WO2001018768A1 - Verfahren zur codierung und decodierung von objekten mit bezug auf ein verkehrswegenetz - Google Patents

Verfahren zur codierung und decodierung von objekten mit bezug auf ein verkehrswegenetz Download PDF

Info

Publication number
WO2001018768A1
WO2001018768A1 PCT/DE2000/003056 DE0003056W WO0118768A1 WO 2001018768 A1 WO2001018768 A1 WO 2001018768A1 DE 0003056 W DE0003056 W DE 0003056W WO 0118768 A1 WO0118768 A1 WO 0118768A1
Authority
WO
WIPO (PCT)
Prior art keywords
objects
relationship
decoding
relationships
relation
Prior art date
Application number
PCT/DE2000/003056
Other languages
English (en)
French (fr)
Inventor
Bernd Petzold
Bernd Hessing
Cornelius Hahlweg
Gerd Draeger
Ulrich Kersken
Peter Kreft
Jan Martin
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2001522506A priority Critical patent/JP2003509753A/ja
Priority to EP00963961A priority patent/EP1214697B1/de
Priority to DE50006176T priority patent/DE50006176D1/de
Priority to US10/070,088 priority patent/US7047247B1/en
Publication of WO2001018768A1 publication Critical patent/WO2001018768A1/de

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/091Traffic information broadcasting
    • G08G1/092Coding or decoding of the information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/387Organisation of map data, e.g. version management or database structures
    • G01C21/3874Structures specially adapted for data searching and retrieval
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99941Database schema or data structure
    • Y10S707/99942Manipulating data structure, e.g. compression, compaction, compilation

Definitions

  • the invention relates to methods for coding and decoding objects with reference to a traffic route network, the coded information also being decodable with the aid of databases which differ from a database used in the coding.
  • location referencing - also called location coding - are required.
  • Methods are used which describe the location references of the data to be sent in the database of the transmitter and methods which evaluate the location references of the data sent on the receiver side.
  • the evaluation includes the interpretation of the location references and their mapping onto the recipient's database.
  • the description of the location references must be such that a correct mapping of the objects is possible by recognizing the location references in the recipient database.
  • a description form for location references also referred to as location coding
  • location coding has been standardized for various applications of traffic telematics (for example TMC, GATS). In these applications, it is generally assumed that the locations described are present in the databases of both the sender and the recipient and have the same location coding. If there are any deviations, the databases must be compared.
  • objects are understood to mean information with a geographic reference, including multimedia objects, such as video sequences, still images or sounds, and / or elements of a digital map.
  • the invention is intended to address already existing objects in the recipient's database, to introduce new objects into the recipient's database and to modify existing objects.
  • the structure of databases is generally based on the type of objectively linking their objects. In the case of digital maps, this is a link via the neighborhood relationships that exist due to direct road connections.
  • the object of the invention is therefore to provide each object with specific attributes without being dependent on the relationships given by the road network and thus on the structure of the comparison database.
  • This object is achieved in a first embodiment of the invention in that the objects are provided with relationships to at least one relationship object which is present in databases which are used for decoding, the relationships not resulting primarily from the traffic network.
  • application-independent descriptions of location references between objects can be generated and interpreted. It enables the exchange of location-related objects between a sender and a receiver of these objects regardless of the execution of the location references in the respective database.
  • the databases can be digital maps (eg from navigation systems) of the same or different levels of detail and geographical coverage.
  • the coded object is clearly recognized in a receiver even without evaluating the relationships to the relationship object and that the relationship object is recognized by these relationships and, for example, recorded in the database of the receiver.
  • the relationships are local information.
  • This local information can, for example
  • the relationships comprise logical features, in particular affiliations.
  • a membership exists between the parking lot and the Public transport stops at park and ride sites.
  • the information coded for an object in each case has the following data structure: ⁇ reference object>
  • the hierarchy level is specified by level, for example in relation to the data structure specified above, whether it is relation object 1 or 2 on the one hand or 11 or 12 on the other.
  • the data structure of an object can be supplemented by further information, for example for the output of the object.
  • At least the data of the reference object is assigned data which characterize a decoding rule and that the data of the relation objects in Data is assigned to each that characterize a decoding rule.
  • Decoding rules in the sense of this further training can be for example:
  • Object focus that is, in addition to the search function, it should also be ensured that the coordinate is within the object outline, for example a parking lot,
  • Exact position of the information that is, in addition to the search function, this should correspond to an exact position at which, by definition, the plummet should be dropped on the object found in the search window, for example a start of traffic jam between two junctions of a motorway (found object).
  • the search window that its size should depend on the object type and can be specified in stages by the sender via the additional data field in order to limit the maximum search radius. For example, with a corresponding quantization with 3 bits, a radius of 10 m to 10 km can be encoded.
  • the at least one relation object is searched in the database used for decoding and the relationship to the object to be decoded is then evaluated. It is preferably provided that search windows are opened around the locations of the relation objects and the reference objects.
  • search windows are opened around the locations of the relation objects and the reference objects.
  • the at least one relation object is searched in at least one further database if it is not found in the database which is used for decoding. This makes it possible to use a total of several databases for decoding - for example the database of a TMC receiver and the database (digital street map) of a navigation device.
  • position data almost always form the basic part of the data formats when coding location-related objects, but the function of the coordinates can be quite different, problems can occur during decoding in the receiver.
  • these problems can be solved by providing the at least one position specification with a position type identifier. It can be provided, for example, that the position type identifier specifies whether the position specification relates to an exact position and / or specifies the location of a search space for a position or an object.
  • a position in contrast to a search space is considered to be exact.
  • a position can also be exact and at the same time indicate the position of a search space. This can occur, for example, when coding a start of a traffic jam on a freeway, the position not being on the freeway by using different coordinate systems, the freeway being determined by searching in the search space around the transmitted position and then a plumb line being dropped onto the freeway in order to the traffic jam start to come.
  • an object comprises several position details, which can be provided within the scope of the invention: that the item type identifier applies to one item of information at a time, or that the item type identifier applies to multiple item details.
  • the position type identifier has at least one attribute which designates further properties of the position specification. It can be provided, among other things, that the further properties are an error radius of the position specification and / or that the at least one attribute indicates whether the position specification is absolute or relative.
  • FIG. 1 is a block diagram of a device for coding and decoding according to the invention
  • FIG. 3 shows a schematic illustration of the method according to the invention for linear objects
  • FIG. 6 shows a first exemplary embodiment of a location coding according to the invention
  • 7 is a schematic representation of FIG. 6,
  • Fig. 8 shows a second embodiment of a location coding according to the invention.
  • FIG. 9 shows a section of a digital street map with a decoded object.
  • the device shown in FIG. 1 consists of a transmitter 1, a transmission system 2 and a receiver 3.
  • the object 21 to be transmitted is provided with location references in an encoder 11. Both the object 21 itself and the location references are taken from the object database 12 in the transmitter, which is, for example, a TMC location database.
  • a description 22 of the location references of the object 21 to be transmitted is generated in the encoder 11 with the aid of the object data from the object database 12.
  • the encoder 11 transfers the object and the location references to the transmission system 2.
  • a decoder 31 takes over the object 21 and the description 22 of the location references.
  • the decoder compares the objects in its object database 32 on the basis of the description 22 of the location references of the object 21. If the decoder 31 finds an object in the object database 32 with a description of the location references that is very similar to or identical to the description 22, the same applies the object 21 in the database 32 as referenced.
  • the decoder 31 does not find any reference object with a similar or identical description based on the search conditions in the description 22 in the database 32, then the object 21 is deemed not to exist in the database 32.
  • the description 22 of the location references contains relation objects which, in contrast to the reference objects, could be decoded in the database 32, the object 21 is to be inserted into the database 32 using the description 22 become.
  • the description 22 contains, for example, the location references given in FIGS. 2 to 5 for transmission.
  • referencing of punctiform objects is generated with the following elements:
  • relation object can be used as
  • an element of the traffic network for example a section of road or non-digitized entrance, or
  • FIG. 2 shows, as an example, a map section with the two objects RF and RL and two streets S1 and S2 already mentioned.
  • Two streets S1 and S2 are also selected as an example for the receiver-side database, with the presentation being made in a more generalized form.
  • a search window SF is generated, which then leads to the determination of a relation object RL '.
  • the reference object RF 1 can then be found using the offset dX, dY. In this case, the relationship object RL could be found, but the reference object RF could not be found.
  • the object RF is therefore entered as a new object in the database 32. If the relationship object RL had not been found uniquely, no object can be found and entered.
  • FIG. 3 shows an example of referencing a linear object that extends between two point-shaped objects RF1 and RF2. These are transmitted as reference objects including the references to a relation object RL and the absolute coordinates X, Y of one of the objects to the recipient. Search windows SF1, SF2 and SF3 are formed there, so that a relationship object RL2 'and two reference objects RF1' and RF2 'are found in the database of the receiver 3. RF1 'and RF2' then make it possible to decode the linear reference object.
  • flat objects are encoded via points or linear objects according to FIG. 4 and corresponding difference location coordinates are added.
  • a type for the generated or relevant line object is also specified.
  • road sections ST1, ST2 and ST3 are to be coded in order to transmit the area framed by them.
  • intersection points are selected as reference objects RF7, RF8 and RF9 and a relation object RL.
  • the data shown in FIG. 4 are transmitted.
  • Search windows SF7 to SF10 are generated in the receiver.
  • the relation object RL ' is used for control purposes in order to avoid ambiguities and by one Allow area description as an object if RF7 to RF9 could not be found, while the reference objects RF7 'to RF9' serve as intersections for the road sections ST1 ', ST2' and ST3 '.
  • a station BHF is shown in FIG. 5, which is to have a circular surface area and is composed of breakpoints H of different line networks and a P&R location P.
  • the stopping points H and the parking space P serve as relation objects RL12, RL13, RL14, while a reference object RF10 identifies the station as such.
  • Another relation object RL11 is subordinate to the relation object RL14.
  • relation objects H and P can furthermore be used advantageously if the transmitter transmits relation objects H and P to the receiver, for example, so that the receiver in turn can transmit these relation objects as reference objects as transmitters to a further receiver for decoding.
  • relation objects then represent referenceable transition objects between different object databases (e.g. road network and public transport network).
  • FIG. 6 shows an example of a location coding - also called location description below - whose data fields contain the following information.
  • the position specification POS contains latitude and longitude. In the case of the example in Fig. 6, this includes Data field item type POST a 0, which means that this
  • FIG. 8 A further exemplary embodiment of a location description according to the invention is shown in FIG. 8, in which the object type is an access Z to a museum M.
  • a 1 is entered in the position field POST data field, which means that the location coordinates can be navigated.
  • a 2 is entered as the width of the search window.
  • the description of the location according to FIG. 8 contains the term "Uferstrasse" - that is, the object "access” branches off the Uferstrasse.
  • FIG. 9 shows a section of a digital street map in which a museum M is coded.
  • a position P1 'transmitted in the data field POS forms the center of a search window SW'.
  • P1 represents the found junction of an entrance to the museum M and is determined by falling the solder from PI 'onto the found object "Uferstrasse".
  • Museum and access to the museum have a relationship to each other, which can be encoded and decoded, for example, using the reference / relation object data structure described.

Abstract

Bei Verfahren zur Codierung und Decodierung von Objekten mit Bezug auf ein Verkehrswegenetz, wobei die codierten Informationen auch mit Hilfe von Datenbanken decodierbar sind, die von einer bei der Codierung benutzten Datenbank abweichen, werden die Objekte mit Beziehungen zu mindestens einem Relationsobjekt versehen, welches in Datenbanken, die zur Decodierung dienen, vorhanden ist, wobei sich die Beziehungen nicht primär aus dem Verkehrswegenetz ergeben. Eine Positionsangabe kann ferner mit einem Positionstypbezeichner versehen sein, der beispielsweise angibt, ob es sich bei der übertragenen Position um eine exakte oder navigierbare Position oder um die Lage eines Suchraumes handelt.

Description

Verfahren zur Codierung und Decodierung von Objekten mit Bezug auf ein Verkehrswegenetz
Die Erfindung betrifft Verfahren zur Codierung und Decodierung von Objekten mit Bezug auf ein Verkehrswegenetz, wobei die codierten Informationen auch mit Hilfe von Datenbanken decodierbar sind, die von einer bei der Codierung benutzten Datenbank abweichen.
In Anwendungen der Verkehrstelematik, in denen ortsbezogene Daten zwischen einem Sender und einem Empfänger ausgetauscht werden sollen, werden Verfahren zur Ortsreferenzierung - auch Ortscodierung genannt - benötigt. Es werden Verfahren angewandt, welche die Ortsbezüge der zu sendenden Daten in der Datenbank des Senders beschreiben und Verfahren, die empfängerseitig die Ortsbezüge der gesendeten Daten auswerten. Die Auswertung beinhaltet die Interpretation der Ortsbezüge und deren Abbildung auf die Datenbank des Empfängers. Die Beschreibung der Ortsbezüge muß so erfolgen, daß eine korrekte Abbildung der Objekte durch Wiedererkennen der Ortsbezüge in der Empfängerdatenbank möglich ist. Bekannt ist, daß u.a. für verschiedene Anwendungen der Verkehrstelematik (z.B. TMC, GATS) eine Beschreibungsform für Ortsbezüge (wird auch als Ortscodierung bezeichnet) standardisiert worden ist. Bei diesen Anwendungen wird in der Regel vorausgesetzt, daß die beschriebenen Orte in den Datenbanken sowohl des Senders als auch des Empfängers vorhanden sind und die gleiche Ortscodierung aufweisen. Bei Abweichungen ist ein Abgleich der Datenbanken erforderlich.
Es sind Verfahren für die Referenzierung von Elementen aus einer digitalen Karte bekannt, die bezüglich der Ortscodierung lediglich ähnliche Datenbanken bzw. digitale Karten ähnlicher Digitalisierung voraussetzen. Die Beschreibung der Ortsbezüge erfolgt anhand geographischer Ortskoordinaten und weiterer beschreibender Merkmale. Weiterhin werden für Straßenkreuzungen als Elemente der digitalen Karte bestimmte Regeln definiert, welche die zu sendenden Ortskoordinaten und Merkmale bestimmen (DE 197 50 786 A1 ) .
Unter Objekten werden im vorliegenden Zusammenhang Informationen mit geographischem Bezug einschließlich multimedialer Objekte, wie beispielsweise Videosequenzen, stehende Bilder oder Klänge, und/oder Elemente einer digitalen Karte verstanden.
Mit der Erfindung sollen bereits existierende Objekte in der Datenbank des Empfängers adressiert, neue Objekte in die Datenbank des Empfängers eingebracht und bereits existierende Objekte modifiziert werden können.
Vor dem Hintergrund der Bestrebungen bezüglich einer universellen Schnittstelle zwischen Datenbanken unterschiedlicher Kartenanbieter, was natürlich auch für zu übertragende Teilnetze gilt, ergibt sich das Problem, die gegebenen Datensätze aufeinander abzubilden, d.h. eindeutige Zuordnungen der korrespondierenden Elemente zu finden.
Dies führt jedoch auf Grund der herstellerabhängigen Attributierung, sowohl bezüglich der Ortskoordinaten als auch der "heuristischen", beschreibenden Merkmale, zu Unterbestimmtheiten, die eine eindeutige Identifikation des codierten Objekts erschweren.
Der Aufbau von Datenbanken orientiert sich im allgemeinen an der Art der objektiv gegebenen Verknüpfung ihrer Objekte. Im Fall digitaler Karten ist dies eine Verknüpfung über die auf Grund von direkten Straßenverbindungen bestehenden Nachbarschaftsbeziehungen .
Mathematisch ausgedrückt bedeutet dies: da nur die Schnittmenge der in den beiden Datenbanken jeweils verwendeten Attribute für Vergleichszwecke herangezogen werden kann, kann die Anzahl der zur "Paar"-Identifikation heranzuziehenden Merkmale nicht größer sein als die Anzahl der Attribute, welche die Datenbank mit geringerer Merkmalsdichte pro Objekt liefert. Der Extremfall ist hierbei das Nichtvorhandensein eines korrespondierenden Objekts in der Vergleichsdatenbank, d.h. die Schnittmenge ist gleich Null.
Die Aufgabe der Erfindung besteht daher darin, jedes Objekt gezielt mit Attributen zu versehen, ohne auf die durch das Straßennetz gegebenen Beziehungen und damit auf die Struktur der Vergleichsdatenbank angewiesen zu sein.
Diese Aufgabe wird bei einer ersten Ausführungsform der Erfindung dadurch gelöst, daß die Objekte mit Beziehungen zu mindestens einem Relationsobjekt versehen werden, welches in Datenbanken, die zur Decodierung dienen, vorhanden ist, wobei sich die Beziehungen nicht primär aus dem Verkehrswegenetz ergeben. Bei dem erfindungsgemäßen Verfahren können applikationsunabhängige Beschreibungen von Ortsbezügen zwischen Objekten erzeugt und interpretiert werden. Es ermöglicht den Austausch von ortsbezogenen Objekten zwischen einem Sender und einem Empfänger dieser Objekte unabhängig von der Ausführung der Ortsbezüge in der jeweiligen Datenbank. Dabei können die Datenbanken digitale Karten (z.B. von Navigationssystemen) gleicher oder unterschiedlicher Detaillierung und geographischer Bedeckung sein.
Bei dem erfindungsgemäßen Verfahren ist nicht ausgeschlossen, daß in einem Empfänger das codierte Objekt auch ohne Auswertung der Beziehungen zum Relationsobjekt eindeutig erkannt wird und durch diese Beziehungen das Relationsobjekt erkannt und beispielsweise in die Datenbank des Empfängers aufgenommen wird.
In vielen Fällen wird eine Decodierung bereits bei Angabe mindestens eines Relationsobjekts möglich sein. Um jedoch eine größere Vielfalt von Datenbanken und Objekten abzudecken, ist bei Weiterbildungen der Erfindung vorgesehen, daß Beziehungen parallel und/oder hierarchisch zu mehreren Relationsobjekten angegeben werden.
Bei einer ersten Ausgestaltung der Erfindung kann vorgesehen sein, daß die Beziehungen örtliche Angaben sind. Diese örtlichen Angaben können beispielsweise
Koordinatendifferenzen sein oder aus Entfernung und Richtung bestehen.
Bei einer zweiten Ausgestaltung der Erfindung ist vorgesehen, daß die Beziehungen logische Merkmale, insbesondere Zugehörigkeiten, umfassen. Eine Zugehörigkeit besteht beispielsweise zwischen dem Parkplatz und der Haltestelle des öffentlichen Verkehrsmittels bei Park-and-Ride-Plätzen .
Vorzugsweise weist bei dem erfindungsgemäßen Verfahren die jeweils für ein Objekt (Referenzobjekt) codierte Information folgende Datenstruktur auf: <Referenzobjekt>
<Relationsobjekt 1 >
<Relationsobjekt 11 >
<Relationsobjekt 12>
<Relationsobjekt 2>
<Relationsobjekt N> , wobei mindestens das Referenzobjekt und ein Relationsobjekt vorliegen.
Dabei wird vorzugsweise jeweils ein Objekt mit folgender
Datenstruktur codiert:
<Referenz-/Relationsobjekt> :=
<Ebene>
<Objekttyp>
<Objektkoordinaten> <Objektende> .
Dabei wird durch Ebene die Hierarchie-Ebene angegeben, beispielsweise in Bezug auf die oben angegebene Datenstruktur, ob es sich um das Relationsobjekt 1 oder 2 einerseits oder 11 oder 12 andererseits handelt.
Je nach Bedarf kann dabei die Datenstruktur eines Objekts durch weitere Informationen ergänzt werden, beispielsweise für die Ausgabe des Objekts.
Bei einer Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, daß mindestens den Daten des Referenzobjekts Daten zugeordnet sind, die eine Decodierungsregel kennzeichnen und daß den Daten der Relationsobjekte bei Bedarf jeweils Daten zugeordnet sind, die eine Decodierungsregel kennzeichnen. Ein solcher Bedarf liegt beispielsweise vor, wenn ein Relationsobjekt mit einer anderen Decodierungsregel decodiert werden soll als das Referenzobjekt .
Decodierungsregeln im Sinne dieser Weiterbildung können beispielsweise sein:
- Größe des Suchfensters,
- Objektschwerpunkt, das heißt, neben der Suchfunktion soll zusätzlich gewährleistet sein, daß die Koordinate sich innerhalb der Objektumrisse, beispielsweise eines Parkplatzes, befindet,
- exakte Position der Information, das heißt, neben der Suchfunktion soll diese einer exakten Position entsprechen, bei der definitionsgemäß das Lot auf das im Suchfenster gefundene Objekt gefällt werden soll, beispielsweise ein Stauanfang zwischen zwei Anschlußstellen einer Autobahn (gefundenes Objekt) .
Für das Suchfenster gilt weiterhin, daß dessen Größe vom Objekttyp abhängen soll und vom Sender über das weitere Datenfeld in Stufen vorgegeben werden kann, um den maximalen Suchradius zu begrenzen. So kann beispielsweise bei entsprechender Quantisierung mit 3 Bit ein Radius von 10m bis 10 km codiert werden.
Bei einem Verfahren zur Decodierung ist erfindungsgemäß vorgesehen, daß das mindestens eine Relationsobjekt in der zur Decodierung dienenden Datenbank gesucht wird und daraufhin die Beziehung zum zu decodierenden Objekt ausgewertet wird. Dabei ist vorzugsweise vorgesehen, daß um die Orte der Relationsobjekte und der Referenzobjekte Suchfenster geöffnet werden. Eine Weiterbildung des Verfahrens zur Decodierung besteht darin, daß das mindestens eine Relationsobjekt in mindestens einer weiteren Datenbank gesucht wird, wenn es in der an sich zur Decodierung dienenden Datenbank nicht gefunden wird. Damit ist die Heranziehung von insgesamt mehreren Datenbanken zur Decodierung möglich - beispielsweise der Datenbank eines TMC-Empfängers und der Datenbank (digitale Straßenkarte) eines Navigationsgerätes.
Da bei der Codierung von ortsbezogenen Objekten Positionsangaben (Ortskoordinaten) fast immer den Grundteil der Datenformate bilden, die Funktion der Koordinaten jedoch durchaus unterschiedlich sein kann, können bei der Decodierung im Empfänger Probleme auftreten.
Diese Probleme können bei einer zweiten Ausführungsform der Erfindung dadurch gelöst werden, daß die mindestens eine Positionsangabe mit einem Positionstypbezeichner versehen wird. Dabei kann beispielsweise vorgesehen sein, daß der Positionstypbezeichner angibt, ob die Positionsangabe eine exakte Position betrifft und/oder die Lage eines Suchraumes für eine Position oder ein Objekt angibt.
Als exakt wird in diesem Zusammenhang eine Position im Gegensatz zu einem Suchraum angesehen. Eine Position kann auch exakt sein und gleichzeitig die Lage eines Suchraumes angeben. Dies kann beispielsweise bei der Codierung eines Stauanfangs auf einer Autobahn vorkommen, wobei die Position durch Verwendung verschiedener Koordinatensysteme nicht auf der Autobahn liegt, die Autobahn durch Suche im Suchraum um die übertragene Position ermittelt wird und dann ein Lot auf die Autobahn gefällt wird, um auf den Stauanfang zu kommen.
Bei der Codierung von ortsbezogenen Objekten kann es durchaus vorkommen, daß ein Objekt mehrere Positionsangaben umfaßt, wozu im Rahmen der Erfindung vorgesehen werden kann, daß der Positionstypbezeichner für jeweils eine Positionsangabe oder daß der Positionstypbezeichner für mehrere Positionsangaben gilt.
Es ist ferner mit der Erfindung möglich, weitere Informationen zur Positionsangabe mit einer Weiterbildung dadurch zu codieren, daß der Positionstypbezeichner mindestens ein Attribut aufweist, das weitere Eigenschaften der Positionsangabe bezeichnet. Dabei kann unter anderem vorgesehen sein, daß die weiteren Eigenschaften ein Fehlerradius der Positionsangabe ist und/oder daß das mindestens eine Attribut angibt, ob die Positionsangabe absolut oder relativ ist.
Ausführungsbeispiele der Erfindung sind in der Zeichnung anhand mehrerer Figuren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt:
Fig. 1 ein Blockschaltbild einer Einrichtung zur erfindungsgemäßen Codierung und Decodierung,
Fig. 2 eine schematische Darstellung des erfindungsgemäßen Verfahrens für punktförmige Objekte,
Fig. 3 eine schematische Darstellung des erfindungsgemäßen Verfahrens für linienförmige Objekte,
Fig. 4 eine schematische Darstellung des erfindungsgemäßen Verfahrens für flächenförmige Objekte,
Fig. 5 eine schematische Darstellung eines erfindungsgemäßen Verfahrens für komplexe Objekte,
Fig. 6 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Ortscodierung, Fig. 7 eine schematische Darstellung zu Fig. 6,
Fig. 8 ein zweites Ausführungsbeispiel einer erfindungsgemäßen Ortscodierung und
Fig. 9 einen Ausschnitt aus einer digitalen Straßenkarte mit einem decodierten Objekt.
Die in Fig. 1 dargestellte Einrichtung besteht aus einem Sender 1, einem Übertragungssystem 2 und einem Empfänger 3. Das zu sendende Objekt 21 wird in einem Codierer 11 mit Ortsbezügen versehen. Sowohl das Objekt 21 selbst als auch die Ortsbezüge werden im Sender einer Objekt-Datenbank 12 entnommen, die beispielsweise eine TMC Ortsdatenbank ist. Im Codierer 11 wird mit Hilfe der Objektdaten aus der Objekt-Datenbank 12 eine Beschreibung 22 der Ortsbezüge des zu sendenden Objekts 21 erzeugt. Der Codierer 11 übergibt das Objekt und die Ortsbezüge an das Übertragungssystem 2. Im Empfänger 3 übernimmt ein Decodierer 31 das Objekt 21 und die Beschreibung 22 der Ortsbezüge. Der Decodierer vergleicht anhand der Beschreibung 22 der Ortsbezüge des Objekts 21 die Objekte in seiner Objekt-Datenbank 32. Findet der Decodierer 31 in der Objekt-Datenbank 32 ein Objekt mit einer Beschreibung der Ortsbezüge, die sehr ähnlich oder gleich der Beschreibung 22 ist, gilt das Objekt 21 in der Datenbank 32 als referenziert .
Findet der Decodierer 31 anhand der Suchbedingungen in der Beschreibung 22 in der Datenbank 32 kein Referenzobjekt mit ähnlicher oder gleicher Beschreibung, so gilt das Objekt 21 als in der Datenbank 32 nicht vorhanden.
Enthält die Beschreibung 22 der Ortsbezüge Relationsobjekte, die - im Gegensatz zu den Referenzobjekten - in der Datenbank 32 decodiert werden konnten, so soll das Objekt 21 mit Hilfe der Beschreibung 22 in die Datenbank 32 eingefügt werden. Die Beschreibung 22 enthält beispielsweise die in den Figuren 2 bis 5 zur Übertragung angegebenen Ortsbezüge.
Bei dem Ausführungsbeispiel nach Fig. 2 wird eine Referenzierung punktförmiger Objekte mit den nachfolgenden Elementen erzeugt:
- geographische Position des Referenzobjekts RF in X-, Y-Koordinaten, beispielsweise WGS84,
- Typ des Referenzobjekts,
- geographische Position des Relationsobjekts als Offset (Differenz-Koordinaten) zum Referenzobjekt nach einer definierten Berechnungsvorschrift ;
- Typ des Relationsobjekts.
Um Mehrdeutigkeiten bei der Dereferenzierung zu vermeiden, kann das Relationsobjekt als
- ein Element des Verkehrswegenetzes, beispielsweise Straßenabschnitt oder nicht digitalisierte Einfahrt, oder
- ein weiteres Referenzobjekt, das selbst mit den obengenannten Kriterien referenziert wird, beispielsweise P&R-Plätze mit Parkplatz und Haltestelle, gewählt werden.
In Fig. 2 ist senderseitig als Beispiel ein Kartenausschnitt mit den beiden bereits genannten Objekten RF und RL sowie zwei Straßen S1 und S2 dargestellt.
Als Beispiel für die empfängerseitige Datenbank sind ebenfalls zwei Straßen S1 und S2 gewählt, wobei die Darstellung in stärker generalisierter Form erfolgt. Zur Ermittlung eines des Referenzobjekts entsprechenden Objekts in der Datenbank 32 (Fig. 1) des Empfängers 3 wird ein Suchfenster SF erzeugt, das dann zur Ermittlung eines Relationsobjekts RL ' führt. Daran anschließend kann dann über den Offset dX, dY das Referenzobjekt RF1 gefunden werden . In diesem Fall konnte das Relationsobjekt RL gefunden, aber das Referenzobjekt RF nicht gefunden werden. Daher wird das Objekt RF als neues Objekt in der Datenbank 32 eingetragen. Wenn auch das Relationsobjekt RL nicht eindeutig gefunden worden wäre, so kann kein Objekt gefunden und eingetragen werden.
Fig. 3 zeigt ein Beispiel für eine Referenzierung eines linienförmigen Objekts, das sich zwischen zwei punktformigen Objekten RF1 und RF2 erstreckt. Diese werden als Referenzobjekte einschließlich der Bezüge zu einem Relationsobjekt RL und den absoluten Koordinaten X, Y eines der Objekte zum Empfänger übertragen. Dort werden Suchfenster SF1 , SF2 und SF3 gebildet, so daß in der Datenbank des Empfängers 3 ein Relationsobjekt RL2 ' und zwei Referenzobjekte RF1 ' und RF2 ' gefunden werden. Durch RF1 ' und RF2 ' ist dann auch die Decodierung des linienförmigen Referenzobjekts möglich.
Basierend auf dem Verfahren für linienförmige Objekte werden flächenförmige Objekte über Punkt bzw. linienförmige Objekte gemäß Fig. 4 codiert und entsprechende Differenz-Ortskoordinaten angefügt. Für jede Differenz-Ortskoordinate wird zusätzlich ein Typ für das generierte bzw. betreffende Linien-Objekt angegeben. So sollen beispielsweise gemäß Fig. 4 Straßenabschnitte ST1 , ST2 und ST3 codiert werden, um die von diesen eingerahmte Fläche zu übertragen. Dazu werden Schnittpunkte als Referenzobjekte RF7, RF8 und RF9 und ein Relationsobjekt RL ausgewählt. Übertragen werden die in Fig. 4 dargestellten Daten. Im Empfänger werden Suchfenster SF7 bis SF10 erzeugt. Innerhalb der Suchfenster werden dann die Referenzobjekte RF7 ' bis RF9' und das Relationsobjekt RL ' gefunden. Dabei dient das Relationsobjekt RL ' zur Kontrolle, um Mehrdeutigkeiten zu vermeiden und um eine Flächenbeschreibung als Objekt zu ermöglichen, falls RF7 bis RF9 nicht gefunden werden konnten, während die Referenzobjekte RF7 ' bis RF9 ' als Schnittpunkte für die Straßenabschnitte ST1 ' , ST2 ' und ST3 ' dienen.
Als Beispiel für ein komplexes Objekt, das sich aus mehreren Teilobjekten mit beliebigem Funktionstyp zusammensetzt, ist in Fig. 5 ein Bahnhof BHF dargestellt, der eine kreisförmige Flächenausdehnung haben soll und sich aus Haltepunkten H verschiedener Liniennetze und einem P&R-Platz P zusammensetzt. Die Haltepunkte H und der Parkplatz P dienen dabei als Relationsobjekte RL12, RL13, RL14, während ein Referenzobjekt RF10 den Bahnhof als solches kennzeichnet. Ein weiteres Relationsobjekt RL11 ist dem Relationsobjekt RL14 untergeordnet. Nach der Übertragung der bei 2 dargestellten Daten werden wiederum Suchfenster erzeugt, in denen die entsprechenden Objekte RL12', RL13 ' , RL14 ' , RF10 ' und RL11 ' gefunden werden.
Diese Form der Übertragung von Relationsobjekten kann weiterhin vorteilhaft genutzt werden, wenn der Sender dem Empfänger beispielsweise die Relationsobjekte H und P übermittelt, damit der Empfänger seinerseits diese Relationsobjekte als Referenzobjekte als Sender an einen weiteren Empfänger zur Decodierung übersenden kann. Diese Relationsobjekte stellen dann referenzierbare Übergangsobjekte zwischen verschiedenen Objektdatenbanken dar (z.B. Straßennetz und Liniennetz des öffentlichen Verkehrs ) .
Fig. 6 zeigt ein Beispiel für eine Ortscodierung - im folgenden auch Ortsbeschreibung genannt -, dessen Datenfelder folgende Informationen enthalten. Das Datenfeld OT (= Objekttyp) enthält bei dem Beispiel ein Museum M. Die Positionsangabe POS enthält geographische Längen- und Breitengrade. Im Falle des Beispiels in Fig. 6 enthält das Datenfeld Positionstyp POST eine 0, was bedeutet, daß diese
Ortskoordinaten sich nur in der Nähe eines Objekts befinden bzw. daß die Koordinaten nicht navigierbar sind. Ferner wird die Weite eines Suchfensters SW angegeben, im Beispiel "3",
3 was bedeutet, daß das Objekt sich in einem Umkreis von 10 m um die Ortskoordinaten im Datenfeld POS befindet.
Schließlich ist im Datenfeld N1 ein signifikanter Name des
Museums angegeben - in diesem Beispiel "Stadt-Museum".
Fig. 7 zeigt die übertragene Position POS einschließlich des Suchfensters SW und des codierten Ortes M, sowie er in dem Empfänger durch die Suche im Suchfenster gefunden wurde.
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Ortsbeschreibung ist in Fig. 8 dargestellt, bei welcher der Objekttyp eine Zufahrt Z zu einem Museum M ist. Dabei ist zum Unterschied zu Fig. 6 im Datenfeld Positionstyp POST eine 1 eingetragen, was bedeutet, daß die Ortskoordinaten navigierbar sind. Als Weite des Suchfensters ist eine 2 eingetragen. Als Bezeichnung für den POI enthält die Ortsbeschreibung nach Fig. 8 den Begriff "Uferstraße" - d.h., das Objekt "Zufahrt" zweigt von der Uferstraße ab.
Fig. 9 zeigt einen Ausschnitt aus einer digitalen Straßenkarte, bei der ein Museum M codiert ist. Eine im Datenfeld POS übertragene Position P1 ' bildet den Mittelpunkt eines Suchfensters SW' . P1 stellt die gefundene Abzweigung einer Zufahrt zum Museum M dar und wird durch Fällen des Lotes von PI ' auf das gefundene Objekt "Uferstrasse" ermittelt. Museum und Zufahrt zum Museum haben eine Beziehung zueinander, die beispielsweise über die beschriebene Referenz/Relationsobjekt-Datenstruktur codiert und decodiert werden kann.

Claims

Ansprüche
1. Verfahren zur Codierung von Objekten mit Bezug auf ein Verkehrswegenetz, wobei die codierten Informationen auch mit Hilfe von Datenbanken decodierbar sind, die von einer bei der Codierung benutzten Datenbank abweichen, dadurch gekennzeichnet, daß die Objekte mit Beziehungen zu mindestens einem Relationsobjekt versehen werden, welches in Datenbanken, die zur Decodierung dienen, vorhanden ist, wobei sich die Beziehungen nicht primär aus dem Verkehrswegenetz ergeben.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Beziehungen parallel zu mehreren Relationsobjekten angegeben werden .
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß Beziehungen hierarchisch zu mehreren Relationsobjekten angegeben werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Beziehungen örtliche Angaben sind.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Beziehungen logische Merkmale, insbesondere Zugehörigkeiten, umfassen.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die jeweils für ein Objekt (Referenzobjekt) codierte Information folgende Datenstruktur aufweist:
<Referenzobjekt>
<Relationsobjekt 1 >
<Relationsobjekt 11 > <Relationsobjekt 12>
<Relationsobjekt 2>
<Relationsobjekt N>, wobei mindestens das Referenzobjekt und ein Relationsobjekt vorliegen.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß jeweils ein Objekt mit folgender Datenstruktur codiert wird: <Referenz-/Relationsob ekt> :=
<Ebene> <Objekttyp> <Objektkoordinaten> <Objektende> .
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Datenstruktur durch weitere Informationen, insbesondere für die Ausgabe des Objekts, ergänzt wird.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß mindestens den Daten des Referenzobjekts Daten zugeordnet sind, die eine Decodierungsregel kennzeichnen und daß den Daten der Relationsobjekte bei Bedarf jeweils Daten zugeordnet sind, die eine Decodierungsregel kennzeichnen.
10. Verfahren zur Decodierung von mit dem Verfahren nach einem der vorhergehenden Ansprüche codierten Objekten, dadurch gekennzeichnet, daß das mindestens eine WO 01/18768 „ ,, PCT/DE00/03056
16
Relationsobjekt in der zur Decodierung dienenden Datenbank gesucht wird und daraufhin die Beziehung zum zu decodierenden Objekt ausgewertet wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß um die Orte der Relationsobjekte und der Referenzobjekte Suchfenster geöffnet werden.
12. Verfahren nach einem der Ansprüche 10 oder 11 , dadurch gekennzeichnet, daß das mindestens eine Relationsobjekt in mindestens einer weiteren Datenbank gesucht wird, wenn es in der an sich zur Decodierung dienenden Datenbank nicht gefunden wird.
13. Verfahren zur Codierung von Objekten mit Bezug auf ein Verkehrswegenetz, wobei die codierten Informationen auch mit Hilfe von Datenbanken decodierbar sind, die von einer bei der Codierung benutzten Datenbank abweichen, wobei die Codierung mindestens eine Positionsangabe umfaßt, dadurch gekennzeichnet, daß die mindestens eine Positionsangabe mit einem Positionstypbezeichner versehen wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der Positionstypbezeichner angibt, ob die Positionsangabe eine exakte Position betrifft und/oder die Lage eines Suchraumes für eine Position oder ein Objekt angibt.
15. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß der Positionstypbezeichner für jeweils eine Positionsangabe gilt.
16. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß der Positionstypbezeichner für mehrere Positionsangaben gilt.
17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß der Positionstypbezeichner mindestens ein Attribut aufweist, das weitere Eigenschaften der Positionsangabe bezeichnet.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die weiteren Eigenschaften ein Fehlerradius der Positionsangabe ist.
19. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß das mindestens eine Attribut angibt, ob die Positionsangabe absolut oder relativ ist.
PCT/DE2000/003056 1999-09-07 2000-09-05 Verfahren zur codierung und decodierung von objekten mit bezug auf ein verkehrswegenetz WO2001018768A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001522506A JP2003509753A (ja) 1999-09-07 2000-09-05 交通路網に対するリファレンスによるオブジェクトのコーディング方法
EP00963961A EP1214697B1 (de) 1999-09-07 2000-09-05 Verfahren zur codierung und decodierung von objekten mit bezug auf ein verkehrswegenetz
DE50006176T DE50006176D1 (de) 1999-09-07 2000-09-05 Verfahren zur codierung und decodierung von objekten mit bezug auf ein verkehrswegenetz
US10/070,088 US7047247B1 (en) 1999-09-07 2000-09-05 Method for encoding and decoding objects with reference to a road network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19942522A DE19942522A1 (de) 1999-09-07 1999-09-07 Verfahren zur Codierung und Decodierung von Objekten mit Bezug auf ein Verkehrswegenetz
DE19942522.1 1999-09-07

Publications (1)

Publication Number Publication Date
WO2001018768A1 true WO2001018768A1 (de) 2001-03-15

Family

ID=7920999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003056 WO2001018768A1 (de) 1999-09-07 2000-09-05 Verfahren zur codierung und decodierung von objekten mit bezug auf ein verkehrswegenetz

Country Status (5)

Country Link
US (1) US7047247B1 (de)
EP (1) EP1214697B1 (de)
JP (1) JP2003509753A (de)
DE (2) DE19942522A1 (de)
WO (1) WO2001018768A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662101B2 (en) 2001-01-29 2003-12-09 Matsushita Electric Industrial Co., Ltd. Method and apparatus for transmitting position information on a digital map
US6931319B2 (en) 2000-12-08 2005-08-16 Matsushita Electric Industrial Co., Ltd. Method for transmitting information on position on digital map and device used for the same
US7333666B2 (en) 2001-05-01 2008-02-19 Matsushita Electric Industrial Co., Ltd. Digital map shape vector encoding method and position information transfer method
EP2128840A1 (de) * 2005-05-18 2009-12-02 Lg Electronics Inc. Bereitstellung von Straßeninformationen einschließlich Knotendaten für eine Verbindung
US7634452B2 (en) 1999-08-27 2009-12-15 Panasonic Corporation Method for locating road shapes using erroneous map data
US7672777B2 (en) 2005-02-17 2010-03-02 Panasonic Corporation Moving history conversion apparatus and moving history conversion method
US8050853B2 (en) 2005-05-18 2011-11-01 Lg Electronics Inc. Providing traffic information including sub-links of links
US8332131B2 (en) 2005-05-18 2012-12-11 Lg Electronics Inc. Method and apparatus for providing transportation status information and using it
DE102014006561B3 (de) * 2014-05-06 2015-08-27 Audi Ag Verfahren zum Betrieb eines Navigationssystems eines Kraftfahrzeugs und Kraftfahrzeug
US9177487B2 (en) 2001-04-27 2015-11-03 Panasonic Intellectual Property Corporation Of America Digital map position information transfer method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117660A1 (de) * 2001-04-09 2002-11-07 Bosch Gmbh Robert Verfahren, Datenformat, Codierungsvorrichtung, Decodierungsvorrichtung und System
KR20060119741A (ko) * 2005-05-18 2006-11-24 엘지전자 주식회사 소통상태의 추이정보를 제공하고 이를 이용하는 방법 및장치
KR20060119743A (ko) * 2005-05-18 2006-11-24 엘지전자 주식회사 구간 속도에 대한 예측정보를 제공하고 이를 이용하는 방법및 장치
KR20060119739A (ko) * 2005-05-18 2006-11-24 엘지전자 주식회사 구간 통과시간에 대한 예측정보를 제공하고 이를 이용하는방법 및 장치
KR20060122668A (ko) * 2005-05-27 2006-11-30 엘지전자 주식회사 교통 정보 제공 방법 및 수신 장치
US8711850B2 (en) * 2005-07-08 2014-04-29 Lg Electronics Inc. Format for providing traffic information and a method and apparatus for using the format
KR101254219B1 (ko) * 2006-01-19 2013-04-23 엘지전자 주식회사 링크 식별 방법 및 링크 식별 장치
AU2006346400A1 (en) * 2006-07-21 2008-01-24 Tele Atlas B.V. Method for generating a location reference and method for mapping information to a position within a digital map database
JP5448344B2 (ja) * 2008-01-08 2014-03-19 株式会社Nttドコモ 情報処理装置およびプログラム
GB0822504D0 (en) * 2008-12-10 2009-01-14 Tomtom Int Bv Agora-c turbo validation and conversion engine
JP5409252B2 (ja) 2009-10-21 2014-02-05 トヨタ自動車株式会社 車載機、情報提供装置、及びシステム並びに方法
EP2391038A1 (de) * 2010-05-28 2011-11-30 Harman Becker Automotive Systems GmbH Client-Vorrichtung für Verkehrsinformation
JP5152305B2 (ja) * 2010-11-24 2013-02-27 株式会社デンソー 道路推定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300205A2 (de) * 1987-07-24 1989-01-25 Robert Bosch Gmbh Verfahren zur fahrtroutenselektiven Wiedergabe von Verkehrsnachrichten sowie Fahrzeugempfänger
DE19502360C1 (de) * 1995-01-26 1996-03-07 Becker Gmbh Verfahren und Vorrichtung zum schnellen Verfügbarmachen von programmbezogenen Daten im Rundfunkgerät
EP0725505A1 (de) * 1995-02-03 1996-08-07 Robert Bosch Gmbh Rundfunkempfänger zum Empfang sowie zur Verwaltung und Wiedergabe von digital codierten Verkehrsmeldungen
DE19750786A1 (de) * 1996-11-28 1998-06-04 Mannesmann Ag Verfahren und Endgerät zur räumlichen Zuordnung von auf einen Ort bezogenen Informationen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516476A1 (de) * 1995-05-05 1996-11-07 Bosch Gmbh Robert Einrichtung zur Information eines Fahrzeugführers
US5774824A (en) * 1995-08-24 1998-06-30 The Penn State Research Foundation Map-matching navigation system
US5677837A (en) * 1995-10-18 1997-10-14 Trimble Navigation, Ltd. Dial a destination system
JPH09114851A (ja) * 1995-10-20 1997-05-02 Fuji Xerox Co Ltd 情報管理装置
KR100376895B1 (ko) * 1996-09-20 2003-03-19 도요다 지도샤 가부시끼가이샤 위치 정보 제공 시스템 및 장치
US6324466B1 (en) * 1996-11-28 2001-11-27 Mannesmann Ag Method and terminal unit for the spatial allocation of information referring to one location
US6249740B1 (en) * 1998-01-21 2001-06-19 Kabushikikaisha Equos Research Communications navigation system, and navigation base apparatus and vehicle navigation apparatus both used in the navigation system
JPH11296229A (ja) * 1998-02-13 1999-10-29 Komatsu Ltd 車両の誘導装置
US6393149B2 (en) * 1998-09-17 2002-05-21 Navigation Technologies Corp. Method and system for compressing data and a geographic database formed therewith and methods for use thereof in a navigation application program
JP3333146B2 (ja) * 1999-05-24 2002-10-07 松下電器産業株式会社 移動端末と情報サービスセンタ
DE19933970A1 (de) * 1999-07-20 2001-01-25 Bosch Gmbh Robert Verfahren zur Codierung straßenübergreifender Verkehrsbehinderungen
JP2003509710A (ja) * 1999-09-07 2003-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 交通道路網におけるオブジェクトを符号化および復号化する方法
DE10005780A1 (de) * 2000-02-10 2001-08-16 Bosch Gmbh Robert Verfahren zur Routenplanung in einem Navigationssystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300205A2 (de) * 1987-07-24 1989-01-25 Robert Bosch Gmbh Verfahren zur fahrtroutenselektiven Wiedergabe von Verkehrsnachrichten sowie Fahrzeugempfänger
DE19502360C1 (de) * 1995-01-26 1996-03-07 Becker Gmbh Verfahren und Vorrichtung zum schnellen Verfügbarmachen von programmbezogenen Daten im Rundfunkgerät
EP0725505A1 (de) * 1995-02-03 1996-08-07 Robert Bosch Gmbh Rundfunkempfänger zum Empfang sowie zur Verwaltung und Wiedergabe von digital codierten Verkehrsmeldungen
DE19750786A1 (de) * 1996-11-28 1998-06-04 Mannesmann Ag Verfahren und Endgerät zur räumlichen Zuordnung von auf einen Ort bezogenen Informationen

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634452B2 (en) 1999-08-27 2009-12-15 Panasonic Corporation Method for locating road shapes using erroneous map data
US8086401B2 (en) 2000-12-08 2011-12-27 Panasonic Corporation Method for transmitting information on position on digital map and device used for the same
US6931319B2 (en) 2000-12-08 2005-08-16 Matsushita Electric Industrial Co., Ltd. Method for transmitting information on position on digital map and device used for the same
US7353108B2 (en) 2001-01-29 2008-04-01 Matsushita Electric Industrial Co., Ltd. Method and apparatus for transmitting position information on a digital map
US6662101B2 (en) 2001-01-29 2003-12-09 Matsushita Electric Industrial Co., Ltd. Method and apparatus for transmitting position information on a digital map
US9177487B2 (en) 2001-04-27 2015-11-03 Panasonic Intellectual Property Corporation Of America Digital map position information transfer method
US7333666B2 (en) 2001-05-01 2008-02-19 Matsushita Electric Industrial Co., Ltd. Digital map shape vector encoding method and position information transfer method
US7672777B2 (en) 2005-02-17 2010-03-02 Panasonic Corporation Moving history conversion apparatus and moving history conversion method
US8050853B2 (en) 2005-05-18 2011-11-01 Lg Electronics Inc. Providing traffic information including sub-links of links
US8332131B2 (en) 2005-05-18 2012-12-11 Lg Electronics Inc. Method and apparatus for providing transportation status information and using it
EP2128840A1 (de) * 2005-05-18 2009-12-02 Lg Electronics Inc. Bereitstellung von Straßeninformationen einschließlich Knotendaten für eine Verbindung
USRE47239E1 (en) 2005-05-18 2019-02-12 Lg Electronics Inc. Method and apparatus for providing transportation status information and using it
DE102014006561B3 (de) * 2014-05-06 2015-08-27 Audi Ag Verfahren zum Betrieb eines Navigationssystems eines Kraftfahrzeugs und Kraftfahrzeug
US10466060B2 (en) 2014-05-06 2019-11-05 Audi Ag Method for operating a navigation system of a motor vehicle, and motor vehicle

Also Published As

Publication number Publication date
US7047247B1 (en) 2006-05-16
EP1214697B1 (de) 2004-04-21
DE50006176D1 (de) 2004-05-27
EP1214697A1 (de) 2002-06-19
DE19942522A1 (de) 2001-03-08
JP2003509753A (ja) 2003-03-11

Similar Documents

Publication Publication Date Title
EP1214697B1 (de) Verfahren zur codierung und decodierung von objekten mit bezug auf ein verkehrswegenetz
EP1224645B2 (de) Verfahren zur codierung und decodierung von objekten in einem verkehrswegenetz
DE19525291C1 (de) Verfahren und Vorrichtung zur Aktualisierung von digitalen Straßenkarten
DE60302692T2 (de) Sender, Verfahren und Programm zum Senden von Strassenverkehrsinformationen, sowie Empfänger, Verfahren und Programm zum Empfang von Strassenverkehrsinformationen
EP0941533B1 (de) Verfahren und endgerät zur räumlichen zuordnung von auf einen ort bezogenen informationen
EP1150265B1 (de) Verfahren zur Übertragung einer Position einer Verkehrsinformation, insbesondere einer Verkehrsstörung
EP1105856B1 (de) Einrichtung zur codierung und zur decodierung von orten
EP1281933B1 (de) Verfahren und System zum Auffinden eines Ortes in einer digitalen Karte
EP1460599B1 (de) Datenbasis zur Codierung oder Decodierung von Verkehrsmeldungen und Verfahren zur Übertragung codierter Verkehrsmeldungen
EP1301756B1 (de) Verfahren und anordnung zur codierung, zur decodierung und/oder zur übertragung von ortsinformationen
DE10101349A1 (de) Verfahren zur Meldung von Verkehrsstörungen
DE10009149A1 (de) Verfahren zur Codierung und Decodierung von Objekten in einem Verkehrswegenetz
DE10023309A1 (de) Verfahren, Datenformat, Codierungsvorrichtung, Decodierungsvorrichtung und System
EP1028405A2 (de) Verfahren zur Übertragung von auf Orte bezogenen Informationen
EP1336079B1 (de) Verfahren zur erstellung von ein objekt geografisch eindeutig referenzierender appendices
EP1379567B1 (de) Datenformat für die übertragung von ortsinformationen
DE19810126A1 (de) Verfahren zur rechnergestützten Routenfindung für Fahrzeugführer
DE102006013354B4 (de) Verfahren zur Referenzierung
DE102017220873A1 (de) Kommunikationseinrichtung eines Kraftfahrzeugs und Verfahren zum Betreiben derselben
DE102005020361A1 (de) Verfahren zur Lokalisierung eines Streckenabschnitts in einer Karte
DE10038343A1 (de) Verfahren zur Decodierung von linienförmigen geographischen Objekten
DE10221774A1 (de) Verfahren zum Komprimieren und Dekomprimieren von Daten eines Datenstromes
DE19917842A1 (de) Verfahren zur Identifizierung segmentübergreifender Ereignisse durch Segmente
DE19941648A1 (de) Inkrementale Kodierung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000963961

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 522506

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10070088

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000963961

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000963961

Country of ref document: EP