron source elements.
  • FIG. 1 is a diagram for explaining a method for driving an image display device of the present invention
  • FIG. 2 is a diagram showing an equivalent circuit for calculating interelectrode capacitance in the method for driving an image display device of the present invention
  • 3 is a graph showing a change in inter-electrode capacitance obtained by the equivalent circuit of FIG. 2
  • FIG. 4 is a diagram showing an equivalent circuit for calculating the inter-electrode capacitance in the driving method of the image display device of the present invention.
  • FIG. 5 is a graph showing a change in interelectrode capacitance obtained by the equivalent circuit of FIG. 4
  • FIG. 6 is a part of a thin-film electron source matrix of the electron source plate according to the first embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a method for driving an image display device of the present invention
  • FIG. 2 is a diagram showing an equivalent circuit for calculating interelectrode capacitance in the method for driving an image display device of the present invention
  • FIG. 7 is a plan view showing the positional relationship between the electron source plate and the fluorescent display panel according to the first embodiment of the present invention.
  • FIG. 8 is an image display according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a main part showing the configuration of the apparatus.
  • FIG. 10 is a connection diagram showing a state in which a driving circuit is connected to the display panel according to the first embodiment of the present invention.
  • FIG. 11 is an output diagram from each driving circuit shown in FIG.
  • FIG. 12 is a timing chart showing an example of the waveform of the driving voltage to be output.
  • FIG. 12 is a timing chart showing the waveform of the driving voltage output from the row electrode driving circuit and the column electrode driving circuit in the image display device according to Embodiment 2 of the present invention.
  • FIG. 13 is a timing chart showing an example of the shape
  • FIG. 13 is a diagram for explaining the operation principle of the thin-film electron source
  • FIG. 14 is a diagram showing a schematic configuration of a conventional thin-film electron source matrix
  • FIG. 6 is a diagram for explaining a driving method of the image display device.
  • the image display device is a display panel in which a brightness modulation element of each dot is formed by a combination of a thin film type electron source matrix, which is an electron emission electron source, and a phosphor (the display element of the present invention). ), And a drive circuit is connected to the row electrodes and the column electrodes of the display panel.
  • the display panel includes an electron source plate on which a thin-film electron source matrix is formed and a fluorescent display plate on which a phosphor pattern is formed.
  • FIG. 6 is a plan view showing a configuration of a part of the thin-film electron source matrices of the electron source plate of the present embodiment
  • FIG. 7 is a positional relationship between the electron source plate and the fluorescent display plate of the present embodiment.
  • FIG. 8 is a cross-sectional view of a main part showing the configuration of the image display device according to the present embodiment.
  • FIG. 8A is a cross-sectional view taken along the line A-B shown in FIGS.
  • the same figure (b) shows the CD section line shown in Figs. 6 and 7. It is sectional drawing which follows.
  • FIGS. 6 and 7 illustration of the substrate 14 is omitted.
  • the scale in the height direction is arbitrary. That is, the lower electrode 13 and the upper electrode bus line 32 have a thickness of several tens of meters or less, and the distance between the substrate 14 and the substrate 110 is about 1 to 3 mm. Also, in the following description, an electron source matrix of 3 rows ⁇ 3 columns will be described, but the actual number of rows and columns on the display panel is as follows: , And thousands of rows.
  • a region 35 surrounded by a dotted line indicates an electron emitting portion (the electron source element of the present invention).
  • the electron emitting portion 35 is a place defined by the tunnel insulating layer 12, from which electrons are emitted into a vacuum.
  • the electron-emitting portion 35 is not shown in the plan view because it is covered with the upper electrode 11, it is shown by a dotted line.
  • FIG. 9 is a diagram for explaining the method for manufacturing an electron source plate according to the present embodiment.
  • FIG. 9 only one thin-film electron source 301 formed at the intersection of one of the row electrodes 310 and one of the column electrodes 311 shown in FIGS. 6 and 7 is drawn and drawn. However, in practice, a plurality of thin-film electron sources 301 are arranged in a matrix as shown in FIGS.
  • FIG. 9 is a plan view
  • the left column is a cross-sectional view taken along line AB in the right diagram.
  • a conductive film for the lower electrode 13 is formed on an insulating substrate 14 such as glass to a thickness of, for example, 300 nm.
  • an aluminum (A 1; hereinafter, referred to as A i) alloy can be used as a material for the lower electrode 13, for example.
  • N d A 1-neodymium (N d; hereinafter, referred to as N d) alloy was used.
  • the Al alloy film is formed by, for example, a sputtering method or a resistance heating evaporation method.
  • the A1 alloy film is processed into a stripe shape by photolithographic resist formation and subsequent etching, thereby forming a lower electrode 13 as shown in FIG. 9 (a). .
  • the lower electrode 13 also functions as the row electrode 310.
  • the resist used here may be any suitable for etching, and the etching may be wet etching or dry etching.
  • a resist is applied and exposed to ultraviolet light to be patterned to form a resist pattern 501 as shown in FIG. 9 (b).
  • a quinone diazide positive type resist is used as the resist.
  • the formation voltage was set to about 100 V in this anodic oxidation, and the thickness of the protective insulating layer 15 was set to about 140 nm.
  • the formation voltage was set to 6 V, and the thickness of the tunnel insulating layer was set to 8 nm.
  • a conductive film for the upper electrode bus line 32 is formed, the resist is patterned and etched, and as shown in FIG. An electrode bus line 32 is formed.
  • the upper electrode bus line 32 is made of an A1 alloy and has a thickness of about 300 nm.
  • the upper electrode bus line 32 may be made of gold (Au) or the like.
  • the upper electrode pass line 32 is etched so that the pattern edge is tapered, so that the upper electrode 11 to be formed thereafter is not disconnected due to a step at the edge of the pattern. .
  • the upper electrode bus line 32 also functions as the column electrode 311.
  • iridium (Ir) having a thickness of l nm, platinum (Pt) having a thickness of 2 nm, and gold (Au) having a thickness of 3 nm are formed in this order by sputtering.
  • the laminated film of Ir—Pt—Au is patterned to form an upper electrode 11 as shown in FIG. 9 (f).
  • a region 35 surrounded by a dotted line indicates an electron-emitting portion.
  • the electron emitting portion 35 is a place defined by the tunnel insulating layer 12, from which electrons are emitted into a vacuum.
  • electrons are emitted from the region (electron emission portion 35) defined by the tunnel insulating layer 12, that is, the region defined by the resist pattern 501. .
  • the fluorescent display panel of this embodiment includes a black matrix 120 formed on a substrate 110 made of soda glass or the like, and a red (R) green (G) formed in a groove of the black matrix 120. ) ⁇ It is composed of blue (B) phosphors (114A to 114C) and a metal back film 122 formed on them.
  • a black matrix 120 is formed on the substrate 110 (see FIG. 8 (b)).
  • a red phosphor 114 A, a green phosphor 114 B, and a blue phosphor 114 C are formed.
  • the patterning of these phosphors was performed using photolithography in the same manner as used for the phosphor screen of an ordinary cathode ray tube.
  • Examples of the phosphor include Y 2 ⁇ 2 S: Eu (P22_R) for red, ZnS: Cu, A1 (P22-G) for green, and ZnS: A for blue. g (P22-B) was used.
  • A1 is deposited on the entire substrate 110 to a thickness of 50 to 300 nm to form a metal back film 122.
  • the substrate 110 is 400. Heat to about C to thermally decompose organic substances such as filming film and PVA. Thus, the fluorescent display panel is completed.
  • the electron source plate manufactured in this way and the fluorescent display plate are sealed using frit glass with a spacer 6 ⁇ interposed therebetween.
  • Figure 7 shows the positional relationship between the phosphors (114A to 114C) formed on the fluorescent display panel and the thin-film electron source matrix on the electron source plate.
  • the substrate 1 is shown to show the positional relationship between the phosphors (114A to 114C) and the black matrix 120 and the components on the substrate.
  • the components on 10 are shown with diagonal lines only.
  • the relationship between the electron emitting portion 35, ie, the portion where the tunnel insulating layer 12 is formed, and the width of the phosphor 114 is important.
  • the width of the electron-emitting portion 35 is set to the phosphor (114 A to It is designed to be narrower than 1 1 4 C).
  • the distance between the substrate 110 and the substrate 14 was about 1 to 3 mm.
  • the spacer 60 is inserted to prevent the display panel from being damaged by an external force of the atmospheric pressure when the inside of the display panel is evacuated.
  • the spacer 60 has a rectangular parallelepiped shape, for example, as shown in FIG.
  • columns 60 are provided every three rows, but the number of columns (arrangement density) may be reduced as long as the mechanical strength can withstand.
  • the spacer 60 is made of glass or ceramics, and has a plate or columnar column.
  • the spacer 60 does not appear to be in contact with the substrate 14, but is actually in contact with the column electrode 3 11 on the substrate 14.
  • a gap is formed by the thickness of the column electrode 311.
  • Sealed the display panel was evacuated to 1 X 1 0- 7 T 0 rr about vacuum sealing. Immediately before or immediately after encapsulation, a getter film is formed or a getter material is activated at a predetermined position (not shown) in the display panel in order to maintain a high degree of vacuum in the display panel. .
  • a getter film can be formed by high-frequency induction heating.
  • the acceleration voltage applied to the metal back 122 can be as high as 3 to 6 KV, Therefore, as described above, a phosphor for a cathode ray tube (CRT) can be used as the phosphor (114A to 114C).
  • CRT cathode ray tube
  • FIG. 10 is a connection diagram showing a state where a drive circuit is connected to the display panel of the present embodiment.
  • the row electrode 310 (lower electrode 13) is connected to the row electrode drive circuit 41, and the column electrode 3 11 (upper electrode bus line 32) is connected to the column electrode drive circuit 42.
  • each drive circuit (41, 42) and the electron source plate may be, for example, a tape carrier package crimped with an anisotropic conductive film, or each drive circuit (41, 4).
  • the semiconductor chip constituting 2) is formed by chip-on-glass or the like directly mounted on the substrate 14 of the electron source plate.
  • An acceleration voltage of about 3 to 6 KV is constantly applied to the metal pack film 122 from the acceleration voltage source 43.
  • FIG. 11 is a timing chart showing an example of the waveform of the drive voltage output from each drive circuit shown in FIG.
  • the dotted line indicates a high impedance output.
  • the output impedance should be about 1 to 10 ⁇ . In this embodiment, it is set to 5 ⁇ .
  • the ⁇ th row electrode 310 is R n
  • the mth column electrode 311 is Cm
  • the dot at the intersection of the nth row electrode 310 and the mth column electrode 311 Is represented by (n, m).
  • the phosphor (114A to 114C) does not emit light.
  • the driving voltage of (VRI) from the row electrode driving circuit 41 to the row electrode 3 10 of R 1 is applied to the column electrode 3 11 of (Cl, C 2), and the column electrode driving circuit 4 2 (V C1 ) is applied.
  • the emitted electrons are accelerated by the voltage applied to the metal back film 122, and then collide with the phosphor (114A to 114C), thereby causing the phosphor (114A to 1 1 4 C) to emit light.
  • the row electrodes 310 of the other (R 2, R 3) are in a high impedance-dance state, so that no electrons are emitted regardless of the voltage value of the column electrodes 311, and the corresponding phosphor ( Neither 114 A to 114 C) emit light.
  • V R2 5 V
  • the life characteristics of the thin-film electron source can be improved by applying a voltage (inversion pulse) of the opposite polarity to that during electron emission.
  • the vertical retrace period of the video signal is used as the period for applying the inversion pulse (t4 to t5, t8 to t9 in FIG. 11), the consistency with the video signal is good.
  • the row electrodes 310 in the non-selected state are set to the high impedance state, so that the power consumption can be reduced as described above.
  • the display panel used in the image display device according to the second embodiment of the present invention, and the method of connecting the display panel to the drive circuit are the same as those in the first embodiment.
  • FIG. 12 is a timing chart showing an example of the waveform of the drive voltage output from the row electrode drive circuit 41 and the column electrode drive circuit 42 in the image display device according to the second embodiment of the present invention.
  • an acceleration voltage of about 3 to 6 KV is constantly applied to the metal back film 122 from the acceleration voltage source 43.
  • the output impedance may be about 1 to 10 1 ⁇ , and in the present embodiment, it is set to 5 ⁇ .
  • the n-th row electrode 3 10 is R n
  • the m-th column electrode 3 11 is 111
  • the n-th row electrode 3 10 and the m-th column electrode 3
  • the dot at the intersection with 1 be represented by (n, m).
  • no voltage is applied to any of the electrodes, so that no electrons are emitted, and therefore, the phosphor (114A to 114C) does not emit light.
  • the driving voltage of (Vm) from the row electrode driving circuit 41 to the row electrode 310 of R1 is applied to the column electrode 311 of (Cl, C2), and the column electrode driving circuit 4 A drive voltage of 2 to (V cl ) is applied.
  • V C1 — Vm a voltage (V C1 — Vm) is applied between the upper electrode 11 and the lower electrode 13 of the dots (1, 1) and (1, 2), the voltage of (V C1 — V R1 ) If the voltage is set to be equal to or higher than the electron emission start voltage, electrons are emitted into vacuum from these two-dot thin-film electron sources.
  • the emitted electrons are accelerated by the voltage applied to the metal back film 112, and then collide with the phosphor (114A ⁇ 114C), thereby causing the phosphor (114A ⁇ 1 1 4 C) to emit light.
  • a drive voltage of ( VR1 ) is applied from the row electrode drive circuit 41 to the row electrode 310 of R2 , and the column electrode drive circuit 42 is applied to the column electrode 31 of C1.
  • a voltage of (V C1 ) is applied from the (2, 1) lights up.
  • all the row electrodes 3 10 are connected to the row electrode drive circuit 41 from (VR 2 ).
  • a driving voltage of 0 V is applied from the column electrode driving circuit 42 to all the column electrodes at the same time.
  • the life characteristics of the thin-film electron source can be improved by applying a voltage (inversion pulse) of the opposite polarity to that during electron emission.
  • the vertical retrace period of the video signal is used as the period for applying the inversion pulse (t4 to t5, t8 to t9 in FIG. 12), the consistency with the video signal is good.
  • the row electrode 311 in the non-selected state are set to the high impedance state.
  • the power consumption can be further reduced as compared with 1.
  • the image display device and the method of driving the same according to the present invention are particularly useful in an image display device using a thin-film electron source that emits electrons in a vacuum, by reducing the reactive power involved in driving the thin-film electron source array and reducing power consumption.
  • This technology realizes a technology that can reduce emissions, and has great industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

明 細 書
画像表示装置および画像表示装置の駆動方法 技術分野
本発明は、画像表示装置および画像表示装置の駆動方法に係わり、 特に、 電極一絶縁体一電極の構造を有し、 真空中に電子を放出する 薄膜型電子源を用いた画像表示装置に適用して有効な技術に関する。 背景技術
薄膜型電子源とは、 絶縁体に高電界を印加して生成するホッ トェ レク トロ ンを利用する電子放出素子である。
代表例として、 上部電極一絶縁層一下部電極の 3層薄膜構造で構 成される M I M (Metal- Insulator-Metal)型電子源について説明す る。
図 1 3は、 薄膜型電子源の代表例である M I M型電子源の動作原 理を説明するための図である。
上部電極 1 1 と下部電極 1 3 との間に駆動電圧を印加して、 トン ネル絶縁層 1 2内の電界を 1 〜 1 O M V / c m以上にすると、 下部 電極 1 3中のフェルミ準位近傍の電子はトンネル現象により障壁を 透過し、 トンネル絶縁層 1 2の伝導帯へ注入され、 さらに上部電極 1 1へ注入されホッ トエレク トロンとなる。
これらのホッ トエレク トロンの一部は、 トンネル絶縁層 1 2中お よび上部電極 1 1中で固体との相互作用で散乱を受けエネルギーを 失う。
この結果、 上部電極 1 1一真空 1 0界面に到達した時点では、 様 々なエネルギーを有したホッ トエレク トロンがある。 これらのホッ トエレク トロンのうち、 上部電極 1 1の仕事関数 Ψ 以上のエネルギーを有するものは、 真空 1 0中に放出され、 それ以 外のものは上部電極 1 1に流れ込む。
下部電極 1 3から上部電極 1 1に流れる電子による電流をダイォ ―ド電流 ( I d) 、 真空 1 0中に放出される電子による電流を放出 電流 ( I e ) と呼ぶと、 電子放出効率 ( I e / I d ) は 1 Z 1 03 〜: L 1 05程度である。
なお、 M I M型薄膜電子源は、 例えば、 特開平 9一 3 2 0 4 5 6 号公報に記載されている。
ここで、 上部電極 1 1 と下部電極 1 3 とを複数本設け、 これら複 数本の上部電極 1 1 と下部電極 1 3と直交させて、 薄膜型電子源を マトリクス状に形成すると任意の場所から電子線を発生させること ができるので、画像表示装置の電子源として使用することができる。 即ち、 各画素毎に薄膜型電子源素子を配置し、 そこからの放出電 子を真空中で加速した後、 蛍光体に照射し、 照射した部分の蛍光体 を発光させることにより所望の画像を表示する面像表示装置を構成 することができる。
薄膜型電子源は、 放出電子ビームの直進性に優れるため高精細の 表示装置を実現できる、 表面汚染の影響を受けにくいので扱いやす い等、画像表示装置用電子放出素子として優れた特徴を有している。 なお、 薄膜電子源には、 前記した M I M型電子源以外にも、 下部 電極【こ半導体を用レヽた M I S (Metal— Insulator— Semiconductor)型
(例えば、 ジャーナル · ォプ ' バキューム ' サイエンス ' アンド . テクノロジ一ズ;8、 第 1 1卷、 4 2 9頁〜 4 3 2頁 (Journal of V acuum science and Technologies B、 Vol.11、 pp. 429~4^2) ίこ gc 載) や、 トンネル絶縁層に半導体一絶縁体積層膜を用いたもの (例 えば、 ジャパニーズ ジャーナル ォブ アプライ ド フイジクス (Ja panese Journal of Applied Physics)、 Vol.3o、 Part 2、 No.7B; p p. L939〜L941 ( 1997) に記載) 、 トンネル絶縁層にポ一ラスシリコ ンを用いたもの (例えば、 ジャパニーズ ジャーナル ォブ ァプ フイ ド フィ ンクス (Japanese Journal of Appl i ed Phys i cs) N Vol. 34、 Part 2、 No. 6A、 pp. L705〜L707 ( 1995) に記載) 、 などが知ら れている。
薄膜電子源マ ト リ クスを用いた画像表示装置では、 陰極線管 (Ca thode-ray tube; CRT) のようにシャ ドウマスクを用いず、 またビ一 ム偏向回路もないため、 その消費電力は C R丁よりもやや小さいか あるいは同程度である。
薄膜電子源マトリクスを用いた画像表示装置における従来の駆動 方法による薄膜電子源マトリタスでの消費電力を概算する。
図 1 4は、 従来の薄膜電子源マトリタスの概略構成を示す図であ る。
行電極 (下部電極) 3 1 0 と列電極 (上部電極) 3 1 1の各交点 に薄膜型電子源素子 3 0 1が形成されている。
なお、 図 1 4では 3行 X 3列の場合を図示しているが、 実際には 表示装置を構成する画素、 あるいはカラー表示装置の場合はサブ画 素 (sub-pixel ) の個数だけ薄膜型電子源素子 3 0 1が配置されてい る。
即ち、 行数 Nおよび列数 Mは、 典型的な例ではそれぞれ N =数百 〜数千行、 M =数百〜数千列である。
なお、 カラ一画像表示の場合は、 赤、 青、 緑の各サブ画素 (sub- pixe l ) の組み合わせで 1画素 (pixe l ) を形成するが、 本明細書で は、 カラー画像表示の場合のサブ画素 (sub- pixel) に相当するもの も 「画素」 と呼ぶことにする。 また、 本明細書においては、 画素又 はサブ画素を 「ドッ ト」 とも呼ぶ。
図 1 5は、 従来の画像表示装置の駆動方法を説明するためのタイ ミングチヤ一トである。 行電極 3 1 0のうちの 1本 (選択された行電極) に、 行電極駆動 回路 4 1から振幅 (Vr。w) の負極性のパルス (走查パルス) を印加 し、 同時に、 列電極駆動回路 4 2から列電極 3 1 1の何本 (選択さ れた列電極) かに振幅 (VCC)1) の正極性パルス (データパルス) を 印加する。
二つのパルスが重なった薄膜型電子源素子 3 0 1には電子放出を するのに十分な電圧が印加されるので電子が放出される。 この電子 が蛍光体を励起して発光させる。
振幅 (Vcc^) の正極性パルスを印加していない薄膜型電子源素子 3 0 1では十分な電圧が印加されず、 電子放出を起こさない。
選択する行電極 3 1 0、 即ち、 走查パルスを印加する行電極 3 1 0を順次選択し、 その行に対応して列電極 3 1 1に印加するデータ パルスも変化させる。
1フィ一ルド期間の中で全ての行をこのようにして走查すると、 任意の画像に対応した画像を表示できる。
1フィールド內のある期間に、 逆極性のパルス (反転パルス) を 全ての行電極に印加する。
これにより薄膜型電子源素子 3 0 1を安定に動作させることがで さる。
今、 各薄膜型電子源素子 3 0 1の 1個あたりの静電容量を C e、 列電極 3 1 1の本数を M、 行電極 3 1 0の本数を Nとしたときの、 従来の駆動方法での駆動回路の無効消費電力を求めてみる。
無効消費電力とは、 駆動する素子の静電容量に電荷を充電 ·放電 させるのに消費する電力であり、 発光には寄与しない。
まず走査パルスの印加に伴う無効消費電力を求める。
行電極 3 1 0.に振幅 (Vr。》) のパルスを 1回印加した場合の無効 電力は下記 ( 1 ) 式で表される。
M · C e · (Vro 2 ( 1 ) 1秒間に画面を書き換える回数 (フィールド周波数) を f とする と、 N本の行電極全体での無効電力 (Pr。w) は下記 (2) で表され る。
Figure imgf000007_0001
同様にして、 反転パルスの印加に伴う容量充放電電力 (Pr) は下 記 ( 3) で表される。
Figure imgf000007_0002
ここで、 Vrは、行電極 3 1 0に印加する反転パルスの電圧振幅で ある。
1本の列電極 3 1 1には N個の薄膜型電子源素子 3 0 1が接続さ れているから、 M本の列電極全体での無効電力 (Pc<>1) は、 M本全 ての列電極 3 1 1にパルス電圧を印加する場合は下記 (4) で表さ れる。
Pcoi = f · M · N · (N · C e - (Vooi) 2) · · · (4) 画面を 1回書き換える期間 ( 1フィールド期間) に列電極には N 回パルスを印加するので、 ΡΓ。,とく らベて Νが余分に乗ぜられる。 なお、 Μ本の列電極 3 1 1のうち、 m本にパルス電圧を印加する 場合は、 前記 (4) 式の Mを mに置き換えた形になる。
一例として、 代表的な値、 f = 6 0 H z、 N= 4 8 0、 M= 1 9 2 0、 C e = 0. l n F、 Vrov = Vr = Vcoi = 4 Vを用いると、 P
Figure imgf000007_0003
42 [W] となる。
この場合、 薄膜型電子源素子自体の消費電力は 1. 6 [W] 程度 なので、 全消費電力は 44 [W] 程度となる。 これは実用上問題な い消費電力である。
しかし、 更に低消費電力化を図りたい場合は、 データパルス印加 に伴う無効電力 Pc()1を削減することが有効であることがわかる。
このように、 CRTに対応した画像表示装置として用いる場合は、 従来の技術でも消費電力の点からは問題ない。 しかしながら、 薄膜電子源を用いた画像表示装置の特徴は、 薄型 の画像表示装置が実現可能なことである。
このような薄型表示装置においては、 ポータブルな画像表示装置 としての用途があり、 この場合、 消費電力は一層低減することが望 ましい。 発明の開示
本発明は、 前記従来技術の問題点を解決するためになされたもの であり、 本発明の目的は、 画像表示装置において、 薄膜電子源マト リタスでの消費電力を低減することが可能となる技術を提供するこ とにある。
また、 本発明の他の目的は、 画像表示装置の駆動法において、 薄 膜電子源マトリクスでの消費電力を低減することが可能となる技術 を提供することにある。
本発明の前記ならびにその他の目的と新規な特徵は、 本明細書の 記述及び添付図面によって明らかにする。
本発明は、 図 1のタイミングチャートに示すように、 例えば、 非 選択状態にある行電極 3 1 0、 あるいは、 非選択状態にある行電極 3 1 0と列電極 3 1 1 とを高ィンピーダンス状態に設定することを 特徴とする。
行電極 3 1 0あるいは列電極 3 1 1を高ィンピーダンス状態に設 定するには、 例えば、 行電極駆動回路 4 1あるいは列電極駆動回路 4 2の内部で、 行電極 3 1 0あるいは列電極 3 1 1に接続される出 力信号線をフローティング状態にする等の方法がある。
次に、 本発明の画像表示装置の駆動方法による薄膜電子源マトリ クスでの消費電力を概算する。
まず、 非選択状態の行電極 3 1 0に駆動電圧を供給する行電極駆 動回路 4 1の出力を高ィンピーダンス状態にした場合を考える。 図 2は、 1本の行電極 (図 2の選択走査線) 3 1 0を選択し、 残 りの (N— 1 ) 本の行電極 (図 2の非選択走査線) 3 1 0を高ィン ピーダンス状態とし、 同時に m本の列電極 (図 2の選択データ線) 3 1 1を選択し、 (M— m) 本の非選択列電極 (図 2の非選択デ一 タ線) 3 1 1をグラウンド電位に固定した場合の等価回路を示す図 である。
図 2に示すように、 選択行電極 3 1 0と選択列電極 3 1 1 との交 点にある m個の薄膜型電子源素子 3 0 1以外にも、 非選択行電極 3 1 0と非選択列電極 3 1 1 とを経由した回路ネッ トワークも考慮し なければならない。
図 2に示す等価回路において、 1本の選択行電極 3 1 0と m本の 選択列電極 3 1 1 との間の静電容量 d (m) は下記 ( 5 ) 式で表さ れる。
Ci (m) = { m H : Ce
{ M j e
( 5) 図 3は、 d (m) が mとともにどのように変化するかを示すグラ フである。
この図 3において、 縦軸は、 全列電極 3 1 1の出力容量を 1画素 当たりの静電容量 C eで割った単位で示している。
また、 図 3では、 N= 5 0 0、 M= 3 0 0 0であり、 図中、 〇印 は従来の駆動方法の場合、 參印が本発明の駆動方法による場合であ る。
Ci (m) は πι^ΜΖ 2の時最大になるが、 それでも、 従来の駆動 法の場合の最大値の 1 Z 4である。
したがって、 本発明の駆動法により、 データパルス印加に伴う無 効電力 (Ρ^ を 1 /4に低減できる。
次に、 非選択状態の列電極 3 1 1も高インピーダンス状態にした 場合を考える。
図 4は、 1本の行電極 (図 4の選択走査線) 3 1 0を選択し、 残 り の (N— 1 ) 本の行電極 (図 4の非選択走査線) 3 1 0を高イン ピ一ダンス状態とし、 同時に m本の列電極 (図 4の選択データ線) 3 1 1を選択し、 (M— m) 本の非選択列電極 (図 4の非選択デ一 タ線) 3 1 1を高ィンピ一ダンス状態にした場合の等価回路を示す 図である。
この図 4に示す等価回路において、 1本の選択行電極 3 1 0と m 本の選択列電極 3 1 1 との間の静電容量 C 2 (m) は下記 ( 6 ) 式で 表される。
Figure imgf000010_0001
(6) 図 5は、 C2 (m) が mとともにどのように変化するかを示すグラフ である。
この図 5において、 縦軸は、 全列電極 3 1 1の出力容量を 1画素 当たりの静電容量 C eで割った単位で示している。
また、 図 5では、 N= 5 0 0 M= 3 0 0 0であり、 図中、 〇印 は C2 (m) であり、 參印は、 比較のために、 非選択走査電極のみを 高インピーダンス状態にした場合 (d (m) ) である。
例えば、 m MZ Zにおいては、 C2 (m) は d (m) よりも更 に 1 1 0 0以下に低減される。
したがって、 本発明の駆動法により、 データパルス印加に伴う無 効電力 (Pc を従来より 1 / 1 00以下に低減できる。
一般に、 液晶表示装置などマトリクス型ディスプレイの駆動方法 においては、 ある電極を高イ ンピーダンス状態にすることは避けて いる。
これは、 高インピーダンス状態の電極があると、 ク ロス トーク現 象が発生しやすくなり画質劣化が発生したり、 場合によっては所望 の画像が表示できないなどの障害が発生するためである。
本発明者らは、 この高ィンピ一ダンス状態の導入によるクロス ト —ク発生は、 高インピーダンス状態の電極は、 その電圧値が不定で あり、 その周辺のドッ トの点灯個数 (即ち、 表示画像) や隣接電極 の電圧変化などにより変化するためであることに着目した。
本発明を考案するに至ったもう一つのポイントは、 薄膜型電子源 は、 十分な電流を外部回路から供給しなければ電子を放出しないこ と、 即ち、 電流駆動素子としての側面を有することに着目したこと である。
先に述べたように、 薄膜電子源からの電子放出機構は、 トンネル 絶縁層内の電界により発生したトンネル電流をホッ トェレク トロン として利用するものであり、 この点では電圧駆動型である。
しかし、 放出電流 ( I e ) がトンネル電流の 1 0— 3程度であるの で、 所望の放出電流を得るには、 その 1 0 3倍程度の電流を外部回 路から供給しなければならない。 このために電流駆動素子としての 側面を持つ。
このため、 薄膜型電子源においては、 電極の電位が所望の値以外 であっても、 そのインピーダンスが十分高ければ、 電子放出は起こ らない。
このため、 薄膜型電子源においては、 本発明の駆動方法を用いて もクロス トークが発生しない。
本発明は、 前記知見に基づいて成されたものであり、 本願におい て開示される発明のうち、代表的なものの概要を簡単に説明すれば、 下記の通りである。
下部電極と、 絶縁層と、 上部電極とをこの順番に積層した構造を 有し、 前記上部電極に正極性の電圧を印加した際に、 前記上部電極 表面から電子を放出する複数個の電子源素子と、 前記複数個の電子 源素子の中の行 (または列) 方向の電子源素子の下部電極に駆動電 圧を印加する複数の第 1の電極と、 前記複数個の電子源素子の中の 列 (または行) 方向の電子源素子の上部電極に駆動電圧を印加する 複数の第 2の電極とを有する第 1の基板と、 枠部材と、 蛍光体を有 する第 2の基板とを備え、 前記第 1 の基板、 前記枠部材および前記 第 2の基板とで囲まれる空間が真空雰囲気とされる表示素子を備え る画像表示装置であって、 前記非選択状態の第 1の電極を、 前記選 択状態の第 1の電極よりも高ィンピーダンス状態に設定すること、 あるいは、 前記非選択状態の第 1の電極および第 2の電極を、 前記 選択状態の第 1の電極および第 2の電極よりも高インピーダンス状 態に設定することを特徴とする。
なお、 本発明の結果に基づき、 非選択状態の電極を高インピーダ ンスにするという観点から先行技術調査を行った。
その結果、 本発明で対象としている薄膜型電子源を用いた画像表 示装置おいては、 該当技術は見つからなかった。 図面の簡単な説明
図 1は、 本発明の画像表示装置の駆動方法を説明するための図、 図 2は、 本発明の画像表示装置の駆動方法における電極間容量を計 算するための等価回路を示す図、 図 3は、 図 2の等価回路により求 められた電極間容量の変化を示すグラフ、 図 4は、 本発明の画像表 示装置の駆動方法における電極間容量を計算するための等価回路を 示す図、 図 5は、 図 4の等価回路により求められた電極間容量の変 化を示すグラフ、 図 6は、 本発明の実施の形態 1の電子源板の薄膜 電子源マ ト リ クスの一部の構成を示す平面図、 図 7は、 本発明の実 施の形態 1の電子源板と蛍光表示板との位置関係を示す平面図、 図 8は、 本発明の実施の形態 1の画像表示装置の構成を示す要部断面 図、 図 9は、 本発明の実施の形態 1の電子源板の製造方法を説明す るための図、 図 1 0は、 本発明の実施の形態 1の表示パネルに、 駆 動回路を接続した状態を示す結線図、 図 1 1は、 図 1 0に示す各駆 動回路から出力される駆動電圧の波形の一例を示すタイミングチヤ ート、 図 1 2は、 本発明の実施の形態 2の画像表示装置において、 行電極駆動回路および列電極駆動回路から出力される駆動電圧の波 形の一例を示すタイミングチャート、 図 1 3は、 薄膜電子源の動作 原理を説明するための図、 図 1 4は、 従来の薄膜電子源マトリクス の概略構成を示す図、 図 1 5は、 従来の画像表示装置の駆動方法を 説明するための図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を詳細に説明する。 なお、 実施の形態を説明するための全図において、 同一機能を有 するものは同一符号を付け、 その繰り返しの説明は省略する。
[実施の形態 1 ]
本発明の実施の形態 1の画像表示装置は、 電子放出電子源である 薄膜型電子源マトリクスと蛍光体との組み合わせによって、 各ドッ トの輝度変調素子を形成した表示パネル (本発明の表示素子) を用 い、 当該表示パネルの行電極及び列電極に駆動回路を接続して構成 される。
ここで、 表示パネルは、 薄膜電子源マ ト リ クスが形成された電子 源板と蛍光体パターンが形成された蛍光表示板とから構成される。 図 6は、 本実施の形態の電子源板の薄膜電子源マトリタスの一部 の構成を示す平面図であり、 図 7は、 本実施の形態の電子源板と蛍 光表示板との位置関係を示す平面図である。
また、 図 8は、 本実施の形態の画像表示装置の構成を示す要部断 面図であり、 同図 (a ) は、 図 6および図 7に示す A— B切断線に 沿う断面図、 同図 (b ) は、 図 6および図 7に示す C—D切断線に 沿う断面図である。
伹し、 図 6および図 7においては、 基板 1 4の図示は省略してい る。
さらに、 図 8では、 高さ方向の縮尺は任意である。 即ち、 下部電 極 1 3や上部電極バスライン 3 2などは数/ / m以下の厚さである力 基板 1 4と基板 1 1 0との距離は 1〜 3 m m程度の長さである。 また、 以下の説明では、 3行 X 3列の電子源マ ト リ クスを用いて 説明するが、 実際の表示パネルでの行 ·列数は、 数 1 0 0行〜数 1 0 0 0行、 および数千列になることは言うまでもない。
また、 図 6において、 点線で囲まれた領域 3 5は電子放出部 (本 発明の電子源素子) を示す。
この電子放出部 3 5はトンネル絶縁層 1 2で規定された場所で、 この領域内から電子が真空中に放出される。
電子放出部 3 5は上部電極 1 1で覆われるため平面図には現れな いので、 点線で図示してある。
図 9は、 本実施の形態の電子源板の製造方法を説明するための図 である。
以下、 図 9を用いて、 本実施の形態の電子源板の薄膜電子源マト リタスの製造方法について説明する。
なお、 この図 9では、 図 6および図 7に示す、 行電極 3 1 0の一 つと列電極 3 1 1の一つとの交点に形成する一つの薄膜型電子源 3 0 1のみを取り出して描いているが、 実際には、 図 6および図 7に 示すように複数の薄膜型電子源 3 0 1がマトリクス状に配置されて いる。
さらに、 図 9の右の列は平面図であり、 左の列は、 右の図の中の A— B線に沿う断面図である。
ガラスなどの絶縁性基板 1 4上に、 下部電極 1 3用の導電膜を、 例えば、 3 0 0 n mの膜厚に形成する。 下部電極 1 3用の材料と しては、 例えば、 アルミニゥム (A 1 ; 以下、 A i と称する。 ) 合金を用いることができる。
ここでは、 A 1 —ネオジム (N d ; 以下、 N d と称する。 ) 合金 を用いた。
この A 1合金膜の形成には、 例えば、 スパッタリ ング法や抵抗加 熱蒸着法などを用いる。
次に、 この A 1合金膜を、 フォ ト リ ソグラフィによるレジス ト形 成と、 それに続くエッチングとによりス トライプ状に加工し、 図 9 ( a ) に示すように、 下部電極 1 3を形成する。
ここで、 下部電極 1 3は行電極 3 1 0の役割も兼ねる。
ここで用いるレジス トはエッチングに適したものであればよく、 また、 エッチングもウエッ トエッチング、 ドライエッチングのいず れも可能である。
次に、 レジス トを塗布して紫外線で露光してパターニングし、 図 9 ( b ) に示すよ うに、 レジス トパターン 5 0 1 を形成する。
レジス トには、 例えば、 キノンジァザイ ド系のポジ型レジス トを 用いる。
次に、 レジス トパターン 5 0 1を付けたまま、 陽極酸化を行い、 図 9 ( c ) に示すよ うに、 保護絶縁層 1 5を形成する。
本実施の形態では、 この陽極酸化において化成電圧 1 0 0 V程度 と し、 保護絶縁層 1 5の膜厚を 1 4 0 n m程度と した。
レジス トパターン 5 0 1 をアセ トンなどの有機溶媒で剥離した後、 レジス トで被覆されていた下部電極 1 3表面を再度陽極酸化して、 図 9 ( d ) に示すよ うに、 トンネル絶縁層 1 2を形成する。
本実施の形態では、 この再陽極酸化において化成電圧を 6 Vに設 定し、 トンネル絶縁層膜厚を 8 n mとした。
次に、 上部電極バスライン 3 2用の導電膜を形成し、 レジス トを パターニングしてエッチングを行い、 図 9 ( e ) に示すように、 上 部電極バスライン 3 2を形成する。
本実施例では、 上部電極バスライン 3 2は、 A 1合金を用い、 膜 厚は 3 0 0 n m程度とした。
なお、 この上部電極バスライン 3 2の材料としては、 金 (A u ) などを用いても良い。
なお、 上部電極パスライン 3 2は、 パターンの端がテーパー状に なるようにエッチングをし、 この後で形成する上部電極 1 1がバタ ーンの端での段差による断線を起こさないようにする。
ここで、上部電極バスライン 3 2は列電極 3 1 1の役割も兼ねる。 次に、 膜厚 l n mのイ リジウム ( I r ) 、 膜厚 2 n mの白金 ( P t ) 、 膜厚 3 n mの金 (A u ) を、 この順でスパッタリングにより 形成する。
レジス トとエッチングによるパターン化により、 I r — P t — A uの積層膜をパターン化し、 図 9 ( f ) に示すように、 上部電極 1 1 とする。
なお、 図 9 ( f ) において、 点線で囲まれた領域 3 5は電子放出 部を示す。
電子放出部 3 5はトンネル絶縁層 1 2で規定された場所で、 この 領域内から電子が真空中に放出される。
以上のプロセスにより、 基板 1 4上に薄膜電子源マトリクスが完 成する。
前記したように、 この薄膜電子源マトリクスにおいては、 トンネ ル絶縁層 1 2で規定された領域 (電子放出部 3 5 ) 、 即ち、 レジス トパターン 5 0 1で規定した領域から電子が放出される。
さらに、 電子放出部 3 5の周辺部には、 厚い絶縁膜である保護絶 縁層 1 5を形成してあるため、 上部電極—下部電極間に印加される 電界が下部電極 1 3の辺または角部に集中しなくなり、 長時間にわ たって安定な電子放出特性が得られる。 本実施の形態の蛍光表示板は、 ソーダガラス等の基板 1 1 0に形成 されるブラックマトリクス 1 2 0と、 このブラックマトリクス 1 2 0の溝内に形成される赤 (R) ·緑 (G) ·青 (B) の蛍光体 ( 1 1 4 A〜 1 1 4 C) と、 これらの上に形成されるメタルバック膜 1 2 2とで構成される。
以下、 本実施の形態の蛍光表示板の作成方法について説明する。 まず、表示装置のコントラス トを上げる目的で、基板 1 1 0上に、 ブラックマ ト リ クス 1 2 0を形成する (図 8 ( b ) 参照) 。
次に、 赤色蛍光体 1 1 4 A、 緑色蛍光体 1 1 4 B、 青色蛍光体 1 1 4 Cを形成する。
これら蛍光体のパターン化は、 通常の陰極線管の蛍光面に用いら れるのと同様に、 フォ トリ ソグラフィーを用いて行った。
蛍光体としては、 例えば、 赤色に Y22 S : E u (P 2 2 _R) 、 緑色に Z n S : C u, A 1 (P 2 2— G) 、 青色に Z n S : A g ( P 2 2 - B ) を用いた。
次いで、 ニ トロセルロースなどの膜でフィルミ ングした後、 基板 1 1 0全体に A 1を、 膜厚 50〜 3 0 0 n m程度蒸着してメタルバ ック膜 1 2 2とする。
その後、 基板 1 1 0を 400。C程度に加熱してフィルミング膜や P V Aなどの有機物を加熱分解する。 このよ うにして、 蛍光表示板 が完成する。
このよ う に製作した電子源板と、 蛍光表示板とを、 スぺーサ 6 〇 を挟み込んでフリ ッ トガラスを用いて封着する。
蛍光表示板に形成された蛍光体 ( 1 1 4 A〜 1 1 4 C) と、 電子 源板の薄膜電子源マトリタスとの位置関係は図 7に示したとおりで ある。
なお、 図 7では、 蛍光体 ( 1 1 4 A〜 1 1 4 C) やブラックマト リクス 1 2 0と、 基板上構成物との位置関係を示すために、 基板 1 1 0上の構成物は斜線のみで示してある。
電子放出部 3 5、即ち、 トンネル絶縁層 1 2が形成された部分と、 蛍光体 1 1 4の幅との関係が重要である。
本実施の形態では、 薄膜型電子源 3 0 1から放出される電子ビ一 ムは多少空間的に広がることを考慮して、 電子放出部 3 5の幅は蛍 光体 ( 1 1 4 A〜 1 1 4 C) の幅よりも狭く設計している。
また、 基板 1 1 0 と基板 1 4 との間の距離は、 1〜 3 mm程度と した。
スぺーサ 6 0は、 表示パネル内部を真空にしたときに、 大気圧の 外部からの力による表示パネルの破損を防ぐために挿入される。
したがって、 基板 1 4、 基板 1 1 0に厚さ 3 mmのガラスを用い て、 幅 4 c mX長さ 9 c m程度以下の表示面積の表示装置を製作す る場合には、 基板 1 1 0と基板 1 4自体の機械強度で大気圧に耐え 得るので、 スぺ一サ 6 0を挿入する必要はない。
スぺーサ 6 0の形状は、 例えば、 図 7に示すように、 直方体形状 とする。
また、 ここでは、 3行毎にスぺ一サ 6 0の支柱を設けているが、 機械強度が耐える範囲で、 支柱の数 (配置密度) を減らしてかまわ ない。
スぺ一サ 6 0としては、 ガラス製またはセラミクス製で、 板状あ るいは柱状の支柱を並べて配置する。
なお、 図 8 ( a ) において、 スぺーサ 6 0が基板 1 4側に接して いないように見えるが、 実際には基板 1 4上の列電極 3 1 1に接し ている。
図 8 ( a ) では列電極 3 1 1 の膜厚分だけ隙間が出来るわけであ る。
封着した表示パネルは、 1 X 1 0— 7T 0 r r程度の真空に排気し て、 封止する。 表示パネル内の真空度を高真空に維持するために、 封止の直前あ るいは直後に、 表示パネル内の所定の位置 (図示せず) でゲッター 膜の形成またはゲッター材の活性化を行う。
例えば、 バリ ウム (B a ) を主成分とするゲッター材の場合、 高 周波誘導加熱によりゲッタ一膜を形成できる。
このようにして、 薄膜電子源マトリ クスを用いた表示パネルが完 成する。
本実施の形態では、 基板 1 1 0 と基板 1 4との間の距離が 1〜 3 mm程度と大きいので、 メタルバック 1 2 2に印加する加速電圧を 3〜 6 KVと高電圧にでき、 したがって、 前記したように、 蛍光体 ( 1 1 4A〜 1 1 4 C) には陰極線管 (C RT) 用の蛍光体を使用 することができる。
図 1 0は、 本実施の形態の表示パネルに、 駆動回路を接続した状 態を示す結線図である。
行電極 3 1 0 (下部電極 1 3 ) は行電極駆動回路 4 1に接続され、 列電極 3 1 1 (上部電極バスライ ン 3 2 ) は列電極駆動回路 42に 接続される。
ここで、 各駆動回路 ( 4 1, 4 2) と、 電子源板との接続は、 例 えば、テープキヤリァパッケージを異方性導電膜で圧着したものや、 各駆動回路 (4 1, 4 2) を構成する半導体チップを、 電子源板の 基板 1 4上に直接実装するチップオングラス等によって行う。
メタルパック膜 1 2 2には、 加速電圧源 4 3から 3〜 6 K V程度 の加速電圧が常時印加される。
図 1 1は、 図 1 0に示す各駆動回路から出力される駆動電圧の波 形の一例を示すタイミングチャートである。
なお、 同図において、 点線は高インピーダンス出力であることを 示している。
実際には、出力イ ンピーダンスを 1〜 1 0ΜΩ程度とすれば良く、 本実施例では 5 ΜΩと した。
ここで、 η番目の行電極 3 1 0を R n、 m番目の列電極 3 1 1を Cm, n番目の行電極 3 1 0と、 m番目の列電極 3 1 1 との交点の ドッ トを (n, m) で表すことにする。
時刻 t 0ではいずれの電極も電圧ゼロであるので電子は放出され ず、 したがって、 蛍光体 ( 1 1 4 A〜 1 1 4 C) は発光しない。 時刻 t lにおいて、 R 1の行電極 3 1 0に、 行電極駆動回路 4 1 から (VRI) なる駆動電圧を、 (C l, C 2 ) の列電極 3 1 1に、 列電極駆動回路 4 2から (VC1) なる駆動電圧を印加する。
ドッ ト ( 1, 1 ) 、 ( 1, 2 ) の上部電極 1 1 と下部電極 1 3 と の間には (Vci— VR1) なる電圧が印加されるので、 (VC1— VR1 ) の電圧を電子放出開始電圧以上に設定しておけば、 この 2つの ド ッ トの薄膜型電子源からは電子が真空中に放出される。
本実施の形態では、 Vm =— 5 V、 Vci = 4. 5 Vとした。
放出された電子は、 メタルバック膜 1 2 2に印加された電圧によ り加速された後、 蛍光体 ( 1 1 4 A〜 1 1 4 C) に衝突し、 蛍光体 ( 1 1 4 A〜1 1 4 C) を発光させる。
また、 この期間、 他の (R 2, R 3 ) の行電極 3 1 0は高ィンピ —ダンス状態なので、 列電極 3 1 1の電圧値に関わらず電子は放出 せず、 対応する蛍光体 ( 1 1 4 A〜1 1 4 C) も発光しない。
時刻 t 2において、 R 2の行電極 3 1 0に、 行電極駆動回路 4 1 から (Vm) なる駆動電圧を印加し、 C 1の列電極 3 1 1、 列電極 駆動回路 4 2から (Vc!) なる電圧を印加すると、 同様に、 ドッ ト ( 2 , 1 ) が点灯する。
ここで、 図 1 1に示す電圧波形の駆動電圧を、 行電極 3 1 0およ び列電極 3 1 1に印加すると、 図 1 0の斜線を施したドッ トのみが 点灯する。
このようにして、 列電極 3 1 1に印加する信号を変えることによ り、 所望の画像または情報を表示することができる。
また、 列電極 3 1 1に印加する駆動電圧 (VC1) の大きさを画像 信号に合わせて適宜変えることにより、 階調のある画像を表示する ことができる。
なお、トンネル絶縁層 1 2中に蓄積される電荷を開放するために、 図 1 1の時刻 t 4において、 全ての行電極 3 1 0に、 行電極駆動回 路 4 1から (VR2) なる駆動電圧を印加し、 同時に、 全ての列電極 に、 列電極駆動回路 4 2から 0 Vの駆動電圧を印加する。
ここで、 VR2= 5 Vであるので、 薄膜型電子源 3 0 1には一 VR2 =ー 5 Vの電圧が印加される。
このように、 電子放出時とは逆極性の電圧 (反転パルス) を印加 することにより薄膜電子源の寿命特性を向上できる。
なお、 反転パルスを印加する期間 (図 1 1の t 4〜 t 5、 t 8〜 t 9) としては、 映像信号の垂直帰線期間を用いると、 映像信号と の整合性が良い。
以上説明したように、 本実施の形態では、 非選択状態の行電極 3 1 0を高インピーダンス状態に設定しているので、 先に説明したよ うに、 消費電力を低減することが可能となる。
[実施の形態 2]
本発明の実施の形態 2の画像表示装置に用いる表示パネル、 およ び表示パネルと駆動回路との結線方法とは、 前記実施の形態 1 と同 じである。
図 1 2は、 本発明の実施の形態 2の画像表示装置において、 行電 極駆動回路 4 1および列電極駆動回路 4 2から出力される駆動電圧 の波形の一例を示すタイミングチャートである。
なお、 本実施の形態においても、 メタルバック膜 1 2 2には加速 電圧源 4 3から 3〜 6 KV程度の加速電圧が常時印加される。
また、 図 1 2において、 点線は高インピーダンス出力であること を示す。
実際には出カインピ一ダンスを 1〜 1 0ΜΩ程度とすれば良く、 本実施の形態では 5 ΜΩとした。
ここで、前記実施の形態 1 と同様、 n番目の行電極 3 1 0を R n、 m番目の列電極 3 1 1を 111、 n番目の行電極 3 1 0と、 m番目の 列電極 3 1 1 との交点のドッ トを (n, m) で表すことにする。 時刻 t 0ではいずれの電極も電圧ゼロであるので電子は放出され ず、 したがって、 蛍光体 ( 1 1 4 A〜1 1 4 C) は発光しない。 時刻 t 1において、 R 1の行電極 3 1 0に、 行電極駆動回路 4 1 から (Vm) なる駆動電圧を、 (C l, C 2 ) の列電極 3 1 1に、 列電極駆動回路 4 2から (Vcl) なる駆動電圧を印加する。
ドッ ト ( 1, 1 ) 、 ( 1, 2 ) の上部電極 1 1 と下部電極 1 3 と の間には (VC1— Vm) なる電圧が印加されるので、 (VC1— VR1 ) の電圧を電子放出開始電圧以上に設定しておけば、 この 2つのド ッ トの薄膜型電子源からは電子が真空中に放出される。
本実施の形態では、 VR1 =— 5 V、 Vci = 4. 5 Vとした。
放出された電子は、 メタルバック膜 1 1 2に印加された電圧によ り加速された後、 蛍光体 ( 1 1 4 A〜 1 1 4 C) に衝突し、 蛍光体 ( 1 1 4 A〜1 1 4 C) を発光させる。
また、 この期間、 他の ( R 2, R 3 ) の行電極 3 1 0は高インピ 一ダンス状態なので、 列電極 3 1 1の電圧値に関わらず電子は放出 せず、 対応する蛍光体 ( 1 1 4 A〜1 1 4 C) も発光しない。
また、 この期間、 C 3の列電極 3 1 1は高インピーダンス状態な ので、 ドッ ト ( 1 , 3) から電子は放出されず、 対応する蛍光体 ( 1 1 4 A〜1 1 4 C) も発光しない。
時刻 t 2において、 R 2の行電極 3 1 0に、 行電極駆動回路 4 1 から (VR1) なる駆動電圧を印加し、 C 1の列電極 3 1 1に、 列電 極駆動回路 4 2から (VC1) なる電圧を印加すると、 同様に、 ドッ ト ( 2, 1 ) が点灯する。
ここで、 図 1 2に示す電圧波形の駆動電圧を、 行電極 3 1 0およ ぴ列電極 3 1 1に印加すると、 図 1 0の斜線を施したドッ トのみが 点灯する。
このようにして、 列電極 3 1 1に印加する信号を変えることによ り、 所望の画像または情報を表示することができる。
また、 列電極 3 1 1に印加する駆動電圧 (V c i ) のパルス幅を画 像信号に合わせて適宜変えることにより、 階調のある画像を表示す ることができる。 .
なお、トンネル絶縁層 1 2中に蓄積される電荷を開放するために、 図 1 2の時刻 t 4において、 全ての行電極 3 1 0に、 行電極駆動回 路 4 1から (V R 2 ) なる駆動電圧を印加し、 同時に、 全ての列電極 に、 列電極駆動回路 4 2から 0 Vの駆動電圧を印加する。
ここで、
Figure imgf000023_0001
5 Vであるので、 薄膜型電子源 3 0 1には一
=一 5 Vの電圧が印加される。
このように電子放出時とは逆極性の電圧 (反転パルス) を印加す ることにより薄膜電子源の寿命特性を向上できる。
なお、 反転パルスを印加する期間 (図 1 2の t 4〜 t 5、 t 8〜 t 9 ) としては、 映像信号の垂直帰線期間を用いると、 映像信号と の整合性が良い。
以上説明したように、 本実施の形態では、 非選択状態の行電極 3 1 0のみでなく、 非選択状態の列電極 3 1 1 も高インピーダンス状 態に設定しているので、 前記実施の形態 1よりも、 更に消費電力を 低減できることは前記したとおりである。
以上、 本発明者によってなされた発明を、 前記実施の形態に基づ き具体的に説明したが、 本発明は、 前記実施の形態に限定されるも のではなく、 その要旨を逸脱しない範囲において種々変更可能であ ることは勿論である。 産業上の利用可能性
本発明にかかる画像表示装置およびその駆動方法は、 特に、 真空 中に電子を放出する薄膜型電子源を用いた画像表示装置において、 薄膜電子源ァレイの駆動に伴う無効電力を低減し、 消費電力を低減 することが可能となる技術を実現するものであり、 産業上の利用可 能性は大である。

Claims

請 求 の 範 囲
1 . 下部電極と、 絶縁層と、 上部電極とをこの順番に積層した構造 を有し、 前記上部電極に正極性の電圧を印加した際に、 前記上部電 極表面から電子を放出する複数個の電子源素子と、
前記複数個の電子源素子の中の行 (または列) 方向の電子源素子 の下部電極に駆動電圧を印加する複数の第 1の電極と、
前記複数個の電子源素子の中の列 (または行) 方向の電子源素子 の上部電極に駆動電圧を印加する複数の第 2の電極とを有する第 1 の基板と、
枠部材と、
蛍光体を有する第 2の基板とを備え、 前記第 1の基板、 前記枠部 材および前記第 2の基板とで囲まれる空間が真空雰囲気とされる表 示素子と、
前記各第 1の電極に駆動電圧を供給する第 1の駆動手段と、 前記各第 2の電極に駆動電圧を供給する第 2の駆動手段とを備え る画像表示装置であって、
前記第 1の駆動手段は、 非選択状態の前記第 1の電極を、 選択状 態の前記第 1の電極よりも高ィンピ一ダンス状態に設定することを 特徴とする画像表示装置。
2 . 下部電極と、 絶縁層と、 上部電極とをこの順番に積層した構造 を有し、 前記上部電極に正極性の電圧を印加した際に、 前記上部電 極表面から電子を放出する複数個の電子源素子と、
前記複数個の電子源素子の中の行 (または列) 方向の電子源素子 の下部電極に駆動電圧を印加する複数の第 1の電極と、
前記複数個の電子源素子の中の列 (または行) 方向の電子源素子 の上部電極に駆動電圧を印加する複数の第 2の電極とを有する第 1 の基板と、
枠部材と、 蛍光体を有する第 2の基板とを備え、 前記第 1の基板、 前記梧部 材および前記第 2の基板とで囲まれる空間が真空雰囲気とされる表 示素子と、
前記各第 1の電極に駆動電圧を供給する第 1の駆動手段と、 前記各第 2の電極に駆動電圧を供給する第 2の駆動手段とを備え る画像表示装置であって、
前記第 1の駆動手段は、 非選択状態の前記第 1の電極を、 選択状 態の前記第 1の電極よりも高イ ンピーダンス状態に設定し、
前記第 2の駆動手段は、 非選択状態の前記第 2の電極を、 選択状 態の前記第 2の電極よりも高インピーダンス状態に設定することを 特徴とする画像表示装置。
3 . 前記高イ ンピーダンスは、 1 Μ Ω以上のインピーダンスである ことを特徴とする請求の範囲第 1項又は第 2項に記載の画像表示装 置。
4 . 前記第 1の駆動手段は、 非選択状態の第 1の電極をフローティ ング状態にすることを特徴とする請求の範囲第 1項又は第 2項に記 載の画像表示装置。
5 . 前記第 2の駆動手段は、 非選択状態の第 2の電極をフ口一ティ ング状態にすることを特徴とする請求の範囲第 2項に記載の画像表 示装置。
6 . 前記各電子源素子は、 前記上部電極と電気的に接続され、 前記 第 2の電極を兼用する上部電極バスラインを有することを特徴とす る請求の範囲第 1項又は第 2項に記載の画像表示装置。
7 . 前記第 1の電極は、 前記各電子源素子の下部電極を兼用するこ とを特徴とする請求の範囲第 1項又は第 2項に記載の画像表示装置 c
8 . 前記下部電極は、 金属で構成されることを特徴とする請求の範 囲第 1項又は第 2項に記載の画像表示装置。
9 . 前記下部電極は、 半導体で構成されることを特徴とする請求の 範囲第 1項又は第 2項に記載の画像表示装置。
1 0 . 前記絶縁層は、 半導体と絶縁体との積層膜で構成されること を特徴とする請求の範囲第 1項又は第 2項に記載の画像表示装置。
1 1 . 下部電極と、 絶縁層と、 上部電極とをこの順番に積層した構 造を有し、 前記上部電極に正極性の電圧を印加した際に、 前記上部 電極表面から電子を放出する複数個の電子源素子と、
前記複数個の電子源素子の中の行 (または列) 方向の電子源素子 の下部電極に駆動電圧を印加する複数の第 1の電極と、
前記複数個の電子源素子の中の列 (または行) 方向の電子源素子 の上部電極に駆動電圧を印加する複数の第 2の電極とを有する第 1 の基板と、
枠部材と、
蛍光体を有する第 2の基板とを備え、 前記第 1の基板、 前記枠部 材および前記第 2の基板とで囲まれる空間が真空雰囲気とされる画 像表示装置の駆動方法であって、
非選択状態の前記第 1の電極を、 選択状態の前記第 1の電極より も高ィンピ一ダンス状態に設定することを特徴とする画像表示装置 の駆動方法。
1 2 . 下部電極と、 絶縁層と、 上部電極とをこの順番に積層した構 造を有し、 前記上部電極に正極性の電圧を印加した際に、 前記上部 電極表面から電子を放出する複数個の電子源素子と、
前記複数個の電子源素子の中の行 (または列) 方向の電子源素子 の下部電極に駆動電圧を印加する複数の第 1の電極と、
前記複数個の電子源素子の中の列 (または行) 方向の電子源素子 の上部電極に駆動電圧を印加する複数の第 2の電極とを有する第 1 の基板と、
枠部材と、
蛍光体を有する第 2の基板とを備え、 前記第 1の基板、 前記枠部 材および前記第 2の基板とで囲まれる空間が真空雰囲気とされる画 像表示装置の駆動方法であって、
前記非選択状態の第 1の電極を、 前記選択状態の第 1の,電極より も高インピーダンス状態に設定し、 かつ、 前記非選択状態の第 2の 電極を、 前記選択状態の第 2の電極より も高インピーダンス状態に 設定することを特徴とする画像表示装置の駆動方法。
1 3 . 前記高インピーダンスは、 1 Μ Ω以上のインピーダンスであ ることを特徴とする請求の範囲第 1 1項又は第 1 2項に記載の画像 表示装置の駆動方法。
1 4 . 前記非選択状態の第 1の電極をフローティング状態にするこ とを特徴とする請求の範囲第 1 1項又は第 1 2項に記載の画像表示 装置の駆動方法。
1 5 . 前記非選択状態の第 2の電極をフ口一ティング状態にするこ とを特徴とする請求の範囲第 1 2項に記載の画像表示装置の駆動方 法。
1 6 . 下部電極と、 上部電極とを有し、 前記上部電極に正極性の電 圧を印加した際に、 前記上部電極表面から電子を放出する複数個の 薄膜電子源と、
前記複数個の薄膜電子源の中の行 (または列) 方向の薄膜電子源 の下部電極に駆動電圧を印加する複数の第 1の電極と、
前記複数個の薄膜電子源の中の列 (または行) 方向の薄膜電子源 の上部電極に駆動電圧を印加する複数の第 2の電極とを有する第 1 の基板と、
枠部材と、
蛍光体を有する第 2の基板とを備え、 前記第 1の基板、 前記枠部 材および前記第 2の基板とで囲まれる空間が真空雰囲気とされる表 示素子と、
前記各第 1の電極に駆動電圧を供給する第 1の駆動手段と、 前記各第 2の電極に駆動電圧を供給する第 2の駆動手段とを備え る画像表示装置であって、
前記第 1の駆動手段は、 非選択状態の前記第 1の電極を、 選択状 態の前記第 1の電極より も高ィンピ一ダンス状態に設定することを 特徴とする画像表示装置。
1 7 . 下部電極と、 上部電極とを有し、 前記上部電極に正極性の電 圧を印加した際に、 前記上部電極表面から電子を放出する複数個の 薄膜電子源と、
前記複数個の薄膜電子源の中の行 (または列) 方向の薄膜電子源 の下部電極に駆動電圧を印加する複数の第 1の電極と、
前記複数個の薄膜電子源の中の列 (または行) 方向の薄膜電子源 の上部電極に駆動電圧を印加する複数の第 2の電極とを有する第 1 の基板と、
枠部材と、
蛍光体を有する第 2の基板とを備え、 前記第 1の基板、 前記枠部 材および前記第 2の基板とで囲まれる空間が真空雰囲気とされる表 示素子と、
前記各第 1の電極に駆動電圧を供給する第 1の駆動手段と、 前記各第 2の電極に駆動電圧を供給する第 2の駆動手段とを備え る画像表示装置であって、
前記第 1の駆動手段は、 非選択状態の前記第 1の電極を、 選択状 態の前記第 1の電極よりも高ィンピーダンス状態に設定し、
前記第 2の駆動手段は、 非選択状態の前記第 2の電極を、 選択 状態の前記第 2の電極よりも高ィンピ一ダンス状態に設定すること を特徴とする画像表示装置。
PCT/JP2000/005989 1999-09-09 2000-09-04 Afficheur et son procede d'excitation WO2001020590A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/031,377 US7116291B1 (en) 1999-09-09 2000-09-04 Image display and method of driving image display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/256246 1999-09-09
JP25624699A JP3831156B2 (ja) 1999-09-09 1999-09-09 画像表示装置および画像表示装置の駆動方法

Publications (1)

Publication Number Publication Date
WO2001020590A1 true WO2001020590A1 (fr) 2001-03-22

Family

ID=17289978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005989 WO2001020590A1 (fr) 1999-09-09 2000-09-04 Afficheur et son procede d'excitation

Country Status (6)

Country Link
US (1) US7116291B1 (ja)
JP (1) JP3831156B2 (ja)
KR (1) KR100750026B1 (ja)
CN (1) CN1178190C (ja)
TW (1) TW476053B (ja)
WO (1) WO2001020590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017465C2 (nl) * 2000-11-28 2004-10-26 Hitachi Ltd Beeldschermtoestel dat gebruik maakt van luminantie-modulatie elementen.

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493678B1 (ko) * 2001-11-29 2005-06-03 엘지전자 주식회사 평판 디스플레이 소자 구동방법과 장치
KR100493669B1 (ko) * 2001-11-29 2005-06-03 엘지전자 주식회사 평판 디스플레이 소자 구동방법과 장치
JP2003308798A (ja) 2002-04-17 2003-10-31 Toshiba Corp 画像表示装置および画像表示装置の製造方法
KR100469391B1 (ko) * 2002-05-10 2005-02-02 엘지전자 주식회사 메탈-인슐레이터-메탈 전계방출 디스플레이의 구동회로 및방법
KR100874452B1 (ko) * 2002-11-26 2008-12-18 삼성에스디아이 주식회사 전계 방출 표시 장치 및 그 구동 방법
JP4074207B2 (ja) * 2003-03-10 2008-04-09 株式会社 日立ディスプレイズ 液晶表示装置
JP2004287118A (ja) 2003-03-24 2004-10-14 Hitachi Ltd 表示装置
WO2005054932A2 (en) * 2003-11-14 2005-06-16 Uni-Pixel Displays, Inc. Simple matrix addressing in a display
US7317433B2 (en) * 2004-07-16 2008-01-08 E.I. Du Pont De Nemours And Company Circuit for driving an electronic component and method of operating an electronic device having the circuit
US8847861B2 (en) 2005-05-20 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device, method for driving the same, and electronic device
FR2907959B1 (fr) * 2006-10-30 2009-02-13 Commissariat Energie Atomique Procede de commande d'un dispositif de visualisation matriciel a source d'electrons a consommation capacitive reduite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184890A (ja) * 1989-01-12 1990-07-19 Matsushita Electric Ind Co Ltd マトリックス表示装置
JPH08305317A (ja) * 1995-04-28 1996-11-22 Futaba Corp 画像表示装置の駆動方法および駆動回路
US5600343A (en) * 1992-11-13 1997-02-04 Commissariat A L'energie Atomique Multiplexed matrix display screen and its control process
JP2000206925A (ja) * 1999-01-13 2000-07-28 Sony Corp 平面型表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628340A (ja) 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd 光学的記録再生装置
JP3044435B2 (ja) * 1993-04-05 2000-05-22 キヤノン株式会社 電子源及び画像形成装置
JPH08328505A (ja) 1995-05-26 1996-12-13 Futaba Corp 画像表示装置の駆動装置
JP3863325B2 (ja) * 1999-09-10 2006-12-27 株式会社日立製作所 画像表示装置
JP3915400B2 (ja) * 2000-11-28 2007-05-16 株式会社日立製作所 画像表示装置及び画像表示装置の駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184890A (ja) * 1989-01-12 1990-07-19 Matsushita Electric Ind Co Ltd マトリックス表示装置
US5600343A (en) * 1992-11-13 1997-02-04 Commissariat A L'energie Atomique Multiplexed matrix display screen and its control process
JPH08305317A (ja) * 1995-04-28 1996-11-22 Futaba Corp 画像表示装置の駆動方法および駆動回路
JP2000206925A (ja) * 1999-01-13 2000-07-28 Sony Corp 平面型表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017465C2 (nl) * 2000-11-28 2004-10-26 Hitachi Ltd Beeldschermtoestel dat gebruik maakt van luminantie-modulatie elementen.

Also Published As

Publication number Publication date
KR20020032531A (ko) 2002-05-03
US7116291B1 (en) 2006-10-03
CN1361908A (zh) 2002-07-31
JP3831156B2 (ja) 2006-10-11
KR100750026B1 (ko) 2007-08-16
JP2001083907A (ja) 2001-03-30
TW476053B (en) 2002-02-11
CN1178190C (zh) 2004-12-01

Similar Documents

Publication Publication Date Title
JP3915400B2 (ja) 画像表示装置及び画像表示装置の駆動方法
JP3878365B2 (ja) 画像表示装置および画像表示装置の製造方法
US5153483A (en) Display device
JP3863325B2 (ja) 画像表示装置
WO2001020590A1 (fr) Afficheur et son procede d&#39;excitation
US20030160581A1 (en) Display apparatus and driving method of the same
JP3606513B2 (ja) 画像表示装置
JP3899741B2 (ja) 画像表示装置の駆動方法
JP4848779B2 (ja) 画像表示装置
JP2005222074A (ja) 画像表示装置
KR100342831B1 (ko) 전계 방출 표시소자와 그의 구동장치 및 방법
JP3870968B2 (ja) 画像表示装置
US6746884B2 (en) Method of manufacturing field-emission electron emitters and method of manufacturing substrates having a matrix electron emitter array formed thereon
JP4341682B2 (ja) 表示装置
KR100430085B1 (ko) 평판 디스플레이 패널 및 그 구동방법
KR100448478B1 (ko) 평면형 전계 방출소자 및 그 구동방법
JP2005134476A (ja) 表示装置および能動素子アレイ基板ならびに増幅素子
JP2005209661A (ja) 画像表示装置
JP2006318932A (ja) カラー画像表示装置
JP2008053004A (ja) 画像表示装置
JP2005309459A (ja) 表示装置
JPH1092347A (ja) 平面型画像表示装置
JPH10154476A (ja) 表示装置
JP2001052636A (ja) 表示装置およびその駆動方法
JP2006313367A (ja) 画像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 008104379

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027000763

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10031377

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027000763

Country of ref document: KR

122 Ep: pct application non-entry in european phase