JP2009263498A - Coal-gasification power generation system and method for eliminating mercury in coal-gasification power generation system - Google Patents

Coal-gasification power generation system and method for eliminating mercury in coal-gasification power generation system Download PDF

Info

Publication number
JP2009263498A
JP2009263498A JP2008114587A JP2008114587A JP2009263498A JP 2009263498 A JP2009263498 A JP 2009263498A JP 2008114587 A JP2008114587 A JP 2008114587A JP 2008114587 A JP2008114587 A JP 2008114587A JP 2009263498 A JP2009263498 A JP 2009263498A
Authority
JP
Japan
Prior art keywords
coal
power generation
gas
generation system
coal gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008114587A
Other languages
Japanese (ja)
Other versions
JP5305327B2 (en
Inventor
Tetsumasa Yamaguchi
哲正 山口
Shigeo Ito
茂男 伊藤
Naoki Noda
直希 野田
Hiroyuki Akiyasu
広幸 秋保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008114587A priority Critical patent/JP5305327B2/en
Publication of JP2009263498A publication Critical patent/JP2009263498A/en
Application granted granted Critical
Publication of JP5305327B2 publication Critical patent/JP5305327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coal-gasification power generation system which can curtail as much as possible the mercury discharging into the atmosphere, by recovering the mercury contained in the coal-gasification gas. <P>SOLUTION: The coal-gasification power generation system, provided with a gasification furnace 2 for producing the coal-gasification gas by the gasification of coal, a dust collection apparatus 5, which is arranged at the downstream side of the gasification furnace 2 and recovers the coal char in the coal-gasification gas, a gas turbine 10 of power generation facilities which is arranged at the downstream side of the dust collection apparatus 5 and burns the coal-gasification gas as a fuel, and a chimney 15 for discharging an exhausted gas from the gas turbine 10 into the atmosphere, is characterized in that the system is also provided at the downstream side of the gas turbine 10 before the chimney 15 with a bag filter 16, and the coal char recovered in the dust collection apparatus 5 is fed into the above exhausted gas at the upstream side of the bag filter 16, and recovered by the bag filter 16. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は石炭ガス化発電システム及び石炭ガス化発電システムにおける水銀の除去方法に関し、特に石炭ガス化ガス中に含まれる微量元素である水銀を除去する場合に適用して有用なものである。   The present invention relates to a coal gasification power generation system and a method for removing mercury in the coal gasification power generation system, and is particularly useful when applied to the removal of mercury, which is a trace element contained in coal gasification gas.

石炭は世界の広い地域に存在し、可採埋蔵量が多く、価格が安定しているため、供給安定性が高く発熱量あたりの価格も低廉である。このため、石炭火力発電は、エネルギーの確保、エネルギー価格の安定に重要な役割を果たしている。   Coal exists in a large area of the world, has a large recoverable reserve and is stable in price, so it has high supply stability and low price per calorific value. For this reason, coal-fired power generation plays an important role in securing energy and stabilizing energy prices.

石炭を燃料とする発電方式の一つとして石炭ガス化複合発電(IGCC:Integrated coal Gasification Combined Cycle)が注目されている。石炭ガス化複合発電では、石炭ガス化発電システムで石炭をガス化し、この結果得られる石炭ガス化ガスを精製して燃焼器で燃焼させることにより燃焼器からの燃焼ガスでガスタービンを回転駆動して発電する。同時に、ガスタービンによる発電に加え、ガスタービンの排気ガスの熱を回収することで得られた蒸気で蒸気タービンを回転駆動して発電する。   One of the power generation methods using coal as fuel is IGCC (Integrated Coal Gasification Combined Cycle). In coal gasification combined cycle power generation, coal is gasified by a coal gasification power generation system, and the resulting coal gasification gas is purified and burned in a combustor, so that the gas turbine is rotationally driven by the combustion gas from the combustor. To generate electricity. At the same time, in addition to the power generation by the gas turbine, the steam turbine is rotationally driven by the steam obtained by recovering the heat of the exhaust gas of the gas turbine to generate power.

かかる石炭ガス化複合発電における石炭ガス化発電システムは、石炭を完全に燃焼させることなくガス化するガス化炉と、このガス化炉で生成された石炭ガス化ガスの脱硫等を行うガス精製設備とを備えており、精製した石炭ガス化ガスを発電設備のガスタービン等に供給して所定の仕事をさせるように構成してある。ガスタービン等で燃焼されて仕事を終え、ガスタービン等から排出された排ガスは煙突を介して大気中に排出される。   A coal gasification power generation system in such a coal gasification combined power generation includes a gasification furnace that gasifies without completely burning coal, and a gas purification facility that performs desulfurization of the coal gasification gas generated in the gasification furnace. The refined coal gasification gas is supplied to a gas turbine or the like of a power generation facility to perform a predetermined work. The exhaust gas discharged from the gas turbine or the like after being combusted by the gas turbine or the like and discharged from the gas turbine or the like is discharged into the atmosphere through the chimney.

ここで、石炭ガス化ガス中には種々の有害な元素が微量含まれている。かかる微量元素の一種として水銀があるが、従来は排ガスを介してその大気中への排出は特には規制されていなかった。ただ、環境保全の観点からは排ガス中の水銀も可及的に低減するのが望ましい。   Here, the coal gasification gas contains trace amounts of various harmful elements. Mercury is one of such trace elements, but conventionally, its emission into the atmosphere via exhaust gas has not been particularly regulated. However, it is desirable to reduce mercury in exhaust gas as much as possible from the viewpoint of environmental conservation.

石炭ガス化ガス中の揮発性微量元素を除去する工程を含む浄化システムを開示する公知技術として特許文献1がある。これは、ガス化炉で生成される石炭ガス化ガスに含まれる揮発性微量ガスを除去するため、ガス化炉から排出される石炭灰を捕集剤として利用する技術を開示するものであるが、水銀を捕集の対象とするものではない。また、特許文献1はガス化炉から脱硫工程に至る硫黄分が多い石炭ガス化ガス中の揮発性微量ガス中の元素の吸着を目的としているのでかかる雰囲気で水銀を除去することはできない。   There exists patent document 1 as a well-known technique which discloses the purification system including the process of removing the volatile trace element in coal gasification gas. This discloses a technique of using coal ash discharged from the gasification furnace as a scavenger in order to remove volatile trace gas contained in the coal gasification gas generated in the gasification furnace. It is not intended to collect mercury. Moreover, since patent document 1 aims at adsorption | suction of the element in the volatile trace gas in coal gasification gas with much sulfur content from a gasification furnace to a desulfurization process, it cannot remove mercury in this atmosphere.

一方、排ガス中の水銀を回収する公知文献として特許文献2を挙げることができる。これは未燃カーボンを含んだ微粒子灰により水銀を吸着して回収するものであるが、ごみ焼却設備の排ガス中の水銀を回収する技術であり、石炭ガス化発電システムに関するものではない。   On the other hand, Patent Document 2 can be cited as a publicly known document for recovering mercury in exhaust gas. This is a technology that adsorbs and recovers mercury with particulate ash containing unburned carbon, but it is a technology that recovers mercury in the exhaust gas from a waste incineration facility and is not related to a coal gasification power generation system.

特開2000−38589号公報JP 2000-38589 A 特公平7−38935号公報Japanese Examined Patent Publication No. 7-38935

本発明は、上記従来技術に鑑み、石炭ガス化ガス中に含まれる水銀を回収して大気中に排出される水銀を可及的に低減し得る石炭ガス化発電システム及び石炭ガス化発電システムにおける水銀の除去方法を提供することを目的とする。   In view of the above-described conventional technology, the present invention provides a coal gasification power generation system and a coal gasification power generation system capable of recovering mercury contained in coal gasification gas and reducing mercury discharged into the atmosphere as much as possible. An object is to provide a method for removing mercury.

上記目的を達成する本発明は次の実験による知見を基礎とするものである。一般に、石炭ガス化発電システムでは、ガス化炉で生成された石炭ガス化ガス中に含まれる石炭微粒子である石炭チャーをガス化炉の下流側の集塵手段で回収している。未燃分を含んでいる石炭チャーを原料の一部としてガス化炉に戻してやるためである。そこで、本発明者等は回収した石炭チャーを原料として利用するだけでなく水銀の吸着剤として利用することに思い至り、石炭チャーによる水銀の吸着特性を調べる実験を行った。実験条件は表1に示す通りである。すなわち、反応器入口での濃度が9.4乃至9.6μg/mの水銀(Hg)を含有する所定のガス組成のガスと所定量の石炭チャーを接触させて時間的な水銀濃度の変化を測定した。なお、この場合のガス組成は石炭ガス化発電システムにおける発電設備の排ガスを模擬して表1に示すガス組成とし、石炭チャーも表1に示す量とした。 The present invention that achieves the above object is based on the findings of the following experiment. Generally, in a coal gasification power generation system, coal char which is coal fine particles contained in coal gasification gas generated in a gasification furnace is collected by a dust collecting means on the downstream side of the gasification furnace. This is because the coal char containing unburned content is returned to the gasifier as part of the raw material. Accordingly, the present inventors have come up with the idea of using the recovered coal char not only as a raw material but also as a mercury adsorbent, and conducted an experiment to investigate the adsorption characteristics of mercury by the coal char. The experimental conditions are as shown in Table 1. That is, a change in mercury concentration with time by bringing a gas having a predetermined gas composition containing mercury (Hg) having a concentration of 9.4 to 9.6 μg / m 3 at the reactor inlet into contact with a predetermined amount of coal char. Was measured. In addition, the gas composition in this case simulated the exhaust gas of the power generation equipment in the coal gasification power generation system to the gas composition shown in Table 1, and the coal char was also the amount shown in Table 1.

Figure 2009263498
Figure 2009263498

ここで、表1中の最左欄の条件が図1の特性、中央欄の条件が図2の特性、最左欄の条件が図3の特性にそれぞれ対応している。また、図1が塩化水素(HCl)を含むガスと石炭チャーとの接触をタイミングAで開始した場合の特性図、図2が塩化水素(HCl)を含まないガスと石炭チャーとの接触をタイミングBで開始した場合の特性図、図3が塩化水素(HCl)を含まないガスと石炭チャーとの接触をタイミングCで開始するとともにタイミングD,E,Fでそれぞれ2sec,10sec,30secの間、塩化水素を注入した場合の特性図である。図3に示す実験では、供給時間を変えてスパイク状に塩素ガスを供給することにより、塩素ガスを注入した場合の評価も同時に行えるようにしている。   Here, the leftmost column condition in Table 1 corresponds to the characteristic of FIG. 1, the middle column condition corresponds to the characteristic of FIG. 2, and the leftmost column condition corresponds to the characteristic of FIG. FIG. 1 is a characteristic diagram when contact between a gas containing hydrogen chloride (HCl) and coal char is started at timing A, and FIG. 2 is a timing of contact between a gas not containing hydrogen chloride (HCl) and coal char. FIG. 3 is a characteristic diagram when starting at B, and FIG. 3 starts contact of a gas not containing hydrogen chloride (HCl) with coal char at timing C and at timings D, E, and F for 2 sec, 10 sec, and 30 sec, respectively. It is a characteristic view at the time of inject | pouring hydrogen chloride. In the experiment shown in FIG. 3, the chlorine gas is supplied in a spike shape by changing the supply time so that the evaluation when chlorine gas is injected can be performed at the same time.

図1を参照すれば、塩化水素を含むガスにおいては、石炭チャーとの接触によりほぼ完全に水銀を除去し得ることが分かる。図2を参照すれば、図1に示す場合程ではないが、塩化水素を含まない場合でも50%程度の水銀を除去し得ることが分かる。図3を参照すれば、石炭チャーの量が多い分、図2に示す場合に比べ、より多くの水銀を除去し得ることが分かる。また、塩化水素を間欠的に注入したタイミングD,E,Fでは顕著に水銀除去効果が向上していること、しかも注入時間が長いほど効果的であることが分かる。   Referring to FIG. 1, it can be seen that in a gas containing hydrogen chloride, mercury can be almost completely removed by contact with coal char. Referring to FIG. 2, although not as much as in the case shown in FIG. 1, it can be seen that about 50% of mercury can be removed even without hydrogen chloride. Referring to FIG. 3, it can be seen that a larger amount of coal char can remove more mercury than the case shown in FIG. It can also be seen that the mercury removal effect is remarkably improved at the timings D, E, and F at which hydrogen chloride is intermittently injected, and that the longer the injection time, the more effective.

かかる図1乃至図3に示す実験結果は、ガス化炉に戻す石炭チャーの一部を抽出して発電設備の排気ガスに供給してやれば排気ガス中の水銀を吸着させることができることを示している。そして、排気ガス中に塩素ガスが含まれる場合がより効果的に水銀を吸着することができ、また石炭チャーの量が多い程より効果的に水銀を吸着することができることを示している。   The experimental results shown in FIGS. 1 to 3 indicate that mercury in the exhaust gas can be adsorbed if a part of the coal char returned to the gasification furnace is extracted and supplied to the exhaust gas of the power generation facility. . And it has shown that the case where chlorine gas is contained in exhaust gas can adsorb mercury more effectively, and the amount of coal char can adsorb mercury more effectively.

かかる知見に基づく本発明の第1の態様は、
石炭をガス化して石炭ガス化ガスを生成するガス化炉と、このガス化炉の下流側で前記石炭ガス化ガス中の石炭チャーを回収する第1の集塵手段と、この第1の集塵手段の下流側で前記石炭ガス化ガスを燃料として発電を行う発電設備と、この発電設備で発電に供した前記石炭ガス化ガスの排ガスを大気中に排出するための排出手段とを具備する石炭ガス化発電システムであって、
前記発電設備の下流側で前記排出手段との間に第2の集塵手段を設ける一方、前記第1の集塵手段で回収した石炭チャーを前記第2の集塵手段の上流側で前記排ガス中に供給するとともに前記第2の集塵手段で回収するように構成したことを特徴とする石炭ガス化発電システムにある。
Based on this finding, the first aspect of the present invention is:
A gasification furnace for gasifying coal to generate coal gasification gas; a first dust collecting means for recovering coal char in the coal gasification gas on the downstream side of the gasification furnace; A power generation facility for generating power using the coal gasification gas as fuel downstream of the dust means; and a discharge means for discharging the exhaust gas of the coal gasification gas used for power generation in the power generation facility to the atmosphere. A coal gasification power generation system,
A second dust collecting means is provided downstream of the power generation facility and the discharging means, while the coal char recovered by the first dust collecting means is disposed on the upstream side of the second dust collecting means. The coal gasification power generation system is characterized in that it is supplied to the inside and recovered by the second dust collecting means.

本態様によれば、ガス化炉の下流側で第1の集塵手段で回収した石炭ガス化ガス中の石炭チャーを、発電設備で発電に供した後の排ガス中に供給するとともに、この石炭チャーを下流で第2の集塵手段により捕捉・回収することができる。   According to this aspect, the coal char in the coal gasification gas recovered by the first dust collecting means on the downstream side of the gasification furnace is supplied into the exhaust gas after being supplied to the power generation facility, and the coal The char can be captured and recovered downstream by the second dust collecting means.

本発明の第2の態様は、
第1の態様に記載する石炭ガス化発電システムにおいて、
前記第2の集塵手段にはハロゲン化ガスを供給するようにしたことを特徴とする石炭ガス化発電システムにある。
The second aspect of the present invention is:
In the coal gasification power generation system described in the first aspect,
In the coal gasification power generation system, halogenated gas is supplied to the second dust collecting means.

本態様によればハロゲン化ガスを供給したことにより石炭チャーによる水銀の吸着をさらに促進させることができる。   According to this aspect, the mercury adsorption by the coal char can be further promoted by supplying the halogenated gas.

本発明の第3の態様は、
第2の態様に記載する石炭ガス化発電システムにおいて、
前記ハロゲン化ガスは、前記第2の集塵手段を逆洗する逆洗ガスに混入させて供給するようにしたことを特徴とする石炭ガス化発電システムにある。
The third aspect of the present invention is:
In the coal gasification power generation system described in the second aspect,
In the coal gasification power generation system, the halogenated gas is mixed with a backwash gas for backwashing the second dust collecting means.

本態様によれば、ハロゲン化ガスを最も合理的に供給することができる。   According to this aspect, the halogenated gas can be supplied most rationally.

本発明の第4の態様は、
第2の態様又は第3の態様に記載する石炭ガス化発電システムにおいて、
前記ハロゲン化ガスは塩化水素ガスであることを特徴とする石炭ガス化発電システムにある。
The fourth aspect of the present invention is:
In the coal gasification power generation system described in the second aspect or the third aspect,
In the coal gasification power generation system, the halogenated gas is hydrogen chloride gas.

本態様によれば最も経済的なハロゲン化ガスの供給を行うことができる。   According to this aspect, the most economical halogenated gas can be supplied.

本発明の第5の態様は、
第1の態様乃至第4の態様の何れか一つに記載する石炭ガス化発電システムにおいて、
前記第1の集塵手段は、上流側から順に直列に接続されたサイクロンとフィルタとを有しており、前記排ガス中に供給する石炭チャーに占める前記サイクロンで回収した粒径が大きい石炭チャーの量と前記フィルタで回収した粒径が小さい石炭チャーの量との割合を調整可能に構成したことを特徴とする石炭ガス化発電システムにある。
According to a fifth aspect of the present invention,
In the coal gasification power generation system according to any one of the first to fourth aspects,
The first dust collecting means has a cyclone and a filter connected in series in order from the upstream side, and the coal char of a large particle size recovered by the cyclone occupying the coal char supplied into the exhaust gas. The coal gasification power generation system is characterized in that the ratio between the amount and the amount of coal char with a small particle size recovered by the filter can be adjusted.

本態様によれば、第2の集塵手段の目詰まりを生起しにくい粒径が大きい石炭チャーと、単位重量当りの表面積が大きく水銀の吸着能力に優れる粒径が小さい石炭チャーとをそれぞれの特長を考慮して使い分けることができる。   According to this aspect, each of the coal char having a large particle diameter that is less likely to cause clogging of the second dust collecting means and the coal char having a small surface area that has a large surface area per unit weight and excellent mercury adsorption ability are provided. It can be used properly considering its features.

本発明の第6の態様は、
第1の態様乃至第5の態様の何れか一つに記載する石炭ガス化発電システムにおいて、
前記第2の集塵手段で回収した石炭チャーは、前記第2の集塵手段の上流側で再度前記排ガス中に供給して循環させるように構成したことを特徴とする石炭ガス化発電システムにある。
The sixth aspect of the present invention is:
In the coal gasification power generation system according to any one of the first to fifth aspects,
In the coal gasification power generation system, the coal char recovered by the second dust collecting means is configured to be supplied and circulated again into the exhaust gas upstream of the second dust collecting means. is there.

本態様によれば第2の集塵手段で回収する水銀を吸着した石炭チャーの水銀濃度をある程度濃くした状態で最終処分に回すことができる。   According to this aspect, the coal char adsorbed with the mercury collected by the second dust collecting means can be sent to final disposal in a state where the mercury concentration is increased to some extent.

本発明の第7の態様は、
第1の態様乃至第6の態様の何れか一つに記載する石炭ガス化発電システムにおいて、
脱硫後の石炭ガス化ガスの排煙処理を行う排煙処理設備内の前記石炭ガス化ガスにも前記第1の集塵手段から石炭チャーを供給することを特徴とする石炭ガス化発電システムにある。
The seventh aspect of the present invention is
In the coal gasification power generation system according to any one of the first to sixth aspects,
A coal gasification power generation system characterized in that coal char is also supplied from the first dust collecting means to the coal gasification gas in a flue gas treatment facility that performs flue gas treatment of coal gasification gas after desulfurization. is there.

本態様によれば、排煙処理設備内でも水銀を回収することができ、その分当該石炭ガス化発電システムから大気中には排出される水銀の量を低減することができる。   According to this aspect, mercury can be recovered even in the flue gas treatment facility, and accordingly, the amount of mercury discharged from the coal gasification power generation system into the atmosphere can be reduced.

本発明の第8の態様は、
石炭をガス化して石炭ガス化ガスを生成するガス化炉の下流側で前記石炭ガス化ガス中の石炭チャーを第1の集塵手段で回収するとともに、発電設備に供給されて発電に供した後の前記石炭ガス化ガスの排ガス中に前記第1の集塵手段で回収した石炭チャーを供給し、この石炭チャーに前記排ガス中の水銀を吸着させて第2の集塵手段で回収するようにしたことを特徴とする石炭ガス化発電システムにおける水銀の除去方法にある。
The eighth aspect of the present invention is
The coal char in the coal gasification gas is recovered by the first dust collecting means on the downstream side of the gasification furnace that gasifies the coal to generate the coal gasification gas, and supplied to the power generation facility for power generation. The coal char recovered by the first dust collecting means is supplied into the exhaust gas of the coal gasification gas later, and the mercury in the exhaust gas is adsorbed to the coal char and recovered by the second dust collecting means. The present invention resides in a method for removing mercury in a coal gasification power generation system.

本態様によれば、発電設備で発電に供した後の排ガス中に石炭チャーを供給することにより排ガス中の水銀を石炭チャーに吸着させて除去することができる。   According to this aspect, by supplying the coal char into the exhaust gas after being subjected to power generation by the power generation facility, the mercury in the exhaust gas can be adsorbed and removed by the coal char.

本発明によれば、ガス化炉の下流側で第1の集塵手段で回収した石炭ガス化ガス中の石炭チャーを、発電設備で発電に供した後の排ガス中に供給するとともに、この石炭チャーを下流で第2の集塵手段により捕捉・回収することができる。この結果、排ガス中の水銀を石炭チャーに吸着させた状態で良好に除去でき、水銀の大気中への漏出を未然に防止することができる。   According to the present invention, the coal char in the coal gasification gas recovered by the first dust collecting means on the downstream side of the gasification furnace is supplied into the exhaust gas after being subjected to power generation by the power generation facility, and the coal The char can be captured and recovered downstream by the second dust collecting means. As a result, mercury in the exhaust gas can be satisfactorily removed while adsorbed on the coal char, and leakage of mercury into the atmosphere can be prevented beforehand.

以下、本発明を実施するための最良の形態について説明する。なお、本実施形態の説明は例示であり、本発明は以下の形態に限定されない。   Hereinafter, the best mode for carrying out the present invention will be described. In addition, description of this embodiment is an illustration and this invention is not limited to the following forms.

図4は本発明の実施の形態に係る石炭ガス化発電システムを示すブロック線図である。同図に示すように、当該石炭ガス化発電システムにおいては、粉砕機1で粉砕した石炭をガス化炉2に移送してガス化している。この際、空気分離装置(ASU)3により空気が酸素ガスと窒素ガスとに分離され、酸素及び窒素ガスがガス化炉2に供給される。窒素ガスは、石炭のキャリヤガスとして機能する。ガス精製設備は、ガス化ガスクーラ(シンガスクーラ)4でガスを冷却し、集塵装置5で脱塵し、ガスガスヒータ6を経て水洗塔7でガス化ガス(シンガス、還元ガス)中に含まれる硫化水素ガスを水洗により除去した後、脱硫塔8で脱硫し、ガスガスヒータ6で冷却する。こうしてガス精製設備で精製されたガスは、燃焼器9で燃焼され、この燃焼ガスによりガスタービン10を駆動する。これにより発電機11にて発電が行われる。このとき、燃焼器9には圧縮機12で圧縮した燃焼用の空気が供給される。また、ガスタービン10で仕事を終えたその排ガスは廃熱回収ボイラ14で熱回収を行った後、排出手段である煙突15を介して大気中に排出される。排ガスとの熱交換の結果廃熱回収ボイラ14で発生した蒸気は蒸気タービン13に供給されてこれを回転駆動する。すなわち、発電機11はガスタービン10及び蒸気タービン13を原動機として回転駆動される。   FIG. 4 is a block diagram showing a coal gasification power generation system according to an embodiment of the present invention. As shown in the figure, in the coal gasification power generation system, coal pulverized by the pulverizer 1 is transferred to the gasification furnace 2 for gasification. At this time, air is separated into oxygen gas and nitrogen gas by an air separation device (ASU) 3, and oxygen and nitrogen gas are supplied to the gasifier 2. Nitrogen gas functions as a carrier gas for coal. The gas purification equipment cools the gas with a gasification gas cooler (syngas cooler) 4, removes the dust with a dust collector 5, passes through a gas gas heater 6, and is contained in the gasification gas (syngas, reducing gas) with a water washing tower 7. After the hydrogen sulfide gas is removed by washing with water, it is desulfurized by the desulfurization tower 8 and cooled by the gas gas heater 6. The gas purified by the gas purification equipment is combusted in the combustor 9, and the gas turbine 10 is driven by the combustion gas. As a result, the generator 11 generates power. At this time, combustion air compressed by the compressor 12 is supplied to the combustor 9. The exhaust gas that has finished its work in the gas turbine 10 is recovered by the waste heat recovery boiler 14 and then discharged into the atmosphere via the chimney 15 as a discharge means. The steam generated in the waste heat recovery boiler 14 as a result of heat exchange with the exhaust gas is supplied to the steam turbine 13 to rotate it. That is, the generator 11 is rotationally driven using the gas turbine 10 and the steam turbine 13 as prime movers.

本形態においては、廃熱回収ボイラ14の下流側で煙突15との間に第2の集塵手段であるバグフィルタ16が配設してあり、第1の集塵手段である集塵装置5で回収した石炭チャーの一部を第2の集塵手段であるバグフィルタ16の上流側で前記排ガス中に供給するようになっている。この結果、排ガス中の水銀を石炭チャーに吸着させることができ、この状態の石炭チャーをバグフィルタ16で回収することができる。本形態における集塵装置5は、上流側から順に直列に接続されたサイクロン5Aとフィルタ5Bとからなり、それぞれで回収した石炭チャーをガス化炉2に戻すとともに、それぞれの一部を前記排ガス中に供給するようになっている。ここで、サイクロン5Aでは相対的に粒径が大きい石炭チャーが回収される一方、フィルタ5Bでは相対的に粒径が小さい石炭チャーが回収される。粒径が大きい石炭チャーは排ガスに供給した場合、下流のバグフィルタ16で目詰まりを生起する可能性が粒径の小さい石炭チャーの場合よりも少ない。一方、粒径が小さい石炭チャーは単位重量当りの表面積が大きいので、排ガス中に供給した場合、粒径が大きい石炭チャーの場合よりも水銀の吸着能力は優れていると考えられる。ここで、フィルタ5Bから排出される石炭チャーは、バグフィルタ16の上流側へ一定量を供給するか若しくは全量をガス化炉2に戻すとともに、サイクロン5Aから排出される石炭チャーを主にバグフィルタ16の上流側への供給するように調整している。かくして、排ガス中の水銀濃度を監視しておき、水銀濃度が小さいときにはサイクロン5A及びフィルタ5B、又はサイクロン5Aのみから石炭チャーを排ガス中に供給する一方、水銀濃度が大きいときにはサイクロン5Aからの供給する石炭チャーの量を増加させて排ガス中に供給するような運転を行っている。ただ、かかる運転方法に限定するものではない。   In this embodiment, a bag filter 16 as a second dust collecting means is arranged between the waste heat recovery boiler 14 and the chimney 15 on the downstream side, and the dust collector 5 as the first dust collecting means. A part of the coal char recovered in step 1 is supplied into the exhaust gas upstream of the bag filter 16 as the second dust collecting means. As a result, the mercury in the exhaust gas can be adsorbed on the coal char, and the coal char in this state can be recovered by the bag filter 16. The dust collector 5 in this embodiment is composed of a cyclone 5A and a filter 5B connected in series in order from the upstream side, and returns the coal char recovered in each to the gasification furnace 2, and a part of each in the exhaust gas. To supply. Here, in the cyclone 5A, coal char having a relatively large particle size is recovered, while in the filter 5B, coal char having a relatively small particle size is recovered. When coal char with a large particle size is supplied to the exhaust gas, the possibility of clogging in the downstream bag filter 16 is less than for coal char with a small particle size. On the other hand, since coal char with a small particle size has a large surface area per unit weight, it is considered that the mercury adsorption capacity is superior to that of coal char with a large particle size when supplied into exhaust gas. Here, the coal char discharged from the filter 5B is supplied to the upstream side of the bag filter 16 or returned to the gasification furnace 2, and the coal char discharged from the cyclone 5A is mainly used as the bag filter. 16 is adjusted to supply to the upstream side. Thus, the mercury concentration in the exhaust gas is monitored, and when the mercury concentration is low, the coal char is supplied into the exhaust gas only from the cyclone 5A and the filter 5B or the cyclone 5A. The operation is such that the amount of coal char is increased and supplied into the exhaust gas. However, it is not limited to this driving method.

さらに、バグフィルタ16に塩化水素ガスを供給し得るように構成しても良い。図1に示す実験結果と図2に示す実験結果とを比較すれば明らかな通り、塩化水素ガスを注入した場合の方が石炭チャーによる水銀の吸着性能が顕著に向上するからである。ここで、注入する塩化水素ガスはなるべく少量に抑えるのが望ましい。未反応の塩素ガスが煙突15を介して大気中に排出されるのを回避するためである。   Further, the bag filter 16 may be configured to supply hydrogen chloride gas. This is because the mercury adsorption performance by the coal char is remarkably improved when hydrogen chloride gas is injected, as is clear by comparing the experimental results shown in FIG. 1 and the experimental results shown in FIG. Here, it is desirable to keep the hydrogen chloride gas to be injected as small as possible. This is to prevent unreacted chlorine gas from being discharged into the atmosphere through the chimney 15.

ここで、バグフィルタ16は目詰まりを防止するため定期的に逆洗を行っている。逆洗とは、通常のガス流れと反対側から洗浄ガスを流して経時的にフィルタ内に蓄積される石炭チャー等の塵芥を吹き飛ばし、圧力損失を低減することによりフィルタとしての除去性能を回復させるための作業である。逆洗ガスとしては空気乃至窒素ガスが汎用されている。そこで、逆洗時に塩化水素ガスを逆洗ガスに混入させてバグフィルタ16内に注入するのが最適であると考えられる。この場合の注入量は、検出した排ガス中の水銀濃度に応じて制御するようにすればより好ましい。   Here, the bag filter 16 is regularly backwashed to prevent clogging. Backwashing restores the removal performance as a filter by flowing cleaning gas from the opposite side of the normal gas flow and blowing away dust such as coal char accumulated in the filter over time, reducing pressure loss. Work for. Air or nitrogen gas is widely used as the backwash gas. Therefore, it is considered optimal that hydrogen chloride gas is mixed into the backwash gas and injected into the bag filter 16 during backwashing. In this case, the injection amount is more preferably controlled according to the detected mercury concentration in the exhaust gas.

なお、バグフィルタ16で回収した石炭チャーは、バグフィルタ16の上流側で再度排ガス中に供給して循環させるように構成しても良い。このことにより、ある程度濃縮された水銀を吸着させた状態で石炭チャーの回収による最終処分を行うことができる。   Note that the coal char recovered by the bag filter 16 may be supplied again into the exhaust gas and circulated on the upstream side of the bag filter 16. As a result, final disposal by collecting coal char can be performed in a state where mercury concentrated to some extent is adsorbed.

さらに、本形態におけるガス精製設備では湿式脱硫を行っている。すなわち、先ず石炭ガス化ガスを水洗塔7で水洗し、その後水洗した石炭ガス化ガスを脱硫塔8で脱硫している。かかる湿式脱硫においては再生塔17を出た脱硫後の石炭ガス化ガスが排煙設備を構成するフィルタ18を介して大気中に排出されている。そこで、フィルタ18の上流側に石炭チャーを供給することによりフィルタ18から排気される石炭ガス化ガスの水銀を吸着・回収することができる。すなわち、かかる構成によっても副次的な水銀の除去を行うことができ、全体的な水銀の除去効率の向上に資することができる。   Furthermore, wet desulfurization is performed in the gas purification equipment in this embodiment. That is, the coal gasification gas is first washed with the water washing tower 7, and then the washed coal gasification gas is desulfurized with the desulfurization tower 8. In such wet desulfurization, desulfurized coal gasification gas exiting the regeneration tower 17 is discharged into the atmosphere through a filter 18 constituting a smoke exhausting facility. Therefore, by supplying coal char to the upstream side of the filter 18, mercury of the coal gasification gas exhausted from the filter 18 can be adsorbed and recovered. That is, such a configuration can also remove secondary mercury, which can contribute to an improvement in overall mercury removal efficiency.

このように本形態によればガス化炉2の下流側で集塵装置5によって回収された石炭ガス化ガス中の石炭チャーを、発電設備で発電に供した後の排ガス中に供給するとともに、この石炭チャーを下流でバグフィルタ16により捕捉・回収することができる。この結果、排ガス中の水銀を石炭チャーに吸着させた状態で良好に除去でき、大気中への漏出を未然に防止することができる。ここで、石炭チャーは脱硫後の石炭ガス化ガスを燃焼させた硫黄分を殆ど含まない排ガス中に供給されるので、石炭チャーによる水銀の吸着は良好に行われる。   As described above, according to the present embodiment, the coal char in the coal gasification gas recovered by the dust collector 5 on the downstream side of the gasification furnace 2 is supplied into the exhaust gas after being subjected to power generation by the power generation facility, This coal char can be captured and recovered by the bag filter 16 downstream. As a result, mercury in the exhaust gas can be satisfactorily removed while adsorbed on the coal char, and leakage into the atmosphere can be prevented beforehand. Here, since coal char is supplied in the exhaust gas which hardly contains the sulfur content which burned coal gasification gas after desulfurization, mercury adsorption by coal char is performed favorably.

図4は湿式脱硫を行う場合の石炭ガス化発電システムであるが、本発明に係る石炭ガス化発電システムは乾式脱硫方式を採用した石炭ガス化発電システムであっても良い。これを図5に示す。図5に示すように、当該石炭ガス化発電システムは、乾式脱硫方式を採用している点を除き多くの構成要素が重複しているので、図4と同一部分には同一番号を付し、重複する説明は省略する。当該石炭ガス化発電システムは乾式の脱硫装置19から排煙処理に回される石炭ガス化ガスは存在しないので、廃熱回収ボイラ14の下流のみに集塵装置5から石炭チャーの一部を供給してバグフィルタ16で回収するように構成してある。   FIG. 4 shows a coal gasification power generation system when wet desulfurization is performed, but the coal gasification power generation system according to the present invention may be a coal gasification power generation system adopting a dry desulfurization method. This is shown in FIG. As shown in FIG. 5, the coal gasification power generation system has many components that are the same except that a dry desulfurization method is adopted. Therefore, the same parts as those in FIG. A duplicate description is omitted. In the coal gasification power generation system, there is no coal gasification gas that is sent from the dry-type desulfurization device 19 to the flue gas treatment, so a part of the coal char is supplied from the dust collector 5 only downstream of the waste heat recovery boiler 14. Then, the bag filter 16 is configured to collect.

この場合でも図4に示す場合と全く同様に排ガス中の水銀が回収され、煙突15を介して大気中に排出される水銀を可及的に除去し得る。   Even in this case, mercury in the exhaust gas is recovered just like the case shown in FIG. 4, and mercury discharged into the atmosphere through the chimney 15 can be removed as much as possible.

なお、上記実施の形態における発電設備はガスタービンを有するものであるが、勿論これに限るものではない。ガスエンジンを原動機とする発電設備、燃料電池を有する発電設備であっても同様に適用することができ、適用した場合には同様の効果を得る。   In addition, although the power generation equipment in the said embodiment has a gas turbine, of course, it does not restrict to this. This can be applied in the same way to power generation equipment that uses a gas engine as a prime mover and power generation equipment that has a fuel cell.

また、上記実施の形態では塩化水素ガスを補足的に注入するようにしたが、水素濃度が小さい場合等には必ずしも注入する必要はない。注入しなくても十分な水素除去効果が得られる場合があるからである。さらに、ハロゲン化ガスであれば塩化水素に限定するものでもない。例えば臭化水素及びフッ化水素等を適用できる。   Further, in the above embodiment, hydrogen chloride gas is supplementarily injected, but it is not always necessary to inject it when the hydrogen concentration is low. This is because a sufficient hydrogen removal effect may be obtained even without implantation. Furthermore, the halogen gas is not limited to hydrogen chloride. For example, hydrogen bromide and hydrogen fluoride can be applied.

石炭ガス化設備を用いた電力の供給を行う産業分野で有効に利用し得る。   It can be effectively used in the industrial field where power is supplied using coal gasification equipment.

塩化水素(HCl)を含むガスと石炭チャーとを接触させた場合の水銀除去特性を示す特性図である。It is a characteristic view which shows the mercury removal characteristic at the time of making the gas containing hydrogen chloride (HCl) and coal char contact. 塩化水素(HCl)を含まないガスと石炭チャーとを接触させた場合の水銀除去特性を示す特性図である。It is a characteristic view which shows the mercury removal characteristic at the time of making the gas which does not contain hydrogen chloride (HCl), and coal char contact. 塩化水素(HCl)を含まないガスと石炭チャーとを接触させた場合の水銀除去特性を示す特性図である。It is a characteristic view which shows the mercury removal characteristic at the time of making the gas which does not contain hydrogen chloride (HCl), and coal char contact. 本発明の実施の形態に係る石炭ガス化ガス発電システムを示すブロック線図である。It is a block diagram which shows the coal gasification gas power generation system which concerns on embodiment of this invention. 本発明の他の実施の形態に係る石炭ガス化ガス発電システムを示すブロック線図である。It is a block diagram which shows the coal gasification gas power generation system which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

2 ガス化炉
5 集塵装置(第1の集塵手段)
5A サイクロン
5B フィルタ
10 ガスタービン
11 発電機
15 煙突(排出手段)
16 フィルタ(第2の集塵手段)
18 フィルタ(排煙処理設備)
2 Gasifier 5 Dust collector (first dust collector)
5A cyclone 5B filter 10 gas turbine 11 generator 15 chimney (discharge means)
16 Filter (second dust collecting means)
18 Filter (smoke treatment facility)

Claims (8)

石炭をガス化して石炭ガス化ガスを生成するガス化炉と、このガス化炉の下流側で前記石炭ガス化ガス中の石炭チャーを回収する第1の集塵手段と、この第1の集塵手段の下流側で前記石炭ガス化ガスを燃料として発電を行う発電設備と、この発電設備で発電に供した前記石炭ガス化ガスの排ガスを大気中に排出するための排出手段とを具備する石炭ガス化発電システムであって、
前記発電設備の下流側で前記排出手段との間に第2の集塵手段を設ける一方、前記第1の集塵手段で回収した石炭チャーを前記第2の集塵手段の上流側で前記排ガス中に供給するとともに前記第2の集塵手段で回収するように構成したことを特徴とする石炭ガス化発電システム。
A gasification furnace for gasifying coal to generate coal gasification gas; a first dust collecting means for recovering coal char in the coal gasification gas on the downstream side of the gasification furnace; A power generation facility for generating power using the coal gasification gas as fuel downstream of the dust means; and a discharge means for discharging the exhaust gas of the coal gasification gas used for power generation in the power generation facility to the atmosphere. A coal gasification power generation system,
A second dust collecting means is provided downstream of the power generation facility and the discharging means, while the coal char recovered by the first dust collecting means is disposed on the upstream side of the second dust collecting means. A coal gasification power generation system characterized by being supplied to the inside and recovered by the second dust collecting means.
請求項1に記載する石炭ガス化発電システムにおいて、
前記第2の集塵手段にはハロゲン化ガスを供給するようにしたことを特徴とする石炭ガス化発電システム。
In the coal gasification power generation system according to claim 1,
A coal gasification power generation system characterized in that a halogenated gas is supplied to the second dust collecting means.
請求項2に記載する石炭ガス化発電システムにおいて、
前記ハロゲン化ガスは、前記第2の集塵手段を逆洗する逆洗ガスに混入させて供給するようにしたことを特徴とする石炭ガス化発電システム。
In the coal gasification power generation system according to claim 2,
The coal gasification power generation system characterized in that the halogenated gas is mixed with a backwash gas for backwashing the second dust collecting means.
請求項2又は請求項3に記載する石炭ガス化発電システムにおいて、
前記ハロゲン化ガスは塩化水素ガスであることを特徴とする石炭ガス化発電システム。
In the coal gasification power generation system according to claim 2 or claim 3,
The coal gasification power generation system, wherein the halogenated gas is hydrogen chloride gas.
請求項1乃至請求項4の何れか一つに記載する石炭ガス化発電システムにおいて、
前記第1の集塵手段は、上流側から順に直列に接続されたサイクロンとフィルタとを有しており、前記排ガス中に供給する石炭チャーに占める前記サイクロンで回収した粒径が大きな石炭チャーの量と前記フィルタで回収した粒径が小さい石炭チャーの量との割合を調整可能に構成したことを特徴とする石炭ガス化発電システム。
In the coal gasification power generation system according to any one of claims 1 to 4,
The first dust collecting means has a cyclone and a filter connected in series in order from the upstream side, and a coal char having a large particle size recovered by the cyclone occupying in the coal char supplied into the exhaust gas. A coal gasification power generation system characterized in that the ratio between the amount and the amount of coal char with a small particle size recovered by the filter can be adjusted.
請求項1乃至請求項5の何れか一つに記載する石炭ガス化発電システムにおいて、
前記第2の集塵手段で回収した石炭チャーは、前記第2の集塵手段の上流側で再度前記排ガス中に供給して循環させるように構成したことを特徴とする石炭ガス化発電システム。
In the coal gasification power generation system according to any one of claims 1 to 5,
The coal gasification power generation system is configured such that the coal char recovered by the second dust collecting means is supplied and circulated again into the exhaust gas upstream of the second dust collecting means.
請求項1乃至請求項6の何れか一つに記載する石炭ガス化発電システムにおいて、
脱硫後の石炭ガス化ガスの排煙処理を行う排煙処理設備内の前記石炭ガス化ガスにも前記第1の集塵手段から石炭チャーを供給することを特徴とする石炭ガス化発電システム。
In the coal gasification power generation system according to any one of claims 1 to 6,
A coal gasification power generation system, characterized in that coal char is also supplied from the first dust collecting means to the coal gasification gas in a flue gas treatment facility that performs flue gas treatment of coal gasification gas after desulfurization.
石炭をガス化して石炭ガス化ガスを生成するガス化炉の下流側で前記石炭ガス化ガス中の石炭チャーを第1の集塵手段で回収するとともに、発電設備に供給されて発電に供した後の前記石炭ガス化ガスの排ガス中に前記第1の集塵手段で回収した石炭チャーを供給し、この石炭チャーに前記排ガス中の水銀を吸着させて第2の集塵手段で回収するようにしたことを特徴とする石炭ガス化発電システムにおける水銀の除去方法。

The coal char in the coal gasification gas is recovered by the first dust collecting means on the downstream side of the gasification furnace that gasifies the coal to generate the coal gasification gas, and supplied to the power generation facility for power generation. The coal char recovered by the first dust collecting means is supplied into the exhaust gas of the coal gasification gas later, and the mercury in the exhaust gas is adsorbed to the coal char and recovered by the second dust collecting means. A method for removing mercury in a coal gasification power generation system characterized by the above.

JP2008114587A 2008-04-24 2008-04-24 Coal gasification power generation system and mercury removal method in coal gasification power generation system Expired - Fee Related JP5305327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114587A JP5305327B2 (en) 2008-04-24 2008-04-24 Coal gasification power generation system and mercury removal method in coal gasification power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114587A JP5305327B2 (en) 2008-04-24 2008-04-24 Coal gasification power generation system and mercury removal method in coal gasification power generation system

Publications (2)

Publication Number Publication Date
JP2009263498A true JP2009263498A (en) 2009-11-12
JP5305327B2 JP5305327B2 (en) 2013-10-02

Family

ID=41389767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114587A Expired - Fee Related JP5305327B2 (en) 2008-04-24 2008-04-24 Coal gasification power generation system and mercury removal method in coal gasification power generation system

Country Status (1)

Country Link
JP (1) JP5305327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066638A (en) * 2020-10-19 2022-05-02 トヨタ車体株式会社 Deodorization processing device and deodorization processing method of coating drying furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116971A (en) * 1997-10-15 1999-04-27 Mitsubishi Heavy Ind Ltd Gasification combined power plant system
JP2000248285A (en) * 1999-03-02 2000-09-12 Mitsubishi Heavy Ind Ltd Gas treatment in gasification facility and gasification facility
JP2002310402A (en) * 2001-02-06 2002-10-23 Nkk Corp Utilizing facility for gas produced by gasifying melting furnace
JP2002327183A (en) * 2001-02-27 2002-11-15 Mitsubishi Heavy Ind Ltd Gasification power generation equipment for waste
JP2003227349A (en) * 2002-02-07 2003-08-15 Mitsui Eng & Shipbuild Co Ltd Biomass gasification generating set
JP2003292976A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Gasification plant for fuel and fuel gasification/hybrid power generation system
JP2005024193A (en) * 2003-07-03 2005-01-27 Nippon Steel Corp Generated gas treatment method for waste disposal furnace
JP2007238670A (en) * 2006-03-06 2007-09-20 Mitsubishi Heavy Ind Ltd Gas purifying equipment and process, gasification system, and gasification/power generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116971A (en) * 1997-10-15 1999-04-27 Mitsubishi Heavy Ind Ltd Gasification combined power plant system
JP2000248285A (en) * 1999-03-02 2000-09-12 Mitsubishi Heavy Ind Ltd Gas treatment in gasification facility and gasification facility
JP2002310402A (en) * 2001-02-06 2002-10-23 Nkk Corp Utilizing facility for gas produced by gasifying melting furnace
JP2002327183A (en) * 2001-02-27 2002-11-15 Mitsubishi Heavy Ind Ltd Gasification power generation equipment for waste
JP2003227349A (en) * 2002-02-07 2003-08-15 Mitsui Eng & Shipbuild Co Ltd Biomass gasification generating set
JP2003292976A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Gasification plant for fuel and fuel gasification/hybrid power generation system
JP2005024193A (en) * 2003-07-03 2005-01-27 Nippon Steel Corp Generated gas treatment method for waste disposal furnace
JP2007238670A (en) * 2006-03-06 2007-09-20 Mitsubishi Heavy Ind Ltd Gas purifying equipment and process, gasification system, and gasification/power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066638A (en) * 2020-10-19 2022-05-02 トヨタ車体株式会社 Deodorization processing device and deodorization processing method of coating drying furnace
JP7380514B2 (en) 2020-10-19 2023-11-15 トヨタ車体株式会社 Deodorizing equipment and method for paint drying ovens

Also Published As

Publication number Publication date
JP5305327B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4436068B2 (en) Coal gasification plant, coal gasification method, coal gasification power plant, and expansion facility for coal gasification plant
US8752384B2 (en) Carbon dioxide capture interface and power generation facility
JP2011072887A (en) Carbon dioxide capture power generation system
KR101693865B1 (en) Carbon capture cooling system and method
JP2019055903A (en) Firing apparatus of ecological cement
KR20180132194A (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
KR101475785B1 (en) The carbon capture and storage apparatus from waste using plasma pyrolysis device
JP5963239B2 (en) Coal gasification facility and coal gasification power generation system
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP4775858B2 (en) Method for regenerating copper-based absorbent and method for removing mercury from source gas
JP5305327B2 (en) Coal gasification power generation system and mercury removal method in coal gasification power generation system
JP2006346541A (en) Method of manufacturing carboneous adsorbent, and method and apparatus of removing environmental pollutant by using the same
JP2870929B2 (en) Integrated coal gasification combined cycle power plant
JPH1182991A (en) Method and device for drying and purging coal for power generation
CN109839010B (en) Large submerged arc furnace flue gas waste heat recycling system for removing dioxin
CN206942820U (en) A kind of equipment to be generated electricity using combustion gas and Steam Combined
JP2010215802A (en) Dry gas purification facility and coal gasification combined power generation facility
JP2020520044A (en) Pressurized fluidized bed combustion apparatus with fuel cell CO2 capture
JP3862057B2 (en) Method and apparatus for recovering energy from waste gasification gas
KR970063877A (en) High Reliability High Efficiency Coal Gasification Combined Power Generation System and Power Generation Method
KR101529823B1 (en) Integrated gasification combined cycle system
JP6278576B2 (en) Power generation system using low quality coal
JP3576501B2 (en) Energy recovery method and apparatus for waste gasification gas
JP4126218B2 (en) Treatment method of solid hydrocarbon in coal gas combined power generation process
JP4519338B2 (en) Method for treating ammonia-containing gas and coal gasification combined power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees