JP2002310402A - Utilizing facility for gas produced by gasifying melting furnace - Google Patents
Utilizing facility for gas produced by gasifying melting furnaceInfo
- Publication number
- JP2002310402A JP2002310402A JP2001260057A JP2001260057A JP2002310402A JP 2002310402 A JP2002310402 A JP 2002310402A JP 2001260057 A JP2001260057 A JP 2001260057A JP 2001260057 A JP2001260057 A JP 2001260057A JP 2002310402 A JP2002310402 A JP 2002310402A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- waste heat
- facility
- heat boiler
- melting furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Chimneys And Flues (AREA)
- Gasification And Melting Of Waste (AREA)
- Industrial Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガス化溶融システ
ムにおけるガス化溶融炉で生成された生成ガスの利用設
備に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a facility for utilizing a product gas generated in a gasification and melting furnace in a gasification and melting system.
【0002】[0002]
【従来の技術】都市ゴミ、下水汚泥、し尿汚泥、可燃性
産業廃棄物等(以下、単に「廃棄物」という。)の焼却
において、最近、灰溶融を行うと共に高効率発電を実現
するシステムとして、廃棄物をガス化し、その生成ガス
等を利用して発電を行うガス化溶融システムが注目され
ている。2. Description of the Related Art Recently, incineration of municipal garbage, sewage sludge, human waste sludge, combustible industrial waste, etc. (hereinafter, simply referred to as "waste"), as a system for melting ash and realizing high-efficiency power generation. Attention has been focused on a gasification and melting system that gasifies waste and generates electric power using generated gas and the like.
【0003】このガス化溶融システムの一つとして、シ
ャフト式ガス化溶融炉を用いたシステムがある。ここで
用いられるシャフト式ガス化溶融炉は、コークスを補助
燃料として用い、廃棄物を熱分解、ガス化し、さらに不
燃物や燃焼残渣の溶融を行うものであり、燃焼残渣の溶
融による無害化及び減容化が可能であると共に廃棄物中
に含まれる金属や不燃物も溶融して回収が可能である。
さらに、生成ガスを燃焼した高温の排ガスから廃熱ボイ
ラで蒸気回収し、回収した蒸気を蒸気タービンに供給し
て発電されている。As one of the gasification and melting systems, there is a system using a shaft type gasification and melting furnace. The shaft-type gasification and melting furnace used here uses coke as an auxiliary fuel, pyrolyzes waste, gasifies it, and further melts incombustibles and combustion residues. The volume can be reduced, and the metals and incombustibles contained in the waste can be melted and recovered.
Further, steam is recovered from a high-temperature exhaust gas obtained by burning the generated gas by a waste heat boiler, and the recovered steam is supplied to a steam turbine to generate power.
【0004】図7に、従来例にかかるガス化溶融炉を用
いたガス化溶融システムの一例を示す。FIG. 7 shows an example of a gasification and melting system using a conventional gasification and melting furnace.
【0005】ガス化溶融炉1内には廃棄物と共にコーク
スや石灰石などの副原料が装入され、炉底部にコークス
層が形成される。そして、このコークス層へ空気又は酸
素富化された空気を吹込んでコークス及び廃棄物の乾留
残渣を燃焼させ、高温の燃焼帯を形成させる。投入され
た廃棄物は高温のコークス層の上部で流動化層を形成
し、予熱されながら熱分解、ガス化して可燃性ガスを生
成する。この生成した可燃性ガスは、ガス化溶融炉1内
でその一部が燃焼し、残りは可燃性ガスを含有する高温
の生成ガスとして炉外に導出される。一方、ガス化溶融
炉1内で廃棄物中の灰分や不燃物は高温のコークス層上
へ降下して溶融し、溶融スラグとなってコークス層を通
って滴下し、炉底部に溜まって排出される。[0005] In the gasification and melting furnace 1, auxiliary materials such as coke and limestone are charged together with waste, and a coke layer is formed at the bottom of the furnace. Then, air or oxygen-enriched air is blown into the coke layer to burn coke and the carbonized residue of waste, thereby forming a high-temperature combustion zone. The input waste forms a fluidized bed above the high-temperature coke bed, and is thermally decomposed and gasified while being preheated to generate combustible gas. A part of the generated combustible gas is burned in the gasification and melting furnace 1, and the rest is led out of the furnace as a high-temperature generated gas containing the combustible gas. On the other hand, the ash and incombustibles in the waste in the gasification and melting furnace 1 fall onto the high-temperature coke layer and melt, become molten slag, drop through the coke layer, accumulate at the furnace bottom and are discharged. You.
【0006】ガス化溶融炉1で生成された可燃性ガスを
含有する高温の生成ガスは、併設する2次燃焼室5に導
入され燃焼される。2次燃焼室5から排出された燃焼排
ガスは、2次燃焼室5に隣接して設けられた廃熱ボイラ
2内に導入される。前記2次燃焼室5内及び廃熱ボイラ
2内に設けられた蒸発管10d,10eからの蒸気は気
水ドラム9に集められる。気水ドラム9に集められた飽
和蒸気は、廃熱ボイラ2内に設けた過熱器7に送られ、
そこで加熱されて過熱蒸気となる。過熱器7で加熱され
た過熱蒸気は、廃熱ボイラ2に併設する発電設備内の発
電タービン8に送られ発電される。廃熱ボイラ2から排
出される排ガスは、廃熱ボイラ2に併設する排ガス処理
設備3に送られ排ガスが無害化された後、煙突6から外
部に放出される。[0006] A high-temperature generated gas containing a combustible gas generated in the gasification and melting furnace 1 is introduced into a secondary combustion chamber 5 attached thereto and burned. The combustion exhaust gas discharged from the secondary combustion chamber 5 is introduced into the waste heat boiler 2 provided adjacent to the secondary combustion chamber 5. Steam from the evaporating pipes 10 d and 10 e provided in the secondary combustion chamber 5 and the waste heat boiler 2 is collected in the steam drum 9. The saturated steam collected in the steam drum 9 is sent to the superheater 7 provided in the waste heat boiler 2,
There, it is heated and becomes superheated steam. The superheated steam heated by the superheater 7 is sent to a power generation turbine 8 in a power generation facility attached to the waste heat boiler 2 to generate power. The exhaust gas discharged from the waste heat boiler 2 is sent to an exhaust gas treatment facility 3 provided adjacent to the waste heat boiler 2, and after the exhaust gas is rendered harmless, is discharged outside from the chimney 6.
【0007】[0007]
【発明が解決しようとする課題】しかし、図7に示す従
来例にかかるガス化溶融システムでは、電力回収量は不
充分である。これは、回収蒸気温度が低いことが原因
で、発電効率を高めるためには蒸気を高温、高圧にする
ことが重要である。しかし、従来のガス化溶融システム
では廃熱ボイラ2内の過熱器7で発生させる蒸気の温度
及び圧力が300℃、30kg/cm2程度とあまり高
くすることができず、一般の重油焚き等の産業用燃焼ボ
イラに比べ発電効率が悪いという問題がある。However, in the gasification and melting system according to the conventional example shown in FIG. 7, the power recovery amount is insufficient. This is because the recovered steam temperature is low, and it is important to increase the temperature and pressure of the steam in order to increase the power generation efficiency. However, in the conventional gasification and melting system, the temperature and pressure of steam generated by the superheater 7 in the waste heat boiler 2 cannot be as high as about 300 ° C. and about 30 kg / cm 2 . There is a problem that power generation efficiency is lower than that of an industrial combustion boiler.
【0008】廃棄物中にはNaClなどの塩類が含まれ
ており、これが熱分解、燃焼過程で次式に示すように燃
焼ガス中のSO2、O2、H2Oなどと反応し、硫酸塩、
HClガス、Cl2ガスを生成する。The waste contains salts such as NaCl, which reacts with SO 2 , O 2 , H 2 O and the like in the combustion gas as shown in the following equation in the course of thermal decomposition and combustion to form sulfuric acid. salt,
HCl gas and Cl 2 gas are generated.
【0009】2NaCl+SO2+1/2O2+H2O
→ Na2SO4+2HCl 2HCl+1/2O2 → Cl2+H2O 一方、廃棄物に含まれる塩類のアルカリ金属や重金属類
は気化して、Cl2やSO2と反応してアルカリ金属塩化
物と硫酸塩が生成される。2NaCl + SO 2 + 1 / 2O 2 + H 2 O
→ Na 2 SO 4 + 2HCl 2HCl + 1 / 2O 2 → Cl 2 + H 2 O On the other hand, alkali metals and heavy metals in the salts contained in the waste gasify and react with Cl 2 or SO 2 to react with the alkali metal chloride and sulfuric acid. Salt is produced.
【0010】過熱器管には飛灰と燃焼ガスからの凝縮成
分が付着する(以下、これを「付着灰」という。)。付着
灰は上記のアルカリ金属塩化物と硫酸塩を含み450℃
程度の温度で溶融塩(共晶塩)が生成する。付着灰がZ
nやPbなど重金属を含有すると融点はさらに低下す
る。[0010] Fly ash and condensed components from the combustion gas adhere to the superheater tube (hereinafter, this is referred to as "adhered ash"). Adhesive ash contains the above alkali metal chloride and sulfate, 450 ° C
At about the temperature, a molten salt (eutectic salt) is formed. Adhesion ash is Z
When a heavy metal such as n or Pb is contained, the melting point is further lowered.
【0011】溶融塩は腐食性が大きく過熱器管金属の溶
解反応が進行し腐食損傷が発生する。The molten salt is highly corrosive, and the dissolution reaction of the superheater tube metal proceeds to cause corrosion damage.
【0012】このような過熱器管の溶融塩腐食の対策と
して、過熱器管の表面温度を付着灰の共晶塩の融点であ
る450℃程度以下となるように過熱蒸気温度を400
℃以下として運転されている。このため蒸気の高温化、
高圧化が制限され、発電効率も20%程度にとどまって
いる。As a countermeasure against such molten salt corrosion of the superheater tube, the superheated steam temperature is set to 400 ° C. or lower so that the surface temperature of the superheater tube becomes about 450 ° C. or less, which is the melting point of the eutectic salt of the attached ash.
It is operated at below ℃. Because of this, high temperature of steam,
High pressure is limited, and the power generation efficiency remains at about 20%.
【0013】また、蒸気の温度及び圧力を高くして高効
率発電を実施する場合には、過熱器管を頻繁に交換する
か高Ni−Cr−Mo材等の高価な耐食合金材料を用い
ることが必要になり、ランニングコスト及び設備費が嵩
むといった問題がある。[0013] When performing high-efficiency power generation by increasing the temperature and pressure of steam, the superheater tube must be replaced frequently or an expensive corrosion-resistant alloy material such as a high Ni-Cr-Mo material is used. Is required, and there is a problem that running cost and equipment cost increase.
【0014】本発明はこれらの問題点を解決し、過熱器
内の蒸気を高温化、高圧化してもランニングコスト及び
設備費を増大させることなく高効率の発電が可能なガス
化溶融炉生成ガスの利用設備を提供することを目的とす
る。The present invention solves these problems and provides a gasification and melting furnace gas that can generate electricity efficiently without increasing running costs and equipment costs even when the temperature of the steam in the superheater is increased to a higher temperature and pressure. The purpose is to provide facilities for use.
【0015】[0015]
【課題を解決するための手段】このような課題を解決す
るための本発明の特徴は以下の通りである。The features of the present invention for solving such a problem are as follows.
【0016】請求項1の発明は、ガス化溶融炉で生成さ
れた生成ガスが導入される廃熱ボイラと、該廃熱ボイラ
から排出される生成ガス中から腐食成分の除去を行う排
ガス処理設備と、該排ガス処理設備で処理された生成ガ
スを燃焼し、過熱蒸気の回収を行うガス焚きボイラとを
有することを特徴とするガス化溶融炉生成ガスの利用設
備である。A first aspect of the present invention is a waste heat boiler into which a product gas generated in a gasification and melting furnace is introduced, and an exhaust gas treatment facility for removing corrosive components from the product gas discharged from the waste heat boiler. And a gas-fired boiler for combusting the product gas treated by the exhaust gas treatment facility and recovering superheated steam.
【0017】上記構成のガス化溶融炉生成ガスの利用設
備では、排ガス処理設備にて生成ガス中に含まれる腐食
成分、すなわちHCl、Cl2、SO2等の硫黄酸化物、
飛灰を除去して溶融塩腐食の原因物質が除去された清浄
な生成ガスを得られるので、ガス焚きボイラで生成ガス
を燃焼して過熱器で熱回収する際、従来より高温、高圧
の過熱蒸気を用いることができ、発電効率を向上するこ
とができる。[0017] In the facility utilizing the gas produced by the gasification and melting furnace having the above structure, the corrosive components contained in the produced gas in the exhaust gas treatment facility, that is, sulfur oxides such as HCl, Cl 2 and SO 2 ;
Because it is possible to obtain clean product gas from which fly ash has been removed and the causative substance of molten salt corrosion has been removed, when using a gas-fired boiler to burn the product gas and recover heat using a superheater, a higher temperature, higher pressure Steam can be used, and power generation efficiency can be improved.
【0018】請求項2の発明は、請求項1において、ガ
ス化溶融炉と廃熱ボイラ間のガス流路に除塵機を設けた
ことを特徴とするガス化溶融炉生成ガスの利用設備であ
る。According to a second aspect of the present invention, there is provided a facility for utilizing gas produced by a gasification and melting furnace, wherein a dust remover is provided in a gas flow path between the gasification and melting furnace and the waste heat boiler. .
【0019】上記構成のガス化溶融炉生成ガスの利用設
備では、前述の請求項1の発明の構成に加えてガス化溶
融炉と廃熱ボイラの間に設けた除塵機にて飛灰を除去す
るので、溶融塩腐食の原因物質がさらに確実に除去され
るとともに廃熱ボイラ内にダストが付着することを防
ぎ、熱回収効率を上げることができる。In the facility for utilizing gas produced by the gasification and melting furnace having the above structure, fly ash is removed by a dust remover provided between the gasification and melting furnace and the waste heat boiler in addition to the structure of the first aspect of the present invention. Therefore, the substance causing the molten salt corrosion is more reliably removed, dust is prevented from adhering to the waste heat boiler, and the heat recovery efficiency can be improved.
【0020】請求項3の発明は、請求項1において、廃
熱ボイラと排ガス処理設備間のガス流路に除塵機を設け
たことを特徴とするガス化溶融炉生成ガスの利用設備で
ある。According to a third aspect of the present invention, there is provided a facility for utilizing gas produced by a gasification and melting furnace, wherein a dust remover is provided in a gas flow path between the waste heat boiler and the exhaust gas treatment facility.
【0021】上記構成のガス化溶融炉生成ガスの利用設
備では、前述の請求項1の発明の構成に加えて廃熱ボイ
ラと排ガス処理設備の間に設けた除塵機にて飛灰を除去
するので、溶融塩腐食の原因物質がさらに確実に除去さ
れるとともに排ガス処理設備の負荷を軽減し、設備費、
運転費を低減させることができる。In the facility utilizing the gas produced by the gasification and melting furnace having the above construction, fly ash is removed by a dust remover provided between the waste heat boiler and the exhaust gas treatment facility in addition to the construction of the first aspect of the present invention. Therefore, the cause of molten salt corrosion is more reliably removed and the load on exhaust gas treatment equipment is reduced,
Operating costs can be reduced.
【0022】請求項4の発明は、請求項1乃至請求項3
の何れかにおいて、ガス焚きボイラの上流側に生成ガス
を貯留するガス貯留設備を設けたことを特徴とするガス
化溶融炉生成ガスの利用設備である。According to a fourth aspect of the present invention, there is provided the first to third aspects.
In any one of the above items, a gas storage facility for storing a generated gas is provided upstream of the gas-fired boiler.
【0023】上記構成のガス化溶融炉生成ガスの利用設
備では、前述の請求項1乃至請求項3の何れかの発明の
構成に加えて、ガス焚きボイラの上流側に設けたガス貯
留設備にて、生成ガスの生成量及び可燃性ガス成分比、
すなわち保有発熱量の時間変動を吸収し平準化するので
ガス焚きボイラに供給するガスの性状と量を安定化でき
る。このため過熱蒸気条件も安定するので発電効率をよ
り向上させることができる。また、ガス焚きボイラに供
給する燃焼用空気量の調整が容易であり、排ガス中のN
Ox量を抑制するための低酸素運転も容易となる。[0023] In the facility for utilizing gas produced by the gasification and melting furnace having the above structure, in addition to the structure of any of the above-described inventions, a gas storage facility provided upstream of the gas-fired boiler may be provided. The amount of generated gas and the flammable gas component ratio,
That is, since the time variation of the retained calorific value is absorbed and leveled, the properties and amount of gas supplied to the gas-fired boiler can be stabilized. For this reason, the superheated steam condition is stabilized, so that the power generation efficiency can be further improved. In addition, it is easy to adjust the amount of combustion air supplied to the gas-fired boiler, and the N
Low oxygen operation for suppressing the amount of Ox is also facilitated.
【0024】請求項5の発明は、請求項1乃至請求項4
の何れかにおいて、ガス焚きボイラの下流側に脱硫設備
を設けたことを特徴とするガス化溶融炉生成ガスの利用
設備である。The invention of claim 5 is the invention of claims 1 to 4.
In any one of the above, a desulfurization facility is provided downstream of the gas-fired boiler.
【0025】上記構成のガス化溶融炉生成ガスの利用設
備では、前述の請求項1乃至請求項4の何れかの発明の
構成に加えて、ガス焚きボイラの下流側に設けた脱硫設
備にてガス焚きボイラからの排ガス中の硫黄酸化物とダ
ストを除去するので、排ガスをより確実に清浄にするこ
とができる。[0025] In the facility for utilizing gas produced by the gasification and melting furnace having the above configuration, in addition to the configuration of any one of the above-mentioned inventions, a desulfurization facility provided downstream of the gas-fired boiler is provided. Since sulfur oxides and dust in the exhaust gas from the gas-fired boiler are removed, the exhaust gas can be more reliably cleaned.
【0026】請求項6の発明は、ガス化溶融炉で生成さ
れた生成ガスが導入される廃熱ボイラと、該廃熱ボイラ
から排出される生成ガス中から腐食成分の除去を行う排
ガス処理設備と、該排ガス処理設備で処理された生成ガ
スの燃焼を行うガス焚きボイラと、該ガス焚きボイラ内
に設けられ、前記廃熱ボイラ及び/又はガス焚きボイラ
内に設けられた蒸発管からの蒸気の過熱を行う過熱器と
を有することを特徴とするガス化溶融炉生成ガスの利用
設備である。According to a sixth aspect of the present invention, there is provided a waste heat boiler into which a product gas generated in a gasification and melting furnace is introduced, and an exhaust gas treatment facility for removing corrosive components from the product gas discharged from the waste heat boiler. And a gas-fired boiler that burns the product gas processed by the exhaust gas treatment equipment; and steam from an evaporator tube provided in the gas-fired boiler and provided in the waste heat boiler and / or the gas-fired boiler. And a superheater for performing superheating of the gasification and melting furnace.
【0027】上記構成のガス化溶融炉生成ガスの利用設
備では、排ガス処理設備にて生成ガス中に含まれる腐食
成分、すなわちHCl、Cl2、SO2等の硫黄酸化物、
飛灰を除去して溶融塩腐食の原因物質が除去された清浄
な生成ガスを得られるので、ガス焚きボイラで生成ガス
を燃焼して過熱器で熱回収する際、従来より高温、高圧
の過熱蒸気を用いることができ、発電効率を向上するこ
とができる。In the facility for utilizing the gas produced by the gasification and melting furnace having the above structure, the corrosive components contained in the produced gas in the exhaust gas treatment facility, that is, sulfur oxides such as HCl, Cl 2 and SO 2 ,
Because it is possible to obtain clean product gas from which fly ash has been removed and the causative substance of molten salt corrosion has been removed, when using a gas-fired boiler to burn the product gas and recover heat using a superheater, a higher temperature, higher pressure Steam can be used, and power generation efficiency can be improved.
【0028】請求項7の発明は、請求項1乃至請求項6
の何れかにおいて、廃熱ボイラ内に設けられ、前記廃熱
ボイラ内に設けられた蒸発管からの蒸気の過熱を行う過
熱器を有し、前記廃熱ボイラ内の過熱器を構成する蒸気
管がセラミックス合金複合材料からなるカバー材で覆わ
れていることを特徴とするガス化溶融炉生成ガスの利用
設備である。[0028] The invention of claim 7 is the first to sixth aspects of the present invention.
In any one of the above, a steam pipe provided in the waste heat boiler and configured to superheat steam from the evaporation pipe provided in the waste heat boiler, and constituting a superheater in the waste heat boiler Is covered with a cover material made of a ceramic alloy composite material.
【0029】上記構成のガス化溶融炉生成ガスの利用設
備では、前述の請求項1乃至請求項6の何れかの発明の
構成に加えて、廃熱ボイラ内に設けられた過熱器を構成
する蒸気管がセラミックス合金複合材料からなるカバー
材で覆われているので、廃熱ボイラ内の過熱蒸気を高
温、高圧化しても生成ガスに含まれる腐食成分による腐
食を防止できるので、発電効率をより向上することがで
きる。In the facility for utilizing gas produced by the gasification and melting furnace having the above structure, a superheater provided in a waste heat boiler is constructed in addition to the structure of any one of the above-mentioned inventions. Since the steam pipe is covered with a cover material made of a ceramic alloy composite material, even if the temperature of the superheated steam in the waste heat boiler is raised to a high temperature and pressure, corrosion due to corrosive components contained in the generated gas can be prevented, so that power generation efficiency can be improved. Can be improved.
【0030】請求項8の発明は、ガス化溶融炉で生成さ
れた生成ガスが導入される廃熱ボイラと、該廃熱ボイラ
内に設けられ、廃熱ボイラ内に設けられた蒸発管からの
蒸気の過熱を行う過熱器と、前記廃熱ボイラから排出さ
れる生成ガス中から腐食成分の除去を行う排ガス処理設
備と、該排ガス処理設備で処理された生成ガスの燃焼を
行うガス焚きボイラと、該ガス焚きボイラ内に設けら
れ、ガス焚きボイラ内に設けられた蒸発管からの蒸気の
過熱を行う過熱器とを有し、前記廃熱ボイラ内の過熱器
を構成する蒸気管の外側がセラミックス合金複合材料か
らなるカバー材で覆われていることを特徴とするガス化
溶融炉生成ガスの利用設備である。The invention according to claim 8 is directed to a waste heat boiler into which the generated gas generated in the gasification and melting furnace is introduced, and a waste heat boiler provided in the waste heat boiler and an evaporating tube provided in the waste heat boiler. A superheater that superheats steam, an exhaust gas treatment facility that removes corrosive components from the product gas discharged from the waste heat boiler, and a gas-fired boiler that burns the product gas treated by the exhaust gas treatment device A superheater that is provided in the gas-fired boiler and superheats steam from an evaporator pipe provided in the gas-fired boiler, and the outside of a steam pipe that constitutes a superheater in the waste heat boiler is provided. This is a facility for utilizing gas produced by a gasification and melting furnace, which is covered with a cover material made of a ceramic alloy composite material.
【0031】上記構成のガス化溶融炉生成ガスの利用設
備では、廃熱ボイラ内に設けられた過熱器を構成する蒸
気管がセラミックス合金複合材料からなるカバー材で覆
われているので、廃熱ボイラ内の過熱蒸気を高温、高圧
化しても生成ガスに含まれる腐食成分による腐食を防止
でき、さらに、排ガス処理設備にて生成ガス中に含まれ
る腐食成分、すなわちHCl、Cl2、SO2等の硫黄酸
化物、飛灰を除去して溶融塩腐食の原因物質が除去され
た清浄な生成ガスを得られるので、ガス焚きボイラで生
成ガスを燃焼して過熱器で熱回収する際、従来より高
温、高圧の過熱蒸気を用いることができ、より発電効率
を向上することができる。In the facility for utilizing gas produced by the gasification and melting furnace having the above structure, the steam pipe constituting the superheater provided in the waste heat boiler is covered with a cover material made of a ceramic alloy composite material. hot superheated steam in the boiler, even if high pressure prevents corrosion caused by corrosive components contained in the product gas, and further, corrosive components contained in the product gas at the exhaust gas treatment facility, i.e. HCl, Cl 2, SO 2, etc. It removes sulfur oxides and fly ash to obtain a clean product gas from which substances causing molten salt corrosion have been removed.Therefore, when using a gas-fired boiler to burn the product gas and recover heat with a superheater, High-temperature, high-pressure superheated steam can be used, and the power generation efficiency can be further improved.
【0032】[0032]
【発明の実施の形態】図1は、本発明に係るガス化溶融
炉生成ガスの利用設備の第一の実施形態を示す概略構成
図である。FIG. 1 is a schematic diagram showing a first embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
【0033】ガス化溶融炉1で生成された一酸化炭素お
よび水素、メタン等の可燃性ガスを含有する生成ガス
は、廃熱ボイラ2に導入される。前記廃熱ボイラ2内に
設けられた蒸発管10a内の水は、廃熱ボイラ2に導入
された前記生成ガスからの回収熱により加熱され蒸気と
なって気水ドラム9に集められる。つまり、廃熱ボイラ
2に導入された前記生成ガスは、廃熱ボイラ2でその顕
熱の一部が回収されガス温度が低下し排出される。The generated gas containing combustible gas such as carbon monoxide and hydrogen or methane generated in the gasification melting furnace 1 is introduced into the waste heat boiler 2. The water in the evaporating pipe 10 a provided in the waste heat boiler 2 is heated by the recovered heat from the generated gas introduced into the waste heat boiler 2, becomes steam, and is collected in the steam drum 9. In other words, the generated gas introduced into the waste heat boiler 2 is partially recovered by the waste heat boiler 2, and the gas is cooled and discharged.
【0034】前記廃熱ボイラ2から排出された生成ガス
は、排ガス処理設備3に送られ生成ガス中に含まれる腐
食成分の除去が行われる。ここで、前記腐食成分として
は、例えば、HCl、Cl2、SO2等の硫黄化合物、生
成ガス中の飛灰に含まれる腐食性塩などである。The product gas discharged from the waste heat boiler 2 is sent to an exhaust gas treatment facility 3 to remove corrosive components contained in the product gas. Here, examples of the corrosive component include sulfur compounds such as HCl, Cl 2 , and SO 2 , corrosive salts contained in fly ash in generated gas, and the like.
【0035】前記排ガス処理設備3としては、乾式のガ
ス処理設備或いは湿式のガス処理設備を用いることがで
きる。例えば、乾式ガス処理設備としては消石灰噴霧装
置とバグフィルタとを有する設備とすることが好まし
く、湿式のガス処理設備としては苛性ソーダなどの薬剤
を噴霧するガス洗浄塔とすることが好ましい。As the exhaust gas treatment equipment 3, a dry gas treatment equipment or a wet gas treatment equipment can be used. For example, it is preferable that the dry gas processing facility be a facility having a slaked lime sprayer and a bag filter, and the wet gas processing facility be a gas cleaning tower that sprays a chemical such as caustic soda.
【0036】排ガス処理設備3で腐食成分の除去処理が
行われた後の生成ガスは、ガス焚きボイラ4に送られ、
そこで燃焼する。前記ガス焚きボイラ4内には蒸発管1
0b及び過熱器7が設けられており、前記蒸発管10b
内の水はガス焚きボイラ4内の燃焼により発生する熱に
よって加熱され、蒸気となって気水ドラム9に集められ
る。前記蒸発管10bから気水ドラム9に集められた飽
和蒸気は、前記廃熱ボイラ2内に設けられた蒸発管10
aから気水ドラム9に集められた飽和蒸気と共にガス焚
きボイラ4内に設けられた過熱器7に送られ、ガス焚き
ボイラ4内の燃焼により発生する熱によってさらに加熱
され過熱蒸気となってガス焚きボイラ4に併設する発電
設備内の発電タービン8に送られ発電される。さらに、
ガス焚きボイラ4の過熱器7で熱回収した後の排ガスか
ら熱を回収し蒸気を得る蒸発器、或いは加熱水を得る給
水加熱器を設けても良い。ガス焚きボイラ4から排出さ
れる排ガスは、煙突6から外部に放出される。The generated gas after the corrosive component is removed in the exhaust gas treatment equipment 3 is sent to a gas-fired boiler 4.
There it burns. In the gas-fired boiler 4, there is an evaporating tube 1
0b and a superheater 7 are provided.
The water inside is heated by the heat generated by the combustion in the gas-fired boiler 4 and is collected as steam in the steam drum 9. The saturated steam collected in the steam drum 9 from the evaporating tube 10b is supplied to the evaporating tube 10 provided in the waste heat boiler 2.
a to the superheater 7 provided in the gas-fired boiler 4 together with the saturated steam collected in the steam drum 9 and further heated by the heat generated by the combustion in the gas-fired boiler 4 to become superheated steam, The power is sent to a power generation turbine 8 in a power generation facility attached to the boiler 4 to generate power. further,
An evaporator for collecting steam from the exhaust gas after heat recovery by the superheater 7 of the gas-fired boiler 4 to obtain steam, or a feedwater heater for obtaining heated water may be provided. The exhaust gas discharged from the gas-fired boiler 4 is discharged from the chimney 6 to the outside.
【0037】ここで、前記ガス焚きボイラ4に導入され
る生成ガスは、排ガス処理設備3で腐食成分の除去処理
が行われているため腐食成分を含まず、溶融塩腐食の原
因物質が除去されているのでガス焚きボイラ4内に設け
られた前記過熱器7内の過熱蒸気を従来のガス化溶融シ
ステムで行われている300℃、30kg/cm2程度
の条件より高温化、高圧化して蒸気温度を500〜56
0℃、圧力を100kg/cm2程度にしても過熱器7
内の蒸気管の溶融塩腐食が発生しない。そのため、過熱
器7内の蒸気の高温化、高圧化による高効率発電が可能
になる。また、過熱器7内の蒸気管を頻繁に交換した
り、蒸発管に高Ni−Cr−Mo材等の高価な耐食合金
材料を用いる必要が無いためランニングコスト及び設備
費を増大させることなく高効率発電が可能となる。Here, the generated gas introduced into the gas-fired boiler 4 contains no corrosive components because the corrosive components have been removed in the exhaust gas treatment facility 3, and the causative substances of molten salt corrosion are removed. Therefore, the superheated steam in the superheater 7 provided in the gas-fired boiler 4 is heated to a higher temperature and a higher pressure than the conditions of about 300 ° C. and about 30 kg / cm 2 which are performed in the conventional gasification and melting system. Temperature between 500 and 56
Even at 0 ° C and a pressure of about 100 kg / cm 2 , the superheater 7
There is no molten salt corrosion of the steam pipe inside. Therefore, high-efficiency power generation by increasing the temperature and pressure of the steam in the superheater 7 becomes possible. Further, since there is no need to frequently replace the steam pipe in the superheater 7 or to use an expensive corrosion-resistant alloy material such as a high Ni-Cr-Mo material for the evaporator pipe, the running cost and the equipment cost can be increased. Efficient power generation becomes possible.
【0038】図2は本発明に係るガス化溶融炉生成ガス
の利用設備の第二の実施形態を示す概略構成図であり、
除塵機20aをガス化溶融炉1と廃熱ボイラ2間のガス
流路に設けたものである。ここで、図1と同一部分には
同一の番号を付している。FIG. 2 is a schematic diagram showing a second embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
The dust remover 20a is provided in a gas flow path between the gasification melting furnace 1 and the waste heat boiler 2. Here, the same parts as those in FIG. 1 are given the same numbers.
【0039】前記ガス化溶融炉1と廃熱ボイラ2間のガ
ス流路に設ける除塵機20aとしては、例えばコークス
フィルタ、サイクロン等を用いた除塵機を使用すること
ができる。コークスフィルタ及びサイクロンを用いた除
塵機は、ガス温度が700〜1000℃の高温状態にお
いても除塵が可能であるので、ガス化溶融炉で生成され
た高温の生成ガスの除塵を行う場合に好適である。廃熱
ボイラの上流側に除塵機を設けることにより、ガス焚き
ボイラの過熱器での溶融塩腐食の原因物質のうちの飛灰
が除去されるので、排ガス処理設備でのHCl、C
l2、SO2等の硫黄酸化物、飛灰の除去と合わせて確実
にガス焚きボイラの過熱器蒸気管の溶融塩腐食が防止で
きる。このことにより、過熱器の過熱蒸気を高温、高圧
化でき発電効率を向上できる。さらに、廃熱ボイラ内に
ダストが付着し熱回収効率が低下することを防止するこ
とができる。As the dust remover 20a provided in the gas flow path between the gasification melting furnace 1 and the waste heat boiler 2, for example, a dust remover using a coke filter, a cyclone or the like can be used. The dust remover using the coke filter and the cyclone is capable of removing dust even in a high temperature state where the gas temperature is 700 to 1000 ° C., and thus is suitable for performing dust removal of a high-temperature generated gas generated in a gasification and melting furnace. is there. By providing a dust remover on the upstream side of the waste heat boiler, fly ash, which is a cause of molten salt corrosion in the superheater of the gas-fired boiler, is removed.
In addition to removing sulfur oxides such as l 2 and SO 2 and fly ash, molten salt corrosion of the superheater steam pipe of the gas-fired boiler can be reliably prevented. As a result, the temperature of the superheated steam of the superheater can be increased to a high temperature and the power generation efficiency can be improved. Further, it is possible to prevent dust from adhering to the waste heat boiler and lowering the heat recovery efficiency.
【0040】図3は本発明に係るガス化溶融炉生成ガス
の利用設備の第三の実施形態を示す概略構成図であり、
除塵機20bを廃熱ボイラ2と排ガス処理設備3間のガ
ス流路に設けたものである。ここで、図1と同一部分に
は同一の番号を付している。FIG. 3 is a schematic diagram showing a third embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
The dust remover 20b is provided in a gas flow path between the waste heat boiler 2 and the exhaust gas treatment equipment 3. Here, the same parts as those in FIG. 1 are given the same numbers.
【0041】廃熱ボイラ2と排ガス処理設備3間のガス
流路に設ける除塵機20bとしては、除塵機20bに導
入される生成ガスは廃熱ボイラ2でその顕熱の一部が回
収されガス温度が600℃程度以下に低下しているの
で、前記第二の実施形態で説明したコークスフィルタ及
びサイクロンを用いた除塵機の他にセラミックスフィル
タを用いた除塵機を使用することもできる。ここで、セ
ラミックスフィルタに用いるセラミックスとしては、A
l,Si,O2を主成分として70%以上含むセラミッ
クス、例えばAl2O3,SiO2等の複合材料等を用い
ることができる。廃熱ボイラ2と排ガス処理設備3間ガ
ス流路に除塵機20bを設けることにより、ガス焚きボ
イラの過熱器での溶融塩腐食の原因物質のうちの飛灰が
除去されるので、排ガス処理設備でのHCl、Cl2、
SO2等の硫黄酸化物、飛灰の除去と合わせて確実にガ
ス焚きボイラの過熱器蒸気管の溶融塩腐食が防止でき
る。このことにより、過熱器の過熱蒸気を高温、高圧化
でき発電効率を向上できる。また、除塵機20b後段の
排ガス処理設備3の負荷を軽減させることが可能とな
り、排ガス処理設備の設備費、運転費を低減させること
ができる。As the dust remover 20b provided in the gas flow path between the waste heat boiler 2 and the exhaust gas treatment equipment 3, the generated gas introduced into the dust remover 20b is partially recovered by the waste heat boiler 2 and the gas is recovered. Since the temperature is lowered to about 600 ° C. or less, a dust remover using a ceramics filter can be used in addition to the dust remover using the coke filter and the cyclone described in the second embodiment. Here, as ceramics used for the ceramics filter, A
Ceramics containing 70% or more of l, Si, and O 2 as main components, for example, a composite material such as Al 2 O 3 and SiO 2 can be used. By providing the dust remover 20b in the gas flow path between the waste heat boiler 2 and the exhaust gas treatment equipment 3, fly ash, which is a cause of molten salt corrosion in the superheater of the gas fired boiler, is removed. HCl, Cl 2 ,
In addition to removing sulfur oxides such as SO 2 and fly ash, it is possible to reliably prevent molten salt corrosion of the superheater steam pipe of the gas-fired boiler. As a result, the temperature of the superheated steam of the superheater can be increased to a high temperature and the power generation efficiency can be improved. In addition, it is possible to reduce the load on the exhaust gas treatment equipment 3 downstream of the dust remover 20b, and it is possible to reduce the equipment cost and operation cost of the exhaust gas treatment equipment.
【0042】図4は本発明に係るガス化溶融炉生成ガス
の利用設備の第四の実施形態を示す概略構成図であり、
ガス焚きボイラ4の上流側に生成ガスを貯留するガス貯
留設備21を設けたものである。ここで、図1と同一部
分には同一の番号を付している。なお、図4において、
前記ガス貯留設備21は排ガス処理設備3とガス焚きボ
イラ4間のガス流路に設けているが、ガス貯留設備21
はこの位置に限られず、廃熱ボイラ2と排ガス処理設備
3間のガス流路に設けても良い。FIG. 4 is a schematic configuration diagram showing a fourth embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
A gas storage facility 21 for storing product gas is provided upstream of the gas-fired boiler 4. Here, the same parts as those in FIG. 1 are given the same numbers. In FIG. 4,
The gas storage facility 21 is provided in a gas flow path between the exhaust gas treatment facility 3 and the gas-fired boiler 4.
Is not limited to this position, and may be provided in the gas flow path between the waste heat boiler 2 and the exhaust gas treatment equipment 3.
【0043】前記ガス貯留設備21としては、ガス化溶
融炉1で生成される生成ガスの例えば1〜10分間程度
の量を貯留できる容量とすることが好ましい。これによ
り、ガス化溶融炉1で生成される生成ガスの量及び可燃
性ガス成分比、すなわち保有発熱量の時間変動を吸収
し、平準化することが可能となり、後段のガス焚きボイ
ラ4に供給するガスの性状と量を安定させることができ
る。このため過熱蒸気条件も安定するので発電効率をよ
り向上させることができる。また、ガス焚きボイラに供
給する燃焼用空気量の調整が容易であり、排ガス中のN
Ox量を抑制するための低酸素運転も容易となる。The gas storage facility 21 preferably has a capacity capable of storing, for example, an amount of the generated gas generated in the gasification and melting furnace 1 for about 1 to 10 minutes. As a result, it is possible to absorb the amount of the generated gas generated in the gasification melting furnace 1 and the flammable gas component ratio, that is, the time variation of the retained calorific value, and level it, and supply the gas to the gas-fired boiler 4 in the subsequent stage. It is possible to stabilize the properties and amount of the generated gas. For this reason, the superheated steam condition is stabilized, so that the power generation efficiency can be further improved. In addition, it is easy to adjust the amount of combustion air supplied to the gas-fired boiler, and the N
Low oxygen operation for suppressing the amount of Ox is also facilitated.
【0044】図5は本発明に係るガス化溶融炉生成ガス
の利用設備の第五の実施形態を示す概略構成図であり、
ガス焚きボイラ4の下流側に脱硫設備22を設けたもの
である。ここで、図1と同一部分には同一の番号を付し
ている。FIG. 5 is a schematic diagram showing a fifth embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
A desulfurization facility 22 is provided downstream of the gas-fired boiler 4. Here, the same parts as those in FIG. 1 are given the same numbers.
【0045】前記脱硫設備22としては、例えば、消石
灰噴霧装置とバグフィルタとを有することが好ましい。
これにより、ガス焚きボイラ4から排出される排ガス中
の硫黄酸化物及びダストを除去するので排ガスをより確
実に清浄にすることができる。The desulfurization equipment 22 preferably has, for example, a slaked lime sprayer and a bag filter.
Thereby, sulfur oxides and dust in the exhaust gas discharged from the gas-fired boiler 4 are removed, so that the exhaust gas can be more reliably cleaned.
【0046】図6は、本発明に係るガス化溶融炉生成ガ
スの利用設備の第六の実施形態を示す概略構成図であ
る。ここで、図1と同一部分には同一の番号を付してい
る。FIG. 6 is a schematic diagram showing a sixth embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention. Here, the same parts as those in FIG. 1 are given the same numbers.
【0047】ガス化溶融炉1で生成された一酸化炭素お
よび水素、メタン等の可燃性ガスを含有する生成ガス
は、廃熱ボイラ12に導入される。前記廃熱ボイラ12
内には蒸発管10c及び過熱器17が設けられており、
前記蒸発管10c内の水は廃熱ボイラ12に導入された
前記生成ガスからの回収熱により加熱され蒸気となって
気水ドラム19に集められる。前記蒸発管10cから気
水ドラム19に集められた飽和蒸気は、同じく廃熱ボイ
ラ12内に設けられた前記過熱器17に送られ、廃熱ボ
イラ12内の前記生成ガスからの回収熱によって加熱さ
れ過熱蒸気となって発電設備内の発電タービン8に送ら
れ発電される。The generated gas containing combustible gas such as carbon monoxide, hydrogen and methane generated in the gasification melting furnace 1 is introduced into the waste heat boiler 12. The waste heat boiler 12
Inside there is provided an evaporating tube 10c and a superheater 17,
The water in the evaporating pipe 10 c is heated by the recovered heat from the generated gas introduced into the waste heat boiler 12, becomes steam, and is collected in the steam drum 19. The saturated steam collected in the steam drum 19 from the evaporating pipe 10c is sent to the superheater 17 also provided in the waste heat boiler 12, and is heated by the recovered heat from the generated gas in the waste heat boiler 12. Then, the steam is turned into superheated steam and sent to the power generation turbine 8 in the power generation facility to generate power.
【0048】ここで、前記過熱器17内の蒸気管の外側
は、耐食性の優れたセラミックス合金複合材料からなる
カバー材で覆われている。セラミックス合金複合材料か
らなるカバー材で前記過熱器17内の蒸気管の外側を覆
うことで、過熱器17内の蒸気を高温化、高圧化して
も、前記生成ガスに含まれる腐食成分による過熱器17
内の蒸気管の腐食を防止できるので、蒸気の高温化、高
圧化による高効率発電が可能となる。The outside of the steam pipe in the superheater 17 is covered with a cover material made of a ceramic alloy composite material having excellent corrosion resistance. By covering the outside of the steam pipe in the superheater 17 with a cover material made of a ceramic alloy composite material, even if the temperature of the steam in the superheater 17 is raised to a high temperature and a high pressure, the superheater due to the corrosive components contained in the generated gas is used. 17
Since corrosion of the steam pipe in the inside can be prevented, high-efficiency power generation by increasing the temperature and pressure of the steam becomes possible.
【0049】なお、前記セラミックス合金複合材料とし
ては、AlとAlNを含み、AlNを1wt%以上90
wt%以下、(Al+AlN+AlON)の合計割合が
50wt%以上100wt%以下となるものの燒結体を
用いることが好ましい。このセラミックス合金複合材料
からなるカバー材で前記過熱器17内の蒸気管の外側を
覆うことで、過熱器17内の過熱蒸気温度を500〜5
60℃とすることができ、より高効率の発電が可能とな
る。The ceramic alloy composite material contains Al and AlN, and contains AlN of 1 wt% or more and 90% or more.
It is preferable to use a sintered body of which the total ratio of (Al + AlN + AlON) is 50 wt% or more and 100 wt% or less. By covering the outside of the steam pipe in the superheater 17 with the cover material made of the ceramic alloy composite material, the superheated steam temperature in the
The temperature can be set to 60 ° C., and more efficient power generation becomes possible.
【0050】窒化アルミニウムであるAlNは、セラミ
ックス材料の中でも耐蝕性に優れた材料であり、また、
硬度が比較的高いので耐摩耗性にも優れ、さらに極めて
高い熱伝導度、低い熱膨張率、比較的低い弾性率を有す
るので熱衝撃に比較的強い特徴を持っている。このよう
に、AlNは優れた耐蝕性と耐摩耗性、比較的優れた耐
熱衝撃性を併せ持つ材料である。AlN, which is aluminum nitride, is a material having excellent corrosion resistance among ceramic materials.
Because of its relatively high hardness, it has excellent abrasion resistance. Further, it has an extremely high thermal conductivity, a low coefficient of thermal expansion, and a relatively low modulus of elasticity, so that it has a feature that is relatively resistant to thermal shock. As described above, AlN is a material having both excellent corrosion resistance and wear resistance and relatively excellent thermal shock resistance.
【0051】AlNと共に、金属アルミニウムであるA
lも熱伝導の極めて良い物質であり、さらに熱衝撃の緩
和にも有利な金属である。セラミックス合金複合材料か
らなるカバー材の製造過程でAlの多くは雰囲気中のN
2と反応してAlNに変わり、AlN中に未反応のAl
が分散した構成になり、AlNが粒子間の結合力を強化
する。Along with AlN, metal aluminum A
l is also a material having extremely good heat conduction and is also a metal that is advantageous for reducing thermal shock. In the process of manufacturing a cover material made of a ceramic alloy composite material, most of Al
2 reacts with changes to AlN, Al unreacted in the AlN
Are dispersed, and AlN strengthens the bonding force between the particles.
【0052】この構成により、焼結体は熱衝撃を受けて
もAlNが形状変形を防ぎ、AlNに囲まれたAlが熱
衝撃を緩和する機能を持つ。そのため、この機構を維持
するためには、AlNを少なくとも1wt%以上含有し
なければならない。AlNの含有量が1wt%未満では
粒子間の結合力が小さくて不十分となり、また90wt
%を超えるとセラミックス合金複合材料の特性がセラミ
ックスに近づき、脆くなるため好ましくない。従って、
AlNの含有割合は1wt%以上90wt%以下が好ま
しい。With this configuration, even if the sintered body receives a thermal shock, AlN prevents shape deformation, and Al surrounded by AlN has a function to reduce the thermal shock. Therefore, in order to maintain this mechanism, AlN must be contained at least 1 wt% or more. If the AlN content is less than 1 wt%, the bonding force between the particles is small and insufficient, and
%, The properties of the ceramic alloy composite material approach ceramics and become brittle, which is not preferable. Therefore,
The content ratio of AlN is preferably 1 wt% or more and 90 wt% or less.
【0053】また、前記セラミックス合金複合材料には
AlやAlONがAlN中に分散している。従って(A
l+AlN+AlON)の含有割合が50wt%以上1
00wt%以下であれば、前記セラミックス合金複合材
料からなるカバー材は熱変形特性を有しながら高い熱衝
撃性を維持することができる。また、アルミニウムを含
む窒化物は、ガス化溶融炉1から導出される生成ガス中
に含まれている酸化物のダストに対する濡れ性が悪いの
で、(Al+AlN+AlON)の含有割合が50wt
%以上あればそのダストを付着させない特性が有効に発
揮される。また、前記セラミックス合金複合材料からな
るカバー材の製造においてAlONを無くして、Alと
AlNだけでその割合を50wt%以上100wt%以
下としてもかまわない。なお、AlONとはAl,O,
Nの固液体の総称で、例えばAl 11O15N,AlON,
Al198O288N4,Al27O39N,Al10N8O3,Al9
O 3N7,SiAl7O2N7,Si3Al3O4.5N5が挙げ
られる。In addition, the ceramic alloy composite material includes
Al and AlON are dispersed in AlN. Therefore (A
l + AlN + AlON) is 50 wt% or more 1
If the content is not more than 00 wt%, the ceramic alloy composite material
The cover material made of a material has high thermal shock while having thermal deformation characteristics.
It is possible to maintain the impact. Also contains aluminum
In the product gas derived from the gasification and melting furnace 1
Of the oxide contained in the powder has poor wettability to dust
And the content ratio of (Al + AlN + AlON) is 50 wt.
% Or more, the property of not adhering the dust is effective.
Be conducted. In addition, the ceramic alloy composite material
AlON is eliminated in the production of cover materials
Using AlN alone to increase the ratio from 50 wt% to 100 wt%
It can be below. In addition, AlON is Al, O,
N is a generic term for solid-liquid, such as Al 11O15N, AlON,
Al198O288NFour, Al27O39N, AlTenN8OThree, Al9
O ThreeN7, SiAl7OTwoN7, SiThreeAlThreeO4.5NFiveIs raised
Can be
【0054】図6において、ガス化溶融炉1から導出さ
れ廃熱ボイラ12内に導入された生成ガスは、廃熱ボイ
ラ12内でその顕熱の一部が回収されガス温度が低下し
排出される。In FIG. 6, the generated gas led out of the gasification / melting furnace 1 and introduced into the waste heat boiler 12 is partially recovered in the waste heat boiler 12, and its gas temperature is lowered to be discharged. You.
【0055】前記廃熱ボイラ12から排出された生成ガ
スは、排ガス処理設備3に送られ生成ガス中に含まれる
腐食成分の除去が行われる。The product gas discharged from the waste heat boiler 12 is sent to an exhaust gas treatment facility 3 to remove corrosive components contained in the product gas.
【0056】前記排ガス処理設備3で腐食成分の除去処
理が行われた後の生成ガスは、ガス焚きボイラ4に送ら
れ、そこで燃焼する。前記ガス焚きボイラ4内には蒸発
管10b及び過熱器7が設けられており、前記蒸発管1
0b内の水はガス焚きボイラ4内の燃焼により発生する
熱によって加熱され、蒸気となって気水ドラム9に集め
られる。前記蒸発管10bから気水ドラム9に集められ
た飽和蒸気は、前記廃熱ボイラ2内に設けられた蒸発管
10aから気水ドラム9に集められた飽和蒸気と共にガ
ス焚きボイラ4内に設けられた過熱器7に送られ、ガス
焚きボイラ4内の燃焼により発生する熱によってさらに
加熱され過熱蒸気となる。The generated gas after the corrosive component is removed in the exhaust gas treatment equipment 3 is sent to a gas-fired boiler 4 where it is burned. An evaporator tube 10b and a superheater 7 are provided in the gas-fired boiler 4, and the evaporator tube 1
The water in Ob is heated by the heat generated by the combustion in the gas-fired boiler 4 and is collected as steam in the steam drum 9. The saturated steam collected from the evaporating pipe 10b to the steam drum 9 is provided in the gas-fired boiler 4 together with the saturated steam collected from the evaporating pipe 10a provided in the waste heat boiler 2 to the steam drum 9. The steam is then sent to the superheater 7 and further heated by the heat generated by the combustion in the gas-fired boiler 4 to become superheated steam.
【0057】前記過熱器7で加熱された過熱蒸気は、前
記廃熱ボイラ12内の過熱器17により加熱された過熱
蒸気と共に発電設備内の発電タービン8に送られ発電さ
れる。前記ガス焚きボイラ4から排出される排ガスは、
煙突6から外部に放出される。The superheated steam heated by the superheater 7 is sent to the power generation turbine 8 in the power generation facility together with the superheated steam heated by the superheater 17 in the waste heat boiler 12 to generate power. The exhaust gas discharged from the gas-fired boiler 4 is:
It is released from the chimney 6 to the outside.
【0058】ここで、前記ガス焚きボイラ4に導入され
る生成ガスは第一の実施形態で説明したように排ガス処
理設備3で腐食成分の除去処理が行われているため溶融
腐食の原因となる腐食成分を含まず、ガス焚きボイラ4
内に設けられた前記過熱器7内の蒸気を高温化、高圧化
しても過熱器7内の蒸気管の溶融塩腐食が発生する心配
が無い。そのため、過熱器7内の蒸気の高温化、高圧化
による高効率発電が可能となる。Here, as described in the first embodiment, the generated gas introduced into the gas-fired boiler 4 is subjected to the treatment for removing the corrosive components in the exhaust gas treatment equipment 3 and thus causes the melting corrosion. Gas-fired boiler 4 containing no corrosive components
Even if the temperature of the steam in the superheater 7 provided therein is increased and the pressure is increased, there is no fear that the molten salt corrosion of the steam pipe in the superheater 7 occurs. Therefore, high-efficiency power generation by increasing the temperature and the pressure of the steam in the superheater 7 becomes possible.
【0059】[0059]
【発明の効果】以上説明したように本発明によれば、過
熱器内の蒸気を高温化、高圧化してもランニングコスト
及び設備費を増大させることなく高効率の発電が可能な
ガス化溶融炉生成ガスの利用設備が提供される。As described above, according to the present invention, a gasification and melting furnace capable of high-efficiency power generation without increasing running costs and equipment costs even when the temperature of steam in a superheater is increased to a higher temperature and pressure. Equipment for utilizing the generated gas is provided.
【図1】本発明に係るガス化溶融炉生成ガスの利用設備
の第一の実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
【図2】本発明に係るガス化溶融炉生成ガスの利用設備
の第二の実施形態を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a second embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
【図3】本発明に係るガス化溶融炉生成ガスの利用設備
の第三の実施形態を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a third embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
【図4】本発明に係るガス化溶融炉生成ガスの利用設備
の第四の実施形態を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a fourth embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
【図5】本発明に係るガス化溶融炉生成ガスの利用設備
の第五の実施形態を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a fifth embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
【図6】本発明に係るガス化溶融炉生成ガスの利用設備
の第六の実施形態を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a sixth embodiment of a facility for utilizing gas produced by a gasification and melting furnace according to the present invention.
【図7】従来例にかかるガス化溶融炉を用いたガス化溶
融炉生成ガスの利用設備の一例を示す図である。FIG. 7 is a diagram showing an example of a facility for utilizing gas generated by a gasification and melting furnace using a gasification and melting furnace according to a conventional example.
1 ガス化溶融炉 2,12 廃熱ボイラ 3 排ガス処理設備 4 ガス焚きボイラ 5 2次燃焼室 6 煙突 7,17 過熱器 8 発電タービン 9,19 気水ドラム 10a,10b,10c,10d,10e 蒸発管 20a,20b 除塵機 21 ガス貯留設備 22 脱硫設備 DESCRIPTION OF SYMBOLS 1 Gasification melting furnace 2,12 Waste heat boiler 3 Exhaust gas treatment equipment 4 Gas fired boiler 5 Secondary combustion chamber 6 Chimney 7,17 Superheater 8 Power generation turbine 9,19 Steam drum 10a, 10b, 10c, 10d, 10e Evaporation Pipe 20a, 20b Dust remover 21 Gas storage equipment 22 Desulfurization equipment
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10K 1/02 C10K 1/02 F22B 37/04 F22B 37/04 37/10 602 37/10 602B F22G 1/16 F22G 1/16 3/00 3/00 A F23G 5/46 F23G 5/46 A F23J 15/04 F23J 15/00 E (72)発明者 鈴木 康夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 能登 隆 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 西尾 浩明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 山川 裕一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 吉田 朋広 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3K065 AA24 AB02 AB03 AC01 AC02 AC11 AC19 JA05 JA18 3K070 DA03 DA05 DA07 DA09 DA16 DA23 DA32 DA38 DA56 DA77 4H060 AA02 BB03 BB25 BB38 CC03 GG08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10K 1/02 C10K 1/02 F22B 37/04 F22B 37/04 37/10 602 37/10 602B F22G 1 / 16 F22G 1/16 3/00 3/00 A F23G 5/46 F23G 5/46 A F23J 15/04 F23J 15/00 E (72) Inventor Yasuo Suzuki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Japan Inside Kokan Co., Ltd. (72) Takashi Noto, Inventor 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. Inside the company (72) Inventor Yuichi Yamakawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Tomohiro Yoshida 1-1-1, Marunouchi, Chiyoda-ku, Tokyo No. 2 Nihon Kokan Co., Ltd. F term (reference) 3K065 AA24 AB02 AB03 AC01 AC02 AC11 AC19 JA05 JA18 3K070 DA03 DA05 DA07 DA09 DA16 DA23 DA32 DA38 DA56 DA77 4H060 AA02 BB03 BB25 BB38 CC03 GG08
Claims (8)
される廃熱ボイラと、 該廃熱ボイラから排出される生成ガス中から腐食成分の
除去を行う排ガス処理設備と、 該排ガス処理設備で処理された生成ガスを燃焼し、過熱
蒸気の回収を行うガス焚きボイラとを有することを特徴
とするガス化溶融炉生成ガスの利用設備。1. A waste heat boiler to which a product gas generated in a gasification and melting furnace is introduced, an exhaust gas treatment facility for removing corrosive components from the product gas discharged from the waste heat boiler, and the exhaust gas treatment A facility for utilizing gas produced by a gasification and melting furnace, comprising: a gas-fired boiler that burns produced gas processed by the facility and recovers superheated steam.
除塵機を設けたことを特徴とする請求項1に記載のガス
化溶融炉生成ガスの利用設備。2. A facility for utilizing gas produced by a gasification and melting furnace according to claim 1, wherein a dust remover is provided in a gas flow path between the gasification and melting furnace and the waste heat boiler.
に除塵機を設けたことを特徴とする請求項1に記載のガ
ス化溶融炉生成ガスの利用設備。3. The facility according to claim 1, wherein a dust remover is provided in a gas flow path between the waste heat boiler and the exhaust gas treatment facility.
するガス貯留設備を設けたことを特徴とする請求項1乃
至請求項3の何れかに記載のガス化溶融炉生成ガスの利
用設備。4. A facility for utilizing gas generated by a gasification and melting furnace according to claim 1, wherein a gas storage facility for storing generated gas is provided upstream of the gas-fired boiler. .
たことを特徴とする請求項1乃至請求項4の何れかに記
載のガス化溶融炉生成ガスの利用設備。5. The facility for utilizing gas produced by a gasification and melting furnace according to claim 1, wherein a desulfurization facility is provided downstream of the gas-fired boiler.
される廃熱ボイラと、 該廃熱ボイラから排出される生成ガス中から腐食成分の
除去を行う排ガス処理設備と、 該排ガス処理設備で処理された生成ガスの燃焼を行うガ
ス焚きボイラと、 該ガス焚きボイラ内に設けられ、前記廃熱ボイラ及び/
又はガス焚きボイラ内に設けられた蒸発管からの蒸気の
過熱を行う過熱器とを有することを特徴とするガス化溶
融炉生成ガスの利用設備。6. A waste heat boiler into which a product gas generated in a gasification and melting furnace is introduced, an exhaust gas treatment facility for removing corrosive components from the product gas discharged from the waste heat boiler, and the exhaust gas treatment A gas-fired boiler for burning the product gas processed in the facility; and a waste heat boiler and / or
Or a superheater for superheating steam from an evaporating tube provided in a gas-fired boiler.
内に設けられた蒸発管からの蒸気の過熱を行う過熱器を
有し、 前記廃熱ボイラ内の過熱器を構成する蒸気管がセラミッ
クス合金複合材料からなるカバー材で覆われていること
を特徴とする請求項1乃至請求項6の何れかに記載のガ
ス化溶融炉生成ガスの利用設備。7. A steam pipe, which is provided in a waste heat boiler and superheats steam from an evaporator tube provided in the waste heat boiler, and constitutes a superheater in the waste heat boiler. 7. The facility for utilizing gas produced by a gasification and melting furnace according to claim 1, wherein the gas is covered with a cover material made of a ceramic alloy composite material.
される廃熱ボイラと、 該廃熱ボイラ内に設けられ、廃熱ボイラ内に設けられた
蒸発管からの蒸気の過熱を行う過熱器と、 前記廃熱ボイラから排出される生成ガス中から腐食成分
の除去を行う排ガス処理設備と、 該排ガス処理設備で処理された生成ガスの燃焼を行うガ
ス焚きボイラと、 該ガス焚きボイラ内に設けられ、ガス焚きボイラ内に設
けられた蒸発管からの蒸気の過熱を行う過熱器とを有
し、前記廃熱ボイラ内の過熱器を構成する蒸気管の外側
がセラミックス合金複合材料からなるカバー材で覆われ
ていることを特徴とするガス化溶融炉生成ガスの利用設
備。8. A waste heat boiler into which a generated gas generated in a gasification and melting furnace is introduced, and superheats steam from an evaporation tube provided in the waste heat boiler and provided in the waste heat boiler. A superheater, an exhaust gas treatment facility for removing corrosive components from product gas discharged from the waste heat boiler, a gas-fired boiler for burning the product gas treated by the exhaust gas treatment device, and the gas-fired boiler And a superheater for superheating steam from an evaporator tube provided in a gas-fired boiler, and the outside of a steam tube constituting a superheater in the waste heat boiler is made of a ceramic alloy composite material. A facility for utilizing gas produced by a gasification and melting furnace, which is covered with a cover material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001260057A JP2002310402A (en) | 2001-02-06 | 2001-08-29 | Utilizing facility for gas produced by gasifying melting furnace |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001029182 | 2001-02-06 | ||
JP2001-29182 | 2001-02-06 | ||
JP2001260057A JP2002310402A (en) | 2001-02-06 | 2001-08-29 | Utilizing facility for gas produced by gasifying melting furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002310402A true JP2002310402A (en) | 2002-10-23 |
Family
ID=26608972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001260057A Pending JP2002310402A (en) | 2001-02-06 | 2001-08-29 | Utilizing facility for gas produced by gasifying melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002310402A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006023052A (en) * | 2004-07-09 | 2006-01-26 | Takuma Co Ltd | Exhaust gas processing method for ash melting furnace, and processing facility therefor |
JP2006266604A (en) * | 2005-03-24 | 2006-10-05 | Takuma Co Ltd | Pyrolyzing treatment facility and pyrolyzing treatment method |
JP2009263498A (en) * | 2008-04-24 | 2009-11-12 | Central Res Inst Of Electric Power Ind | Coal-gasification power generation system and method for eliminating mercury in coal-gasification power generation system |
JP2012082374A (en) * | 2010-10-14 | 2012-04-26 | Ichiroku Hayashi | Electricity-generating system |
CN109210551A (en) * | 2018-10-12 | 2019-01-15 | 岳阳钟鼎热工电磁科技有限公司 | A kind of low concentration sodium salt organic waste liquid burning furnace, incineration system and burning process |
CN113551214A (en) * | 2021-07-20 | 2021-10-26 | 河南省锅炉压力容器安全检测研究院 | Industrial boiler flue economizer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07332614A (en) * | 1994-03-10 | 1995-12-22 | Ebara Corp | Method for fluidized bed gasification and melting combustion as well as its apparatus |
JPH085003A (en) * | 1994-06-21 | 1996-01-12 | Kubota Corp | Tube for heat exchanger |
JPH09159132A (en) * | 1995-10-03 | 1997-06-20 | Ebara Corp | Heat recovery system and power generation system |
JPH09187620A (en) * | 1996-01-11 | 1997-07-22 | Mitsui Eng & Shipbuild Co Ltd | Waste gas treating device |
JPH11264530A (en) * | 1998-03-19 | 1999-09-28 | Chiyoda Corp | Combustion equipment |
JPH11290810A (en) * | 1998-04-07 | 1999-10-26 | Toshiba Corp | Method and apparatus for waste disposal |
JP2000074335A (en) * | 1998-08-28 | 2000-03-14 | Nippon Steel Corp | Method and apparatus for treating waste |
JP2001049379A (en) * | 1999-08-12 | 2001-02-20 | Nkk Corp | Heat transfer tube for heat exchanger |
-
2001
- 2001-08-29 JP JP2001260057A patent/JP2002310402A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07332614A (en) * | 1994-03-10 | 1995-12-22 | Ebara Corp | Method for fluidized bed gasification and melting combustion as well as its apparatus |
JPH085003A (en) * | 1994-06-21 | 1996-01-12 | Kubota Corp | Tube for heat exchanger |
JPH09159132A (en) * | 1995-10-03 | 1997-06-20 | Ebara Corp | Heat recovery system and power generation system |
JPH09187620A (en) * | 1996-01-11 | 1997-07-22 | Mitsui Eng & Shipbuild Co Ltd | Waste gas treating device |
JPH11264530A (en) * | 1998-03-19 | 1999-09-28 | Chiyoda Corp | Combustion equipment |
JPH11290810A (en) * | 1998-04-07 | 1999-10-26 | Toshiba Corp | Method and apparatus for waste disposal |
JP2000074335A (en) * | 1998-08-28 | 2000-03-14 | Nippon Steel Corp | Method and apparatus for treating waste |
JP2001049379A (en) * | 1999-08-12 | 2001-02-20 | Nkk Corp | Heat transfer tube for heat exchanger |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006023052A (en) * | 2004-07-09 | 2006-01-26 | Takuma Co Ltd | Exhaust gas processing method for ash melting furnace, and processing facility therefor |
JP2006266604A (en) * | 2005-03-24 | 2006-10-05 | Takuma Co Ltd | Pyrolyzing treatment facility and pyrolyzing treatment method |
JP2009263498A (en) * | 2008-04-24 | 2009-11-12 | Central Res Inst Of Electric Power Ind | Coal-gasification power generation system and method for eliminating mercury in coal-gasification power generation system |
JP2012082374A (en) * | 2010-10-14 | 2012-04-26 | Ichiroku Hayashi | Electricity-generating system |
CN109210551A (en) * | 2018-10-12 | 2019-01-15 | 岳阳钟鼎热工电磁科技有限公司 | A kind of low concentration sodium salt organic waste liquid burning furnace, incineration system and burning process |
CN113551214A (en) * | 2021-07-20 | 2021-10-26 | 河南省锅炉压力容器安全检测研究院 | Industrial boiler flue economizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3773302B2 (en) | Heat recovery system and power generation system | |
CN108775585B (en) | Waste high-temperature air/steam gasification combustion melting system | |
US20060137579A1 (en) | Gasification system | |
JP3782334B2 (en) | Exhaust gas treatment equipment for gasifier | |
JP2002310402A (en) | Utilizing facility for gas produced by gasifying melting furnace | |
JP3964043B2 (en) | Waste disposal method | |
JP2004002552A (en) | Waste gasification method, waste gasification device, and waste treatment apparatus using the same | |
JP6450703B2 (en) | Waste treatment facility and waste treatment method using the same | |
US20020088235A1 (en) | Heat recovery system and power generation system | |
JPH11159719A (en) | Incinerating method of waste | |
JP2004263952A (en) | Heat recovering method and device from exhaust gas | |
WO2001090645A1 (en) | Wastes treating method and device | |
JP3091197B1 (en) | Method and apparatus for reducing dioxins in garbage gasification and melting equipment with char separation method | |
JP5675149B2 (en) | Boiler equipment | |
JPH10103640A (en) | Waste thermal decomposition disposal facility | |
JP2005330370A (en) | Indirectly heating-type fluidized bed gasification system | |
JP5279062B2 (en) | Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus | |
JP2004160398A (en) | Environment-friendly method for converting refuse into resources | |
US20020083698A1 (en) | Heat recovery system and power generation system | |
JPH1129779A (en) | Generation of electricity utilizing gasification of waste plastic and ash melting | |
JP2000304235A (en) | Method and apparatus for controlling gasification melting system for waste | |
CN209944341U (en) | Waste high-temperature air/steam gasification combustion melting system | |
JP3046309B1 (en) | Method and apparatus for reducing dioxins in a garbage gasifier for char separation | |
JP3989608B2 (en) | Waste plastic treatment method | |
JPH11201427A (en) | Method and device for thermal recycling of combustible wastes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070718 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090519 |