WO2001013057A1 - Heat exchange tube and heat recovery method using it - Google Patents

Heat exchange tube and heat recovery method using it Download PDF

Info

Publication number
WO2001013057A1
WO2001013057A1 PCT/JP2000/005205 JP0005205W WO0113057A1 WO 2001013057 A1 WO2001013057 A1 WO 2001013057A1 JP 0005205 W JP0005205 W JP 0005205W WO 0113057 A1 WO0113057 A1 WO 0113057A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
tube
composite material
metal
heat exchange
Prior art date
Application number
PCT/JP2000/005205
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Noto
Hiroaki Nishio
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22858999A external-priority patent/JP2001056195A/en
Priority claimed from JP22859299A external-priority patent/JP4016311B2/en
Priority claimed from JP11228591A external-priority patent/JP2001049379A/en
Priority claimed from JP22859099A external-priority patent/JP3674401B2/en
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to KR1020017002406A priority Critical patent/KR20010072966A/en
Priority to EP00949969A priority patent/EP1122506A1/en
Publication of WO2001013057A1 publication Critical patent/WO2001013057A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Definitions

  • the present invention relates to a heat exchange tube for recovering heat from high-temperature exhaust gas generated when incinerating municipal solid waste or the like, through water vapor, air, or the like. It relates to the heat recovery method using it.
  • Background Discussion Currently, municipal solid waste, coal, sewage, «sludge, and other industries» The heat generated by burning 400-1200 exhaust gas generated from the combustion of materials such as steam, air, etc. As a result, the heat recovery system that recovers heat and uses it for power generation etc. has been enhanced.
  • Japanese Patent Application Laid-Open No. 5-332508 discloses a ceramic heat source
  • Japanese Patent Application Laid-Open No. 10-274401 discloses the following method.
  • An object of the present invention is to provide a heat tube capable of performing stable heat recovery for a long time even at a height, and a heat recovery method using the same. This purpose is achieved by a heat tube made of a sintered body with a porosity of 2-60% or a heat tube made of a composite forest material with ceramics.
  • FIG. 1 is a screen view of a heat tube according to the present invention.
  • FIG. 2 is a longitudinal sectional view of a heat exchange tube which is another example of the present invention.
  • FIG. 3 is a cross-sectional view of a heat tube according to another example of the present invention.
  • FIG. 4 is a simplified view of a heat tube according to another example of the present invention.
  • FIG. 5 is a cross-sectional view of the heat tube of FIG.
  • FIG. 6 is a cross-sectional view of a heat tube of another example of the present invention.
  • FIG. 7 is a cross-sectional view of a heat tube as another example of the present invention.
  • FIG. 8 is a longitudinal sectional view of a heat exchange tube as another example of the present invention.
  • FIG. 9 is a cross-sectional view of the heat exchange tube of FIG.
  • FIG. 10 is a cross-sectional view of a heat tube according to another example of the present invention.
  • FIG. 11 is a cross-sectional view of a heat tube of another example of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION We studied heat exchange tubes that can be used for a long time under high-temperature rot from the viewpoints of preventing fly ash accumulation and cracking of ceramics itself.
  • a heat exchange tube consisting of a sintered body of metal-ceramic with a porosity of 2-60%
  • the heated fluid flowing through the heat exchange tube Part of the gas can be ejected from the pores, preventing the accumulation of other particles including ⁇ Sffi ⁇ .
  • the porosity is set to 2 to 60%.
  • the porosity When the porosity is set to 2% or more, there is no need to manufacture under a special high-temperature and high-pressure condition, and S3 ⁇ 4g cost is reduced. Then git to make the tube itself cool. Also, as a method of ejecting “" ”of the heat fluid from the pores, it is advisable to set the pressure of the heat fluid in the heat-building tube higher than the pressure of the atmosphere outside the heat exchange tube. If the heat tube made of this sintered body is made of a composite forest material of ceramics and metal, the ceramics will have excellent corrosion resistance, and the metal will also improve the brittleness of the ceramics itself, and will have excellent corrosion resistance and cracking. Difficult heat 3 ⁇ tube. On the other hand, for the prevention of cracking of the ceramic itself, the surface layer may be a heat tube formed of a ceramic / metal composite forest material for the reasons described above.
  • any metal can be used as the metal in the composite material, but Al, Al-Si alloy, Al-Mg alloy, etc., which are excellent in terms of receptivity and cost effective, should be used. Good.
  • A1 contained in the composite pillow is excellent in reciting as ceramics, 14 and is more preferable than A1N force, which is hard to adhere to. 13 ⁇ 4 ⁇ ⁇ is also convenient because it is only necessary to ⁇ the A1 in an N 2 atmosphere.
  • A1N should be 1-90 wt. /.
  • (A1 + A1) must be 50 wt% or more.
  • A1ON of ceramics is further added to this composite forest material consisting of A1 and A1N, it will become more difficult to adhere the covertly.
  • A1N is 1-90 wt. /.
  • the power (A1 + A1N + A10N) more than 50 wt% '.
  • the A10N, Al, O the total term for solid liquid N, A1 U 0 16 N, ⁇ 10 ⁇ , ⁇ ⁇ ⁇ ⁇ , A ⁇ 0 39 N, ⁇ 1 10 ⁇ 3 ⁇ 8, A, 0 3 N SiAl 7 0, N 7 SiaAl 3 represent like 0 45 N 5.
  • such ceramics and metal composite pillow charges the surface of, BN, compound or SiC containing B (boric ⁇ such B 4 C, by coating or dipping a compound containing a C (charcoal ⁇ ) such as black ⁇ , such as 1- With a thickness of 400 m, adhesion of the compound can be substantially prevented, and if the compound is applied or immersed regularly, the heat tube can be stabilized for a longer time.
  • the surface layer may be formed of such a composite material, and the inside may be formed of a conventional heat-resistant alloy tube, for example. Force to 12 mm is better.
  • the base is made of a metal alloy tube and the details are made of such a composite forest material
  • the outer surface of the metal tube can be covered with a composite material of ceramics and metal in a non-enclosed state. At least the heat of the forest material in the direction of the pipe Ifc ⁇ The strain due to the difference in the long rate can be overcome and the cracking and peeling of the composite material can be more reliably prevented.
  • this meta-twisted alloy tube and this composite forest material If the interface is made at least as HTiri-fibre-structured, heat recovery can be performed with high heat without a significant decrease in tranquility.
  • the ceramic-metal composite material contains 1-90 wt% of A1N and 50% or more of (A1 + A1N + A10N), and has a porosity of 2-60% for the reasons described above. ⁇ T that power is good.
  • the sliding force between the metal alloy and the composite pillow will be smooth, and the difference in heat length ratio between the tubes will be smooth.
  • the distortion due to is almost completely reduced.
  • a metal alloy tube is used as the base and a part of the metal tube is made of such a composite material, the outer surface of the metal alloy tube is covered with a heat material and a composite material of ceramics and metal.
  • the structure of the composite pillow may be at least at the interface between the slif material and the heat-expandable material and the composite pillow. In this case, the distortion due to the difference in the heat in the pipe diameter direction due to the difference of the Peng's tension ratio is also caused by the ⁇ bend material.
  • the heat material it is possible to use fiber ridges mainly composed of B, C or A1, powder, film or tape.
  • the composite material contains 1-90 wt% of A1N and 50 wt% or more of (A1 + A1N + A10N) and has a porosity of 2-60%.
  • compounds containing B or C are likely to be ⁇ ffiT on the outer surface of the stranded metal tube.
  • the length is less than 6 mm and the outer diameter is 20-200 mm. It is preferred that The cross-sectional shape may be circular or square, and there is no particular PI.
  • a ceramic-metal composite material 1 having the cross-sectional shape and microstructure shown in Fig. 1.
  • Single-layer heat 3 ⁇ tube No. 1 and the surface shape shown in Fig. 2 the first layer is an S-twisted metal tube 2
  • the second layer is carbon fiber ⁇ 3
  • the third layer is a surface layer
  • the three-layered heat tube No. 2 whose part is a composite material 1 of ceramics and metal, and the heat exchange tube No. 3 with BN coating on the outer surface of the heat tube No. 2 were installed in a municipal solid waste incineration pilot plant. Heat recovery was performed according to the high-temperature exhaust gas of 750-950 ° C.
  • Composite material of ceramics and metal A1 + A1N + A10N 90 wt% or more, thickness 4 mm, outer diameter: 40 mm
  • Metal alloy tube SUS304, thickness 4 rmn, carbon fiber ⁇ : thickness 4 mm, composite material of ceramic and metal: A1 + A1N + A10N 90 wt% i3 ⁇ 4 ⁇ , thickness 10 mm, outer diameter: 40 mm
  • the single-layer heat exchange tubes Nos. 4 and 5 made of a composite material 1 of ceramics and metal having a surface shape and having pores 4 shown in FIG.
  • the pressure of the hot fluid was increased above the pressure of the exhaust gas atmosphere as in Example 1 and the hot fluid " ⁇ " was ejected from the pores.
  • the details of heat tubes Nos. 4 and 5 are as follows. Heat tube No. 4
  • Composite material with ceramics A1 + A1N 90 wt% or more, thickness 6 mm, porosity 60%, outer diameter: 40 mm
  • the dog has a longitudinal section shown in FIG. 4 and a cross section shown in FIG. 5, and the outer surface of the meta-combustion alloy tube 2 is covered with a ceramic and metal composite pillow 1 in a non-coated state, and The metal alloy tube 2 is in contact with the composite material dough 1 at least at its interface, so the heat tube No. 6-9 with a gap 5 is replaced by the same municipal waste pipe as in male example 1.
  • the heat was recovered from the plant plant's high-temperature exhaust gas at 650-950 ° C.
  • Metal alloy tube SUS304-15A, composite material of ceramics and metal: A1 + A1N + A10N 90 wt% or more, thickness 5-10 mm, porosity 40%
  • Metal alloy tube SUS304-20A, composite material of ceramics and metal: A1 + A1N + A10N 9 0 wt. /. Above, thickness 6-8 mm, porosity 20%
  • Biaxial alloy tube SUS304 "20A, outer surface BN coating, composite forest material of ceramics and metal: A1 + A1N + A1ON 90 wt% or more, thickness 6-8 mm, porosity 20%
  • ⁇ Alloy Tube SUS304-20A, composite of ceramic and ⁇ S ⁇ : A1 2 0 3 80 ⁇ ⁇ % or more on the + AL thickness 2-4 mm, porosity of 30%
  • the outlet can obtain 500 ⁇ C or more ata ata force, and the inlet heat can be 120-300 ° C. It was confirmed that when using a mixed gas of air of 1000-5000 mmAq and waste gas of 100-400 mmAq, it was possible to heat up to 800 ° C at the outlet. Difficult case 4
  • Heat exchange tube No. 10 Details of heat tubes No. 10 and 11 are as follows. Heat exchange tube No. 10
  • ⁇ Alloy Tube boiler ⁇ collars STBA28-20A, ceramic and metal composite materials: A 1 + A1N 90 wt% > Al 2 O 3 7wt%, thickness 6-7 mm, porosity 25%
  • Meta-combustion alloy tube For boiler! ⁇ ff STBA28-20A, composite material of ceramics and metal: SiC 95 wt% or more + Mg, thickness 6-7 mm, porosity 2%
  • the outer surface of the metamorphic alloy tube 2 of the same shape or U-shaped tube shape shown in Fig. 6 and Fig. 7 is non-bell-covered with the composite forest material 1 of ceramics and metal. 2 and 1 composite material, at least at the interface of which is marked with " ⁇ ", and therefore heat tube No. 12-14 with void 5 was placed in the coal, sewage cake, and the combustion gas of the furnace. Installed and heat recovered.
  • Meta-combustion alloy tube Heat-resistant tube for boiler STBA28-40A and 65A, composite material of ceramics and metal: SiC 95 wt% or more + Mg, thickness about 7 mm, same shape (Fig. 6)
  • ⁇ Alloy Tube ⁇ tube STBA28-20A and 50A boiler, ceramic and metal composite materials: A1 2 0 3 95 wt. /. + AL thickness about 3 mm, coaxial tube shape (Fig. 6)
  • Meta-combustion alloy tube For boiler! ⁇ STBA28-15A and 20A, composite material of ceramic and metal: A1 + A1N 90 wt% or more, thickness 6-10 mm, U-tube shape (Fig. 7)
  • coal and sewage mud burnt gas contains several hundred ppm of SOx power; These heat exchange tubes were not corroded, and were capable of recovering high-temperature high-efficiency 7K steam, achieving high power generation efficiency of 30% or more, and recovering high-temperature air and fine gas.
  • the outer surface of the meta-twisted alloy tube 2 is successively covered in a non-crane state with a composite material of ⁇ ⁇ R I and ceramic and ⁇ .
  • the metal alloy tube 2 and the ⁇ 6 material 6 and the Z or material 6 and the composite material 1 are at least partially in contact with each other at their interfaces, and therefore, the heat exchange tube No. 15 -18 was installed in high-temperature exhaust gas at 650-950 ° C in the same municipal solid waste pipe plant as in Example 1, and heat was recovered.
  • Bi-twist alloy tube SUS304-15A
  • heat return material A1 foil
  • composite material of ceramics and metal A1 + A1 + A10N 90 wt ° /.
  • thickness 4-10 mm porosity 40% heat exchange tube No. 16
  • Bi-twisted alloy tube SUS304> 20A, mmm: carbon fiber ⁇ , thickness O.2-2 mm, composite forest material of ceramics and metal: A1 + A1N + A10N 90 wt 0 /. Above, thickness 3-8 mm, porosity 20% Heat exchange tube No. 17
  • Metal alloy tube SUS30 20A
  • heat I Coating material carbon H ⁇
  • composite material of ceramics and metal ⁇ 3 80 wt% or more + ⁇ 1, thickness 2-4 mm
  • composition of flue gas from the Municipal Garin Pilot Plant is 2-16% 0. , 200-600 pp m of HC1, max 300 ppm of SOx, 4-19% of CO 2, and the balance N 2.
  • the age of using steam with the inlet ⁇ t of 280-400 ° C as the heat fluid is more than 540 at the outlet, and lOO ata can be obtained.
  • a mixed gas of 1000-4000 mmAq of air and 50-400 mmAq of ⁇ fuel J3 ⁇ 4 ⁇ gas it was confirmed that heating up to 800 ° C was possible at the outlet.
  • the outer surface of the metal alloy tube 2 is mm mm, and the ceramics and metal pipes are joined together by Nadarin Lin. , And the metal tube 2 and the heat ⁇ 1> material 6 and heat or heat>
  • the H ⁇ impact material 6 and the composite forest material 1 are at least partially in contact at the interface, and thus the heat exchange tube Bu Nos. 19 and 20 were heated in a 700-1000 ° C exhaust gas atmosphere where municipal solid waste was partially oxidized by the same municipal solid waste pilot plant as in Example 1, and heat was recovered.
  • Meta-combustion alloy tube Boiler meta-combustion tube STBA28-20A, heat Awakening material: carbon 80% or more fine pine, thickness 0.5-3 mm, composite material of ceramics and metal: A1 + A1N 86 wt%, A1, 0 3 6wt%, thickness 4-5mm, porosity 25%
  • Kyo alloy tube Boiler tubing STBA28-20A, heat]
  • Peng Yong-sheng material carbon 80 wt. /.
  • Meta-combustion alloy tube Boiler meta-combustion tube STBA28-40A and 65A, heat]
  • Awakening material Mixture of fine powder and fiber of 80 wt% or more carbon, thickness 0.2-4 mm, Composite material of ceramics and metal: SiC 95 wt % + Mg, thickness about 7 mm, same as above (Fig. 10)
  • Twisted alloy tube Boiler for STBA28-15A and 20A, Heng Peng Yong-sheng material: carbon fiber 80wt% or more fine pine, thickness 0.4-1mm, ceramic and metal composite material: A1 + A1 90wt% or more , Thickness 6-8 mm, U ⁇ ⁇ ⁇ (Fig. 11)
  • coal and sewage-burning fuel gas contain hundreds of ppm of SOx power, but none of the heat exchange tubes are corroded, and the high-temperature high temperature exceeding 30% is generated.
  • Recovery of steam and recovery of hot air and column gas were the functions of the [ ⁇ ].
  • the force 3 ⁇ 4 ⁇ is to allow more voids 5 to be present in the bent portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A heat exchange tube consisting of a sintered body having a porosity of 2-60%, and a heat exchange tube having a surface layer consisting of a composite material of ceramics and metal; specifically, when a heat-resistant alloy tube is used as a base and a surface layer is formed of a composite material of ceramics and metal, such structures are preferable; that the outer surface of the heat-resistant alloy tube is non-bondingly covered with a composite material of ceramics and metal, with the heat-resistant alloy tube contacting the composite material at at least part of their boundary; or that the outer surface of the heat-resistant alloy tube is sequentially covered non-bondingly with a thermal expansion buffer material and a composite material of ceramics and metal, with the alloy tube contacting the thermal expansion buffer material and/or the thermal expansion buffer material contacting the composite material at at least part of their boundaries. The heat exchange tube ensures a stable heat recovery over an extended time even in a high-temperature, corrosive environment such as combustion exhaust gas of industrial wastes.

Description

明細書 熱 チューブおよびそれを用いた熱回 法 謹分野 本発明は、 都市ごみや などを燃凝したときに発生する高温の排ガスから、 水 蒸気や空気などを介して熱回収する熱交換チューブおよびそれを用いた熱回収方法に関す る。 背景議 現在、 都市ごみ、 石炭、 下水 尼、 «スラッジ、 その他の産業 «物などを燃焼した ときに発生する 400-1200での排ガスから、 水蒸気や空気などの勸 Π熱流体が ¾1する熱 チューブにより熱回収し、 発電などに械禾拥する熱回収システム力麵化されてい る。  Description Heat tube and heat recovery method using the same Technical field The present invention relates to a heat exchange tube for recovering heat from high-temperature exhaust gas generated when incinerating municipal solid waste or the like, through water vapor, air, or the like. It relates to the heat recovery method using it. Background Discussion Currently, municipal solid waste, coal, sewage, «sludge, and other industries» The heat generated by burning 400-1200 exhaust gas generated from the combustion of materials such as steam, air, etc. As a result, the heat recovery system that recovers heat and uses it for power generation etc. has been enhanced.
しかし、 都市ごみや産 などを燃 したときに発生する排ガスには、 高温になる ほど腐食性の強くなる塩ィ NaCl、 KC1、 Na2SO よどの が含まれているた め、 ボイラ用炭糊'合^^、 ステンレス鋼、 Ni-Co合金などの而燃合金でできた熱交換 チューブは高温下では使用できず、 熱交換チューブ内を流通する被加熱流体の温度が 300°C以下になるようにコントロールされている。 そのため、 十分な熱回収が行われてい ないのが 犬である。 However, the exhaust gas generated when the fuel and cities GoMiyasan, higher temperature corrosive become stronger salt I NaCl, KC1, Na 2 SO Dian because it contains that, Suminori boiler Heat exchange tubes made of meta-alloys such as stainless steel and Ni-Co alloy cannot be used at high temperatures, and the temperature of the fluid to be heated flowing through the heat exchange tubes will be below 300 ° C Is controlled as follows. For this reason, dogs do not have sufficient heat recovery.
そこで、 腐食が生じることなく、 より高温の熱を回収できるようにするため、 特開平 5- 332508 報には、 セラミックス製の熱 ¾ ^が、 また、 特開平 10-274401 ム報に は、 上記のような而擻合金でできた熱 チューブの外表面をセラミックス 莫で被 ISし た熱 チューブが されている。  Therefore, in order to recover higher-temperature heat without causing corrosion, Japanese Patent Application Laid-Open No. 5-332508 discloses a ceramic heat source, and Japanese Patent Application Laid-Open No. 10-274401 discloses the following method. There is a heat tube in which the outer surface of a heat tube made of such a metal alloy is covered with ceramics.
しかしながら、 高 下に長時間曝されると、 セラミックス表面に付着 ·堆積し た 性塩を含む飛灰の堆積層とセラミックスの 率差ゃ而燃合金とセラミックスの 觌 長率差による謝申縮によりセラミックスに亀裂や剥離が生じ、 長時間にわたって安定 した熱回収が きなくなる。 また、 瓶の堆觀が厚くなり、 謝云 # ^が低下して熱 3¾ 率の低下を招くこともある。 発明の開示 本発明の目的は、 高 下においても長時間にわたって安定した熱回収が行える 熱 チューブおよびそれを用いた熱回収方法を提供することにある。 この目的は、 2-60 %の気孔率を る燒結体からなる熱 チューブや表層部がセラミ ックスと の複合林料からなる熱^^チューブにより達成される。 However, when exposed to elevation for a long time, they adhere and accumulate on the ceramic surface. The rate difference between the deposited layer of fly ash containing fertilized salt and the ceramics The cracks and exfoliation occur in the ceramics due to the difference in thermal conductivity between the metal alloy and the ceramics, and stable heat recovery over a long period of time is not possible. In addition, the thickening of the bottle may cause a decrease in the amount of Xinyuan, which may lead to a decrease in heat rate of 3%. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a heat tube capable of performing stable heat recovery for a long time even at a height, and a heat recovery method using the same. This purpose is achieved by a heat tube made of a sintered body with a porosity of 2-60% or a heat tube made of a composite forest material with ceramics.
特に、 賴部をセラミックスと^!の複合林料で形 s る場合は、 ベースとなる而撤合 金チューブの外表面がセラミックスと金属の複合林料により非 え態で覆われており、 力つこの而撤合金チューブとこの複合材料は、 その界面において少なくとも ~¾で ί¾ し ている熱^チューブや、 而撤合金チューブの外表面が 材とセラミックスと金 厲の複合 料により順次非 え態で覆われており、 カゝっこの而燃合金チューブとこの熱 材および Ζまたはこの熱 8 ^露爱衝材とこの複合材料は、 その界面におしゝて少なく とも"^で している熱 チューブが、 より長時間の安定使用にとって適している。 図面の簡単な説明 図 1は、 本発明の^]である熱 チューブの画面図である。  Especially, を part is made of ceramics ^! When formed with a composite forest material, the outer surface of the base metal tube is covered with a composite forest material of ceramics and metal. In the material, the outer surface of a heat tube or a metal alloy tube at least at the interface at its interface is covered with a composite of the material, ceramics and metal in a sequential manner. The meta-combustion alloy tube and the heat material and the heat or the heat-exposure material and the composite material make the heat tube, which is at least "^" at the interface, stable for a longer time. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a screen view of a heat tube according to the present invention.
図 2は、 本発明の別の例である熱交換チューブの縦断面図である。  FIG. 2 is a longitudinal sectional view of a heat exchange tube which is another example of the present invention.
図 3は、 本発明の別の例である熱^ ^チューブの横断面図である。  FIG. 3 is a cross-sectional view of a heat tube according to another example of the present invention.
図 4は、 本発明の別の例である熱 チューブの謹面図である。  FIG. 4 is a simplified view of a heat tube according to another example of the present invention.
図 5は、 図 4の熱 チューブの横断面図である。  FIG. 5 is a cross-sectional view of the heat tube of FIG.
図 6は、 本発明の別の例である熱 3¾チューブの横断面図である。 図 7は、 本発明の別の例である熱^ チューブの横断面図である。 FIG. 6 is a cross-sectional view of a heat tube of another example of the present invention. FIG. 7 is a cross-sectional view of a heat tube as another example of the present invention.
図 8は、 本発明の別の例である熱交換チューブの縦断面図である。  FIG. 8 is a longitudinal sectional view of a heat exchange tube as another example of the present invention.
図 9は、 図 8の熱交換チューブの横断面図である。  FIG. 9 is a cross-sectional view of the heat exchange tube of FIG.
図 10は、 本発明の別の例である熱^ ^チューブの横断面図である。  FIG. 10 is a cross-sectional view of a heat tube according to another example of the present invention.
図 11は、 本発明の別の例である熱 3¾チューブの横断面図である。 発明を実施するための最良の形態 我々は、 高温腐^^下において長時間使用可能な熱交換チューブを、 飛灰の堆積防止 とセラミックス自体の割れ防止の氍 から検討した。 その結果、 飛灰の堆難止に対しては、 2-60 %の気孔率を^ fる金属ゃセラミックスの 燒結体からなる熱交換チューブとすれば、 熱交換チューブ内を流通する被加熱流体の一部 を気孔から噴出させることができ、 ^Sffi^を含む«の堆積を防止できること力朔らか になった。 このとき、 気孔率を 2-60 %としたのは、 2 %以上にすると特別な高温高圧^ 下で製造する必要がなくなり S¾gコストが になり、 60 %を超えると腐食性の強 排ガ スカ しから gitしてチューブ自体を麵させるためである。 また、 ¾¾Π熱流体の"^を 気孔から噴出させる方法としては、 熱建チューブ内を¾1する勸 Π熱流体の圧力を熱交 換チュ―ブ外側の雰囲気の圧力より高くすれば 能である。 この燒結体からなる熱 チューブをセラミックスと金属の複合林料で作/ ¾ "れば、 セ ラッミクスにより優れた耐食性が麟されるとともに、 金属によりセラッミクス自体の脆 さも改善され、 耐食性に優れ、 割れ難い熱 3 ^チューブとなる。 一方、 セラミックス自体の割れ防止に対しては、 上記した理由により、 表層部をセラミ :金属の複合林料で形成させた熱 チューブとすればよい。  FIG. 11 is a cross-sectional view of a heat tube of another example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION We studied heat exchange tubes that can be used for a long time under high-temperature rot from the viewpoints of preventing fly ash accumulation and cracking of ceramics itself. As a result, to prevent fly ash from escaping, if a heat exchange tube consisting of a sintered body of metal-ceramic with a porosity of 2-60% is used, the heated fluid flowing through the heat exchange tube Part of the gas can be ejected from the pores, preventing the accumulation of other particles including ^ Sffi ^. At this time, the porosity is set to 2 to 60%. When the porosity is set to 2% or more, there is no need to manufacture under a special high-temperature and high-pressure condition, and S¾g cost is reduced. Then git to make the tube itself cool. Also, as a method of ejecting “" ”of the heat fluid from the pores, it is advisable to set the pressure of the heat fluid in the heat-building tube higher than the pressure of the atmosphere outside the heat exchange tube. If the heat tube made of this sintered body is made of a composite forest material of ceramics and metal, the ceramics will have excellent corrosion resistance, and the metal will also improve the brittleness of the ceramics itself, and will have excellent corrosion resistance and cracking. Difficult heat 3 ^ tube. On the other hand, for the prevention of cracking of the ceramic itself, the surface layer may be a heat tube formed of a ceramic / metal composite forest material for the reasons described above.
上記した複合林料中のセラミックスとしては、 i02、 Zr02、 Cr2O3、 A1203、 Si02、 Y2 03、 Ce02、 Sc sなどの酸化物、 BN、 MgB2 Ca¾、 Ί¾Β2、 ZrB2、 AlB j:どのホウ化物、 B4C、 iC、 ZrC、 Cr3C2、 A14C3、 SiCなどの炭化物、 A1N、 TiN ZrN、 Cr2N、 Si3N4な どの窒化物、 AIONや Si2N20などの 化物、 あるいはそれらの混合物を用いることが できる。 The ceramic in the composite forest charges described above, i0 2, Zr0 2, Cr 2 O 3, A1 2 0 3, Si0 2, Y 2 0 3, Ce0 2, oxides such as Sc s, BN, MgB 2 Ca¾ , Ί¾Β 2 , ZrB 2 , AlB j: Which boride, B 4 C, iC, ZrC, carbides such as Cr 3 C 2, A1 4 C 3, SiC, A1N, TiN ZrN, Cr 2 N, Si 3 N 4 of which nitrides, such as AION or Si 2 N 2 0 Or a mixture thereof.
また、 複合材料中の金属としては、 どんな金属でも用いること力 ?きるが、 謝云導性に 優れ、 コスト的にも有利な Al、 Al-Si合金、 Al-Mg合金などを用いること力壁ましい。 特に、 複合枕料中に A1を含む は、 セラミックスとしては而誦,14に優れ、 厭 の付着し難い A1N力含まれること力より好ましい。 1¾^±も、 A1を N2雰囲気中で醒理 するだけでよいので簡便である。 ただし、 高温腐^ ¾下において腐食や亀裂の発生を抑 制するには、 A1Nを 1-90 wt。/。にし、 かつ(A1+A1 )を 50 wt%以上にする必要がある。 この A1と A1Nからなる複合林料に、 さらにセラミックスの A1ONを加えると、匿の 付着がよりし難くくなる。 ただし、 この場合は、 A1Nを 1-90 wt。/。にし、 力つ(A1+A1N+ A10N) を 50 wt%以上にする' がある。 ここで、 A10Nとは、 Al、 O、 Nの固液体の総 称で、 A1U016N, Α10Ν、 ΑΙ^Ο^, A^039N、 Α110Ο3Ν8, A ,03N SiAl70,N7 SiaAl 3045N5などを表している。 In addition, any metal can be used as the metal in the composite material, but Al, Al-Si alloy, Al-Mg alloy, etc., which are excellent in terms of receptivity and cost effective, should be used. Good. In particular, A1 contained in the composite pillow is excellent in reciting as ceramics, 14 and is more preferable than A1N force, which is hard to adhere to. 1¾ ^ ± is also convenient because it is only necessary to醒理the A1 in an N 2 atmosphere. However, in order to suppress the occurrence of corrosion and cracks under high temperature decay, A1N should be 1-90 wt. /. And (A1 + A1) must be 50 wt% or more. If A1ON of ceramics is further added to this composite forest material consisting of A1 and A1N, it will become more difficult to adhere the covertly. However, in this case, A1N is 1-90 wt. /. And make the power (A1 + A1N + A10N) more than 50 wt% '. Here, the A10N, Al, O, the total term for solid liquid N, A1 U 0 16 N, Α10Ν, ΑΙ ^ Ο ^, A ^ 0 39 N, Α1 10 Ο 3 Ν 8, A, 0 3 N SiAl 7 0, N 7 SiaAl 3 represent like 0 45 N 5.
こうしたセラミックスと金属の複合枕料の表面に、 BN、 B4Cなどの B (ホウ萄 を含む 化合物や SiC、 黒^などの C (炭^)を含む化合物を塗布や浸漬により、 例えば 1-400 mの厚み ¾させると、 厭の付着をほぼ に防止できる。 また、 この化合物の塗布 や浸漬を定期的に行えば、熱 チューブはより長時間にわたって安定麵できるように なる。 In such ceramics and metal composite pillow charges the surface of, BN, compound or SiC containing B (boric萄such B 4 C, by coating or dipping a compound containing a C (charcoal ^) such as black ^, such as 1- With a thickness of 400 m, adhesion of the compound can be substantially prevented, and if the compound is applied or immersed regularly, the heat tube can be stabilized for a longer time.
熱交換チューブとしては、 表層部をこうした複合材料で形成し、 内部を例えは'従来の耐 熱合金チューブなどで形成させればよいが、 このときの複合材料部の厚みは、 強度上 3-1 2 mmにすること力 ましい。 ベースに而燃合金チューブを用い、 細部をこうした複合林料で形 る場合は、 而撚 合金チューブの外表面をセラミックスと金属の複合 料により非 ί繞忧態で覆えば、而擻 合金と複合林料の少なくとも管 Ifc ^向の熱』 長率の差による歪が勝口され複合材料の亀 裂や剥離の発生をより確実に防止できる。 また、 この而撚合金チューブとこの複合林料が、 その界面において少なくとも HTiri纖しているような構造にすれば、 謝云靜が大きく 低下すること〖まなく高い熱^ »で熱回収を行える。 For the heat exchange tube, the surface layer may be formed of such a composite material, and the inside may be formed of a conventional heat-resistant alloy tube, for example. Force to 12 mm is better. If the base is made of a metal alloy tube and the details are made of such a composite forest material, the outer surface of the metal tube can be covered with a composite material of ceramics and metal in a non-enclosed state. At least the heat of the forest material in the direction of the pipe Ifc ^ The strain due to the difference in the long rate can be overcome and the cracking and peeling of the composite material can be more reliably prevented. Also, this meta-twisted alloy tube and this composite forest material, If the interface is made at least as HTiri-fibre-structured, heat recovery can be performed with high heat without a significant decrease in tranquility.
この場合のセラミックスと金属の複合材料は、 上記したような理由により、 1-90 wt% の A1Nと 50 %以上の(A1+A1N+A10N) を含み、 また、 2-60 %の気孔率を^ Tること 力好ましい。  In this case, the ceramic-metal composite material contains 1-90 wt% of A1N and 50% or more of (A1 + A1N + A10N), and has a porosity of 2-60% for the reasons described above. ^ T that power is good.
而擻合金チューブの外表面に、 上記したような Bまたは cを含む化合物カ^^ ると、 而撚合金と複合枕料の謹部のすべり力滑らかになり、管 向の熱 長率の差による歪 がほぼ に禱 Πされる。 また、 ベースに而擻合金チューブを用い、 麵部をこうした複合梂料で形 る場合は、 而燃合金チューブの外表面を熱)^ 材とセラミックスと金属の複合材料により順次 非 え態で覆レ、 かっこの而撤合金チューブとこの熱』 Slif材および ζまたはこの熱 膨彌爱衝材とこの複合枕料が、 その界面において少なくとも^^で ¾ するような構造に することもできる。 この場合は、 觌 辯爱衝材により管径方向の熱』彭張率の差による歪も 糸 される。  When the compound containing B or c as described above is applied to the outer surface of the metal alloy tube, the sliding force between the metal alloy and the composite pillow will be smooth, and the difference in heat length ratio between the tubes will be smooth. The distortion due to is almost completely reduced. When a metal alloy tube is used as the base and a part of the metal tube is made of such a composite material, the outer surface of the metal alloy tube is covered with a heat material and a composite material of ceramics and metal. The structure of the composite pillow may be at least at the interface between the slif material and the heat-expandable material and the composite pillow. In this case, the distortion due to the difference in the heat in the pipe diameter direction due to the difference of the Peng's tension ratio is also caused by the 爱 bend material.
ここで、 熱』 歸蕭材としては、 B、 Cまたは A1を主成分とする繊隹、 粉体、 フィルム またはテープ等の林抖を用いること力 きる。  In this case, as the heat material, it is possible to use fiber ridges mainly composed of B, C or A1, powder, film or tape.
上記の理由で、複合梂料は、 1-90 wt%の A1Nと 50 wt%以上の(A1+A1N+A10N) を含 み、 2-60 %の気孔率を^ fること力 子ましい。 また、 而撚合金チューブの外表面には、 B または Cを含む化合物が ^ffiTること力 子ましい。 上記したいずれの熱 チューブにおいても、 燒結体や複合材料の割れ、 チューブ自体 の弓艘ゃ熱 iStな.どを考 ίΤΤると、 その長さを 6 mm以下に、 外径を 20-200 mmにす ることが好ましい。 なお、 その断面形状は、 円形でも角形でもよく、 特に PI¾されない。 実施例 1  For the above reasons, the composite material contains 1-90 wt% of A1N and 50 wt% or more of (A1 + A1N + A10N) and has a porosity of 2-60%. . Also, compounds containing B or C are likely to be ^ ffiT on the outer surface of the stranded metal tube. In any of the above-mentioned heat tubes, considering the sintering and cracking of the composite material and the heat of the tube itself, such as the bow iSt, etc., the length is less than 6 mm and the outer diameter is 20-200 mm. It is preferred that The cross-sectional shape may be circular or square, and there is no particular PI. Example 1
図 1に示した 斷面形状とミク口組織を有するセラミックスと金属の複合材料 1からな る単層構造の熱 3¾チューブ No. 1と、図 2に示した謹面形状を有し、第 1層がS撚合 金チューブ 2、 第 2層が炭素繊隹 3、 第 3層の表層部がセラミックスと金属の複合材料 1 である 3層構造の熱 チューブ No. 2と、 熱 チューブ No. 2の外表面に BNコ一 卜した熱交換チューブ No. 3を、 都市ごみ焼却パイロットプラントの 750-950 °Cの高温 排ガス中に言隨して、 熱回収を行った。 It is composed of a ceramic-metal composite material 1 having the cross-sectional shape and microstructure shown in Fig. 1. Single-layer heat 3 熱 tube No. 1 and the surface shape shown in Fig. 2, the first layer is an S-twisted metal tube 2, the second layer is carbon fiber 隹 3, and the third layer is a surface layer The three-layered heat tube No. 2 whose part is a composite material 1 of ceramics and metal, and the heat exchange tube No. 3 with BN coating on the outer surface of the heat tube No. 2 were installed in a municipal solid waste incineration pilot plant. Heat recovery was performed according to the high-temperature exhaust gas of 750-950 ° C.
熱交換チューブ No. 1、 2の詳細は、 以下のようである。  Details of heat exchange tubes No. 1 and 2 are as follows.
熱 チューブ No. 1  Heat tube No. 1
セラミックスと金属の複合材料: A1+A1N+A10N 90 wt%以上、 厚み 4 mm、 外径: 4 0 mm  Composite material of ceramics and metal: A1 + A1N + A10N 90 wt% or more, thickness 4 mm, outer diameter: 40 mm
熱交換チューブ No. 2  Heat exchange tube No. 2
而撤合金チューブ: SUS304、 厚み 4 rmn、 炭素繊隹:厚み 4 mm、 セラミックスと 金属の複合材料: A1+A1N+A10N 90 wt%i¾±, 厚み 10 mm、 外径: 40 mm  Metal alloy tube: SUS304, thickness 4 rmn, carbon fiber 繊: thickness 4 mm, composite material of ceramic and metal: A1 + A1N + A10N 90 wt% i¾ ±, thickness 10 mm, outer diameter: 40 mm
また、 都巿ごみ TOパイロットプラントの排ガスの!^は、 2-16 % (vol, dry, 以下同 の 02、 100-500 ppmの HC1、 max 300 ppmの SOx、 5-18 %の C02、 残部 N2であ つた。 熱交換チューブ内を¾1させる ¾¾D熱流体としては、 入口 が 150-400 °Cの水 蒸気および 120-300 °Cの空気と^ »燃翻ガスの混合ガスを用いた。 In addition, the waste gas from the Tokyo Togomi TO pilot plant! ^ Is, 2-16% (vol, dry, following the same of 0 2, 100-500 ppm of HC1, max 300 ppm of SOx, 5-18% of C0 2, balance N 2 der ivy. Heat exchanger in the tube As the ¾¾D thermal fluid, a water vapor at the inlet of 150-400 ° C and a mixed gas of air and 120-300 ° C and a combustion gas were used.
その結果、 いずれの熱 3¾チューブの場合も、 腐食による厚みの減少量はわずかであり、 亀裂の発生もなぐ 長時間にわたって安定した熱回収力河能であること力聰認された。 特 に、外表面に BNコートした熱¾チューブ No. 3では、腐食による厚みの減少量が熟交 換チューブ No. 1、 2の の減少量の 30 %以下と小さかった。 無例 2  As a result, it was recognized that in all cases of heat 3¾ tubes, the amount of reduction in thickness due to corrosion was slight and cracks did not occur. In particular, in Hot Tube No. 3 with BN coating on the outer surface, the reduction in thickness due to corrosion was as small as 30% or less of that in Mature Exchange Tubes Nos. 1 and 2. Unprecedented 2
図 3に示した «面形状で、気孔 4を有するセラミックスと金属の複合材料 1からなる 単層構造の熱交換チューブ No. 4、 5を、 実施例 1と同様な都市ごみ腳パイロットブラ ントの 750-950 °Cの高温排ガス中に言躍し、 無例 1と同様な抛□熱流体の圧力を排ガ ス雰囲気の圧力より高くして気孔からネ戯 Π熱流体の"^を噴出させて熱回収を行つた。 熱 チューブ No. 4、 5の詳細は、 以下のようである。 熱 チューブ No. 4 The single-layer heat exchange tubes Nos. 4 and 5 made of a composite material 1 of ceramics and metal having a surface shape and having pores 4 shown in FIG. In the high-temperature exhaust gas of 750-950 ° C, the pressure of the hot fluid was increased above the pressure of the exhaust gas atmosphere as in Example 1 and the hot fluid "^" was ejected from the pores. The details of heat tubes Nos. 4 and 5 are as follows. Heat tube No. 4
セラミックスと^]萬の複合お料: A1+A1N 90 wt/。以上、 厚み 4 mm、 気孔率 20 %、 外径: 40 mm  Composite fee of ceramic and ^] man: A1 + A1N 90 wt /. Above, thickness 4 mm, porosity 20%, outer diameter: 40 mm
熱 チューブ No. 5  Heat tube No. 5
セラミックスと の複合材料: A1+A1N 90 wt%以上、 厚み 6 mm、 気孔率 60 %、 外径: 40 mm  Composite material with ceramics: A1 + A1N 90 wt% or more, thickness 6 mm, porosity 60%, outer diameter: 40 mm
その結果、 いずれの熱 チューブの も、 を含む«が表面に堆積するこ となぐ ¾¾Π熱流体として入口 が 150-400 °Cの水蒸気を用いた ^は、 出口^が 5 00 °Cになるまでカロ熱でき、 入口 ^^が 120-300 °Cで、 1000-5000 mmAqの空気および 100-400 mmAqの^ 漏ガスの混合ガスを用いた場合は、 出口 SJ が約 800 に なるまで加熱でき、 高い熱 ¾ ^で熱回収が きた。  As a result, in any of the heat tubes, 含 む containing water does not accumulate on the surface. 水 蒸 気 The steam with the inlet of 150-400 ° C was used as the heat fluid until the outlet ^ reached 500 ° C. If the inlet ^^ is 120-300 ° C and the mixed gas of 1000-5000 mmAq of air and 100-400 mmAq of leak gas is used, it can be heated until the outlet SJ is about 800, Heat recovery with high heat.
なお、 気孔率 60 %の熱交換チューブ No. 5の場合は、 被加熱流体の圧力を 5000 mm Aq以上にすると、 熱 チューブの外表面 が排ガス雰囲気の Si より 100 °C以上低 くなるので、 被加熱流体の圧力は 4000 mmAq にするの力 子ましい。 実施例 3  In the case of heat exchange tube No. 5 with a porosity of 60%, when the pressure of the fluid to be heated is set to 5000 mm Aq or more, the outer surface of the heat tube becomes 100 ° C or more lower than Si in the exhaust gas atmosphere. The pressure of the fluid to be heated should be 4000 mmAq. Example 3
図 4に示した縦断面鹏犬、 図 5に示した横断面形状で、而燃合金チューブ 2の外表面が セラミックスと金属の複合枕料 1により非 ί¾ ^え態で覆われており、かつ而撒合金チュー ブ 2と複合材斗 1力、 その界面において少なくとも一部で接触しており、 したがって空隙 5を る熱 チューブ No. 6-9を、 雄例 1と同様な都市ごみ麟パイ口ットプラン トの 650-950 °Cの高温排ガス中に識し、 熱回収を行った。  The dog has a longitudinal section shown in FIG. 4 and a cross section shown in FIG. 5, and the outer surface of the meta-combustion alloy tube 2 is covered with a ceramic and metal composite pillow 1 in a non-coated state, and The metal alloy tube 2 is in contact with the composite material dough 1 at least at its interface, so the heat tube No. 6-9 with a gap 5 is replaced by the same municipal waste pipe as in male example 1. The heat was recovered from the plant plant's high-temperature exhaust gas at 650-950 ° C.
熱交換チューブ No. 6-9の詳細は、 以下のようである。  Details of heat exchange tube No. 6-9 are as follows.
熱交換チューブ No. 6  Heat exchange tube No. 6
而撤合金チューブ: SUS304-15A、 セラミックスと金属の複合材料: A1+A1N+A10N 9 0 wt%以上、 厚み 5-10 mm, 気孔率 40 %  Metal alloy tube: SUS304-15A, composite material of ceramics and metal: A1 + A1N + A10N 90 wt% or more, thickness 5-10 mm, porosity 40%
熱 チューブ No. 7  Heat tube No. 7
而擻合金チューブ: SUS304-20A、 セラミックスと金属の複合材料: A1+A1N+A10N 9 0 wt。/。以上、 厚み 6-8 mm、 気孔率 20 % Metal alloy tube: SUS304-20A, composite material of ceramics and metal: A1 + A1N + A10N 9 0 wt. /. Above, thickness 6-8 mm, porosity 20%
熱 チューブ No. 8  Heat tube No. 8
而撚合金チューブ: SUS304"20A、外表面 BNコート、セラミックスと金属の複合林料: A1+A1N+A1ON 90 wt%以上、 厚み 6-8 mm、 気孔率 20 %  Biaxial alloy tube: SUS304 "20A, outer surface BN coating, composite forest material of ceramics and metal: A1 + A1N + A1ON 90 wt% or more, thickness 6-8 mm, porosity 20%
熱 3¾チューブ No. 9  Heat 3¾ tube No. 9
而撤合金チューブ: SUS304-20A、 セラミックスと^ Sの複合梂料: A1203 80 \^%以 上 +AL 厚み 2-4 mm、 気孔率 30 % 而撤Alloy Tube: SUS304-20A, composite of ceramic and ^ S 梂料: A1 2 0 3 80 \ ^ % or more on the + AL thickness 2-4 mm, porosity of 30%
また、 都巿ごみ '腳パイロットプラン卜の排ガスの成分は、 2-16 %の 02、 200-600 pp mの HC1、 max 300 ppmの SOx、 4·19 %の C02、 残部 N2であった。 Further, components of To巿waste '腳pilot plan Bok of exhaust gas, 2-16% of 0 2, HC1 of 200-600 pp m, max 300 ppm of SOx, 4 · 19% of C0 2, with the balance N 2 there were.
その結果、 いずれの熱 チューブの i給も、 腐食による厚みの減少量はわずかであり、 亀裂の発生もなぐ 長時間にわたって安定した熱交換が^!能であることカ 認された。 特 に、而擻合金チューブの外表面に BNコートした熱 チューブ No. 8では、言纖後の断 面形状に変化が認められず、 BNコートとセラミックスと金属の複合材料とのすべり力滑 らかであること力 ¾6認できた。  As a result, for any of the heat tubes, the amount of reduction in thickness due to corrosion is small, and no cracks are generated. It was recognized that it was capable. In particular, in heat tube No. 8 in which the outer surface of the metal alloy tube was coated with BN, no change was observed in the cross-sectional shape after the fiber, and the sliding force between the BN coat and the ceramic-metal composite material was reduced.力 6.
また、 勸ロ熱流体として入口 £! が 300-400 °Cの水蒸気を用レ こ場合は、 出口におレ て 500 °C以上、 lOO ata力得られ、 口熱流体として入口 が 120-300 で、 1000-5 000 mmAqの空気および 100-400 mmAqの廃 ¾ l燃焼排ガスの混合ガスを用いた場合 は、 出口において最高 800 °Cまで加熱できること力 ¾認できた。 難例 4  In addition, if the inlet £! Uses steam at 300-400 ° C as the heat fluid, the outlet can obtain 500 以上 C or more ata ata force, and the inlet heat can be 120-300 ° C. It was confirmed that when using a mixed gas of air of 1000-5000 mmAq and waste gas of 100-400 mmAq, it was possible to heat up to 800 ° C at the outlet. Difficult case 4
図 4に示した 面形状、 図 5に示した横断面形状で、而撤合金チューブ 2の外表面が セラミックスと金属の複合林料 1により非 態で覆われており、かつ而撤合金チュー ブ 2と複合枕料 1力 その界面において少なくとも^^で ¾ しており、 したがって空隙 5を る熱 チューブ No. 10、 11を、 麵例 1と同様な都市ごみ綱パイロットプ ラントで 巿ごみを部 化した 700-1000 °Cの ¾¾排ガス雰囲気中に言耀し、 熱 [^仅を 行った。  With the surface shape shown in Fig. 4 and the cross-sectional shape shown in Fig. 5, the outer surface of the meta-alloy tube 2 is inactively covered with the composite forest material 1 of ceramics and metal, and the meta-alloy tube is 2 and composite pillow 1 force At least at ^^ at the interface, so heat tubes Nos. 10 and 11 with air gap 5 can be removed using the same municipal waste pilot plant as in Example 1. In the ¾¾ exhaust gas atmosphere at 700-1000 ° C, which was converted into gas, heat was applied.
熱 チューブ No. 10、 11の詳細は、 以下のようである。 熱交換チューブ No. 10 Details of heat tubes No. 10 and 11 are as follows. Heat exchange tube No. 10
而燃合金チューブ:ボイラ用而携襟 STBA28-20A、 セラミックスと金属の複合材料: A 1+A1N 90 wt%> Al2O3 7wt%、 厚み 6-7 mm、 気孔率 25 % 而燃Alloy Tube: boiler而携collars STBA28-20A, ceramic and metal composite materials: A 1 + A1N 90 wt% > Al 2 O 3 7wt%, thickness 6-7 mm, porosity 25%
熱; ^チューブ No. 11  Heat; ^ tube No. 11
而燃合金チューブ:ボイラ用! ^ff STBA28-20A, セラミックスと金属の複合材料: S iC 95 wt%以上 +Mg、 厚み 6-7 mm、 気孔率 2 %  Meta-combustion alloy tube: For boiler! ^ ff STBA28-20A, composite material of ceramics and metal: SiC 95 wt% or more + Mg, thickness 6-7 mm, porosity 2%
その結果、 高温排ガスが CO が 5-15 %である販性ガス雰囲気であったため、 Si cや扁力皺化して劣化する現象がほとんど見られず、 良好な熱回収を行うこと力 ?き た。 実施例 5  As a result, since the high-temperature exhaust gas was a commercial gas atmosphere with 5 to 15% CO, there was almost no phenomenon of deterioration due to sic or flattened wrinkles, and it was possible to perform good heat recovery. . Example 5
図 6や図 7に示した同 形状や U字管形状の而撤合金チューブ 2の外表面がセラミ ックスと金属の複合林料 1により非鐘 態で覆われており、力つ而燃合金チューブ 2と 複合 料 1力、 その界面において少なくとも "^で ί¾ しており、 したがって空隙 5を有 する熱 チューブ No. 12-14を、石炭、下水? ¾ ケーキおよび ¾ ^炉の燃 焼ガス中に設置し、 熱回収を行った。  The outer surface of the metamorphic alloy tube 2 of the same shape or U-shaped tube shape shown in Fig. 6 and Fig. 7 is non-bell-covered with the composite forest material 1 of ceramics and metal. 2 and 1 composite material, at least at the interface of which is marked with "^", and therefore heat tube No. 12-14 with void 5 was placed in the coal, sewage cake, and the combustion gas of the furnace. Installed and heat recovered.
熱交換チューブ No. 12-14の詳細は、 以下のようである。  Details of heat exchange tube No. 12-14 are as follows.
熱雄チューブ No. 12  Atsushi male tube No. 12
而燃合金チューブ:ボイラ用耐熱管 STBA28-40Aと 65A、 セラミックスと金属の複合 材料: SiC 95 wt%以上 +Mg、 厚み約 7 mm, 同 形状(図 6)  Meta-combustion alloy tube: Heat-resistant tube for boiler STBA28-40A and 65A, composite material of ceramics and metal: SiC 95 wt% or more + Mg, thickness about 7 mm, same shape (Fig. 6)
熱交換チューブ No. 13  Heat exchange tube No. 13
而燃合金チューブ:ボイラ用而燃管 STBA28-20Aと 50A、 セラミックスと金属の複合 材料: A1203 95 wt。/。以上 +AL 厚み約 3 mm, 同軸管形状(図 6) 而燃Alloy Tube:而燃tube STBA28-20A and 50A boiler, ceramic and metal composite materials: A1 2 0 3 95 wt. /. + AL thickness about 3 mm, coaxial tube shape (Fig. 6)
熱 チューブ No. 14  Heat tube No. 14
而燃合金チューブ:ボイラ用!^ STBA28-15Aと 20A、 セラミックスと金属の複合 材料: A1+A1N 90 wt%以上、 厚み 6-10 mm、 U字管形状(図 7)  Meta-combustion alloy tube: For boiler! ^ STBA28-15A and 20A, composite material of ceramic and metal: A1 + A1N 90 wt% or more, thickness 6-10 mm, U-tube shape (Fig. 7)
その結果、 石炭、 下水 泥の燃翻^ガスには数百 ppmの SOx力含まれている力;、 いず れの熱交換チューブも腐食されずに、 発電効率 30 %以上を達成する高温高 ffi7K蒸気の回 収、 高温空気や高 ©;細ガスの回収が 能であった。 As a result, coal and sewage mud burnt gas contains several hundred ppm of SOx power; These heat exchange tubes were not corroded, and were capable of recovering high-temperature high-efficiency 7K steam, achieving high power generation efficiency of 30% or more, and recovering high-temperature air and fine gas.
なお、 図 7のように U字管制犬にした場合は、 曲がり部により多くの空隙 5を存在さ せるようにすること 7½^¾である。 実施例 6  When a U-shaped control dog is used as shown in Fig. 7, it is necessary to allow more voids 5 to exist at the bend. Example 6
図 8に示した縦断面形状、図 9に示した横断面形状で、而撚合金チューブ 2の外表面が ϋ ^露 I»材とセラミックスと^ の複合 料により順次非鶴 態で覆われており、か っ而激合金チューブ 2と^^ 5»材6および Zまたは 材 6と複合材料 1が、 その界面において少なくとも一部で接触しており、 したがって空隙を有する熱交換チュー ブ No. 15-18を、 例 1と同様な都市ごみ パイ口ットプラントの 650-950 °Cの高 温排ガス中に設置し、 熱回収を行った。  With the vertical cross-sectional shape shown in Fig. 8 and the horizontal cross-sectional shape shown in Fig. 9, the outer surface of the meta-twisted alloy tube 2 is successively covered in a non-crane state with a composite material of 露 ^ R I and ceramic and ^. The metal alloy tube 2 and the ^ 6 material 6 and the Z or material 6 and the composite material 1 are at least partially in contact with each other at their interfaces, and therefore, the heat exchange tube No. 15 -18 was installed in high-temperature exhaust gas at 650-950 ° C in the same municipal solid waste pipe plant as in Example 1, and heat was recovered.
熱 3¾チューブ No. 15-18の詳細は、 以下のようである。  Details of heat 3¾ tube No. 15-18 are as follows.
熱交換チューブ No. 15  Heat exchange tube No. 15
而撚合金チューブ: SUS304-15A、 熱 歸蕭材: A1箔、 厚み 1-2 mm、 セラミック スと金属の複合梂料: A1+A1 +A10N 90 wt° /。以上、 厚み 4-10 mm, 気孔率 40 % 熱交換チューブ No. 16  Bi-twist alloy tube: SUS304-15A, heat return material: A1 foil, thickness 1-2 mm, composite material of ceramics and metal: A1 + A1 + A10N 90 wt ° /. Above, thickness 4-10 mm, porosity 40% heat exchange tube No. 16
而撚合金チューブ: SUS304>20A、 m mmm:炭素繊隹、 厚み O.2-2 mm、 セラミ ックスと金属の複合林料: A1+A1N+A10N 90 wt0/。以上、 厚み 3-8 mm、 気孔率 20 % 熱交換チューブ No. 17 Bi-twisted alloy tube: SUS304> 20A, mmm: carbon fiber 隹, thickness O.2-2 mm, composite forest material of ceramics and metal: A1 + A1N + A10N 90 wt 0 /. Above, thickness 3-8 mm, porosity 20% Heat exchange tube No. 17
而撚合金チューブ: SUS304-20A、 外表面 BNコート、 熱』彭弓歸爱衝材:炭素繊隹、 厚み 0.2-2 mm、 セラミックスと金属の複合林料: A1+A1N+A10N 90 wt%以上、 厚み 3-8 mm、 気孔率 20 %  Metallic twisted alloy tube: SUS304-20A, outer surface BN coating, heat] Peng Yongjia material: carbon fiber 隹, thickness 0.2-2 mm, composite forest material of ceramics and metal: A1 + A1N + A10N 90 wt% or more , Thickness 3-8 mm, porosity 20%
熱交換チューブ No. 18  Heat exchange tube No. 18
而撤合金チューブ: SUS30 20A、 熱 I ϋ衝材:炭素 H锥、 厚み 1-2 mm、 セラミツ クスと金属の複合材料: Αίβ3 80 wt%以上 +Α1、 厚み 2-4 mm、 気孔率 30 % Metal alloy tube: SUS30 20A, heat I Coating material: carbon H 锥, thickness 1-2 mm, composite material of ceramics and metal: Αίβ 3 80 wt% or more + Α1, thickness 2-4 mm, porosity 30 %
また、 都市ごみ麟パイロットプラントの排ガスの成分は、 2-16 %の 0。、 200-600 pp mの HC1、 max 300 ppmの SOx、 4-19 %の CO2、 残部 N2であった。 In addition, the composition of flue gas from the Municipal Garin Pilot Plant is 2-16% 0. , 200-600 pp m of HC1, max 300 ppm of SOx, 4-19% of CO 2, and the balance N 2.
その結果、 いずれの熱交換チューブの ±鈴も、 腐食による厚みの減少量はわずかであり、 亀裂の発生もなく、 長時間にわたって安定した熱交換が^ r能であること力 認された。 特 に、而燃合金チューブの外表面に BNコートした熱交換チューブ No. 17では、 1200時間 後の断面幵^!犬に変化が認められず、 BNコートとセラミックスと金属の複合林料とのすべ りが滑らかであること力 ¾|認できた。  As a result, it was confirmed that the thickness of each of the heat exchange tubes was slightly reduced due to corrosion, no cracks were generated, and stable heat exchange was possible over a long period of time. In particular, in heat exchange tube No. 17 in which the outer surface of the metal alloy tube was coated with BN, no change was observed in the cross section of the dog after 1200 hours. It was recognized that the slip was smooth.
また、 御□熱流体として入口^ tが 280-400 °Cの水蒸気を用いた齢は、 出口におい て 540 以上、 lOO ataが得られ ネ劾ロ熱流体として入口' が 120-300 °Cで、 1000-4 000 mmAqの空気および 50-400 mmAqの^^燃 J¾ ^ガスの混合ガスを用いた場合は、 出口において最高 800 °Cまで加熱できること力 認できた。 実施例 7  In addition, the age of using steam with the inlet ^ t of 280-400 ° C as the heat fluid is more than 540 at the outlet, and lOO ata can be obtained. In the case of using a mixed gas of 1000-4000 mmAq of air and 50-400 mmAq of ^^ fuel J¾ ^ gas, it was confirmed that heating up to 800 ° C was possible at the outlet. Example 7
図 8に示した縦断面形状、 図 9に示した横断面形状で、而撤合金チューブ 2の外表面が m mmeとセラミックスと金属のネ复合林抖 ιにより w貞次非 » で ゎネ ττおり、 かつ而燃合金チューブ 2と熱 « 1»材 6および Ζまたは熱』 H爱衝材 6と複合林料 1が、 その界面において少なくとも一部で接触しており、 したがって空隙を有する熱交換チュー ブ No. 19、 20を、 例 1と同様な都市ごみ義パイロットプラントで都市ごみを部分 酸化した 700-1000 °Cの ¾¾排ガス雰囲気中に言躍し、 熱回収を行った。  With the vertical cross-sectional shape shown in Fig. 8 and the horizontal cross-sectional shape shown in Fig. 9, the outer surface of the metal alloy tube 2 is mm mm, and the ceramics and metal pipes are joined together by Nadarin Lin. , And the metal tube 2 and the heat <1> material 6 and heat or heat> The H 爱 impact material 6 and the composite forest material 1 are at least partially in contact at the interface, and thus the heat exchange tube Bu Nos. 19 and 20 were heated in a 700-1000 ° C exhaust gas atmosphere where municipal solid waste was partially oxidized by the same municipal solid waste pilot plant as in Example 1, and heat was recovered.
熱 チューブ No. 19、 20の詳細は、 以下のようである。  Details of heat tubes No. 19 and 20 are as follows.
熱交換チューブ No. 19  Heat exchange tube No. 19
而燃合金チューブ:ボイラ用而燃管 STBA28-20A、 熱』 醒衝材:炭素 80 %以上 の繊隹、 厚み 0.5-3 mm, セラミックスと金属の複合材料: A1+A1N 86 wt%、 A1,03 6w t%、 厚み 4-5 mm、 気孔率 25 % Meta-combustion alloy tube: Boiler meta-combustion tube STBA28-20A, heat Awakening material: carbon 80% or more fine pine, thickness 0.5-3 mm, composite material of ceramics and metal: A1 + A1N 86 wt%, A1, 0 3 6wt%, thickness 4-5mm, porosity 25%
熱交換チューブ No. 20  Heat exchange tube No. 20
而撫合金チューブ:ボイラ用而燃管 STBA28-20A、 熱』彭弓醒衝材:炭素 80 wt。/。以上 の繊隹、 厚み 1-3 mm, セラミックスと金属の複合材料: SiC 95 wt%以上十 Mg、 厚み 4-5 mm、 気孔率 2 % その結果、 高温排ガスが CO離が 5-15 %である S¾性ガス雰囲気であったため、 Si Cや A1N力被化して劣化する驗がほとんど見られず、 良好な熱回収を行うことができ た。 雄例 8 Kyo alloy tube: Boiler tubing STBA28-20A, heat] Peng Yong-sheng material: carbon 80 wt. /. Fine fiber of above, thickness 1-3 mm, composite material of ceramics and metal: SiC 95 wt% or more and Mg, thickness 4-5 mm, porosity 2% As a result, since the high-temperature exhaust gas was in an S¾ gas atmosphere with a CO separation of 5 to 15%, there was almost no experience of deterioration due to the application of SiC or A1N, and good heat recovery was possible. . Male example 8
図 10や図 11に示した同 开^311 幵娥の而撤合金チューブ 2の外表面が BS^ 彌爱衝材 6とセラミックスと金属の複合材料 1により順次非接着忧態で覆われており、か つ而撫合金チューブ 2と熱』飼 g蕭材 6および Zまたは魏 ϋ藤材 6と複合林料 1が、 その界面において少なくとも で しており、 したがって空隙 5を "る熱 チュ ーブ No. 21-23を、石炭、下水汚«水ケーキおよび^^^ TO炉の燃焼ガス中に設置 し、 熱回収を行った。 10 and the Development ^ 3 11幵娥outer surface of而撤alloy tube 2 of that shown in FIG. 11 is covered with the BS ^ Takaya爱衝material 6 and the ceramic and sequentially unbonded忧態by composite material 1 of the metal In addition, the heat tubing that passes through the gap 5 is at least at the interface between the alloy tube 2 and the heat, and the X Xiao lumber 6 and Z or Wei Zhuo lumber 6 and the composite forestry 1 at the interface. Bu No. 21-23 was installed in coal, sewage water cake, and the combustion gas of the ^^^ TO furnace, and heat was recovered.
熱 33 ^チューブ No. 21-23の言糊は、 以下のようである。  Heat 33 ^ Tube No. 21-23 The following is the paste.
熱交換チューブ No. 21  Heat exchange tube No. 21
而燃合金チューブ:ボイラ用而燃管 STBA28-40Aと 65A、熱』 醒衝材:炭素 80 wt% 以上の微粉と繊維の混合物、 厚み 0.2-4 mm, セラミックスと金属の複合材料: SiC 95 wt%以上 +Mg、 厚み約 7 mm、 同 开娥(図 10)  Meta-combustion alloy tube: Boiler meta-combustion tube STBA28-40A and 65A, heat] Awakening material: Mixture of fine powder and fiber of 80 wt% or more carbon, thickness 0.2-4 mm, Composite material of ceramics and metal: SiC 95 wt % + Mg, thickness about 7 mm, same as above (Fig. 10)
熱 チューブ No. 22  Heat tube No. 22
而撚合金チューブ:ボイラ用而擻管 STBA28-20Aと 50A、熱』彭弓 材:炭素 80 wt% 以上の微粉、厚み 0.3-2 mm,セラミックスと金属の複合材料: Α12Ο3 95 wt%以上 +A1、 厚み約 4 mm 同 开娥(図 10) 而撚Alloy Tube:而擻tube STBA28-20A and 50A boilers, heat "彭弓material: carbon 80 wt% or more fines, the thickness 0.3-2 mm, ceramic and metal composites: Α1 2 Ο 3 95 wt% Above + A1, about 4 mm thick (Fig. 10)
熱 チューブ No. 23  Heat tube No. 23
而撚合金チューブ:ボイラ用而 STBA28-15Aと 20A、謹彭弓醒衝材:炭素 80 wt% 以上の繊隹、 厚み 0.4-1 mm、 セラミックスと金属の複合材料: A1+A1 90 wt%以上、 厚み 6-8 mm, U Ψ^Τί (図 11)  Twisted alloy tube: Boiler for STBA28-15A and 20A, Heng Peng Yong-sheng material: carbon fiber 80wt% or more fine pine, thickness 0.4-1mm, ceramic and metal composite material: A1 + A1 90wt% or more , Thickness 6-8 mm, U Ψ ^ Τί (Fig. 11)
その結果、 石炭、 下水- 尼の燃湖ガスには数百 ppmの SOx力含まれているが、 いず れの熱交換チューブも腐食されずに、 発 率 30 %以上を達^る高温高 蒸気の回 収、 高温空気や高 欄ガスの回収が^]能であった。 なお、 図 11のように U字管形状にした場合は、 曲がり部により多くの空隙 5を存在さ せるようにすること力 ¾ ^である。 As a result, coal and sewage-burning fuel gas contain hundreds of ppm of SOx power, but none of the heat exchange tubes are corroded, and the high-temperature high temperature exceeding 30% is generated. Recovery of steam and recovery of hot air and column gas were the functions of the [^]. In the case of a U-shaped tube shape as shown in FIG. 11, the force ¾ ^ is to allow more voids 5 to be present in the bent portion.

Claims

請求の範囲 1. 2-60 %の気孔率を^ fる燒結体からなる熱 33 ^チューブ。 Claims 1. A heat 33 tube made of a sintered body having a porosity of 2-60%.
2. 燒結体が、 セラミックスと の複合材料である請求の麵 1の熱 チューブ。 2. The heat tube according to claim 1, wherein the sintered body is a composite material with ceramics.
3. 請求の範囲 1の熱交換チューブを用い、 前記熱交換チューブ内を流通する被加熱流体 の圧力を編己熱 チューブ外側の雰囲気の圧力より
Figure imgf000016_0001
3. Using the heat exchange tube of claim 1, the pressure of the fluid to be heated flowing through the heat exchange tube is determined by the pressure of the atmosphere outside the heat tube.
Figure imgf000016_0001
4. 請求の麵 2の熱 チューブを用い、 編己熱 チューブ内を¾1する 熱流体 の圧力を IS熱交換チューブ外側の雰囲気の圧力より高くする工程を有する熱回収方法。 4. A method for recovering heat, comprising the step of using the heat tube of claim 2 to raise the pressure of the heat fluid in the knitting heat tube higher than the pressure of the atmosphere outside the IS heat exchange tube.
5. 麵部がセラミックと金属の複合材料からなる熱^ i チューブ。 5. Thermal tube made of composite material of ceramic and metal.
6. 複合材料が l-90 wt%の A1N、 50wt。/。以上の(A1+A1N) を含む請求の範固 5の熱交換 チューブ。 6. The composite material is l-90wt% A1N, 50wt. /. The heat exchange tube according to claim 5, comprising (A1 + A1N).
7. 複合材料が 1-90 wt°/。の A1N、 50 wt%以上の(A1+A1N+A10 ) を含む請求の範固 5 の熱翅チューブ。  7. The composite material is 1-90 wt ° /. The thermowing wing tube according to claim 5, comprising 50 wt% or more of (A1N) and (A1 + A1N + A10).
8. 複合材料の表面に B (ホウ萄 または C (炭萄 を含む化合物が る請求の範囲 5 の熱懇チューブ。 8. The tube according to claim 5, wherein the surface of the composite material has a compound containing B (borax or C (charcoal).
9. 複合梂料の が 3-12 mmである請求の ISH 5の熱 ^^チューブ。 9. The ISH 5 heat ^^ tube as claimed in which the composite material has a 3-12 mm.
10. 而擻合金チューブの外表面力セラミックスと金属の複合材料により非 ί繞 態でSわ れており、 力り編己而撚合金チューブと廳己複合材料は、 その界面において少なくとも一 部で赚している熱 チューブ。 10. External surface force of the metal alloy tube The metal tube is unsealed by a composite material of ceramics and metal, and the self-twisted alloy tube and the metal composite material are at least partially formed at the interface.熱 heat tube.
11. 複合材料が l-90 wt%の A1N、 50 wt。/。以上の(A1+A1N+A10N) を含む請求の範囲 10 の熱魏チューブ。 11. The composite material is l-90 wt% A1N, 50 wt. /. Claim 10 including the above (A1 + A1N + A10N) Heat Wei tube.
12. 而撚合金チューブの外表面に、 Bまたは。を含む化合物が る請求の ffl 10の 熱 3d ^チューフ。 12. B or on the outer surface of the twisted alloy tube. Compounds containing a ffl 10 heat 3d ^ tuf are claimed.
13. 複合材料が 2-60 %の気孔率を有する請求の範囲 10の熱交換チューブ。 13. The heat exchange tube of claim 10, wherein the composite material has a porosity of 2-60%.
14. 而、燃合金チューブの外表面力 mS^SI爱衝材とセラミックスと金属の複合林料により順 次非 え態、で覆われており、 力り l己而燃合金チューブと it己熱膨弓露爱衝材および Zま たは嫌己熱』 醒衝材と till己複合林料は、 その界面において少なくとも ^^で雄してい る熱 3¾チューブ。 14. The outer surface force of the fuel alloy tube is covered with mS ^ SI material and a composite forest material of ceramics and metal. Bubble dew impact material and Z or discomfort heat ”Awakening material and till self-composite forest material is a heat 3¾ tube characterized by at least ^^ at the interface.
15. 複合梂料が l-90wt%の A1N、 50 wt%以上の(A1+A1N+A10N) を含む請求の範囲 14 の熱 チューブ。 15. The heat tube according to claim 14, wherein the composite material contains l-90 wt% of A1N and 50 wt% or more of (A1 + A1N + A10N).
16. 彭彌爱衝材が B、 Cまたは A1を主成分とする繊佳、 粉体、 フィルムまたはテープ 等の材料である請求の麵 14の熱交換チューブ。 16. The heat exchange tube according to claim 14, wherein the material of Pengya is a material mainly composed of B, C or A1, such as fine powder, powder, film or tape.
17. 而燃合金チューブ外表面に、 Bまたは Cを含む化合物カ^ る請求の »1 14の熱 チューブ。 17. The heat tube of claim 114, wherein a compound containing B or C is provided on the outer surface of the tube.
18. 複合材料が 2-60 %の気孔率を有-する請求の範囲 14の熱交換チューブ。 18. The heat exchange tube of claim 14, wherein the composite material has a porosity of 2-60%.
PCT/JP2000/005205 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it WO2001013057A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020017002406A KR20010072966A (en) 1999-08-12 2000-08-03 Heat exchanger tube and heat recovery method using the same
EP00949969A EP1122506A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP11/228589 1999-08-12
JP22858999A JP2001056195A (en) 1999-08-12 1999-08-12 Heat transfer pipe for heat exchange
JP11/228592 1999-08-12
JP11/228590 1999-08-12
JP22859299A JP4016311B2 (en) 1999-08-12 1999-08-12 Heat recovery method from hot gas
JP11228591A JP2001049379A (en) 1999-08-12 1999-08-12 Heat transfer tube for heat exchanger
JP22859099A JP3674401B2 (en) 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange
JP11/228591 1999-08-12

Publications (1)

Publication Number Publication Date
WO2001013057A1 true WO2001013057A1 (en) 2001-02-22

Family

ID=27477332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005205 WO2001013057A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it

Country Status (4)

Country Link
EP (1) EP1122506A1 (en)
KR (1) KR20010072966A (en)
TW (1) TW546454B (en)
WO (1) WO2001013057A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012155A1 (en) * 2001-07-30 2003-02-13 Jfe Engineering Corporation Material being resistant to chloride-containing molten salt corrosion, steel pipe for heat exchanger coated with the same, and method for production thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2224003T3 (en) * 2002-07-31 2005-03-01 Itn Nanovation Gmbh CERAMIC COATING FOR COMBUSTION BOILERS.
US20090261289A1 (en) * 2004-08-25 2009-10-22 Yoon-Sik Ham R502, R12 or R22 Substitute Mixed Refrigerant and Refrigeration System Using Thereof
DE102006048445B4 (en) * 2006-10-11 2016-09-08 Udo Hellwig Apparatus for providing heat, method for its production and method for transferring heat
DE102013201465A1 (en) * 2013-01-30 2014-07-31 Eberspächer Exhaust Technology GmbH & Co. KG Heat exchanger of an internal combustion engine
DE102017217308A1 (en) * 2017-09-28 2019-03-28 Mahle International Gmbh Heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183895A (en) * 1984-09-28 1986-04-28 Hitachi Ltd Heating surface and manufacture thereof
JPS61227036A (en) * 1985-04-02 1986-10-09 三菱重工業株式会社 Ceramics coated member having excellent corrosion resistance
JPS63140292A (en) * 1986-11-30 1988-06-11 Chuo Denki Kogyo Kk Porous-type heat radiator
JPH01159596A (en) * 1987-09-09 1989-06-22 Toshiba Corp Heat exchanger tube for steam generator and its manufacture
JPH04371800A (en) * 1991-06-19 1992-12-24 Yoshida Kogyo Kk <Ykk> High-performance heat transfer body
JPH05180585A (en) * 1991-12-26 1993-07-23 I N R Kenkyusho:Kk Heat exchanger
JPH06307791A (en) * 1993-04-26 1994-11-01 Y K K Kk High performance heat transfer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183895A (en) * 1984-09-28 1986-04-28 Hitachi Ltd Heating surface and manufacture thereof
JPS61227036A (en) * 1985-04-02 1986-10-09 三菱重工業株式会社 Ceramics coated member having excellent corrosion resistance
JPS63140292A (en) * 1986-11-30 1988-06-11 Chuo Denki Kogyo Kk Porous-type heat radiator
JPH01159596A (en) * 1987-09-09 1989-06-22 Toshiba Corp Heat exchanger tube for steam generator and its manufacture
JPH04371800A (en) * 1991-06-19 1992-12-24 Yoshida Kogyo Kk <Ykk> High-performance heat transfer body
JPH05180585A (en) * 1991-12-26 1993-07-23 I N R Kenkyusho:Kk Heat exchanger
JPH06307791A (en) * 1993-04-26 1994-11-01 Y K K Kk High performance heat transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012155A1 (en) * 2001-07-30 2003-02-13 Jfe Engineering Corporation Material being resistant to chloride-containing molten salt corrosion, steel pipe for heat exchanger coated with the same, and method for production thereof

Also Published As

Publication number Publication date
EP1122506A1 (en) 2001-08-08
TW546454B (en) 2003-08-11
KR20010072966A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
KR101732782B1 (en) Heat exchanger having enhanced corrosion resistance
US5724923A (en) Refractory shield design for superheater tubes
WO2001013057A1 (en) Heat exchange tube and heat recovery method using it
JP3674401B2 (en) Heat exchanger tube for heat exchange
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
JP2001049379A (en) Heat transfer tube for heat exchanger
JPH10274401A (en) High temperature resistant and corrosion resistant heat exchanger tube of waste incineration boiler and super heater
JP2002310594A (en) Heat exchanger with heat exchanger tube
JP2996128B2 (en) Air heater for high temperature corrosion resistance
JP4016311B2 (en) Heat recovery method from hot gas
JP2002317903A (en) Boiler equipped with corrosion resistant heat transfer pipe for heat exchange
JP2001056195A (en) Heat transfer pipe for heat exchange
JP2996129B2 (en) Air heater for high temperature corrosion resistance
JP6982391B2 (en) How to form a film
JP3678937B2 (en) Ceramic tube for heat exchanger
JP4360047B2 (en) Heat transfer tube support structure
JPH08313192A (en) Spray coating film for heat resistant member
JP3346365B2 (en) Method of manufacturing aluminum matrix composite coated steel pipe
JP3548446B2 (en) Heat exchanger tubes for heat exchangers
JP2005016749A (en) Double tube type heat exchanger
JP2003287395A (en) Ceramic pipe for heat exchanger and method of manufacture
JP3970213B2 (en) Air heater
JPH11311498A (en) Heat transmitting tube for heat exchanger
JP2001048650A (en) Heat transfer tube for heat exchanger
JP2002038277A (en) Steel tube coated with aluminum-matrix composite material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020017002406

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000949969

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017002406

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000949969

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000949969

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017002406

Country of ref document: KR