JP2001056195A - Heat transfer pipe for heat exchange - Google Patents

Heat transfer pipe for heat exchange

Info

Publication number
JP2001056195A
JP2001056195A JP22858999A JP22858999A JP2001056195A JP 2001056195 A JP2001056195 A JP 2001056195A JP 22858999 A JP22858999 A JP 22858999A JP 22858999 A JP22858999 A JP 22858999A JP 2001056195 A JP2001056195 A JP 2001056195A
Authority
JP
Japan
Prior art keywords
heat
tube
composite material
alloy composite
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22858999A
Other languages
Japanese (ja)
Inventor
Takashi Noto
隆 能登
Hiroaki Nishio
浩明 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22858999A priority Critical patent/JP2001056195A/en
Priority to EP00949969A priority patent/EP1122506A1/en
Priority to KR1020017002406A priority patent/KR20010072966A/en
Priority to PCT/JP2000/005205 priority patent/WO2001013057A1/en
Priority to TW089116086A priority patent/TW546454B/en
Publication of JP2001056195A publication Critical patent/JP2001056195A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a metal from being corroded and enable high temperature heat recovery even if the metal is exposed to a high temperature corrosive atmosphere for a long time by constituting a non-bonded structure of a heat resistant alloy and a cover material made of a ceramics alloy composite material and providing a structure wherein at least parts of both members are in contact with each other. SOLUTION: A outside of a pipe body 1 made of a heat resistant alloy is covered with a cover member 2 made of a ceramics alloy composite material and both members 1, 2 have non-contact structure and at least parts of the members 1, 2 are in contact with each other. A high temperature gas is allowed to flow outside of an outer surface of the cover member 2 and a fluid to be heated is allowed to flow inside of the heat resisting alloy pipe 2. The ceramics alloy composite material 2 covers outside of the heat resisting alloy pipe 1 and the ceramics alloy composite material 2 and the heat resisting alloy pipe 1 are at least partly in contact with each other. By this constitution, high temperature heat can be recovered from high temperature corrosive environment in high temperature corrosive gases such as waste combustion exhaust gas, coal burning exhaust gas and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ、石炭、
下水処理、製紙スラッジ、その他産業廃棄物の高温燃焼
排ガスから、蒸気や空気等の流体を介して熱エネルギを
回収し発電を行う熱回収・利用システムにおける熱交換
用電熱管に関する。
The present invention relates to municipal solid waste, coal,
The present invention relates to an electric heat exchanger tube for heat exchange in a heat recovery / utilization system that recovers thermal energy from high temperature combustion exhaust gas of sewage treatment, papermaking sludge, and other industrial wastes through a fluid such as steam or air to generate power.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物を焼却した時に発
生する排ガスは、塩化水素ガスやナトリウム、カリウム
等を含むNaCl,KClやNa2SO4他の塩基性塩を
含んでいる。塩化水素や塩基性塩の腐食性は、その温度
が高温になればなるほど大きくなる。そのため、都市ご
みや産業廃棄物の燃焼排ガスから熱回収を行う廃熱ボイ
ラにおいて、その熱交換チューブ内を流れる蒸気は、塩
化水素や塩基性塩による腐食損傷の被害を少なく抑える
ために、一般に、300℃以下に抑えられている。
2. Description of the Related Art Exhaust gas generated when municipal solid waste or industrial waste is incinerated contains hydrogen chloride gas, NaCl containing sodium, potassium, etc., KCl, Na 2 SO 4 and other basic salts. The corrosiveness of hydrogen chloride and basic salts increases as the temperature increases. Therefore, in a waste heat boiler that recovers heat from the combustion exhaust gas of municipal solid waste and industrial waste, the steam flowing through the heat exchange tube is generally used to reduce the damage of corrosion damage due to hydrogen chloride and basic salts. It is kept below 300 ° C.

【0003】そこで、この腐食環境から、より高温の熱
エネルギを回収するため、特開平10−274401号
公報に開示されているように、耐熱金属からなるボイラ
チューブの外表面を、溶射法、物理的蒸着法または化学
的蒸着法によるセラミックス皮膜で被覆して、熱交換チ
ューブの耐高温腐食性を向上させた方法が考え出され
た。ボイラチューブは、金属を基体とするため、熱交換
用チューブに必要な靭性を有し、そして、その表面に、
一般に高温強度に優れ塩類との濡れ性も低くて卓抜した
高温腐食性能を示すセラミックスを用いて、高温排ガス
中における高度の腐食抵抗性を確保した。
Therefore, in order to recover higher-temperature heat energy from this corrosive environment, as disclosed in JP-A-10-274401, the outer surface of a boiler tube made of a heat-resistant metal is sprayed by a thermal spraying method. A method has been devised in which a heat exchange tube is coated with a ceramic film by a chemical vapor deposition method or a chemical vapor deposition method to improve the high-temperature corrosion resistance. Since the boiler tube is based on metal, it has the toughness necessary for the heat exchange tube, and the surface has
In general, high corrosion resistance in high-temperature exhaust gas was ensured by using ceramics that have excellent high-temperature strength and low wettability with salts and exhibit excellent high-temperature corrosion performance.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
従来の熱交換チューブでは、セラミックスと金属が溶射
法や蒸着法により接着されているため、長時間、高温腐
食雰囲気下に曝されると、セラミックスと金属の熱膨張
率差の影響により、セラミックスが金属表面から剥離し
やすくなる。そして、セラミックスが剥がれたところの
金属部が腐食し始める。そのため、この方法は、熱交換
チューブの腐食を確実に防止する方法としては不十分で
あるという問題があった。
However, in the above-described conventional heat exchange tubes, since the ceramics and the metal are bonded by a thermal spraying method or a vapor deposition method, if they are exposed to a high-temperature corrosive atmosphere for a long time. Under the influence of the difference in the coefficient of thermal expansion between the ceramic and the metal, the ceramic is easily separated from the metal surface. Then, the metal part where the ceramic has been peeled off starts to corrode. For this reason, there is a problem that this method is insufficient as a method for reliably preventing corrosion of the heat exchange tube.

【0005】そこで、本発明は、熱伝導率を低下させる
ことなく熱膨張差によるセラミックスと金属の剥離問題
を解決するためになされたものであり、高温腐食雰囲気
下に長時間曝しても、金属面が腐食することなく、従来
のものよりも高温の熱回収ができる熱交換用伝熱管を得
ることを目的とする。
Accordingly, the present invention has been made to solve the problem of the separation of ceramics and metal due to the difference in thermal expansion without lowering the thermal conductivity. An object of the present invention is to provide a heat exchanger tube for heat exchange that can recover heat at a higher temperature than conventional ones without corrosion of the surface.

【0006】[0006]

【課題を解決するための手段】本発明に係る熱交換用伝
熱管は、高温ガス雰囲気中に設けられ、前記高温ガスか
ら伝熱管内の被加熱流体に熱交換をする熱交換用伝熱管
において、被加熱流体が流れる管は耐熱合金からなり、
該耐熱合金管の外側をセラミックス合金複合材料からな
るカバー材で覆い、前記耐熱合金管と前記セラミックス
合金複合材料製のカバー材は非接着構造で、両部材の少
なくとも一部が接触することを特徴としている(請求項
1)。
A heat exchanger tube for heat exchange according to the present invention is provided in a high-temperature gas atmosphere, and performs heat exchange from the high-temperature gas to a fluid to be heated in the heat exchanger tube. The pipe through which the fluid to be heated flows is made of a heat-resistant alloy,
The outside of the heat-resistant alloy tube is covered with a cover material made of a ceramic alloy composite material, and the heat-resistant alloy tube and the cover material made of the ceramic alloy composite material have a non-adhesive structure, and at least a part of both members are in contact with each other. (Claim 1).

【0007】このように構成することにより、耐熱合金
管とセラミックス合金複合材料製のカバー材は、高温雰
囲気場に曝され、それぞれが熱膨張しても、接着されて
いないため、耐熱合金管とセラミックス合金複合材料製
のカバー材が干渉することによって生じる損傷がなく、
かつ、セラミックス合金複合材料製カバー材の外側に存
在する高温流体の熱エネルギを、耐熱合金管の内部を流
れる被加熱流体に、長時間、伝熱することができる。ま
た、耐熱合金管とセラミックス合金複合材料製カバー材
が少なくとも一部で接触しているので、セラミックス合
金複合材料製カバー材と耐熱合金管の間の熱伝導率が低
下することを防ぐ。セラミックス合金複合材料製カバー
材の内表面のほとんどすべてが耐熱合金管の外表面に接
触することになれば、熱伝導率向上の点でより好まし
い。もし、セラミックス合金複合材料製カバー材と耐熱
合金管が接触することなく完全に離れていれば、すなわ
ち間隙を有していれば、そこに気体の断熱層が形成され
熱伝導率が急激に低下するので好ましくない。
With this configuration, the heat-resistant alloy tube and the cover material made of the ceramic alloy composite material are exposed to a high-temperature atmosphere and are not bonded to each other even if they are thermally expanded. No damage caused by interference of the ceramic alloy composite cover material,
Further, the thermal energy of the high-temperature fluid existing outside the ceramic alloy composite material cover material can be transferred to the heated fluid flowing inside the heat-resistant alloy tube for a long time. In addition, since the heat-resistant alloy tube and the ceramic alloy composite material cover material are at least partially in contact with each other, a decrease in thermal conductivity between the ceramic alloy composite material cover material and the heat-resistant alloy tube is prevented. It is more preferable that almost all of the inner surface of the ceramic alloy composite material cover material comes into contact with the outer surface of the heat-resistant alloy tube in terms of improving thermal conductivity. If the ceramic alloy composite material cover material and the heat-resistant alloy tube are completely separated without contact, that is, if there is a gap, a heat insulating layer of gas will be formed there and the thermal conductivity will drop sharply. Is not preferred.

【0008】ここで、被加熱流体が流れる管体の材質で
ある耐熱合金とは、例えば、ボイラ用炭素鋼・合金鋼、
またはステンレス鋼、耐熱鋼、Ni系/Co系耐熱合金
(インコネル、ハステロイ、ステライト等)などであ
り、このほか高融点金属であるクロム等も好適である。
さらにまた、カバー材を構成するセラミックス合金複合
材料とは、酸化物、炭化物、窒化物、硼化物、珪化物、
炭素等、およびそれらの混在物と、広範囲の選択が可能
である。例としてあげれば、酸化物としてAl23やサ
イアロン(SiAlNO)、炭化物としてSiCやB4
C,窒化物としてAlN,Si34,硼化物としてTi
2,珪化物としてMoSi等が適当である。
Here, the heat-resistant alloy which is the material of the tube through which the fluid to be heated flows includes, for example, carbon steel / alloy steel for boilers,
Alternatively, stainless steel, heat-resistant steel, Ni-based / Co-based heat-resistant alloys (Inconel, Hastelloy, stellite, etc.) and the like, and chromium, which is a high melting point metal, are also suitable.
Furthermore, the ceramic alloy composite material constituting the cover material includes oxides, carbides, nitrides, borides, silicides,
A wide range of choices, such as carbon, and their mixtures, are possible. For example, Al 2 O 3 or Sialon (SiAlNO) is used as an oxide, and SiC or B 4 is used as a carbide.
C, AlN, Si 3 N 4 as nitride, Ti as boride
MoSi and the like are suitable as B 2 and silicide.

【0009】また、本発明における前記カバー材を構成
するセラミックス合金複合材料はAlとAlNを含み、
AlNを1wt%以上90wt%以下、(Al+AlN+A
lON)の合計割合が50wt%以上100wt%以下であ
ることを特徴としている(請求項2)。
Further, the ceramic alloy composite material constituting the cover material in the present invention contains Al and AlN,
AlN of 1 wt% or more and 90 wt% or less, (Al + AlN + A
(ON) is a total ratio of 50 wt% or more and 100 wt% or less (claim 2).

【0010】窒化アルミニウムであるAlNは、セラミ
ックス材料の中でも、空気酸化に対する耐食性、溶鋼等
の各種溶融金属に対する耐食性に優れた材料で、不活性
雰囲気では、高炉スラグ等の各種溶融スラグに対する耐
食性にも優れている。また、硬度が比較的高いので耐摩
耗性にも優れ、さらに、極めて高い熱伝導度、低い熱膨
張率、比較的低い弾性率を有するので熱衝撃に比較的強
い特徴も持っている。このように、AlNは優れた耐食
性と耐摩耗性、比較的優れた耐熱衝撃性を併せ持つ材料
である。
[0010] Among ceramic materials, AlN is a material excellent in corrosion resistance to air oxidation and corrosion resistance to various molten metals such as molten steel. In an inert atmosphere, it is also excellent in corrosion resistance to various molten slags such as blast furnace slag. Are better. In addition, it has relatively high hardness, so that it has excellent wear resistance. Further, it has an extremely high thermal conductivity, a low coefficient of thermal expansion, and a relatively low elastic modulus, so that it has a feature that is relatively resistant to thermal shock. As described above, AlN is a material having both excellent corrosion resistance and wear resistance and relatively excellent thermal shock resistance.

【0011】AlNと共に、金属アルミニウムであるA
lも、熱伝導の極めてよい物質であり、熱衝撃の緩和に
有利な金属であり、伝熱管の構成因子としては適してい
る。セラミックス合金複合材料製カバー材の製造過程
で、Alの多くは雰囲気のN2と反応してAlNに変わ
り、AlN中に未反応のAlが分散した構成になり、A
lNが粒子間の結合力を強化する。
[0011] Along with AlN, metallic aluminum A
1 is also a material having extremely good heat conduction, is a metal that is advantageous for reducing thermal shock, and is suitable as a component of a heat transfer tube. In the manufacturing process of ceramic alloy composite material cover material, changes to AlN reacts with N 2 atmosphere Many Al, become configuration Al is dispersed unreacted during AlN, A
1N enhances the bonding force between the particles.

【0012】この構成により、焼結体は熱衝撃を受けて
も、AlNが形状変形を防ぎ、AlNに囲まれたAlが
熱衝撃を緩和する機能を持つ。そのため、この機能を維
持するためには、AlNを少なくとも1wt%以上含有し
なければならない。AlNの含有量が、1wt%未満では
粒子間の結合力が小さくて不十分となり、また90wt%
を超えるとセラミックス合金複合材料の特性がセラミッ
クスに近づき、脆くなるため好ましくない。したがっ
て、AlNの含有重量割合は1wt%以上90wt%以下と
する。
With this configuration, even if the sintered body receives a thermal shock, AlN has a function of preventing shape deformation, and Al surrounded by AlN has a function of reducing the thermal shock. Therefore, in order to maintain this function, AlN must be contained at least 1 wt% or more. If the content of AlN is less than 1 wt%, the bonding force between the particles is small and insufficient, and 90 wt%.
Exceeding the ratio is undesirable because the properties of the ceramic alloy composite material become closer to ceramics and become brittle. Therefore, the content ratio of AlN is set to 1 wt% or more and 90 wt% or less.

【0013】また、前記セラミックス合金複合材料に
は、AlやAlONがAlN中に分散している。したが
って、(Al+AlN+AlON)の含有重量割合が、
50wt%以上100wt%以下であれば、前記セラミック
ス合金複合材料製カバー材は熱変形特性を有しながら、
高い熱衝撃性を維持することができる。また、アルミニ
ウムを含む窒化物は、高温排ガス中に含まれている酸化
物のダストに対する濡れ性が悪いので、相当量の濃度が
含有されていればセラミックス合金複合材料製カバー材
にダストが付き難くなるという特性を持っている。した
がって、(Al+AlN+AlON)の含有重量割合
が、50wt%以上有れば、そのダスト付着させない特性
が有効に発揮することができる。また、本伝熱管の製造
においてAlONを無くし、AlとAlNだけでその重
量割合が50wt%以上100wt%以下であってもかまわ
ない。
In the ceramic alloy composite material, Al and AlON are dispersed in AlN. Therefore, the content weight ratio of (Al + AlN + AlON) is
When the content is 50 wt% or more and 100 wt% or less, the ceramic alloy composite material cover material has thermal deformation characteristics,
High thermal shock resistance can be maintained. In addition, since nitrides containing aluminum have poor wettability to oxide dust contained in high-temperature exhaust gas, dusts are unlikely to adhere to the ceramic alloy composite material cover material if contained in a considerable amount. It has the characteristic of becoming. Therefore, if the content ratio by weight of (Al + AlN + AlON) is 50 wt% or more, the property of not adhering dust can be effectively exhibited. In the production of the heat transfer tube, AlON may be eliminated, and the weight ratio of Al and AlN alone may be 50 wt% or more and 100 wt% or less.

【0014】なお、ここで、AlONとはAl,O,N
の固液体の総称で、例としては、Al1115N,AlO
N,Al1982884,Al2739N,Al1083
Al937,SiAl727,Si3Al34.55
挙げられる。
Here, AlON means Al, O, N
Is a general term for solid liquids such as Al 11 O 15 N, AlO
N, Al 198 O 288 N 4 , Al 27 O 39 N, Al 10 N 8 O 3 ,
Al 9 O 3 N 7 , SiAl 7 O 2 N 7 and Si 3 Al 3 O 4.5 N 5 are mentioned.

【0015】また、本発明においては、前記耐熱合金管
の外表面に硼素あるいは炭素を含む化合物からなる離型
剤を塗布することを特徴としている(請求項3)。
Further, in the present invention, a release agent comprising a compound containing boron or carbon is applied to the outer surface of the heat-resistant alloy tube (claim 3).

【0016】離型剤を塗布することにより、耐熱合金管
とセラミックス合金複合材料製カバー材間のすべりを良
くし、両部材の熱膨張差による伸びがより滑らかにな
る。
By applying the release agent, the slip between the heat-resistant alloy pipe and the ceramic alloy composite material cover material is improved, and the elongation due to the difference in thermal expansion between the two members becomes smoother.

【0017】さらにまた、本発明においては、前記セラ
ミックス合金複合材料の気孔率が2%以上60%以下で
あることを特徴としている(請求項4)。
Further, the present invention is characterized in that the porosity of the ceramic alloy composite material is 2% or more and 60% or less (claim 4).

【0018】セラミックス合金複合材料製カバー材の製
造において、気孔率を2%未満にするためには、その製
造過程において高温高圧雰囲気が必要になり、その製造
コストが急激に上昇する。セラミックス合金複合材料中
の気孔は、単純な円孔ではなくいびつな形をしている。
そのサイズは、線間距離でサブミクロン以下のオーダー
から中には数百ミクロンオーダーまである。このような
気孔を持つセラミックス合金複合材料において、気孔率
が60%より大きいと塩基性塩を含むダストがセラミッ
クス合金複合材料の中に浸透しやすくなり、耐熱合金管
にまでその腐食影響が及ぶ。したがって、気孔率の下限
は2%、上限は60%が好ましい。
In the production of a cover material made of a ceramic alloy composite material, in order to reduce the porosity to less than 2%, a high-temperature and high-pressure atmosphere is required in the production process, and the production cost rises sharply. Pores in the ceramic alloy composite material are not simple circular holes but have irregular shapes.
Their sizes range from sub-micron or less to several hundred microns in line-to-line distance. In a ceramic alloy composite material having such pores, if the porosity is larger than 60%, dust containing a basic salt easily penetrates into the ceramic alloy composite material, and the corrosion effect reaches even the heat-resistant alloy pipe. Therefore, the lower limit of the porosity is preferably 2%, and the upper limit is preferably 60%.

【0019】[0019]

【発明の実施の形態】図1は、本発明の実施の形態に係
る熱交換用伝熱管の断面を示す。耐熱合金からなる管体
1の外側をセラミックス合金複合材料からなるカバー材
2で覆い、しかも両部材1、2は非接着構造とし、かつ
両部材1、2の少なくとも一部が接触する構造としてい
る。図中、3は両部材1、2間の空隙を示す。
FIG. 1 shows a cross section of a heat exchanger tube for heat exchange according to an embodiment of the present invention. The outside of the tube 1 made of a heat-resistant alloy is covered with a cover material 2 made of a ceramic alloy composite material, and both members 1 and 2 have a non-adhesive structure, and have a structure where at least a part of both members 1 and 2 are in contact with each other. . In the drawing, reference numeral 3 denotes a gap between both members 1 and 2.

【0020】セラミックス合金複合材料からなるカバー
材2の外表面外側を高温ガスが流れ、耐熱合金管1の内
部を被加熱流体が通る。高温ガスの温度は400℃〜1
200℃で、ガス雰囲気条件によって、カバー材2のセ
ラミックス合金複合材料が選択される。
A high-temperature gas flows outside the outer surface of the cover material 2 made of a ceramic alloy composite material, and a fluid to be heated passes inside the heat-resistant alloy tube 1. The temperature of the hot gas is 400 ° C ~ 1
At 200 ° C., the ceramic alloy composite material of the cover material 2 is selected depending on the gas atmosphere conditions.

【0021】高温排ガス中には、HClおよび/または
SOxが含まれている。排ガス処理ラインに排ガス温度
300℃以上の高温集塵装置が設置されているとき、除
塵後の高温排ガスにも本発明の熱交換用伝熱管を用いる
ことができる。本発明の熱交換用伝熱管内を流れる被加
熱流体は、空気、水蒸気、CO2を2〜25vol%(湿ベ
ース)含む燃焼排ガスを表し、本発明により、空気と前
記燃焼排ガスは最高800℃,水蒸気は約550℃まで
加熱することができる。また、被加熱流体は最高100
ataまで加圧できることを確認した。耐熱合金管1の肉
厚は3〜10mmが好ましく、またセラミックス合金複合
材料製カバー材2の厚みは、3〜20mmが好ましい。
The high-temperature exhaust gas contains HCl and / or SOx. When a high-temperature dust collecting device having an exhaust gas temperature of 300 ° C. or higher is installed in an exhaust gas treatment line, the heat exchange tube for heat exchange of the present invention can be used for high-temperature exhaust gas after dust removal. The fluid to be heated flowing in the heat exchange tube for heat exchange of the present invention represents a combustion exhaust gas containing air, water vapor, and 2 to 25 vol% (wet basis) of CO 2. The steam can be heated to about 550 ° C. Also, the fluid to be heated can be up to 100
It was confirmed that pressurization up to ata was possible. The thickness of the heat-resistant alloy tube 1 is preferably 3 to 10 mm, and the thickness of the ceramic alloy composite material cover member 2 is preferably 3 to 20 mm.

【0022】セラミックス合金複合材料製カバー材2
は、図1に示すように、耐熱合金管1の外側を覆い、セ
ラミックス合金複合材料製カバー材2と耐熱合金管1
は、少なくとも一部が接触している。本発明の熱交換用
伝熱管は、耐熱合金管の外表面にセラミックスや耐食性
合金を溶射や蒸着ほかの方法によって接着する方法は用
いず、セラミックス合金複合材料製のカバー材2でスリ
ーブのように覆った形状を有している。したがって、高
温に曝され耐熱合金管1とセラミックス合金複合材料製
カバー材2が熱膨張しても、それぞれが膨張し、お互い
の伸びを阻害することがない。耐熱合金管1の外表面と
セラミックス合金複合材料製カバー材2の内表面は、接
触面積が多いほど、外部を流れる高温排ガスから耐熱合
金管1内の被加熱流体への熱伝達は大きくなる。セラミ
ックス合金複合材料製カバー材2の表面粗さは、大きい
ところで数ミクロン以上あり、また、温度によって耐熱
合金管1とセラミックス合金複合材料製カバー材2が熱
膨張するので、本方式において、耐熱合金管1の外表面
とセラミックス合金複合材料製カバー材2の内表面が1
00%全面接触することは極めて難しい。耐熱合金管1
とセラミックス合金複合材料製カバー材2の間隙は、2
mm以下であれば、輻射によって熱伝達が促進されるの
で、期待する熱伝導率を維持することができるが、これ
以上間隙が開くと、その間を埋める空気による断熱効果
が大きくなり、熱伝導率が低下するので、前記間隙は面
間距離で20mm以下が好ましい。なお、セラミックス合
金複合材料製カバー材2および耐熱合金管1は、真円の
必要はなく、偏心した円、楕円、角型、またはいびつな
形状でも構わない。また、耐熱合金管1とセラミックス
合金複合材料製カバー材2が、同心円である必要もな
い。さらに、耐熱合金管1の外側の表面粗さは、粗くて
も滑らかでも構わない。
Cover material 2 made of ceramic alloy composite material
As shown in FIG. 1, a cover material 2 made of a ceramic alloy composite material and a heat-resistant alloy
Is at least partially in contact. The heat exchange tube for heat exchange of the present invention does not use a method of bonding ceramics or a corrosion-resistant alloy to the outer surface of a heat-resistant alloy tube by thermal spraying or vapor deposition or other methods, and uses a cover material 2 made of a ceramic alloy composite material like a sleeve. It has a covered shape. Therefore, even if the heat-resistant alloy tube 1 and the ceramic alloy composite material cover material 2 are thermally expanded due to exposure to a high temperature, they are each expanded and do not hinder each other's elongation. The larger the contact area between the outer surface of the heat-resistant alloy tube 1 and the inner surface of the ceramic alloy composite material cover material 2, the greater the heat transfer from the high-temperature exhaust gas flowing outside to the fluid to be heated in the heat-resistant alloy tube 1. The surface roughness of the ceramic alloy composite material cover material 2 is a few microns or more at a large area, and the heat resistant alloy tube 1 and the ceramic alloy composite material cover material 2 thermally expand depending on the temperature. The outer surface of the tube 1 and the inner surface of the ceramic alloy composite cover material 2 are 1
It is extremely difficult to make a full contact with 00%. Heat-resistant alloy tube 1
And the gap between the ceramic alloy composite material cover material 2 is 2
If it is less than mm, the heat transfer is promoted by radiation, so that the expected thermal conductivity can be maintained. Therefore, the gap is preferably 20 mm or less in terms of the distance between the surfaces. Note that the ceramic alloy composite material cover material 2 and the heat-resistant alloy tube 1 do not need to have a perfect circle, and may have an eccentric circle, ellipse, square shape, or irregular shape. Further, the heat-resistant alloy tube 1 and the cover material 2 made of the ceramic alloy composite material do not need to be concentric. Further, the outer surface roughness of the heat-resistant alloy tube 1 may be rough or smooth.

【0023】セラミックス合金複合材料の中で、アルミ
ニウム元素を主体とするAlN+Al+AlONから構
成される材料は、性能面において本発明の伝熱管に最も
好ましい。なぜなら、本発明では、セラミックス合金複
合材料に、セラミックス特性の高温耐腐食性と合金特性
の延性を望んでいるが、この点において、アルミニウム
元素は他のセラミックス合金複合材料を成す主元素に比
べ、延性の点で最適である。また、耐熱合金とセラミッ
クス合金複合材料の接触面も、延性の優れたアルミニウ
ム系セラミックス合金複合材料を使うことにより、膨張
伸縮時に破損する割合が他のセラミックス合金複合材料
より少なくなるというメリットを持っている。
Among the ceramic alloy composite materials, a material composed of AlN + Al + AlON mainly composed of an aluminum element is most preferable for the heat transfer tube of the present invention in terms of performance. Because, in the present invention, the ceramic alloy composite material is desired to have high-temperature corrosion resistance of ceramic properties and ductility of alloy properties, but in this regard, the aluminum element is compared with the main elements forming other ceramic alloy composite materials. Optimum in ductility. Also, the contact surface between the heat-resistant alloy and the ceramic alloy composite material has the advantage that the rate of damage during expansion and contraction is smaller than that of other ceramic alloy composite materials by using an aluminum-based ceramic alloy composite material with excellent ductility. I have.

【0024】このアルミニウム元素を主体とするセラミ
ックス合金複合材料は、例えば、低純度Al源粉末と高
純度Al源粉末との混合粉末とを加圧成形し、この成形
体を焼結することによって得られる。低純度Al源粉末
は、例えば、金属AlまたはAl合金粉未で、Si,M
g等の合金元素を含むこともある。高純度Al源粉末
は、例えば、Alを90wt%以上含む。これらの混合粉
末を成形して得られた充填体を窒素雰囲気中で加熱す
る。粉末中のAlが溶融し(純粋のAlの融点は660
℃であるが、Al−Mg合金は最大450℃まで融点が
降下し、Al−Si合金では最大577℃まで融点が降
下する)、680℃に達すると、ある量のAlは、雰囲
気のN2と反応してAlNに変わり、AlN中に少量の
未反応のAlが分散した構成となる。セラミックス特性
を有するAlNがAlの回りに皮膜を作るので、製品化
されたAlN+Al+AlONのセラミックス合金複合
材料製カバー材2は、Alの融点以上の高温に曝されて
も溶けてその形状を崩すことはない。また、成形時およ
び加熱時の温度や圧力の設定により窒化の度合いを制御
することができるので、高温排ガスと回収熱量の条件に
応じて、セラミックス特性を強くするAlN濃度を調整
することができる。もし、AlNあるいはAlの濃度を
成形、加熱時に設定値にすることができなければ、Al
NあるいはAlをセラミックス合金複合材料と耐熱合金
の間に供給しても良い.
The ceramic alloy composite material mainly composed of the aluminum element is obtained by, for example, pressing a mixed powder of a low-purity Al source powder and a high-purity Al source powder and sintering the compact. Can be The low-purity Al source powder is, for example, a metal Al or Al alloy powder, Si, M
It may contain an alloying element such as g. The high-purity Al source powder contains, for example, 90 wt% or more of Al. The filling obtained by molding these mixed powders is heated in a nitrogen atmosphere. Al in the powder melts (pure Al has a melting point of 660
Is a ° C., Al-Mg alloy has a melting point lowered to a maximum 450 ° C., in the Al-Si alloy melting point is lowered to a maximum 577 ° C.), is reached 680 ° C., Al a certain amount of atmosphere of N 2 To form AlN, and a small amount of unreacted Al is dispersed in AlN. Since AlN having ceramic properties forms a film around Al, the commercialized cover material 2 made of a ceramic alloy composite material of AlN + Al + AlON melts and loses its shape even when exposed to a high temperature higher than the melting point of Al. Absent. Further, since the degree of nitriding can be controlled by setting the temperature and pressure during molding and during heating, the AlN concentration that enhances the ceramic properties can be adjusted according to the conditions of the high-temperature exhaust gas and the amount of heat recovered. If the concentration of AlN or Al cannot be set to the set value during molding and heating, Al
N or Al may be supplied between the ceramic alloy composite material and the heat-resistant alloy.

【0025】アルミニウム元素を主体とするセラミック
ス合金複合材料には、AlN,Al以外にも耐熱性のよ
い物質であれば配合されてもよい。すなわち、Ti
2,ZrO2,Cr23,Al23,SiO2,Y
23,CeO2,Sc23の中から選択された1種また
は複数の酸化物、そしてまた、これらの酸化物中の少な
くとも一つを含む複合酸化物が入ってもよい。また、B
N,MgB2,CaB6,TiB 2,ZrB2,AlB2
中から選択された1種または複数のホウ化物が入っても
よい。また、B4C,TiC,ZrC,Cr32,Al4
3,SiCの中から選択された1種または複数の炭化
物が入ってもよい。また、TiN,ZrN,Cr 2N,
Si34の中から選択された1種または複数の窒化物が
入ってもよい。Si22Oに代表される酸窒化物が入っ
てもよい。組成について、この発明ではいかなる組成で
あってもよい。また、AlONのAlの一部がSiで置
換されてもよい.ただし、Si/Alのモル比で1.0
以下であることが耐食性の観点から好ましい。
Ceramics mainly composed of aluminum element
In addition to AlN and Al, heat-resistant
May be blended as long as the substance is not suitable. That is, Ti
OTwo, ZrOTwo, CrTwoOThree, AlTwoOThree, SiOTwo, Y
TwoOThree, CeOTwo, ScTwoOThreeOne selected from
Is more than one oxide and also less of these oxides
A composite oxide containing at least one may be contained. Also, B
N, MgBTwo, CaB6, TiB Two, ZrBTwo, AlBTwoof
Even if one or more borides selected from among them enter
Good. Also, BFourC, TiC, ZrC, CrThreeCTwo, AlFour
CThreeOne or more carbonizations selected from, SiC
Things may enter. Also, TiN, ZrN, Cr TwoN,
SiThreeNFourOne or more nitrides selected from
You may enter. SiTwoNTwoContains oxynitride represented by O
You may. Regarding the composition, in this invention, any composition
There may be. Also, part of Al in AlON is replaced with Si.
May be replaced. However, the molar ratio of Si / Al is 1.0
The following is preferred from the viewpoint of corrosion resistance.

【0026】高温に曝されたとき、耐熱合金管1の外表
面とセラミックス合金複合材料製カバー材2の内表面の
相互のすべりを良くするために、耐熱合金管1の外表面
に、BNあるいはB4C等の硼素あるいは炭素を含む化
合物を塗布する。これは、セラミックス系材料と金属の
接着をより効果的に防ぎ、それぞれのすべりを良好にす
る離型剤として機能する。塗布する厚みは、1〜60ミ
クロンが好ましい。
When exposed to a high temperature, the outer surface of the heat-resistant alloy tube 1 is coated with BN or the like to improve the mutual slip between the outer surface of the heat-resistant alloy tube 1 and the inner surface of the ceramic alloy composite cover material 2. A compound containing boron or carbon such as B 4 C is applied. This functions as a release agent that more effectively prevents the adhesion between the ceramic material and the metal and improves the slip of each. The coating thickness is preferably 1 to 60 microns.

【0027】高温排ガス中には、腐食性物質として、H
ClやSOxのガス体とNaClやKC1等の塩基性塩
からなる凝縮体がある。この凝縮体は、小さいものでサ
ブミクロンオーダー、大きいもので凝集体を形成する2
0ミクロン程度の大きさを持つ。本発明の熱交換用伝熱
管を低コストに抑えるためには、セラミックス合金複合
材料の気孔率を2%以上にすることが有効であるが、気
孔率を大きくしすぎると、前記腐食性凝縮体がセラミッ
クス合金複合材料の中に侵食し易くなり、経験的に60
%より気孔率を大きくすると、本発明の効果を発揮する
ことができないことが分かった。
The high-temperature exhaust gas contains H as a corrosive substance.
There is a condensate composed of a gaseous substance such as Cl or SOx and a basic salt such as NaCl or KC1. This condensate forms submicrons on the small scale and forms aggregates on the large scale.
It has a size of about 0 microns. In order to reduce the cost of the heat exchange tube for heat exchange of the present invention, it is effective to increase the porosity of the ceramic alloy composite material to 2% or more. Is likely to erode into ceramic alloy composites, empirically 60
%, The effect of the present invention cannot be exhibited.

【0028】本発明による熱交換用伝熱管の側面形状お
よびその断面を、図2に示す。高温ガスが流れる雰囲気
に熱交換用伝熱管はセットされ、被加熱流体は、耐熱合
金管1の内部を一方端から入り他方端へ抜ける構造にな
っている。基本的には、高温ガスに曝される耐熱合金管
1の外周は、セラミックス合金複合材料製カバー材2に
よって覆われている。また、図2には明確に示していな
いが、耐熱合金管1とセラミックス合金複合材料製カバ
ー材2は少なくとも一部が接触する非接着構造になって
いることは前述したとおりである。
FIG. 2 shows a side view and a cross section of the heat exchanger tube for heat exchange according to the present invention. A heat transfer tube for heat exchange is set in an atmosphere in which a high-temperature gas flows, and a fluid to be heated enters the inside of the heat-resistant alloy tube 1 from one end and escapes to the other end. Basically, the outer periphery of the heat-resistant alloy tube 1 exposed to the high-temperature gas is covered with a cover material 2 made of a ceramic alloy composite material. Although not clearly shown in FIG. 2, as described above, the heat-resistant alloy tube 1 and the cover member 2 made of the ceramic alloy composite material have a non-adhesive structure in which at least a part thereof comes into contact.

【0029】被加熱流体の管内流速は、これまでの廃棄
物燃焼や石炭燃焼のボイラに準じるが、目的によって
は、その流速を低速側や高速側に変化させることもあ
る。熱交換用伝熱管の被加熱流体が流れる耐熱合金管1
の管径は、被加熱流体が流れればいくらでもよいが、そ
の中でも、排ガス中に管全周を曝すときは15Aから4
0Aにすることが製作上好ましい。熱交換用伝熱管の長
さは、1mから6mが好ましい。熱交換用伝熱管が長く
なると耐熱合金管1のたわみ量が大きくなり、カバー材
2のセラミックス合金複合材料の割れが心配されるが、
この場合、セラミックス合金複合材料製カバー材2を外
側から支える支柱を設け、耐熱合金管1のたわみ量を小
さくすれば問題は解決される。また、図2からわかるよ
うに、短い伝熱管のセラミックス合金複合材料に覆われ
ていない耐熱合金管1の両端を溶接で継ぎ足すことによ
って、長い伝熱管を作ることができる。
The flow velocity of the fluid to be heated in the pipe is in accordance with the conventional waste combustion or coal combustion boiler, but the flow velocity may be changed to a lower speed or a higher speed depending on the purpose. Heat-resistant alloy tube 1 through which the fluid to be heated of the heat transfer tube for heat exchange flows 1
The pipe diameter of the pipe may be any number as long as the fluid to be heated flows.
It is preferable to make it 0 A in terms of manufacturing. The length of the heat exchange tube is preferably 1 m to 6 m. When the heat exchange tube for heat exchange becomes longer, the amount of deflection of the heat-resistant alloy tube 1 increases, and there is a fear that the ceramic alloy composite material of the cover material 2 is cracked.
In this case, the problem can be solved by providing a column for supporting the ceramic alloy composite material cover member 2 from the outside and reducing the amount of deflection of the heat-resistant alloy tube 1. In addition, as can be seen from FIG. 2, a long heat transfer tube can be made by welding both ends of the heat-resistant alloy tube 1 that is not covered with the ceramic alloy composite material of the short heat transfer tube.

【0030】また、本発明から得られる熱交換用伝熱管
の別の構成例を図3、図4に示す。図3は、熱交換伝熱
管の一端部を閉じ、被加熱流体を耐熱合金管1内に設け
られた耐熱チューブ4を通じて流し、耐熱チューブ4と
耐熱合金管1の間隙内を被加熱流体が折り返し流れるよ
うにして加熱する構造で、被加熱流体に熱を与える高温
ガスに曝される部分はすべてセラミックス合金複合材料
製のカバー材2によって覆われている。この形式の場
合、熱交換用伝熱管の外径は、φ30〜200mmが好ま
しい。
FIGS. 3 and 4 show another configuration example of the heat exchange tube for heat exchange obtained from the present invention. FIG. 3 shows a state in which one end of the heat exchange heat transfer tube is closed, and the fluid to be heated is caused to flow through the heat resistant tube 4 provided in the heat resistant alloy tube 1, and the fluid to be heated folds in the gap between the heat resistant tube 4 and the heat resistant alloy tube 1. In a structure in which the fluid to be heated is heated, all portions exposed to a high-temperature gas that applies heat to the fluid to be heated are covered with a cover material 2 made of a ceramic alloy composite material. In the case of this type, the outer diameter of the heat exchange tube for heat exchange is preferably φ30 to 200 mm.

【0031】図4は、被加熱流体が流れる耐熱合金管1
をU字状に形成し、その曲がり部を含む外側部分をセラ
ミックス合金複合材料製のカバー材2で覆った熱交換用
伝熱管である。U字状の曲がり部は、直管形状の熱交換
用伝熱管に比べ、耐熱合金とセラミックス合金複合材料
の熱膨張変形が複雑なため、より多くの隙間3が必要に
なる。
FIG. 4 shows a heat-resistant alloy tube 1 through which a fluid to be heated flows.
Is formed in a U-shape, and an outer portion including a bent portion thereof is covered with a cover material 2 made of a ceramic alloy composite material. The U-shaped bent portion requires more gaps 3 because the thermal expansion deformation of the heat-resistant alloy and the ceramic alloy composite material is more complicated than that of the heat exchanger tube having a straight tube shape.

【0032】[0032]

【実施例】(1)都市ゴミや産業廃棄物を処理するゴミ
焼却パイロットプラントにおいて、焼却炉を出た約95
0℃から約650℃の高温排ガス中に、以下の数種類の
熱交換用伝熱管を挿入した。 耐熱合金管:SUS304−15A セラミックス合金複合材料製カバー材:Al+AlN+
AlON−90wt%以上、肉厚−5〜10mm、気孔率4
0% 耐熱合金管:SUS304−20A セラミックス合金複合材料製カバー材:Al+AlN+
AlON−90wt%以上、肉厚−6〜8mm、気孔率20
% 耐熱合金管:SUS304−20A、外表面−BNコ
ート セラミックス合金複合材料製カバー材:Al十AlN+
AlON−90wt%以上、肉厚−6〜8mm、気孔率20
% 耐熱合金管:SUS304−20A セラミックス合金複合材料製カバー材:Al23−80
wt%以上、肉厚−2〜4mm、気孔率30% 排ガスのN2以外の主成分は、O2:2〜16(vol,dr
y)%,HCl:200〜600(vol,dry)ppm,SO
x:max300(vol,dry)ppm,CO2:4〜19(vol,
dry)%で、都市ゴミや産業廃棄物を燃やしたときに生
じる一般的な排ガス雰囲気である。
[Examples] (1) In a garbage incineration pilot plant for treating municipal waste and industrial waste, about 95
The following several types of heat exchange tubes for heat exchange were inserted into a high-temperature exhaust gas at 0 ° C. to about 650 ° C. Heat-resistant alloy tube: SUS304-15A Ceramic alloy composite material cover material: Al + AlN +
AlON-90wt% or more, wall thickness -5-10mm, porosity 4
0% heat-resistant alloy tube: SUS304-20A Ceramic alloy composite material cover material: Al + AlN +
AlON-90 wt% or more, wall thickness -6 to 8 mm, porosity 20
% Heat-resistant alloy tube: SUS304-20A, outer surface-BN coating Ceramic alloy composite material cover material: Al-10AlN +
AlON-90 wt% or more, wall thickness -6 to 8 mm, porosity 20
% Heat-resistant alloy tube: SUS304-20A Ceramic alloy composite material cover material: Al 2 O 3 -80
wt% or more, the thickness -2~4Mm, the main component of the non-N 2 of porosity 30% flue gas, O 2: 2~16 (vol, dr
y)%, HCl: 200 to 600 (vol, dry) ppm, SO
x: max 300 (vol, dry) ppm, CO 2 : 4 to 19 (vol, dry)
dry)%, which is a general exhaust gas atmosphere generated when municipal waste and industrial waste are burned.

【0033】暴露試験の結果、どの条件においても、セ
ラミックス合金複合材料製カバー材には亀裂が発生しな
かった。また、600時間の暴露試験後、各伝熱管を取
り出しその断面を観測した結果、SUS外表面にBNを
塗布した伝熱管の断面は製作当初と変わりなく、BN
コートとセラミックス合金複合材料製カバー材のすべり
が、伝熱管に比べてより滑らかであることが分かっ
た。被加熱流体として入口温度300℃から400℃の
水蒸気を用いたとき、〜のすべての条件において、
熱交換用伝熱管群の出口で、500℃以上、100ata
の可能性を見出した。また、空気または廃棄物燃焼排ガ
スを被加熱流体としたとき、1000〜5000mmAq
の空気および100〜400mmAqの廃棄物燃焼排ガス
を最高800℃まで加熱可能なことを確認した。但し、
伝熱管のセラミックス合金複合材料製カバー材は、熱
伝導率が比較的低いAl23を主体としたため、伝熱管
〜より熱伝達係数が低くなった。
As a result of the exposure test, no crack occurred in the ceramic alloy composite material cover material under any conditions. After the exposure test for 600 hours, each heat transfer tube was taken out and the cross-section was observed. As a result, the cross-section of the heat transfer tube with BN applied to the outer surface of the SUS was the same as that at the time of manufacture, and the BN
It was found that the slip of the coating and the cover material made of the ceramic alloy composite material was smoother than that of the heat transfer tube. When steam at an inlet temperature of 300 ° C. to 400 ° C. is used as the fluid to be heated,
At the outlet of heat exchanger tube group for heat exchange, 500 ℃ or more, 100ata
I found the possibility of. When air or waste combustion exhaust gas is used as the fluid to be heated, the temperature is 1000 to 5000 mmAq.
It was confirmed that air and waste combustion exhaust gas of 100 to 400 mmAq could be heated up to 800 ° C. However,
Since the cover material made of the ceramic alloy composite material of the heat transfer tube was mainly composed of Al 2 O 3 having relatively low heat conductivity, the heat transfer coefficient was lower than that of the heat transfer tube.

【0034】(1)都市ゴミを部分酸化し、約1000
〜700℃の還元排ガス雰囲気に、 耐熱合金管:ボイラ用耐熱管STBA28−20A セラミックス合金複合材料製カバー材:Al+AlN−
90wt%,Al23−7wt%、肉厚−6〜7mm、気孔率
25% 耐熱合金管:ボイラ用耐熱管STBA28−20A セラミックス合金複合材料製カバー材:SiC−95wt
%以上、肉厚−6〜7mm、気孔率2% の熱交換用伝熱管を挿入した。被加熱流体は、水蒸気と
空気である。
(1) Municipal waste is partially oxidized to about 1000
Heat-resistant alloy tube: heat-resistant tube for boiler STBA28-20A Ceramic alloy composite material cover material: Al + AlN-
90 wt%, Al 2 O 3 -7 wt%, wall thickness -6 to 7 mm, porosity 25% Heat-resistant alloy tube: Heat-resistant tube for boiler STBA28-20A Ceramic alloy composite material cover material: SiC-95 wt
%, A heat exchange tube having a wall thickness of -6 to 7 mm and a porosity of 2% was inserted. The fluid to be heated is steam and air.

【0035】CO濃度が5〜15(vol,dry)%存在す
る還元雰囲気で熱交換試験を行った結果、高温ガスが還
元性ガスであったため、SiCやAlNが酸化して劣化
する現象がほとんど見られず、良好な熱交換を実施する
ことができた。
As a result of conducting a heat exchange test in a reducing atmosphere having a CO concentration of 5 to 15 (vol, dry)%, since the high-temperature gas was a reducing gas, SiC and AlN were mostly oxidized and deteriorated. No good heat exchange could be performed.

【0036】(3)石炭、下水汚泥脱水ケーキおよび乾
操汚泥焼却炉の燃焼排ガス中に、 耐熱合金管:ボイラ用耐熱管STBA28−40Aと
65Aの2種類 セラミックス合金複合材料製カバー材:SiC−95wt
%以上、肉厚−約7mm、同軸管形状(図3相当) 耐熱合金管:ボイラ用耐熱管STBA28−20Aと
50Aの2種類 セラミックス合金複合材料製カバー材:Al23−95
wt%以上、肉厚−約3mm、同軸管形状(図3相当), 耐熱合金管:ボイラ用耐熱管STBA28−15Aと
20Aの2種類 セラミックス合金複合材料製カバー材:Al+AlN−
90%以上、肉厚−6〜10mm、U字管形状(図4相
当) の熱交換用伝熱管を挿入した。
(3) In the flue gas of coal, sewage sludge dewatered cake and dry sludge incinerator, heat-resistant alloy pipes: two types of heat-resistant pipes for boilers STBA28-40A and 65A Ceramic alloy composite material cover material: SiC- 95wt
% Or more, the thickness - of about 7 mm, the coaxial tube shape (Figure 3 or equivalent) heat-resistant alloy tube: two ceramic alloy composite material made cover member for the boiler heat pipe STBA28-20A and 50A: Al 2 O 3 -95
wt% or more, wall thickness-about 3 mm, coaxial tube shape (equivalent to Fig. 3), heat-resistant alloy tube: two types of heat-resistant tubes for boilers STBA28-15A and 20A Ceramic alloy composite material cover material: Al + AlN-
A heat exchanger tube for heat exchange having a U-tube shape (equivalent to FIG. 4) having a thickness of -6 to 10 mm and a thickness of 90% or more was inserted.

【0037】試験の結果、石炭、下水汚泥の燃焼排ガス
には、数百(vol,dry)ppmのSOxが含まれるが、この
条件においても伝熱管〜は腐食することなく、発電
効率30%以上を達成する高温高圧水蒸気の回収、そし
てまた、高温空気や高温燃焼排ガスの回収が可能なこと
を見出した。
As a result of the test, several hundred (vol, dry) ppm of SOx is contained in the flue gas of coal and sewage sludge, but even under these conditions, the heat transfer tube is not corroded and the power generation efficiency is 30% or more. It has been found that it is possible to recover high-temperature and high-pressure steam and to recover high-temperature air and high-temperature combustion exhaust gas.

【0038】[0038]

【発明の効果】以上のように、本発明の熱交換用伝熱管
は、耐熱合金からなるチューブの優れた靭性と、その外
表面を覆うカバー材を構成する、セラミックスと金属の
両方の性質を有するセラミックス合金複合材料の優れた
耐高温腐食性を併せ持ち、廃棄物燃焼排ガス、石炭燃焼
排ガス、下水汚泥燃焼排ガス、その他産業廃棄物燃焼排
ガス中の高温腐食環境から、これまで未利用であった高
温の熱を回収することを可能にするものである。
As described above, the heat exchanger tube for heat exchange of the present invention has excellent toughness of a tube made of a heat-resistant alloy and the properties of both ceramics and metal constituting a cover material covering its outer surface. Combined with the excellent high-temperature corrosion resistance of ceramic alloy composite materials that have not been used in the past due to the high-temperature corrosive environment in waste flue gas, coal flue gas, sewage sludge flue gas, and other industrial waste flue gas. It is possible to recover the heat of the air.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る熱交換用伝熱管の断
面図である。
FIG. 1 is a cross-sectional view of a heat exchanger tube for heat exchange according to an embodiment of the present invention.

【図2】本発明の熱交換用伝熱管の側面図と断面図であ
る。
FIG. 2 is a side view and a cross-sectional view of the heat exchange tube for heat exchange of the present invention.

【図3】本発明の他の実施の形態を示す断面図である。FIG. 3 is a cross-sectional view showing another embodiment of the present invention.

【図4】本発明のさらに他の実施の形態を示す断面図で
ある。
FIG. 4 is a sectional view showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 耐熱合金管 2 セラミックス合金複合材料製カバー材 3 空隙 4 耐熱チューブ DESCRIPTION OF SYMBOLS 1 Heat resistant alloy pipe 2 Ceramic alloy composite material cover material 3 Air gap 4 Heat resistant tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高温ガス雰囲気中に設けられ、前記高温
ガスから伝熱管内の被加熱流体に熱交換をする熱交換用
伝熱管において、 被加熱流体が流れる管は耐熱合金からなり、該耐熱合金
管の外側をセラミックス合金複合材料からなるカバー材
で覆い、前記耐熱合金管と前記セラミックス合金複合材
料製のカバー材は非接着構造で、両部材の少なくとも一
部が接触することを特徴とする熱交換用伝熱管。
1. A heat exchange tube for heat exchange provided in a high temperature gas atmosphere and exchanging heat from the high temperature gas to a fluid to be heated in a heat transfer tube, wherein the tube through which the fluid to be heated flows is made of a heat-resistant alloy. The outside of the alloy pipe is covered with a cover material made of a ceramic alloy composite material, and the heat-resistant alloy pipe and the cover material made of the ceramic alloy composite material have a non-adhesive structure, and at least a part of both members are in contact with each other. Heat transfer tube for heat exchange.
【請求項2】 前記カバー材を構成するセラミックス合
金複合材料はAlとAlNを含み、AlNを1wt%以上
90wt%以下、(Al+AlN+AlON)の合計割合
が50wt%以上100wt%以下であることを特徴とする
請求項1記載の熱交換用伝熱管。
2. The ceramic alloy composite material constituting the cover material contains Al and AlN, wherein AlN is 1 wt% or more and 90 wt% or less, and the total ratio of (Al + AlN + AlON) is 50 wt% or more and 100 wt% or less. The heat exchange tube for heat exchange according to claim 1.
【請求項3】 前記耐熱合金管の外表面に硼素あるいは
炭素を含む化合物からなる離型剤を塗布することを特徴
とする請求項1または請求項2記載の熱交換用伝熱管。
3. The heat exchanger tube for heat exchange according to claim 1, wherein a release agent made of a compound containing boron or carbon is applied to an outer surface of the heat-resistant alloy tube.
【請求項4】 前記セラミックス合金複合材料の気孔率
が2%以上60%以下であることを特徴とする請求項1
から請求項3のいずれか一に記載の熱交換用伝熱管。
4. The porosity of the ceramic alloy composite material is 2% or more and 60% or less.
The heat exchanger tube for heat exchange according to any one of claims 1 to 3.
JP22858999A 1999-08-12 1999-08-12 Heat transfer pipe for heat exchange Pending JP2001056195A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22858999A JP2001056195A (en) 1999-08-12 1999-08-12 Heat transfer pipe for heat exchange
EP00949969A EP1122506A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
KR1020017002406A KR20010072966A (en) 1999-08-12 2000-08-03 Heat exchanger tube and heat recovery method using the same
PCT/JP2000/005205 WO2001013057A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
TW089116086A TW546454B (en) 1999-08-12 2000-08-10 Heat exchange tube and heat recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22858999A JP2001056195A (en) 1999-08-12 1999-08-12 Heat transfer pipe for heat exchange

Publications (1)

Publication Number Publication Date
JP2001056195A true JP2001056195A (en) 2001-02-27

Family

ID=16878740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22858999A Pending JP2001056195A (en) 1999-08-12 1999-08-12 Heat transfer pipe for heat exchange

Country Status (1)

Country Link
JP (1) JP2001056195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041337A (en) * 2001-07-30 2003-02-13 Nkk Corp Contact material with chloride-containing molten salt and manufacturing method therefor
EP3026388A1 (en) * 2014-11-26 2016-06-01 Vaillant GmbH Vaporiser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041337A (en) * 2001-07-30 2003-02-13 Nkk Corp Contact material with chloride-containing molten salt and manufacturing method therefor
EP3026388A1 (en) * 2014-11-26 2016-06-01 Vaillant GmbH Vaporiser

Similar Documents

Publication Publication Date Title
WO1998037253A1 (en) Heating tube for boilers and method of manufacturing the samme
JP2001056194A (en) High performance heat exchanger
JP3674401B2 (en) Heat exchanger tube for heat exchange
EP1306469A1 (en) Steel pipe coated with composite material and method for production thereof
WO1996036835A1 (en) Novel refractory shield design for superheater tubes
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
JP2001056195A (en) Heat transfer pipe for heat exchange
JP2001049379A (en) Heat transfer tube for heat exchanger
JPH10274401A (en) High temperature resistant and corrosion resistant heat exchanger tube of waste incineration boiler and super heater
TW546454B (en) Heat exchange tube and heat recovery method using the same
JP2002310594A (en) Heat exchanger with heat exchanger tube
EP1413638A1 (en) MATERIAL BEING RESISTANT TO CHLORIDE−CONTAINING MOLTEN SALT CORROSION, STEEL PIPE FOR HEAT EXCHANGER COATED WITH THE SAME, AND METHOD FOR PRODUCTION THEREOF
JP2002317903A (en) Boiler equipped with corrosion resistant heat transfer pipe for heat exchange
JP2996128B2 (en) Air heater for high temperature corrosion resistance
JP4360047B2 (en) Heat transfer tube support structure
JP2996129B2 (en) Air heater for high temperature corrosion resistance
JP3548445B2 (en) Heat exchanger tubes for heat exchangers
JP3346365B2 (en) Method of manufacturing aluminum matrix composite coated steel pipe
JP3548446B2 (en) Heat exchanger tubes for heat exchangers
JP4016311B2 (en) Heat recovery method from hot gas
JP4414578B2 (en) Air heater
JP2000119781A (en) Heat transfer tube for heat exchange, with corrosion and wear resistance, and heating furnace and incinerator using the same
JPH08313192A (en) Spray coating film for heat resistant member
JPS6354595A (en) High temperature heat exchanger
KR910008896B1 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040921

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20070605

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Effective date: 20070605

Free format text: JAPANESE INTERMEDIATE CODE: A712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016