JP2001049379A - Heat transfer tube for heat exchanger - Google Patents

Heat transfer tube for heat exchanger

Info

Publication number
JP2001049379A
JP2001049379A JP11228591A JP22859199A JP2001049379A JP 2001049379 A JP2001049379 A JP 2001049379A JP 11228591 A JP11228591 A JP 11228591A JP 22859199 A JP22859199 A JP 22859199A JP 2001049379 A JP2001049379 A JP 2001049379A
Authority
JP
Japan
Prior art keywords
aln
heat transfer
heat
transfer tube
alloy composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11228591A
Other languages
Japanese (ja)
Inventor
Takashi Noto
隆 能登
Hiroaki Nishio
浩明 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11228591A priority Critical patent/JP2001049379A/en
Priority to EP00949969A priority patent/EP1122506A1/en
Priority to KR1020017002406A priority patent/KR20010072966A/en
Priority to PCT/JP2000/005205 priority patent/WO2001013057A1/en
Priority to TW089116086A priority patent/TW546454B/en
Publication of JP2001049379A publication Critical patent/JP2001049379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat transfer tube capable of recovering heat from high temperature corrosive atmosphere in high efficiency without causing reduction in thermal conductivity by using, at least for the surface layer part of a heat transfer tube, a ceramic alloy composite which contains Al and specific percentage of AlN and in which the percentage of Al+AlN is specified. SOLUTION: At least surface layer part of a heat transfer tube for heat exchanger is constituted of a ceramic alloy composite which contains Al and AlN and in which AlN and Al+AlN are regulated to 1-90 wt.% and 50-100 wt.%, respectively. Preferred wall thickness of the ceramic alloy composite is 3-12 mm. A heat transfer tube 11 is constituted, e.g. of a first layer 11a which is composed of heat resistant metal and where a fluid to be heated is allowed to flow on the inside thereof, a second layer 11b which is composed of non- aluminum ceramic material composed essentially of carbon fiber, and a third layer 11c which is composed of ceramic alloy composite and where high temperature gas is allowed to flow on the outside of the external surface thereof. It is also preferable to apply or infiltrate an ash repellent composed of boron or carbon to or into the external surface of the third layer 11c to prevent the sticking of fly ash dust.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ、石炭、
下水汚泥、製紙スラッジ、その他の産業廃棄物の高温燃
焼排ガスと、内部を通過する被加熱流体との間で熱交換
を行わせる熱交換用伝熱管に関するものである。
The present invention relates to municipal solid waste, coal,
The present invention relates to a heat exchange tube for heat exchange that performs heat exchange between high-temperature combustion exhaust gas of sewage sludge, papermaking sludge, and other industrial waste and a fluid to be heated that passes through the inside.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物を焼却した時に発
生する排ガスには、塩化水素ガスやナトリウム、カリウ
ム等を含むNaCl,KClやNa2SO4他の塩基性塩が含
まれている。塩化水素や塩基性塩の腐食性は、その温度
が高温になればなるほど大きくなる。そのため、都市ご
みや産業廃棄物の燃焼排ガスから熱回収を行う廃熱ボイ
ラにおいては、その熱交換チューブ内を流れる蒸気の温
度が、塩化水素や塩基性塩による腐食損傷の被害を少な
く抑えるために、一般に300℃以下に抑えられてい
る。
The exhaust gas generated when incinerating BACKGROUND ART municipal refuse and industrial waste contains hydrogen gas and sodium chloride, NaCl containing potassium, KCl and Na 2 SO 4 other basic salts. The corrosiveness of hydrogen chloride and basic salts increases as the temperature increases. Therefore, in a waste heat boiler that recovers heat from the combustion exhaust gas of municipal solid waste and industrial waste, the temperature of the steam flowing through the heat exchange tube is set to reduce the damage of corrosion damage caused by hydrogen chloride and basic salts. In general, the temperature is suppressed to 300 ° C. or less.

【0003】そこで、この腐食環境から、より高温の熱
エネルギを回収するため、例えば特開平5-332508号公報
に示されているように、廃棄物焼却炉の排ガス煙道の高
温度域にセラミック製の熱交換器を設けて高温空気を作
り、この高温空気を用いて加熱器に導入される飽和蒸気
を過熱することで、高温の過熱蒸気を得ることができる
ようにしたものが提案されている。そして、このように
して得た過熱蒸気によって発電用のタービンを回すこと
で、ごみ焼却炉からの発電効率を向上させることができ
るとしている。
In order to recover higher-temperature heat energy from this corrosive environment, for example, as disclosed in Japanese Patent Application Laid-Open No. 5-332508, ceramics are placed in a high temperature region of an exhaust gas flue of a waste incinerator. It is proposed that a high-temperature superheated steam can be obtained by providing a heat exchanger made of stainless steel and producing high-temperature air, and superheating the saturated steam introduced into the heater using the high-temperature air. I have. By turning a turbine for power generation using the superheated steam thus obtained, the efficiency of power generation from a refuse incinerator can be improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
ようにセラミック製の熱交換器を用いて、単に耐熱性や
耐腐食性を向上させても、長時間、高温腐食雰囲気下に
曝されると、高温腐食性ガスに接するセラミック製熱交
換器外表面に塩基性塩を含む飛灰が付着し、その堆積層
によって熱交換率が低下する。
However, even if the heat resistance and the corrosion resistance are simply improved by using a ceramic heat exchanger as described above, if the heat exchanger is exposed to a high-temperature corrosive atmosphere for a long time. At the same time, fly ash containing a basic salt adheres to the outer surface of the ceramic heat exchanger in contact with the high-temperature corrosive gas, and the heat exchange rate is reduced by the deposited layer.

【0005】また、飛灰がセラミック製熱交換器の外表
面に固着すると、その飛灰付着部位で、飛灰とセラミッ
クとの間で熱膨張差が生じ、セラミックに亀裂が生じ易
くなる。
When fly ash adheres to the outer surface of the ceramic heat exchanger, a thermal expansion difference occurs between the fly ash and the ceramic at the fly ash attachment site, and the ceramic is liable to crack.

【0006】更にまた、セラミック製熱交換器外表面に
付着してある程度時間が経過した飛灰は、スートブロア
によっても除去しにくくなり、飛灰の堆積層が増加し、
その結果、セラミック製熱交換器の熱伝達率が低下す
る。そのため、単にセラミック製熱交換器を使っても、
高効率な熱回収を長期間に渡って維持することはできな
い。
Further, fly ash that has adhered to the outer surface of the ceramic heat exchanger for a certain period of time has become difficult to remove even with a soot blower, and the fly ash deposited layer has increased.
As a result, the heat transfer coefficient of the ceramic heat exchanger decreases. Therefore, simply using a ceramic heat exchanger,
Highly efficient heat recovery cannot be maintained over a long period of time.

【0007】本発明の技術的課題は、飛灰の堆積を無く
し、熱伝導率を低下させることなく高温腐食雰囲気下か
ら高効率で熱回収できるようにすることにある。
An object of the present invention is to eliminate the accumulation of fly ash and to make it possible to efficiently recover heat from a high-temperature corrosive atmosphere without lowering the thermal conductivity.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に係る
熱交換用伝熱管は、下記の構成からなるものである。す
なわち、高温ガス雰囲気中に設けられ、この高温ガス
と、内部を通過する被加熱流体との間で熱交換を行わせ
る熱交換用伝熱管において、前記伝熱管の少なくとも表
層部が、AlとAlNを含み、AlNが1wt%以上90wt
%以下、Al+AlNの合計割合が50wt%以上100wt
%以下のセラミック合金複合材料で形成されてなるもの
である。
The heat exchanger tube for heat exchange according to claim 1 of the present invention has the following configuration. That is, in a heat exchange tube for heat exchange provided in a high-temperature gas atmosphere and performing heat exchange between the high-temperature gas and a fluid to be heated passing through the inside, at least the surface layer of the heat transfer tube is made of Al and AlN. AlN is 1wt% or more and 90wt%
% Or less, and the total ratio of Al + AlN is 50% by weight or more and 100% by weight.
% Or less of a ceramic alloy composite material.

【0009】また、本発明の請求項2に係る熱交換用伝
熱管は、伝熱管の少なくとも表層部が、AlとAlNを含
み、AlNが1wt%以上90wt%以下、Al+AlN+Al
ONの合計割合が50wt%以上100wt%以下のセラミ
ック合金複合材料で形成されてなるものである。
In a heat exchanger tube for heat exchange according to a second aspect of the present invention, at least the surface layer of the heat exchanger tube contains Al and AlN, and AlN is at least 1 wt% and at most 90 wt%, and Al + AlN + Al.
It is formed of a ceramic alloy composite material having a total ratio of ON of 50 wt% or more and 100 wt% or less.

【0010】また、セラミック合金複合材料部の肉厚を
3mm以上12mm以下に設定したものである。
[0010] Further, the thickness of the ceramic alloy composite material portion is set to 3 mm or more and 12 mm or less.

【0011】また、伝熱管の外表面に硼素あるいは炭素
を含む化合物からなる撥灰剤を塗布あるいは溶浸させた
ものである。
The heat transfer tube has an outer surface coated or infiltrated with an ash repellent made of a compound containing boron or carbon.

【0012】[0012]

【発明の実施の形態】実施形態1.以下、図示実施形態
により本発明を説明する。図1は本発明の第1の実施形
態に係る熱交換用伝熱管を示す断面図および部分拡大模
式図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. Hereinafter, the present invention will be described with reference to the illustrated embodiments. FIG. 1 is a sectional view and a partially enlarged schematic view showing a heat exchange tube for heat exchange according to a first embodiment of the present invention.

【0013】この第1実施形態の熱交換用伝熱管は、高
温ガス雰囲気中に設けられ、この高温ガスと、内部を通
過する被加熱流体との間で熱交換を行わせる伝熱管1
が、AlとAlNを含み、AlNが1wt%以上90wt%以
下、Al+AlN+AlONの合計割合が50wt%以上1
00wt%以下、肉厚が3mm以上12mm以下のセラミック
合金複合材料で形成されてなるものである。
The heat exchange tube for heat exchange according to the first embodiment is provided in a high-temperature gas atmosphere, and performs heat exchange between the high-temperature gas and a fluid to be heated passing therethrough.
Contains Al and AlN, AlN is 1 wt% or more and 90 wt% or less, and the total proportion of Al + AlN + AlON is 50 wt% or more and 1 wt% or more.
It is formed of a ceramic alloy composite material having a thickness of not more than 00 wt% and a thickness of not less than 3 mm and not more than 12 mm.

【0014】ここで、窒化アルミニウムであるAlN
は、セラミック材料の中でも、空気酸化に対する耐食
性、溶銑、溶鋼等の各種溶融金属に対する耐食性に優れ
た材料で、不活性雰囲気では、高炉スラグ等の各種溶融
スラグに対する耐食性にも優れている。また硬度が比較
的高いので耐摩耗性にも優れ、さらに極めて高い熱伝導
度、低い熱膨張率、比較的低い弾性率を有するので、熱
衝撃に比較的強い特徴を持っている。つまりAlNは、
優れた耐食性と耐摩耗性、比較的優れた耐熱衝撃性を併
せ持つ材料である。
Here, aluminum nitride, AlN
Is a material having excellent corrosion resistance to air oxidation and corrosion resistance to various molten metals such as hot metal and molten steel among ceramic materials. In an inert atmosphere, it is also excellent in corrosion resistance to various molten slags such as blast furnace slag. In addition, since it has relatively high hardness, it has excellent wear resistance, and further has extremely high thermal conductivity, a low coefficient of thermal expansion, and a relatively low elastic modulus, so that it has a feature that is relatively resistant to thermal shock. In other words, AlN
A material that has both excellent corrosion resistance and wear resistance, and relatively excellent thermal shock resistance.

【0015】AlNと共に、金属アルミニウムであるAl
も、熱伝導の極めてよい物質で、かつ熱衝撃の緩和に有
利な金属であり、伝熱管1の構成因子として適してい
る。セラミック合金複合材料の製造過程で、Alの多く
は雰囲気のN2と反応してAlNに変わり、AlN中に未
反応のAlが分散した構成になり、図1のようにAlNが
粒子間の結合力を強化する。
AlN, together with AlN, which is metallic aluminum
Is also a material having extremely good thermal conductivity and a metal that is advantageous in reducing thermal shock, and is suitable as a component of the heat transfer tube 1. In the manufacturing process of ceramic alloy composite material, changes to AlN reacts with N 2 atmosphere Many Al, become configuration unreacted Al in AlN are dispersed binding AlN is between the particles as in FIG. 1 Strengthen power.

【0016】このようなアルミニウム元素を主体とする
セラミック合金複合材料は、例えば、低純度Al源粉末
と高純度Al源粉末との混合粉末とを加圧成形し、この
成形体を焼結することによって得られる。
Such a ceramic alloy composite material mainly composed of an aluminum element is obtained by, for example, pressing a mixed powder of a low-purity Al source powder and a high-purity Al source powder and sintering the compact. Obtained by

【0017】低純度Al源粉末は、例えば金属Alまたは
Al合金粉末で、Si,Mg等の合金元素を含むこともあ
る。高純度Al源粉末は、例えばAlを90wt%以上含
む。これらの混合粉末を加熱成形して得られた充填体を
窒素雰囲気中で加熱すると、粉末中のAlが溶融し(純
粋のAlの融点は660℃であるが、Al−Mg合金は最
大450℃まで融点が降下し、Al−Si合金では最大5
77℃まで融点が降下する)、680℃に達すると、あ
る量のAlは、雰囲気のN2と反応してAlNに変わり、
AlN中に少量の未反応のAlが分散した構成となる。窒
化の条件によっては、伝熱管1の表層部を形成するセラ
ミック合金複合材料の高温ガスと接触する管体表面部の
AlN濃度を、他の断面部より高くすることもできる。
The low-purity Al source powder is, for example, a metal Al or Al alloy powder, and may contain alloying elements such as Si and Mg. The high-purity Al source powder contains, for example, 90 wt% or more of Al. When the filler obtained by heat-molding these mixed powders is heated in a nitrogen atmosphere, Al in the powder is melted (pure Al has a melting point of 660 ° C., whereas Al-Mg alloy has a maximum melting point of 450 ° C.). The melting point drops to 5% for Al-Si alloys.
When the temperature reaches 680 ° C., a certain amount of Al reacts with N 2 in the atmosphere to change to AlN,
A structure is obtained in which a small amount of unreacted Al is dispersed in AlN. Depending on the nitriding conditions, the AlN concentration at the surface of the tube body in contact with the high-temperature gas of the ceramic alloy composite material forming the surface layer of the heat transfer tube 1 can be made higher than at other cross-sections.

【0018】この構成により、焼結体は熱衝撃を受けて
も、AlNの形状変形を防ぎ、AlNに囲まれたAlが熱
衝撃を緩和する機能を持つ。そのため、この機能を維持
するためには、AlNを少なくとも1wt%以上含有しな
ければならない。AlNの含有量が、1wt%未満では粒
子間の結合力が小さくて不十分となり、また90wt%を
超えるとこのセラミック合金複合材料の特性がセラミッ
クに近づき、脆くなるため好ましくない。したがって、
AlNの含有割合は1〜90wt%とする。
With this structure, even if the sintered body receives a thermal shock, the AlN has a function of preventing the shape deformation of the AlN, and the Al surrounded by the AlN has a function of reducing the thermal shock. Therefore, in order to maintain this function, AlN must be contained at least 1 wt% or more. If the content of AlN is less than 1 wt%, the bonding force between the particles is small and insufficient, and if it exceeds 90 wt%, the properties of the ceramic alloy composite material approach ceramics and become brittle, which is not preferable. Therefore,
The content ratio of AlN is 1 to 90 wt%.

【0019】また、このセラミック合金複合材料には、
AlやAlONがAlN中に分散している。ここでAlON
とは、Al,O,Nの固液体の総称で、例としてAl11
16N,AlON,Al1982884,Al2739N,Al10
83,Al937,SiAl727,Si3Al34.5
5を挙げることができる。Al+AlN+AlONの含有重
量割合が、50wt%以上100wt%以下であれば、この
セラミック合金複合材料は熱変形特性を有しながら、熱
衝撃を吸収することができる。
Further, this ceramic alloy composite material includes:
Al and AlON are dispersed in AlN. Here AlON
Is a general term for solid liquids of Al, O, and N. For example, Al 11 O
16 N, AlON, Al 198 O 288 N 4 , Al 27 O 39 N, Al 10
N 8 O 3, Al 9 O 3 N 7, SiAl 7 O 2 N 7, Si 3 Al 3 O 4.5 N
5 can be mentioned. When the content ratio of Al + AlN + AlON is not less than 50% by weight and not more than 100% by weight, the ceramic alloy composite material can absorb a thermal shock while having a thermal deformation characteristic.

【0020】また、アルミを含む窒化物は、高温排ガス
中に含まれている酸化物の飛灰との濡れ性が悪い(以下
これを撥灰性という)ので、Al+AlN+AlONの含
有重量割合が50wt%以上有れば、その飛灰ダストを付
着させない特性(撥灰性)が有効に発揮される。
The nitride containing aluminum has poor wettability with the fly ash of the oxide contained in the high-temperature exhaust gas (hereinafter referred to as ash repellency), so that the weight percentage of Al + AlN + AlON is 50 wt%. With the above, the property of preventing fly ash dust from adhering (ash repellency) is effectively exhibited.

【0021】ところで、伝熱管1の製造過程でAlON
を除去することは可能である。したがって、AlONを
除去し、AlとAlNだけとし、その重量割合が50wt%
以上100wt%以下となるように構成してもよく、この
ようなセラミック合金複合材料でも、熱変形特性を有し
ながら、熱衝撃を吸収することができる。
In the process of manufacturing the heat transfer tube 1, AlON
Is possible. Therefore, AlON was removed and only Al and AlN were used, and the weight ratio was 50 wt%.
It may be configured to be at least 100 wt% or less, and even such a ceramic alloy composite material can absorb thermal shock while having thermal deformation characteristics.

【0022】いずれにせよ、伝熱管1の肉厚は3〜12
mmが好ましい。肉厚が3mm未満であると、被加熱流体の
圧力に対して強度面で問題が生じ、12mmより大きくな
ると、熱交換中に、厚み方向において熱勾配が生じ、セ
ラミック合金複合材料に割れが生じ易くなる。
In any case, the thickness of the heat transfer tube 1 is 3 to 12
mm is preferred. If the wall thickness is less than 3 mm, there is a problem in strength with respect to the pressure of the fluid to be heated. If the wall thickness is more than 12 mm, a heat gradient occurs in the thickness direction during heat exchange, causing cracks in the ceramic alloy composite material. It will be easier.

【0023】なお、ここではセラミック合金複合材料か
らなる伝熱管として断面形状が真円の管を例に挙げて説
明したが、必ずしも真円にする必要はなく、変心した
円、楕円、角形、又はいびつな形状でもかまわない。
The heat transfer tube made of the ceramic alloy composite material has been described by taking a tube having a perfect circular cross section as an example. However, the heat transfer tube is not necessarily required to be a perfect circle, but an eccentric circle, ellipse, square, or Irregular shapes are acceptable.

【0024】実施形態2.図2は本発明の第2の実施形
態に係る熱交換用伝熱管を示す断面図であり、図中、前
述の第1の実施形態(図1)と同一部分には同一符号を
付してある。
Embodiment 2 FIG. FIG. 2 is a cross-sectional view showing a heat exchange tube for heat exchange according to a second embodiment of the present invention. In the figure, the same parts as those in the first embodiment (FIG. 1) are designated by the same reference numerals. is there.

【0025】この第2実施形態の熱交換用伝熱管は、高
温ガス雰囲気中に設けられ、この高温ガスと、内部を通
過する被加熱流体との間で熱交換を行わせる伝熱管11
が、三層構造11a,11b,11cからなり、三層の
表層部に前述の第1の実施形態で説明したと同様のセラ
ミック合金複合材料、すなわち、AlとAlNを含み、A
lNが1wt%以上90wt%以下、Al+AlNの合計割合
が50wt%以上100wt%以下、肉厚が3mm以上12mm
以下のセラミック合金複合材料、又はAlとAlNを含
み、AlNが1wt%以上90wt%以下、Al+AlN+Al
ONの含有重量割合の合計割合が50wt%以上100wt
%以下、肉厚が3mm以上12mm以下のセラミック合金複
合材料を用いている。なお、伝熱管11は、この三層構
造に限定されるものでなく、目的に応じて、単層、二
層、三層以上の層に形成されるが、いずれにせよ、高温
ガスに曝される表層部に前述のようなセラミック合金複
合材料を用いることが重要である。
The heat exchanger tube for heat exchange according to the second embodiment is provided in a high-temperature gas atmosphere, and performs heat exchange between the high-temperature gas and a fluid to be heated passing therethrough.
Has a three-layer structure 11a, 11b, and 11c, and includes the same ceramic alloy composite material as that described in the first embodiment, that is, Al and AlN in the three-layer surface layer portion.
lN is 1 wt% or more and 90 wt% or less, the total ratio of Al + AlN is 50 wt% or more and 100 wt% or less, and the wall thickness is 3 mm or more and 12 mm.
The following ceramic alloy composite material, or containing Al and AlN, wherein AlN is 1 wt% or more and 90 wt% or less, Al + AlN + Al
The total percentage of ON content is 50 wt% or more and 100 wt%
% Or less, and a ceramic alloy composite material having a thickness of 3 mm or more and 12 mm or less is used. Note that the heat transfer tube 11 is not limited to this three-layer structure, and may be formed in a single layer, two layers, or three or more layers according to the purpose. It is important to use the above-mentioned ceramic alloy composite material for the surface layer portion.

【0026】また、伝熱管11の外表面に、BNあるい
はB4C等の硼素あるいはSiCや黒鉛等の炭素を含む化
合物が塗布あるいは(例えば800℃の高温下で)溶浸
されている。これらは、前述のAlNを含むセラミック
合金複合材料以上に撥灰性が良いため、AlNを含むセ
ラミック合金複合材料以上に飛灰の付きを防止してくれ
る。塗布あるいは溶浸する厚みは1〜400ミクロンが
好ましく、長期間にわたって伝熱管1を使用するときに
は、例えば毎年、伝熱管外表面に繰り返し塗布あるいは
溶浸する。これにより、撥灰効果を維持することができ
る。
The outer surface of the heat transfer tube 11 is coated or infiltrated (for example, at a high temperature of 800 ° C.) with a compound containing boron such as BN or B 4 C or a carbon-containing compound such as SiC or graphite. Since these have better ash repellency than the above-mentioned AlN-containing ceramic alloy composite material, they prevent fly ash from attaching more than AlN-containing ceramic alloy composite material. The thickness to be applied or infiltrated is preferably 1 to 400 microns, and when the heat transfer tube 1 is used for a long period of time, for example, it is repeatedly applied or infiltrated to the outer surface of the heat transfer tube every year. Thereby, the ash repelling effect can be maintained.

【0027】このようなセラミック合金複合材料からな
る伝熱管11の外表面外側を高温ガスが流れ、伝熱管1
1の第一層(内管)11a内を被加熱流体が通る。高温
ガスの温度は400℃〜1200℃であり、ガス雰囲気
条件によって、内側の層を形成する材料を選定する。こ
こでは第一層11aに肉厚4mmの耐熱金属(例えばSU
S304)、第二層11bに非Al系セラミック材料
(炭素繊維を主体とする材料)用いた。高温排ガス中に
は、HClあるいはSOx、またはこれらの双方が含まれ
ている。伝熱管11内を流れる被加熱流体としては、空
気、水蒸気、CO 2を2〜25vol%(湿ベース)含む燃
焼排ガスを利用でき、空気や燃焼排ガスの場合は、最高
800℃、水蒸気の場合は、約550℃まで加熱するこ
とができる。
From such a ceramic alloy composite material,
The hot gas flows outside the outer surface of the heat transfer tube 11
The fluid to be heated passes through the inside of the first layer (inner tube) 11a. high temperature
The temperature of the gas is between 400 ° C and 1200 ° C and the gas atmosphere
The material for forming the inner layer is selected depending on the conditions. This
Here, a 4 mm thick heat-resistant metal (eg, SU
S304) Non-Al-based ceramic material for the second layer 11b
(Material mainly composed of carbon fiber) was used. In high temperature exhaust gas
Contains HCl or SOx, or both.
ing. The fluid to be heated flowing through the heat transfer tube 11 is empty.
Gas, water vapor, CO TwoContaining 2 to 25 vol% (wet base)
Exhaust gas can be used.
800 ° C. In case of steam, heat to about 550 ° C.
Can be.

【0028】また、ここでも伝熱管11のセラミック合
金複合材料からなる最表層部11cの肉厚を3〜12mm
がに設定してあるので、被加熱流体の圧力に対する強度
面の確保が容易で、かつ厚み方向において熱勾配が生じ
るのを防止できた。
Also in this case, the thickness of the outermost layer portion 11c made of the ceramic alloy composite material of the heat transfer tube 11 is 3 to 12 mm.
Since it was set to, it was easy to secure a strength surface with respect to the pressure of the fluid to be heated, and it was possible to prevent a thermal gradient from occurring in the thickness direction.

【0029】なお、ここでもセラミック合金複合材料か
らなる表層部を含む各層11a,11b,11cがいず
れも断面形状が同心の真円からなる伝熱管を例に挙げて
説明したが、必ずしも真円にする必要はなく、変心した
円、楕円、角形、又はいびつな形状でもかまわない。ま
たセラミック合金複合材料からなる表層部(第三層)
と、その内側の非Al系セラミック材料からなる中間層
(第二層)および耐熱金属からなる最内層(第一層)と
が、同心である必要もない。
Although the layers 11a, 11b, and 11c including the surface layer made of the ceramic alloy composite material have all been described with reference to a heat transfer tube whose cross section is a perfect circle, it is not limited to a perfect circle. It is not necessary to do so, and an eccentric circle, ellipse, square, or irregular shape may be used. Surface layer (third layer) made of ceramic alloy composite material
The inner layer (second layer) made of a non-Al-based ceramic material and the innermost layer (first layer) made of a heat-resistant metal need not be concentric.

【0030】ところで、本発明で用いるアルミニウム元
素を主体としたセラミック合金複合材料には、AlN,
Al以外にも耐熱性のよい物質、例えば酸化物、硼化
物、炭化物、窒化物、酸窒化物等を配合してもよい。な
お、利用可能な酸化物としては、TiO2,ZrO2,Cr2
3,Al23,SiO2,Y23,CeO2,Sc23等、
硼化物としては、BN,MgB2,CaB6,TiB2,Zr
2,AlB2等、炭化物としては、B4C,TiC,Zr
C,Cr32,Al43,SiC等、窒化物としては、Ti
N,ZrN,Cr2N,Si34等、酸窒化物等としてはS
i22O等を挙げることができ、これらの中から1種ま
たは複数を選択すればよい。また酸化物中の少なくとも
一つを含む複合酸化物が配合されてもよい。組成につい
ては、いかなる組成でもよい。
The ceramic alloy composite material mainly composed of aluminum used in the present invention includes AlN,
In addition to Al, a substance having good heat resistance, for example, an oxide, a boride, a carbide, a nitride, an oxynitride, or the like may be blended. The usable oxides include TiO 2 , ZrO 2 , and Cr 2
O 3 , Al 2 O 3 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3, etc.
As borides, BN, MgB 2 , CaB 6 , TiB 2 , Zr
Examples of carbides such as B 2 and AlB 2 include B 4 C, TiC, and Zr.
Ti, such as C, Cr 3 C 2 , Al 4 C 3 , and SiC, is Ti
N, ZrN, Cr 2 N, Si 3 N 4 or the like, S is the oxynitride etc.
i 2 N 2 O and the like can be mentioned, and one or more of them may be selected. Further, a composite oxide containing at least one of the oxides may be blended. The composition may be any composition.

【0031】また、前述の各実施形態における伝熱管
1,11の長さは、いずれも6m以下が好ましい。この
ような伝熱管1,11が長くなると、セラミック合金複
合材料が割れ易くなったり、伝熱管11のように多層構
造の場合、剥離し易くなる。
The length of each of the heat transfer tubes 1 and 11 in each of the above embodiments is preferably 6 m or less. When such heat transfer tubes 1 and 11 are long, the ceramic alloy composite material is easily broken, and in the case of the heat transfer tube 11 having a multi-layer structure, it is easy to peel off.

【0032】また、前述の各実施形態における伝熱管
1,11の外径は、200mm以下が好ましい。外径が2
00mmより大きくなると、セラミック合金複合材料が割
れ易くなる。
The outer diameter of the heat transfer tubes 1 and 11 in each of the above embodiments is preferably 200 mm or less. Outer diameter is 2
When it is larger than 00 mm, the ceramic alloy composite material is easily broken.

【0033】以下に、少なくとも表層部がセラミック合
金複合材料材質からなる本発明に係る3種類の熱交換用
伝熱管を、都市ゴミ焼却パイロットプラントの排ガス温
度約950℃〜750℃の高温排ガス中に挿入し、被加
熱流体として、入口温度150〜400℃の水蒸気と1
20〜300℃の空気と廃棄物燃焼排ガスを用いた試験
例を示す。試験例1. 単層構造:Al主体セラミック合金(Al+A
LN-90wt%以上)、外径40mm、肉厚4mmとした。試験例2. 三層構造:内面側より、第一層はSUS30
4(肉厚4mm)、第二層は炭素繊維を主体とする層、第
三層(最表層)はAl主体セラミック合金(Al+ALN
-90wt%以上、肉厚4mm)、外径40mmとした。試験例3. 三層構造:内面側より、第一層はSUS30
4(肉厚4mm)、第二層は炭素繊維を主体とする層、第
三層(最表層)はAl主体セラミック合金(Al+ALN
-90wt%以上、肉厚4mm)、外径40mm、管体外表面
にBNを20ミクロン塗布した。
In the following, three types of heat exchange tubes for heat exchange according to the present invention having at least a surface layer made of a ceramic alloy composite material are placed in a high-temperature exhaust gas having an exhaust gas temperature of about 950 ° C. to 750 ° C. of a municipal waste incineration pilot plant. Insert, as the fluid to be heated, steam with an inlet temperature of 150 to 400 ° C and 1
A test example using air at 20 to 300 ° C. and waste flue gas will be described. Test Example 1 Single layer structure: Al-based ceramic alloy (Al + A
LN-90 wt% or more), an outer diameter of 40 mm and a wall thickness of 4 mm. Test example 2. Three-layer structure: the first layer is SUS30 from the inner side
4 (thickness 4 mm), the second layer is a layer mainly composed of carbon fiber, and the third layer (the outermost layer) is an Al-based ceramic alloy (Al + ALN).
-90 wt% or more, wall thickness 4 mm) and outer diameter 40 mm. Test Example 3 Three-layer structure: the first layer is SUS30 from the inner side
4 (thickness 4 mm), the second layer is a layer mainly composed of carbon fiber, and the third layer (the outermost layer) is an Al-based ceramic alloy (Al + ALN).
-90 wt% or more, wall thickness 4 mm), outer diameter 40 mm, 20 μm of BN was applied to the outer surface of the tube.

【0034】暴露試験の結果、いずれの試験例において
も、伝熱管の外表面の減肉量はわずかで、長期間にわた
って安定した熱交換が可能であることが確認された。更
に今回の試験において、試験例3のBNを塗布した伝熱
管は、他の試験例1,2に比べ、70%以上減肉量が小
さいことが確認された。試験例の伝熱管が曝された排ガ
スの主成分は、N2以外に、O2:2〜16%、HCl :
100〜500ppm、SOx:max300ppm、CO2:5
〜18%であったが、いずれの試験例の伝熱管にも亀裂
は発生しなかった。
As a result of the exposure test, it was confirmed that in all of the test examples, the amount of thinning on the outer surface of the heat transfer tube was slight, and stable heat exchange was possible over a long period of time. Further, in this test, it was confirmed that the heat transfer tube coated with BN of Test Example 3 had a smaller wall loss by 70% or more than the other Test Examples 1 and 2. The main component of the exhaust gas heat exchanger tube is exposed in the test examples, in addition to N 2, O 2: 2~16% , HCl:
100~500ppm, SOx: max300ppm, CO 2 : 5
1818%, but no cracks occurred in the heat transfer tubes of any of the test examples.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、伝
熱管の少なくとも表層部を、アルミを含む窒化物からな
るセラミック合金複合材料で構成したので、撥灰性がよ
く、伝熱管外表面への飛灰の堆積が無くなり、熱伝導率
を低下させることなく高温腐食雰囲気下から高効率で熱
回収することができた。このため、廃棄物燃焼排ガス、
石炭燃焼排ガス、下水汚泥燃焼排ガス、その他の産業廃
棄物燃焼排ガス中の高温腐食環境から、これまで未利用
であった高温の熱を回収することができた。
As described above, according to the present invention, at least the surface layer portion of the heat transfer tube is made of a ceramic alloy composite material made of a nitride containing aluminum, so that the ash repellency is good and the heat transfer tube outside The deposition of fly ash on the surface was eliminated, and heat could be efficiently recovered from a high-temperature corrosive atmosphere without lowering the thermal conductivity. Therefore, waste flue gas,
High-temperature heat, which had not been used before, could be recovered from the high-temperature corrosive environment in the coal combustion exhaust gas, sewage sludge combustion exhaust gas, and other industrial waste combustion exhaust gas.

【0036】また、セラミック合金複合材料部の肉厚を
3mm以上12mm以下に設定したので、被加熱流体の圧力
に対する強度面の確保が容易で、かつ厚み方向において
熱勾配が生じるのを防止できた。
In addition, since the thickness of the ceramic alloy composite material portion is set to 3 mm or more and 12 mm or less, it is easy to secure a strength surface against the pressure of the fluid to be heated, and it is possible to prevent a heat gradient from occurring in the thickness direction. .

【0037】また、伝熱管の外表面に、アルミを含む窒
化物よりも撥灰性が高い、硼素あるいは炭素を含む化合
物からなる撥灰剤を塗布あるいは溶浸したので、撥灰効
果をより高めることができた。
Further, since the outer surface of the heat transfer tube is coated or infiltrated with an ash repellent made of a compound containing boron or carbon, which has higher ash repellency than a nitride containing aluminum, the ash repelling effect is further enhanced. I was able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る熱交換用伝熱管
を示す断面図および部分拡大模式図である。
FIG. 1 is a cross-sectional view and a partially enlarged schematic view illustrating a heat exchange tube for heat exchange according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る熱交換用伝熱管
を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a heat exchanger tube for heat exchange according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11 伝熱管 1,11 heat transfer tubes

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高温ガス雰囲気中に設けられ、該高温ガ
スと、内部を通過する被加熱流体との間で熱交換を行わ
せる熱交換用伝熱管において、 前記伝熱管の少なくとも表層部が、AlとAlNを含み、
AlNが1wt%以上90wt%以下、Al+AlNの合計割
合が50wt%以上100wt%以下のセラミック合金複合
材料で形成されてなることを特徴とする熱交換用伝熱
管。
1. A heat exchange tube for heat exchange provided in a high temperature gas atmosphere and performing heat exchange between the high temperature gas and a fluid to be heated passing therethrough, wherein at least a surface layer portion of the heat transfer tube is: Containing Al and AlN,
A heat exchanger tube for heat exchange, comprising a ceramic alloy composite material in which AlN is 1 wt% or more and 90 wt% or less, and a total ratio of Al + AlN is 50 wt% or more and 100 wt% or less.
【請求項2】 高温ガス雰囲気中に設けられ、該高温ガ
スと、内部を通過する被加熱流体との間で熱交換を行わ
せる熱交換用伝熱管において、 前記伝熱管の少なくとも表層部が、AlとAlNを含み、
AlNが1wt%以上90wt%以下、Al+AlN+AlON
の合計割合が50wt%以上100wt%以下のセラミック
合金複合材料で形成されてなることを特徴とする熱交換
用伝熱管。
2. A heat exchange tube for heat exchange provided in a high temperature gas atmosphere and performing heat exchange between the high temperature gas and a fluid to be heated passing therethrough, wherein at least a surface portion of the heat transfer tube is: Containing Al and AlN,
AlN is 1wt% or more and 90wt% or less, Al + AlN + AlON
Characterized by being formed of a ceramic alloy composite material having a total ratio of 50 wt% or more and 100 wt% or less.
【請求項3】 セラミック合金複合材料部の肉厚を3mm
以上12mm以下に設定したことを特徴とする請求項1又
は請求項2記載の熱交換用伝熱管。
3. The thickness of the ceramic alloy composite part is 3 mm.
The heat transfer tube for heat exchange according to claim 1, wherein the heat transfer tube is set to be not less than 12 mm.
【請求項4】 伝熱管の外表面に硼素あるいは炭素を含
む化合物からなる撥灰剤を塗布あるいは溶浸させたこと
を特徴とする請求項1乃至請求項3のいずれかに記載の
熱交換用伝熱管。
4. The heat exchanger according to claim 1, wherein an ash repellent made of a compound containing boron or carbon is applied or infiltrated on the outer surface of the heat transfer tube. Heat transfer tubes.
JP11228591A 1999-08-12 1999-08-12 Heat transfer tube for heat exchanger Pending JP2001049379A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11228591A JP2001049379A (en) 1999-08-12 1999-08-12 Heat transfer tube for heat exchanger
EP00949969A EP1122506A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
KR1020017002406A KR20010072966A (en) 1999-08-12 2000-08-03 Heat exchanger tube and heat recovery method using the same
PCT/JP2000/005205 WO2001013057A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
TW089116086A TW546454B (en) 1999-08-12 2000-08-10 Heat exchange tube and heat recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228591A JP2001049379A (en) 1999-08-12 1999-08-12 Heat transfer tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2001049379A true JP2001049379A (en) 2001-02-20

Family

ID=16878768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228591A Pending JP2001049379A (en) 1999-08-12 1999-08-12 Heat transfer tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP2001049379A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310402A (en) * 2001-02-06 2002-10-23 Nkk Corp Utilizing facility for gas produced by gasifying melting furnace
JP2013535647A (en) * 2010-07-28 2013-09-12 マーティン ゲーエムベーハー フュール ウムヴェルト ウント エネルギテクニック Method for protecting heat exchange pipe of steam boiler equipment, molded product, heat exchange pipe and steam boiler equipment
CN104131879A (en) * 2014-08-01 2014-11-05 周华祥 Heat transfer surface structure of combustion chamber
JP2016113696A (en) * 2014-12-15 2016-06-23 ベ イ,ゴン Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same
JP2018109466A (en) * 2016-12-28 2018-07-12 株式会社Ihi Coating layer and method of forming the same
US11504738B2 (en) 2018-03-02 2022-11-22 Ihi Corporation Coating and method for forming the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310402A (en) * 2001-02-06 2002-10-23 Nkk Corp Utilizing facility for gas produced by gasifying melting furnace
JP2013535647A (en) * 2010-07-28 2013-09-12 マーティン ゲーエムベーハー フュール ウムヴェルト ウント エネルギテクニック Method for protecting heat exchange pipe of steam boiler equipment, molded product, heat exchange pipe and steam boiler equipment
CN104131879A (en) * 2014-08-01 2014-11-05 周华祥 Heat transfer surface structure of combustion chamber
CN104131879B (en) * 2014-08-01 2016-05-04 周华祥 A kind of combustion chamber heat transfer surface structures
JP2016113696A (en) * 2014-12-15 2016-06-23 ベ イ,ゴン Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same
JP2018109466A (en) * 2016-12-28 2018-07-12 株式会社Ihi Coating layer and method of forming the same
US11504738B2 (en) 2018-03-02 2022-11-22 Ihi Corporation Coating and method for forming the same

Similar Documents

Publication Publication Date Title
JP2981184B2 (en) Boiler heat transfer tube and method for producing boiler heat transfer tube with excellent effect of suppressing deposit adhesion on inner surface of tube
JP2004345945A (en) Article comprising silicon base material, and bonding layer and top protective layer provided on this base material
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
JP2001049379A (en) Heat transfer tube for heat exchanger
JP3674401B2 (en) Heat exchanger tube for heat exchange
JPH10274401A (en) High temperature resistant and corrosion resistant heat exchanger tube of waste incineration boiler and super heater
TW546454B (en) Heat exchange tube and heat recovery method using the same
JP2002310594A (en) Heat exchanger with heat exchanger tube
EP1413638A1 (en) MATERIAL BEING RESISTANT TO CHLORIDE−CONTAINING MOLTEN SALT CORROSION, STEEL PIPE FOR HEAT EXCHANGER COATED WITH THE SAME, AND METHOD FOR PRODUCTION THEREOF
JP2001056195A (en) Heat transfer pipe for heat exchange
JP3548445B2 (en) Heat exchanger tubes for heat exchangers
JP2002317903A (en) Boiler equipped with corrosion resistant heat transfer pipe for heat exchange
JP2005272927A (en) High temperature corrosion resistant material
JP3346365B2 (en) Method of manufacturing aluminum matrix composite coated steel pipe
JP2996128B2 (en) Air heater for high temperature corrosion resistance
JP2003042688A (en) Heat exchanging coated steel pipe, its producing method and heat exchanger
JP3548446B2 (en) Heat exchanger tubes for heat exchangers
JP2000119781A (en) Heat transfer tube for heat exchange, with corrosion and wear resistance, and heating furnace and incinerator using the same
JP2002038277A (en) Steel tube coated with aluminum-matrix composite material
Gopal et al. Composites for High Temperature Wear Applications
JP2002038278A (en) Steel tube coated with aluminum-matrix composite material
Asthana et al. Advances in brazing: 11. Active metal brazing of advanced ceramic composites to metallic systems
JP2002364820A (en) Heat exchange tube support structure
JP2003287395A (en) Ceramic pipe for heat exchanger and method of manufacture
JP3747460B2 (en) Thermocouple protection tube used in gasification melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408